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In  this  paper,  we  propose  asynchronously  tuned  elementary  cellular
automata  (AT_ECA)  as  models  that  implement  a  new  type  of  self-
organized  criticality  (SOC).  SOC  in  AT_ECA  is  based  on  asyn-
chronously  updating  and  locally  tuning  the  consistency  between  dual
modes  of  transition.  A  previous  work  showed  that  AT_ECA  generate
class  4-like  spacetime  patterns  over  a  wide  area  of  the  rule  space,  and
the  density  decay  follows  a  power  law  for  some  of  the  rules.  In  this
study,  we  performed  a  spectral  analysis  of  AT_ECA,  of  which  a  great

number  of  rules  were  found  to  exhibit  1  f  noise,  suggesting  that
AT_ECA  realize  critical  states  without  selecting  specific  rules  or  fine-
tuning parameters.
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Introduction1.

Various  biological  systems  are  found  to  be  in  critical  states,  but  the
mechanism of realizing such critical states is still unknown [1–4]. By a
huge  amount  of  analysis  of  one-dimensional  cellular  automata,
Wolfram  and  Langton  revealed  that  the  critical  states  called  class  4
exist  only  in  the  extremely  narrow  region  of  the  rule  space,  which  is
the  so-called  edge  of  chaos  [5,  6].  In  recent  years,  Fatès  and  his  col-
leagues  have  shown  that  asynchronous  cellular  automata  have  an
asynchronous updating ratio as a parameter and the critical states are
generated  by  tuning  this  parameter  [7].  However,  fine-tuning  such
parameters  or  rules  in  a  real  biological  system  is  still  a  mystery.
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Walker  and  his  colleagues  asserted  that  this  is  a  serious  problem,
which modern science calls “the hard problem of life” [1]. 

Self-organizing  criticality  (SOC),  which  was  proposed  by  Bak  and
his  colleagues,  is  a  candidate  for  solving  this  problem,  in  the  sense
that  it  realizes  criticality  without  requiring  the  tuning  of  parameters
[8, 9]. However, their models of SOC explicitly or implicitly include a
mechanism  for  linking  global  and  local  information,  and  so  they  do
not reveal all the mechanisms of SOC. In contrast, we have proposed
another type of SOC based on thorough local interactions and coordi-
nation within the system [10–13]. In particular, asynchronously tuned
elementary cellular automata (AT_ECA), as proposed by one of us, is
a simple model that implements a new type of SOC and realizes criti-
cality  by  asynchronous  and  nonuniform  interactions.  A  previous
study  has  found  that  AT_ECA  generate  class  4-like  patterns  over  a
wide  area  of  the  rule  space,  and  the  density  decay  follows  the  power
law without fine-tuning the parameters [13, 14]. 

In  this  study,  we  analyzed  the  spacetime  patterns  of  AT_ECA  by

calculating the power spectrum and found that 1  f  noise is generated

over a wide range of the rule space. 1  f  noise can be found in many

biological  systems,  but  its  universal  mechanism  is  not  yet  clear  [15].

On  the  other  hand,  since  1  f  noise  is  often  observed  in  criticality,  it

is  a  representative  index  for  estimating  whether  a  system  is  in  a  criti-

cal state [8]. Ninagawa reported that 1  f  noise can be seen in space-

time patterns generated by a small number of rules, such as rule 110,
in  elementary  cellular  automata  (ECA)  [16].  Since  these  rules  have
computational  universality  [17],  which  is  considered  to  be  one  of  the

features  of  biological  systems,  1  f  noise  is  considered  to  also  be

related  to  it  [18].  In  this  study,  the  same  analytical  method  that  was
used  by  Ninagawa  for  ECA  was  applied  to  AT_ECA.  The  results
show  that  AT_ECA  is  a  powerful  model  that  offers  a  new  picture  of
SOC  in  biological  systems.  The  aim  of  this  study  is  not  to  classify

ECA  or  AT_ECA  rules  by  1  f  noise.  Our  argument  is  that  AT_ECA

generates  1  f  noise  with  many  more  rules  compared  to  ECA.  That

argument is based on an analysis of the whole domain of rules. 

Asynchronously Tuned Elementary Cellular Automata2.

AT_ECA  introduce  the  following  three  factors  to  ECA,  which
are one-dimensional, two-state, three-neighbor cellular automata�[13]:
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Asynchronous updating. 1.

Passive and active mode rules. 2.

Tuning the active mode rule. 3.

These  three  factors  reveal  local  discrepancies  and  coordination
between cells, which are involved in the one-step evolution. The local
discrepancies  and  coordination  are  abandoned  in  the  ECA,  in  which
most of the features depend on synchronous updating [19, 20]. How-
ever, synchronous updating is not realistic in actual phenomena, such
as biological systems. On the other hand, asynchronous updating may
also be unrealistic, because it is attached to discrete modeling, but it is
inevitable  when  using  a  mathematical  model  to  describe  phenomena.
Such  aspects  of  asynchronous  updating  are  reflected  in  AT_ECA  by
the distinction among the passive mode, the active mode and the tun-
ing  rules.  The  discrepancy  between  the  active  and  passive  modes
brought  about  by  asynchronous  updating  is  eliminated  ex  post  facto
by  local  coordination  inside  the  system,  which  also  inherits  the  next
discrepancy [14]. 

The definition of AT_ECA, including the x at time step t: 

x = 1, 2, … , N, (1)

t = 0, 1, … , T - 1, (2)

cx(t) ∈ 0, 1, (3)

where  N  is  the  system  size  and  T  is  the  observation  length  of  evolu-
tion.  Asynchronous  updating  is  introduced  by  an  updating  order,
which is defined by 

Ordt(x) ∈ 1, 2, …N, (4)

x ≠ y⟹Ordt(x) ≠ Ordt(y), (5)

where  Ordt(x)  is  the  order  in  which  the  value  of  site  x  is  updated  at

time step t. Ordt(x)  1 means that updating the value of site x is per-
formed  first,  whereas  Ord(x)  N  means  that  updating  is  performed

last.  Ordt(x)  is  randomly  determined,  but  without  duplication  for

each time step. In other words, Ordt(x) is a one-to-one and onto map. 
There  are  two  modes  of  local  rules  used  for  updating  the  value  of

each  site:  passive  and  active.  The  passive  mode  rule  ϕP  is  a  function
that is defined as follows: 

ϕP : 0, 13 → 0, 1, (6)
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ds ∈ 0, 1 s = 0, 1, … , 7. (8)

In equation (7), the three-bit number above the line is an input of ϕP,

whereas  ds  is  the  corresponding  output;  that  is,  ϕP0, 0, 0  d0,

ϕP0, 0, 1  d1, … , ϕP1, 1, 1  d7.  By  specifying  ds  for  all

0, 1, … , 7,  a  passive  mode  rule  is  specifically  determined.  There  are

28  256  combinations  of  ds,  which  are  consistent  with  the  local

rules  of  ECA.  The  rules  are  denoted  by  Wolfram’s  rule  number  from
0  to  255  [21].  Likewise,  AT_ECA  are  assigned  a  number  from  0  to
255 according to the passive mode rule, which is invariant among all
sites  and  through  all  time  steps.  On  the  other  hand,  the  active  mode
rule  differs  at  each  site  and  varies  with  the  time  steps.  The  active

mode rule ϕx, t
A

 of site x at time step t is defined by 

ϕx, t
A : 0, 13 → 0, 1, (9)

111
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, (10)

es, x
t ∈ 0, 1 s = 0, 1, … , 7. (11)

Similarly to equation (7), the upper and lower sides of the line of equa-

tion  (10)  represent  the  input  of  function  ϕx, t
A

 and  the  corresponding

output, respectively; that is,

ϕx, t
A 0, 0, 0  e0, x

t ,

ϕx, t
A 0, 0, 1  e1, x

t , … , ϕx, t
A 1, 1, 1  e7, x

t .

Using the passive mode rule, the active mode rule and an updating
order, the value of each site is updated according to the following: 

Ordtx - 1 < Ordt(x) < Ordtx + 1⟹cxt + 1 =

ϕPcx-1t + 1, cx(t), cx+1(t),
(12a)

Ordtx - 1 > Ordt(x) > Ordtx + 1⟹cxt + 1 =

ϕPcx-1(t), cx(t), cx+1t + 1,
(12b)

Ordtx - 1 < Ordt(x) > Ordtx + 1⟹cxt + 1 =

ϕPcx-1t + 1, cx(t), cx+1t + 1,
(12c)

Ordtx - 1 > Ordt(x) < Ordtx + 1⟹cxt + 1 =

ϕx, t
A (cx-1(t), cx(t), cx+1(t)).

(12d)

These  four  equations  are  for  calculating  cxt + 1,  which  is  the

value of site x at time step t + 1, and are conditioned according to the
updating  order  of  site  x  and  the  neighboring  sites.  Equations  (12a)–
(12c) are applied in the case where one or two sites that have already
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been  updated  are  included  in  the  neighboring  sites.  In  this  case,

cxt + 1  is  calculated  by  referring  to cx-1t + 1  and/or cx+1t + 1,

which  are  the  values  at  time  step  t + 1.  Equation  (12d)  is  applied  in
the case where an updated site is not included in the neighboring sites.

In  this  case,  cxt + 1  is  calculated  by  referring  to  the  values  only  at

time step t. Note that equations (12a)–(12c) include the passive mode

rule ϕP  and equation (12d) includes the active mode rule ϕx, t
A ; that is,

the value of a site at the next time step is calculated using the passive
mode  rule  if  the  neighbor  includes  the  updated  site;  otherwise,  the
active mode rule is used. 

Now, we explain the tuning rule. At the beginning of the evolution,
the active mode rule is the same as the passive mode rule. So, 

es, x
0 = ds s = 0,  1, … , 7. (13)

The active mode rule is tuned by determining es, x
t+1

 as follows: 

for m  4 · cx-1(t) + 2 · cx(t) + cx+1(t),

Ordtx - 1 < Ordt(x) < Ordtx + 1�⟹  em, x
t+1 = d0, (14a)

Ordtx - 1 > Ordt(x) > Ordtx + 1�⟹  em, x
t+1 = d0, (14b)

Ordtx - 1 < Ordt(x) > Ordtx + 1�⟹  em, x
t+1 = cxt + 1, (14c)

Ordtx - 1 > Ordt(x) < Ordtx + 1�⟹  em, x
t+1 =  es, x

t . (14d)

Equations  (14a)–(14c)  represent  the  case  when  the  passive  mode  rule

is  applied  to  calculate  cxt + 1,  in  which  case  the  active  mode  rule  is

changed.  d0  in  equations  (14a)  and  (14b)  is  included  in  equation  (7).

When  only  one  of  the  neighboring  sites  is  updated  before  the  center
sites, the corresponding output of the active mode rule is canceled, so

as  to  coincide  with  the  output  corresponding  to  input  0, 0, 0  in  the

passive  mode  rule.  Equation  (14c)  represents  the  case  when  both
neighboring sites are updated before the center site, in which case the
corresponding  output  of  the  active  mode  rule  is  changed  to  coincide

with cxt + 1. Equation (14c) is the most essential for the updating of

the active mode rule. By tuning the active rule in this way, the discrep-
ancy  between  the  passive  and  the  active  modes  is  adjusted  to  become
small. Equation (14d) represents the case when the active mode rule is

applied to calculate cxt + 1, in which case the active mode rule is not

changed.  Also,  the  outputs  of  the  active  mode  rule  corresponding  to
inputs other than m are not changed. So,

es, x
t+1 = es, x

t
 (s ≠ m).                           (15)
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Universal Emergence of 1/f Noise3.

Power  spectra  are  calculated  for  the  spacetime  patterns  generated  by
AT_ECA.  The  calculation  method  is  the  same  as  that  Ninagawa
applied  to  ECA  [16,  18,  22].  A  spacetime  pattern  is  a  set  of  the  site

values  cx(t)x  1, 2, … , N, t  0, 1, … , T - 1.  The  power  spec-

trum of a spacetime pattern is calculated as follows:

cxf =
1

T

t=0

T-1

cx(t) exp - i
2πtf

T
, f = 0, 1, … , T - 1, (16)

Sf = 
x=1

N

cxf
2. (17)

Equation (16) gives the discrete Fourier transform for a time series of
values  of  site  x  for  t  0, 1, … , T - 1,  where  f  is  the  frequency  that

corresponds  to  the  period  T  f.  The  summation  of  the  squared  abso-

lute  values  of  the  frequency  component  cxf  for  all  sites  gives  the

power  Sf.  The  power  intuitively  means  the  strength  of  the  periodic

vibration  with  period  T  f  in  the  spacetime  pattern.  We  use  random

initial conditions and a periodic boundary condition.
First,  we  describe  the  results  of  the  analysis  of  a  typical  case.  Fig-

ure�1  shows  the  spacetime  patterns  and  the  power  spectra  of  rule  60
in AT_ECA and ECA. The spacetime patterns consist of 200 sites for
200  time  steps.  The  power  spectra  are  calculated  from  the  evolution
of  200  sites  for  1024  time  steps  and  are  indicated  by  double  loga-
rithms.  The  spacetime  pattern  of  the  ECA  is  chaotic  and  typically
classified  as  class  3  according  to  Wolfram’s  classification.  The  power
spectrum  of  the  ECA  is  uniformly  distributed  with  respect  to  the  fre-
quency,  which  is  the  so-called  white  noise.  On  the  other  hand,  the
spacetime  pattern  of  the  AT_ECA  shows  that  some  local  patterns
grow  like  a  branch.  This  pattern  is  typically  classified  as  class  4
according  to  Wolfram’s  classification.  The  power  spectrum  of  the
AT_ECA  is  distributed  in  a  negative  slope  with  respect  to  frequency,

indicating  the  so-called  1  f  noise.  The  broken  line  represents  the

least-squares fitting of the power spectrum. The slope α and the resid-

ual sum of squares σ2
 are calculated using the following equations: 

logSf = -α∙logf + β, (18)

σ2 =
1

fr

f=1

fr

���Sf - -α∙���f + β 
2, (19)

where  fr  100,  so  the  fitting  is  performed  in  the  range  of

f  1 ~ 100.  As a  result,  the  slope is  α  1.001  and the  residual  sum
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of  squares  is  σ2  0.0033.  The  slope  is  close  to  1  and  can  be  said  to
fit  well.  To  confirm  the  reproducibility  of  this  result,  Figure  2  plots
the  slope  on  the  horizontal  axis  and  the  residual  sum  of  squares  on
the vertical axis for 100 trials, starting from a random initial configu-
ration.  The  95%  confidence  interval  of  the  population  mean  of  the

slope is α  1.0096 ± 0.0042.

Figure 1. Spacetime  patterns  (left)  and  power  spectra  (right)  of  AT_ECA
rule�60  (top)  and  ECA  rule  60  (bottom).  The  power  spectra  are  plotted  on  a
log–log  scale.  The  broken  line  in  the  power  spectrum  represents  the  least-
squares  fitting  of  the  power  spectrum  in  the  range  f  1 ~ 100  with  slope
α  1.001 and residual sum of squares σ2  0.0033.

Next, we show by exhaustive analysis that 1  f  noise is universally

generated  for  the  rule  space  in  AT_ECA.  Figure  3  plots  the  slopes  of
the  power  spectra  and  the  residual  sum  of  squares  for  all  256  rules.
Each  point  is  an  average  value  of  10  trials.  The  left  plot  is  related  to
AT_ECA  and  the  right  plot  is  related  to  ECA.  In  AT_ECA,  there  are
more  points  located  at  the  lower  right  of  the  graph  than  in  ECA.  In
other  words,  AT_ECA  include  more  rules  with  a  larger  slope  and  a
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smaller  residual  sum  of  squares,  which  is  less  than  ECA  rules  54,  62

and  110,  which  are  known  to  exhibit  power  spectra  close  to 1  f

noise.  Thus,  it  can  be  concluded  that 1  f  noise  is  generated  by  these

rules  in  AT_ECA.  It  should  be  noted  that  although  many  ECA  rules

exist outside the plot range, the power spectra clearly differ from 1  f

noise (the residual sum of squares is very large or the slope is smaller
than 0). 

Figure 2. The  residual  sum  of  squares  σ2
 versus  the  slope  α  of  the  least-

squares fitting of the power spectrum for 100 runs by AT_ECA rule 60. 

Figure 3. The  residual  sum  of  squares  σ2
 versus  the  slope  α  of  the  least-

squares  fitting  of  the  power  spectrum  for  all  rules  of  AT_ECA  (left)  and
ECA (right). Each cross represents the average of 10 runs for each rule. 

Table  1  lists  the  rule  numbers  whose  slope  is  greater  than  0.5  and
whose  residual  sum  of  squares  is  less  than  0.5  in  the  results  of  the
analysis  of  AT_ECA,  as  shown  in  Figure  3.  The  rule  numbers
included  in  parentheses  generate  the  same  spacetime  patterns  by  the
symmetry of rules in ECA [23]. Due to the equations (14a) and (14b)
in  the  tuning  rule,  the  symmetry  of  0  and  1  is  broken  in  AT_ECA.
However,  left  and  right  symmetry  is  kept  in  AT_ECA.  Therefore,  in
AT_ECA,  rules  166  and  180  are  equivalent.  Rule  188  and  rule  230
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Table 1. Numbers  represent  rules  of  AT_ECA  whose  slopes  are  greater  than
0.5 and whose residual sums of squares are less than 0.005. Rules included in
parentheses are equivalent in ECA under the symmetries 0/1 and left/right.

are also equivalent. On the other hand, rule 160 and rule 250 are not
equivalent. Forty-nine rules of AT_ECA are included in this table, but
ECA does not have any rules that satisfy this condition. For nine rules
out  of  those  described  in  Table  1,  the  spacetime  patterns  and  the
power  spectra  are  shown  in  Figures  4–6.  For  comparison,  the  space-
time pattern and the power spectrum of ECA with the same rule num-
ber  are  also  displayed.  These  nine  rules  consist  of  various  rules

Figure 4. Spacetime  patterns  and  power  spectra  of  AT_ECA  (left)  and
ECA  (right)  with  rule  6  (top),  rule  14  (middle)  and  rule  22  (bottom).  The
power  spectra  are  plotted  on  a  log–log  scale.  The  broken  line  in  the  power
spectrum  represents  the  least-squares  fitting  of  the  power  spectrum  in  the
range f  1 ~ 100 with slope α and residual sum of squares σ2.
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whose spacetime patterns in ECA are periodic (6 and 14), chaotic (22
and 110), critical (54 and 110) and fixed (156, 218, and 250). It can

be confirmed that all these rules generate 1  f  noise in AT_ECA. The

analysis  clarified  that 1  f  noise  is  universally  generated  for  various

rules in AT_ECA. 

Figure 5. Spacetime  patterns  and  power  spectra  of  AT_ECA  (left)  and
ECA (right) with rule 54 (top), rule 110 (middle) and rule 150 (bottom).

To investigate the factors that generate 1  f  noise in AT_ECA, the

same  analysis  is  performed  for  asynchronous  elementary  cellular
automata  (A_ECA),  which  introduces  only  asynchronous  updating
into  ECA.  Figure  7  shows  the  spacetime  pattern  and  the  power  spec-
trum  for  A_ECA  rule  60.  The  simulation  conditions  are  the  same  as
those  shown  in  Figure  1.  The  spacetime  pattern  is  more  chaotic  than
that  of  AT_ECA.  The  power  gradually  decreases  in  the  high-

frequency region and shows a property close to 1  f  noise, but in the

low-frequency  region,  the  power  is  almost  constant  and  shows  white
noise.  Figure  8  shows  the  slope  of  the  power  spectrum  and  the  resid-
ual sum of squares for all rules in A_ECA. The conditions of analysis
are  the  same  as  those  shown  in  Figure  3.  Comparing  Figure  8  with
Figure 3, we can see that the distribution of A_ECA is similar to that
of  ECA  but  different  from  that  of  AT_ECA.  In  A_ECA,  there  is  no
point  located  at  the  lower  right  of  the  graph;  that  is,  there  is  no  rule
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in  which  the  slope  is  large  and  the  residual  sum  of  squares  is  small.

Therefore,  there  is  no  rule  indicating 1  f  noise  in  A_ECA.  We  can

conclude  that 1  f  noise  does  not  occur  only  with  asynchronous

updating  and  that  locally  tuning  the  consistency  between  the  passive
and  the  active  modes  together  with  asynchronous  updating  generates

1  f noise in AT_ECA.

Figure 6. Spacetime  patterns  and  power  spectra  of  AT_ECA  (left)  and
ECA (right) with rule 156 (top), rule 218 (middle) and rule 250 (bottom).

Figure 7. Spacetime  patterns  (left)  and  power  spectra  (right)  of  A_ECA
rule 60.
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Figure 8. The  residual  sum  of  squares  σ2
 versus  the  slope  α  of  the  least-

squares fitting of the power spectrum for all rules of A_ECA.

Independence of the System Size and Observation Length4.

We investigated the dependence of the power spectrum on the system
size and observation length. In general, when the observation length is
too  long  as  compared  with  the  system  size,  the  slope  of  the  power
spectrum  becomes  small  in  the  low-frequency  region  and  it  is  not  the

1  f  noise.  The  reason  for  this  is  considered  to  be  the  observation

length being large relative to the system size, the growth of the branch
pattern  being  interrupted  and  the  configuration  becoming  uniform.
However, it is known that there are some rules in AT_ECA of which
the densities (the ratio of sites with the value 1) decrease according to
the  power  law  with  respect  to  the  time  steps  [13].  Regarding  these

rules,  it  can  be  expected  that  the  power  spectrum  maintains  the  1  f

noise  type  even  if  the  observation  length  is  very  large.  So,  regarding
rule  150,  the  dependence  on  the  observation  length  is  examined  in
detail. Figure 9 plots the slope of the power spectrum for observation
lengths T  1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000
and  10000.  Each  point  is  the  average  value  of  30  trials.  The  upper
plot  in  Figure  9  shows  the  slopes  of  the  least-squares  fitting  of  the
spectra  from  f  1  to  100.  In  the  case  of  system  size  N  100,  the
slope tends to rise slightly as the observation length is increased, but it
is  nearly  constant  from  T  4000  to  9000.  In  the  case  of  system  size
N  1000, the slope is almost constant from T  2000.

The lower part of Figure 9 shows the slope of the least-squares fit-
ting  of  the  power  spectrum  from  f  1  to  10.  It  focuses  on  the  low-
frequency  region  where  the  dependence  on  the  observation  length  is
expected  to  be  larger.  AT_ECA  rule  150  and  ECA  rule  110  are  dis-
played  with  system  size  N  100.  ECA  rule  110  is  known  to  exhibit

1  f  noise  during  the  longest  time  steps  in  this  frequency  range  [16].
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However,  according  to  the  graph,  the  slope  of  ECA  rule  110
decreases  as  the  time  size  increases,  because  periodical  spacetime  pat-
terns  are  generated  because  of  the  small  system  size.  On  the  other
hand,  the  slope  of  AT_ECA  rule  150  slightly  tends  to  increase  as  the
time size increases, but the slope is within the range of 0.8–1.1. These

results  indicate  that  AT_ECA  generates  1  f  noise  in  the  long-period

frequency region even though the system size is small. 

Figure 9. Average  slope  of  power  spectra  for  30  runs  versus  time  size.  The
least-squares  fitting  of  the  power  spectrum  is  performed  in  the  range
f  1 ~ 100  (top)  and  f  1 ~ 10  (bottom).  In  the  top  graph,  “+”  represents
AT_ECA  rule  150  with  N  100  and  “x”  represents  AT_ECA  rule  150  with
N  1000.  In  the  bottom  graph,  “+”  represents  AT_ECA  rule  150  with
N  100 and “x” represents ECA rule 110 with N  100.

This  result  can  clearly  be  seen  from  the  power  spectrum  shown  in
Figure 10. Each is the average power spectrum of 30 trials, which are
part  of  the  results  of  the  analysis  shown  in  Figure  9.  Regarding
AT_ECA  rule  150,  even  if  the  system  size  is  smaller  or  the  observa-
tion length is larger, the shape of the power spectrum hardly changes

but  shows 1  f  noise  (Figure  10, left  and  center).  On  the  other  hand,

in  the  case  of  ECA  rule  110,  when  the  system  size  is  small  and  the
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observation  length  is  large  (N  100,  T  10 000),  the  power  spec-

trum is clearly different from 1  f  noise (Figure 10, lower right). Sum-

marizing the results, it can be said that AT_ECA rule 150 universally

generates 1  f  noise without depending on the space size and observa-

tion length. 

Figure 10. Average  power  spectra  for  30  runs  of  AT_ECA  rule  150  with
N  1000  and  T  1000  (top  left),  N  1000  and  T  10 000  (bottom  left),
N  100  and  T  1000  (top  center),  and  N  100  and  T  10 000  (bottom
center);  and  ECA  rule  110  with  N  100  and  T  1000  (top  right),  and
N  100 and T  10 000 (bottom right).

Conclusion5.

In  this  study,  we  calculated  the  power  spectra  of  the  spacetime  pat-
terns  generated  by  asynchronously  tuned  elementary  cellular

automata (AT_ECA) and revealed that AT_ECA exhibit 1  f  noise in

a very large number of rules. We also found that certain rules exhibit

1  f  noise  during  very  long  time  steps,  regardless  of  the  system  size.

We  can  conclude  that  AT_ECA  realizes  the  criticality  without  a  fine
selection  of  rules  and  fine-tuning  parameters,  such  as  spacetime  size,

since  1  f  noise  is  a  representative  index  of  criticality.  Furthermore,

AT_ECA  does  not  have  global  information  as  other  self-organizing
criticality  (SOC)  models  do.  Therefore,  AT_ECA  present  a  new  pic-
ture  of  SOC,  which  is  realized  by  perpetual  inconsistency  and  local
coordination within the system.
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