
Replication of a Binary Image on a One-
Dimensional Cellular Automaton with 

Linear Rules 

U Srinivasa Rao*

Jeganathan L†

School of Computing Science and Engineering
Vellore Institute of Technology
Vandalur-Kelambakkam Road, Chennai, India-600 127
*umitty.srinivasarao@vit.ac.in
† jeganathan.l@vit.ac.in 

A  two-state,  one-dimensional  cellular  automaton  (1D  CA)  with  uni-

form  linear  rules  on  an  r + 1-neighborhood  replicates  any  arbitrary

binary image given as an initial configuration. By these linear rules, any
cell gets updated by an EX-OR operation of the states of extreme (first

and  last)  cells  of  its  r + 1-neighborhood.  These  linear  rules  replicate

the  binary  image  in  two  ways  on  the  1D  CA:  one  is  without  changing
the  position  of  the  original  binary  image  at  time  step  t  0  and  the
other  is  by  changing  the  position  of  the  original  binary  image  at  time
step t  0. Based on the two ways of replication, we have classified the
linear  rules  into  three  types.  In  this  paper,  we  have  proven  that  the

binary image of size m gets replicated exactly at time step 2k  of the uni-

form  linear  rules  on  the  r + 1-neighborhood  1D  CA,  where  k  is  the

least  positive  integer  satisfying  the  inequality  m  r ≤ 2k.  We  have  also

proved  that  there  are  exactly  r * 2k -m  cells  between  the  last  cell  of

the binary image and the first cell of the replicated binary image (or the
first cell of the binary image and the last cell of the replicated image). 

Keywords: replication; binomial coefficients; linear rules; binary image; 
rule 90

Introduction1.

A  one-dimensional  cellular  automaton  (1D  CA)  consists  of  an  array
of  cells:  each  cell  can  be  in  one  of  a  finite  number  of  states  and  the
state  of  each  cell  is  updated  on  every  time  step,  according  to  a  deter-
ministic  rule  based  on  the  state  of  the  neighboring  cells  and  its  own
state. Properties of 1D CAs have been analyzed in great detail by vary-
ing  the  cell  neighborhood,  transition  rules,  boundary  conditions  and
so forth.

https://doi.org/10.25088/ComplexSystems.27.4.415

mailto:umitty.srinivasarao@vit.ac.in
mailto:jeganathan.l@vit.ac.in
https://doi.org/10.25088/ComplexSystems.27.4.415


Replication  (generation  of  exactly  two  perfect  non-overlapping
copies of the given binary image) is a very useful application in image
processing,  textile  design,  DNA  genetics  research,  statistical  physics,
artificial  life  and  other  fields.  In  [1]  Wolfram  discussed  self-similar

patterns  like  Sierpin ski’s  triangle  on  1D  CAs;  Willson  [2–4]  studied
the  generation  of  fractals  and  fractal  dimension  with  linear  rules;
Culik and Dube [5] have proved that linear rules will always generate
a highly regular behavior on any initial configuration; Fredkin [6] dis-
cussed the fractal replicator (calling it Fredkin’s replicator) on the two-
dimensional  cellular  automaton  (2D  CA);  Mitra  and  Kumar  [7]  have
discussed  fractal  replication  on  1D  CAs  with  look-ahead  (cell’s  own

future state)—the replication can happen at time step 2k, where k is a
non-negative  integer.  In  [5,  7]  and  Gravner  and  Griffeath  [8],  it  was
independently  observed  that  replication  occurs  at  time  step

2⌈(log2(m-1))⌉
 (m > 1 is the size of the initial configuration). 

Assuming  that  the  uniform  linear  rules  are  repeatedly  applied  on

the  binary  image  on  the  r + 1-neighborhood  1D  CA,  we  have

addressed  the  following  questions  with  mathematical  rigor  in  Sec-
tion�4,  related  to  the  replication  of  the  binary  image  in  the  1D  CA,
which have not been addressed by any researcher so far. 

Why does the replication occur exactly after time step 2k? Is it possible
to compute the exact value of k? 

1.

Does  k  depend  on  the  size  of  the  initial  configuration  alone  or  depend
on  the  size  of  the  initial  configuration  and  the  size  of  the  neighbor-
hood r?

2.

Is it possible to compute the space (in terms of the number of cells) that
gets  generated  between  the  initial  configuration  and  its  replicated
image? 

3.

Is  it  possible  to  regulate  the  replication  process  in  the  sense  that  the
replicated image is positioned in a place of our choice? 

4.

Preliminaries2.

In  this  section,  we  discuss  some  elementary  definitions  pertaining  to
cellular automata and notations, which are required in this paper.

Definition 1. A  rule  of  a  CA  is  defined  as  a  function  (local  transition)
that determines the new state of each cell in terms of the current state
of the cell and the states of its neighborhood cells.

For  example,  qi
(t+1)  fqi

(t), qi+1
(t) , … , qi+r

(t) ,  where  i  is  the  index  of

an  individual  cell  in  the  1D  CA  array,  t  is  the  time  step,  qi
(t+1)

 is  the

state of cell i at time step t + 1, and f is the local transition function. 

416 U Srinivasa Rao  and Jeganathan L

Complex Systems, 27 © 2018



Definition 2. Let  ap  and  aq  be  two  binary  digits.  Then  EX-OR  (⊕)  is

defined as

ap ⊕ aq 
 0,  if ap  aq. 

 1,  if ap ≠ aq. 

Remark 1. The  EX-OR  operator  satisfies  commutative  and  associative
properties. 

Remark 2. tCx
 is  the  number  of  ways  to  choose  x  unordered  items

from a set of t items; that is, 

tCx
 t !  (t - x) !x !

and

tCx
 t - 1Cx-1

+ t - 1Cx
.

Remark 3. Throughout this paper, 

nap ⊕
n

ap  ap ⊕ ap ⊕⋯⊕ ap

⊕n times

.

Remark 4. ⊕nap  0 if and only if n is even and ⊕nap  ap  if and only

if n is odd. 

Definition 3. A rule is said to be a linear rule if f  involves EX-OR oper-
ation only. The algebraic normal form [9] of the linear rule is 

f(q1, q2, q3, … , qn)  α1q1 ⊕α2q2 ⊕⋯⊕αnqn,

where αi ∈ 0, 1, ∀ i ∈ 1, 2, … , n.

Definition 4. A rule  is said to  be a uniform  rule if  all cells are  updated
by the same rule.

Definition 5. Replication is defined as the process of generating exactly
two  perfect  non-overlapping  copies  of  the  initial  configuration.  Here
initial configuration is the binary image.

Classification of Linear Rules Based on the Nature of Replication3.

In  [10]  Wolfram  classified  the  rules  of  three-neighborhood  1D  CAs
into four categories based on their statistical properties. In this paper,
we classify all linear rules based on the nature of replication. The lin-

ear  rule  90  [5,  7,  8]  replicates  the  given  binary  image  at  step  2k,
where k depends on the size of the binary image.

Replication of a Binary Image on a 1D CA with Linear Rules 417

https://doi.org/10.25088/ComplexSystems.27.4.415

https://doi.org/10.25088/ComplexSystems.27.4.415


Rule 90 and Its Modifications3.1

In rule 90 [11], the local transition function depends on the left neigh-
bor  and  right  neighbor  of  the  central  cell  on  the  three-neighborhood
1D CA. The central cell gets updated as an EX-OR operation of state
of the left neighbor and right neighbor; that is,

qi
(t+1)  fqi-1

(t) , qi
(t), qi+1

(t)   qi-1
(t) ⊕ qi+1

(t) .

The first row of Table 1 describes all the possibilities of a three-neigh-
borhood  CA;  the  updated  state  of  the  central  cell  by  rule  90  in  the
respective neighborhood is given in the second row of Table 1.

Table 1. Rule 90. 

Let  B  a1a2a3a4a5  be  an  initial  configuration  of  size  five  on  the

three-neighborhood  1D  CA  array.  Assume  that  all  the  cells  that  do
not  involve  the  image  are  in  zero  state  at  time  step  t  0.  Rule  90
updates  each  binary  bit  of  image  B  as  shown  in  Table  2.  From
Table�2,  we  have  observed  that  at  each  time  step  t,  the  coefficient  of
any  image  cell  (ai)  resembles  row  t  of  the  Pascal  triangle.  The

sequence  of  coefficients  of  a1  (wherever  a1  occurs)  at  time  step  t  3

is 1, 3, 3, 1, which resembles the third row of the Pascal triangle. The
same is true for any ai  at any time t, since nap  0, if n is even; other-

wise  nap  ⊕nap  ap.  The  rule  replicates  the  binary  image  after

t  4  22  time  steps.  The  space  between  the  binary  image  and  its
replicated image has three cells, which are in the zero state. 

In  Table  2,  at  time  step  t  4,  we  observe  that  the  binary  bits  of
image  B  have  changed  their  position  on  the  1D  CA  array.  The  initial
image  B  occupied  the  cells  from  index  i  to  i + 4.  After  replication,
image  B  and  its  replicated  image  occupy  the  positions  from  i - 4  to  i
and  from  i + 4  to  i + 8,  respectively.  That  is,  replication  by  rule  90
repositions image B. Then we raise the question, Is it possible to repli-
cate an image without changing its position in 1D CA array? 

In  rule  90,  the  neighborhood  set  of  a  cell  includes  that  cell,  its  left
neighbor  and  its  right  neighbor;  that  is,  the  neighborhood  set  of  qi
will  be  {qi-1, qi, qi+1}.  Instead,  we  can  modify  the  neighborhood  set

of qi  as {qi, qi+1, qi+2}. That is, the neighborhood set of a cell includes

that  cell  and  the  two  successive  cells  to  the  right.  If  we  apply  rule  90

418 U Srinivasa Rao  and Jeganathan L

Complex Systems, 27 © 2018



to this neighborhood at the t + 1 time step, 

qi
(t+1)  fqi

(t), qi+1
(t) , qi+2

t   qi
(t) ⊕ qi+2

(t) .

We refer to this modified rule as R rule 90 (Table 3). Here the prefix
R  indicates  the  fact  that  all  the  neighbors  are  to  the  right  of  the  cell
that gets updated.

Table 2. Image B and its replicated image after four steps with rule 90. 

Table 3. R rule 90. 

Then,  we  apply  R  rule  90  to  the  initial  configuration  B 

a1a2a3a4a5.  We  observe  from  Table  4  that  the  position  of  the  initial

image  does  not  get  changed  and  the  replicated  image  appears  to  the
left  of  the  image.  In  other  words,  if  the  neighborhood  set  is  oriented
to the right, the application of R rule 90 makes a copy to the left of B. 

Replication of a Binary Image on a 1D CA with Linear Rules 419

https://doi.org/10.25088/ComplexSystems.27.4.415

https://doi.org/10.25088/ComplexSystems.27.4.415


Table 4. B and its replicated image after four steps with R rule 90. 

Instead  of  having  all  the  neighbors  on  the  right  side  of  the  cell,
we  can  have  all  the  neighbors  to  the  left.  In  that  case,  we  have
rule�90 as 

qi
(t+1)  fqi-2

(t) , qi-1
(t) , qi

(t)  qi-2
(t) ⊕ qi

(t)

as  in  Table  5.  We  refer  to  this  modified  rule  as  L  rule  90,  where  the
prefix  L  indicates  the  fact  that  all  the  neighbors  are  to  the  left  of  the
cell that gets updated.

Thus,  if  every  cell  gets  updated  as  the  EX-OR  operation  of  itself
and its rightmost neighborhood, the original image is not repositioned
and  the  replicated  copy  occurs  on  the  left-hand  side  of  the  initial
image  B;  that  is,  if  the  neighborhood  moves  to  the  right,  the  repli-
cated copy occurs to the left of the initial image B and vice versa. 

Table 5. L rule 90. 

420 U Srinivasa Rao  and Jeganathan L

Complex Systems, 27 © 2018



Based on the nature of the neighborhood set, we classify the linear
rules  that  update  by  the  EX-OR  operation  of  the  extreme  (first  and
last) cells of its neighborhood; that is, we classify rules of the form 

f(qi, qi+1, … , qi+r)  qj  qi ⊕ qi+r,

where i is an integer, i ≤ j ≤ i + r and r  1, 2, 3, …. 

Type-1  rules:  r + 1-neighborhood  rules  such  that  all  the  r  neigh-

bors  lie  to  the  right-hand  side  of  the  cell  that  gets  updated  and  the
updating  of  the  cells  depends  only  on  the  state  of  itself  and  the  state
of the last (rightmost) neighbor; that is, 

qi
(t+1)  fqi

(t), qi+1
(t) , qi+2

(t) , … , qi+r
(t)   qi

(t) ⊕ qi+r
(t)

where r  1, 2, 3, ….

Type-2  rules:  r + 1-neighborhood  rules  such  that  all  the  r  neigh-

bors  lie  on  the  left-hand  side  of  the  cell  that  gets  updated  and  the
updating  of  the  cells  depends  only  on  the  state  of  itself  and  the  state
of the last neighbor; that is, 

qi
(t+1)  fqi-r

(t) , qi-r+1
(t) , qi-r+2

(t) , … , qi
(t)  qi-r

(t) ⊕ qi
(t)

where r  1, 2, 3, ….

Type-3  rules:  r + 1-neighborhood  rules  such  that  r1  neighbors  lie

on the left side of the cell and r2  neighbors lie on the right side of the

cell that gets updated. Here r1 + r2  r, and r1 and r2 are positive inte-

gers. Every cell gets updated by the rule 

qi
(t+1) 

fqi-r1
(t) , qi-r1+1

(t) , … , qi
(t), … , qi+r2-1

, qi+r2
(t)   qi-r1

(t) ⊕ qi+r2
(t)

on the r + 1-neighborhood, where r1 + r2  r and r1 ≥ 1, r2 ≥ 1.

Computation for the Exact Time Steps of Replication4.

In this section, we compute the exact number of time steps for replica-

tion  with  the  Type-1  rules  on  the  r + 1-neighborhood  1D  CA.  In

[7,  5,  12]  it  was  observed  that  the  linear  rules  render  multiple  copies
of  any  binary  image  on  the  1D  CA,  when  the  linear  rule  is  applied  n

times, where n  2k  and k is dependent on the size of the initial con-
figuration. But [7] and [5] do not contain any proof or justification of
their  observation  and  do  not  include  any  attempt  to  compute  the
exact value of k. 

We have proved that the number of time steps required to replicate
the  initial  configuration  of  the  binary  image  does  not  depend  on  the

Replication of a Binary Image on a 1D CA with Linear Rules 421

https://doi.org/10.25088/ComplexSystems.27.4.415

https://doi.org/10.25088/ComplexSystems.27.4.415


size  of  the  binary  image  alone,  but  also  depends  on r  of  the r + 1-

neighborhood. If we increase the neighborhood r, then the number of
steps  will  be  decreased  to  replicate  the  initial  configuration  of  the
binary image. We have proved the queries for the Type-1 rules in this
section,  which  are  discussed  in  Section  1.  Analogously,  we  can  prove
our results for Type 2 rules and Type 3 rules also. 

In  [13]  Fine  proved  a  result  on  the  divisibility  of  binomial  coeffi-
cients,  which  is  stated  as  Theorem  1  without  proof.  We  need  Theo-
rem 1 to prove our results. 

Theorem 1. The  binomial  coefficient  tCx
,  where  0 < x < t,  is  divisible

by a prime p if and only if t is a power of p.

Proof of Theorem 1 can be seen in [13], so we omit the details. 

The  Type-1  rule  replicates  the  initial  configuration  of  the  binary

image within one step on the r + 1-neighborhood 1D CA, if the total

number  of  neighboring  cells  r  is  greater  than  or  equal  to  the  size  of
the  initial  configuration.  The  space  between  the  replicated  image  and
the initial configuration is the difference between the total number of
neighboring cells and the size of the initial configuration. 

Theorem 2. Let f  be a Type-1 rule on an r + 1-neighborhood. Assume

B  is  an  initial  configuration  of  the  binary  image  that  starts  and  ends
with 1. The length of B is m, and all cell states that do not involve B
are in state zero. If r ≥ m, then rule f  replicates the image on the left-
hand side of B within one step, with r -m cells in zero state between
B and its replicated image.

Proof.  Let  B  a1a2…am  be  an  initial  configuration  of  the  binary

image that starts and ends with 1 on the 1D CA. All cell states that do
not  involve B  are  in  state  zero.  Assume  image B  is  placed  on  the  1D
CA array as follows: a1 is placed at index i, a2 is placed at index i + 1,

and  so  on.  The  last  bit  am  is  placed  at  index  i +m - 1  on  the  array

(see Figure 1). 

Figure 1. Image B on the r + 1-neighborhood 1D CA. 

If  r ≥ m,  then  ∃  a  non-negative  integer  b ∋ r  m + b.  Since  f  is  a

Type-1 rule on an r + 1-neighborhood, every state of index cell i gets

updated  as  a  result  of  the  EX-OR  operation  between  the  state  of

422 U Srinivasa Rao  and Jeganathan L

Complex Systems, 27 © 2018



index cell i and the state of index cell i +m + b on the 1D CA array;

that is, 

qi
(t+1)  fqi

(t), qi+1
(t) , qi+2

(t) , … , qi+r
(t)   qi

(t) ⊕ qi+r
(t)  qi

(t) ⊕ qi+m+b
(t) .

At time step t  1, rule f updates the initial configuration as follows:

◼ Index cell i -m - b gets updated to state qi-m-b
(0) ⊕ qi

(0)  0 ⊕ a1  a1. 

◼ Index  cell  i -m - b + 1  gets  updated  to  state  qi-m-b+1
(0) ⊕ qi+1

(0) 

0 ⊕ a2  a2, and so forth. 

◼ Index  cell  i - b - 1  gets  updated  to  state  qi-b-1
(0) ⊕ qi+m-1

(0) 

0 ⊕ am  am. 

Since rule f  is on an m + b + 1-neighborhood, the zero state of cell

i - b  will  interact  with  the  zero  state  of  cell  (i +m)  with  the  EX-OR

operation. 

Thus,  index  cell i - b  gets  updated  to  state qi-b
(0) ⊕ qi+m

(0) 

0⊕ 0  0.  A  total  of b  number  of  cells  from  index i - b  to  index

i + 1 will get updated as 0⊕ 0  0.

The  space  between  the  original  image  and  its  replicated  image  is
b  r -m. Index cell i gets updated to state 

qi
(0) ⊕ qi+m+b

(0)  a1 ⊕ 0  a1,

index cell i + 1 gets updated to state

qi+1
(0) ⊕ qi+m+b+1

(0)  a2 ⊕ 0  a2,

and so forth; index cell i +m - 1 gets updated to state

qi+m-1
(0) ⊕ qi+2m+b-1

(0)  am ⊕ 0  am.

As  an  illustration,  only  cells  of  the  boundary  interaction  of  image  B

for r  m are shown in Figure 1. This completes the proof. □ 

A  Type-1  rule  on  an  r + 1-neighborhood  updates  the  single-bit

initial  configuration  of  the  image  as  the  rows  of  the  Pascal  triangle.
After time step t, the image is updated as row t of the Pascal triangle. 

Theorem 3. Let  f  be  a  Type-1  rule  on  an  r + 1-neighborhood.  Let

B  a1  1 be an initial configuration on the 1D CA array, where a1
is  presented  at  index  i  on  the  array.  All  the  states  of  the  cell  that  do
not  involve  the  initial  configuration  are  in  zero  states.  At  step  t,  the
Type-1 rule updates image B in such a way that 

Replication of a Binary Image on a 1D CA with Linear Rules 423

https://doi.org/10.25088/ComplexSystems.27.4.415

https://doi.org/10.25088/ComplexSystems.27.4.415


Result A:

◼ Index  celli - tr  has  state tC0
a1;  cell  indices  from i - tr + 1  to

i - t - 1r - 1 have state zero.

◼ Index cell i - t - 1r has state tC1
a1; cell indices from i - t - 1r + 1 to

i - t - 2r - 1 have state zero.

◼ Index  cell i - r  has  state tCt-1
a1;  cell  indices  from i - r + 1  to i - 1

have state zero. 

◼ Index cell i has state tCt
a1. 

That is, the updated image is shown in Figure 2. 

Figure 2. Image B after step t on the 1D CA. 

Proof.  We  prove  result  A  by  induction  on  the  time  steps  t.  On  an

r + 1-neighborhood, the Type-1 rule will be like 

qi
(t+1)  fqi

(t), qi+1
(t) , qi+2

(t) , … , qi+r
(t)   qi

(t) ⊕ qi+r
(t)

with  r ≥ 1.  At  time  step  t  0,  a  1D  CA  array  will  have  a1  at  index

cell i, and all other cell states are zero.
Base  Case:  As  is  known,  rule  f  updates  a  cell  at  index  i  with

qi
(0) ⊕ qi+r

(0) ;  that  is,  index  cell  (i - r)  will  be  updated  as  0⊕ a1  a1,

index  cell  i  will  be  updated  as  a1 ⊕ 0,  and  all  other  cells  will  be

updated  as  0⊕ 0.  Therefore,  index  cell  (i - r)  will  have  state  tC0
a1,

index  cell  i  will  have  state  tC1
a1,  and  all  other  cells  will  have  state

zero. Result A is true for t  1. After the first time step, the image is

shown in Figure 3. 

Figure 3. Image B after the first step on the 1D CA. 

Induction  Step:  We  assume  that  result  A  is  true  for  step  t - 1.

That is, rule f updates the 1D CA array at step t - 1 as in Figure 4. 

424 U Srinivasa Rao  and Jeganathan L

Complex Systems, 27 © 2018



Figure 4. Image B after step t - 1 on the 1D CA. 

When  we  apply  rule  f  to  the  step  t - 1  configuration,  index  cell

(i - tr) gets updated to state 

qi-tr
(t-1) ⊕ qi-(t-1)r

(t-1)  0⊕ t - 1C0
a1  a1  tC0

a1,

all the cells from index i - tr + 1 to index cell i - t - 1r - 1 will get

updated as 0⊕ 0  0, index cell i - t - 1r gets updated to state

qi-(t-1)r
(t-1) ⊕ qi-(t-2)r

(t-1)  t - 1C0
a1 ⊕ t - 1C1

a1  tC1
a1, … ,

and index cell i gets updated to state 

qi
(t-1) ⊕ qi+r

(t-1)  t - 1C(t-1)
a1 ⊕ 0  a1 ⊕ 0  a1  tCt

a1.

At  time  step  t,  we  have  the  configuration  as  in  Figure  2;  that  is,

result A is true for time step t. By induction on the time steps, result

A is true for all t ≥ 1. This completes the proof. □ 

Remark 5. The  Type-1  rule  updates  the  single-bit  initial  configuration

a1 on an r + 1-neighborhood 1D CA at step t as a string 

" ⊕
tC0

a10
r-1 ⊕

tC1

a10
r-1 ⊕

tC2

a10
r-1⋯ ⊕

tCt-1

a10
r-1 ⊕

tCt

a1",

where  the  binary  bit  ⊕tCx
a1  0  if  and  only  if  tCx

 is  even,  and  the

binary bit ⊕tCx
a1  a1 if and only if tCx

 is odd.

Remark 6. The  total  number  of  cells  in  Figure  2  from  the  cell  state  of
tC0

a1 to the cell state of tCt
a1 is 1 + t * r. 

Unless  otherwise  stated,  we  assume  the  following:  let

B  a1a2…am be a binary image of length m on the 1D CA that starts

and ends with 1, where a1  1 is positioned at index i on the 1D CA,

a2  is  positioned  at  index  i + 1  on  the  1D  CA  and  so  on;  am  1  is

positioned  at  index  i +m - 1.  All  cell  states  that  do  not  involve  the

initial configuration of the binary image B are in zero. 

Corollary 1. Let f  be a Type-1 rule on an r + 1-neighborhood. At time

step t, rule f  with 1 ≤ r < m updates each cell content of the image as
row  t  of  the  Pascal  triangle,  and  the  update  image  occupies  m + t * r

Replication of a Binary Image on a 1D CA with Linear Rules 425

https://doi.org/10.25088/ComplexSystems.27.4.415

https://doi.org/10.25088/ComplexSystems.27.4.415


cells on the 1D CA array. The update image after time step t is shown
in Figure 5.

Figure 5. Image B after step t on m + t * r cells of 1D CA. 

Proof.  Let  B  a1a2…am  be  an  initial  configuration  of  the  binary

image on the 1D CA array, and the states of the other cells are zero. 
Apply  Theorem  3  to  each  bit  of  image  B  individually;  cell  a1  is

updated as in Figure 2, cell a2  is updated as in Figure 6, and cell am  is

updated as in Figure 7. 

Figure 6. Image cell a2 of B after step t on the 1D CA.

Figure 7. Image cell am of B after step t on the 1D CA.

All  cells  update  their  states  in  parallel  by  interacting  with  defined
neighbors  in  the  rule.  Therefore,  after  t  steps,  the  image  updates  on

m + t * r cells as shown in Figure 5. This completes the proof. □ 

Remark 7. The Type-1 rule updates every cell based on the r-neighbor-
ing cells that lie on the right side of that cell. By the Type-1 rule, cells
on  the  left  side  of  the  image  interact  with  cells  of  image  B  or  zero-
state  cells.  The  cell  states  of  image  B  interact  with  state  cells  of  the
image  or  zero-state  cells  on  the  right.  But  right-hand  side  cells  of
image  B  interact  only  with  zero-state  cells.  Since  all  the  neighbors  lie
to the right of B and the cells to the right of B do not interact with B,
the  original  image  is  not  repositioned  due  to  the  EX-OR  operation
and the replicated image occurs on the left-hand side of B. 

In  the  proof  of  Theorem  2,  we  have  seen  that  the  Type-1  rules  on

the  r + 1-neighborhood  1D  CA  replicate  the  initial  configuration  of

426 U Srinivasa Rao  and Jeganathan L

Complex Systems, 27 © 2018



the  image  within  one  step  if  r ≥ m,  where  m  is  the  size  of  the  initial
configuration.  In  other  words,  if  r ≥ m,  then  the  rule  takes  ⌈m / r⌉
steps to replicate the initial configuration of the binary image. 

In  Theorem  4,  we  try  to  define  the  relationship  among  the  size
of  the  initial  configuration,  cell  neighborhood  r  in  rule  f  and  number
of  steps  to  replicate  the  initial  configuration,  and  also  discuss  space
between the first cell of the binary image and the last cell of its repli-
cating image. 

Theorem 4. Let  f  be  a  Type-1  rule  on  an  r + 1-neighborhood.  If

1 ≤ r < m, then ∃ a least positive integer k such that m  r ≤ 2k, the f

rule replicates image B at step 2k, and the space between the original

image and its replicated image is r * 2k -m cells of zero state.

Proof.  By  Corollary  1,  each  bit  of  the  binary  image  B  a1a2…am
gets updated with binomial coefficients resembling row t of the Pascal
triangle, and the updated image occupies m + t * r cells on the 1D CA
array, as shown in Figure 5. 

Now  we  have  to  evaluate  the  state  of  the  cell.  By  Theorem  1,  all
binomial coefficients tC1

, tC2
, … , tCt-1

 are divisible by 2 if and only if

t  is  a  power  of  2.  Thus,  tC1
,  tC2

,  … ,  tCt-1
 are  even  numbers  when

t  2k.  If  tC1
,  tC2

, … ,  tCt-1
 are  even  numbers,  then  we  have

tC1
ap  0,  tC2

ap  0, … ,  tCt-1
ap  0,  but  tC0

ap  ap  and  tCt
ap  ap.

This  is  true  for  all  bits  in  image  B.  Therefore,  the  original  image  is
replicated on the 1D CA array. 

Assume the original image replicates at step t; at this step the image
updates  on  m + t * r  cells.  The  original  image  and  its  replicated  image
occupy 2m cells out of m + t * r cells on the 1D CA array. This implies
that 

2m ≤ m + t * r ⇒ m ≤ t * r ⇒
m

r
≤ t.

Therefore, ∃ a least positive integer k such that m  r ≤ t  2k, rule

f  replicates  the  image  at  step  2k,  and  image  B  updates  on  m + 2k * r
cells  on  the  1D  CA  array.  Image  B  and  its  replicated  image  occupy

2m cells out of m + 2k * r, m + 2k * r - 2m  r * 2k -m cells with zero
state between them. Therefore, the space between B and its replicated

image is r * 2k -m cells of zero state. This completes the proof. □ 

Since  we  have  obtained  the  relationship  among  the  size  of  the

initial  configuration  (m),  cell  neighborhood  (r)  and  k  (2k  is  the  exact
time  step  for  replication),  we  can  easily  compute  the  exact  time
step  at  which  an  image  of  specified  size  gets  replicated  on  an

Replication of a Binary Image on a 1D CA with Linear Rules 427

https://doi.org/10.25088/ComplexSystems.27.4.415

https://doi.org/10.25088/ComplexSystems.27.4.415


r + 1-neighborhood  1D  CA.  In  short,  given  any  two  parameters

among k, r, m, we can easily compute the other. 

Corollary 2. Type-1 rule f  replicates image B exactly at time step 2k  on

the  r + 1-neighborhood  1D  CA  if  and  only  if  ∃  a  least  positive  inte-

ger r such that r ≥ m  2k.

Proof.  (⟹ )  Type-1  rule  f  replicates  image  B  at  t  2k  time  steps  on

the  r + 1-neighborhood  1D  CA.  By  Corollary  1,  the  image  updates

on  m + 2k * r  cells  after  time  step  t  2k.  The  original  image  and  its

replicated image occupy 2m cells out of m + 2k * r cells. Therefore, 

2m ≤ m + 2k * r ⇒ m ≤ 2k * r ⇒ r ≥
m

2k
.

We  have  to  prove  that  r  is  the  least  positive  integer  such  that

r ≥ m  2k.

We  prove  this  statement  by  proof  by  contradiction.  Suppose  r  is

the least positive integer such that r < m  2k. This implies that 

r <
m

2k
⇒ m + 2k * r < 2m.

This  is  a  contradiction  to  the  hypothesis,  because  the  original  image
and  the  replicated  image  occupy  at  least  2m  cells  on  the  1D  CA.

Therefore, ∃ a least positive integer r such that r ≥ m  2k.

(⟸ )  Since  r  is  the  least  positive  integer  such  that  r ≥ m  2k,  this

implies  that  m  r ≤ 2k.  We  have  to  prove  Type-1  rule  f  replicates

image  B  exactly  at  time  step  t  2k  on  the  r + 1-neighborhood  1D

CA. We prove this statement by proof by contradiction. 
Suppose  that  Type-1  rule  f  does  not  replicate  image  B  exactly  at

t  2k time step on the r + 1-neighborhood 1D CA. 

By  Corollary  1,  the  image  updates  on  m + 2k * r  cells  after  t  2k

time steps and m + 2k * r < 2m. 

Since r is the least positive integer such that r ≥ m  2k, this implies

that  m + 2k * r ≥ m +m,  2m ≤ m + 2k * r < 2m ⇒ 2m < 2m.  This  is
not  possible;  our  supposition  is  false.  Therefore,  Type-1  rule  f  repli-

cates image B exactly at time step 2k  on the r + 1-neighborhood 1D

CA. This completes the proof. □ 

An  illustration  of  Corollary  2:  In  Table  4,  the  size  of  image  B  is
five;  assume  that  the  Type-1  rule  f  replicates  image  B  exactly  at  time

step  22  4  on  the  r + 1-neighborhood  1D  CA.  By  the  result  of

428 U Srinivasa Rao  and Jeganathan L

Complex Systems, 27 © 2018



Corollary  2,  the  value  of  r  is  the  least  positive  integer  satisfying  the
inequality 

r ≥
m

2k
⇒ r ≥

5

22
.

Therefore,  the  value  of  r  is  2;  that  is,  Type-1  rule  f  replicates  image
B exactly at time step 4 on the three-neighborhood 1D CA. Similarly,
let  r  2  be  the  least  positive  integer  satisfying  the  inequality

r ≥ m  2k. After simplifying the inequality with the values of m and r,

the value of k is 2.

Conclusions and Future Work 5.

With the help of Type-1 rules and the result on the divisibility of bino-
mial  coefficients  [13],  we  have  proved  that  an  image  of  size  m  gets

replicated  exactly  at  step  2k  on  the  r + 1-neighborhood  one-dimen-

sional  cellular  automaton  (1D  CA),  where  k  is  the  least  positive  inte-

ger satisfying the relation m  r ≤ t  2k. 

If we know any two parameters among k, r, m, then we can easily
compute the other one. Apart from the computation of the exact time
step for replication, this paper will help us in choosing an appropriate
rule  if  the  user  wishes  to  have  the  replicated  image  to  the  right  (or
left) of the original image. 

We have also computed the space with zero states between the orig-
inal  binary  image  and  the  replicated  image.  In  this  process,  we  have
also  identified  the  position  where  the  replicated  image  occurs.  This
will  help  us  to  identify  the  appropriate  rule  for  the  replication  of  an
image at a particular position. Thus, all the queries raised in Section 1
are addressed. 

Similarly, we can use the trinomial coefficients [14] to compute the
exact  number  of  time  steps  required  for  the  replication  of  exactly
three  non-overlapping  copies  of  the  original  binary  image  and  extend
the results to generate multiple copies of the binary image. As a future
extension, we can extend this work to explore the analogous scenario
in the higher-dimensional cellular automata. 

References

[1] S.  Wolfram,  “Statistical  Mechanics  of  Cellular  Automata,”  Reviews
of Modern Physics, 55(3), 1983 601–644.
doi:10.1103/RevModPhys.55.601.

Replication of a Binary Image on a 1D CA with Linear Rules 429

https://doi.org/10.25088/ComplexSystems.27.4.415

https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.25088/ComplexSystems.27.4.415


[2] S.  J.  Willson,  “Cellular  Automata  Can  Generate  Fractals,”  Discrete
Applied Mathematics, 8(1), 1984 pp. 91–99.
doi:10.1016/0166-218X(84)90082-9.

[3] S.  J.  Willson,  “Computing  Fractal  Dimensions  for  Additive  Cellular
Automata,”  Physica  D:  Nonlinear  Phenomena,  24(1–3),  1987
pp. 190–206. doi:10.1016/0167-2789(87)90074-1.

[4] S.  J.  Willson,  “Growth  Rates  and  Fractional  Dimensions  in  Cellular
Automata,”  Physica  D:  Nonlinear  Phenomena,  10(1–2),  1984
pp. 69–74. doi:10.1016/0167-2789(84)90250-1.

[5] K.  Culik  II  and  S.  Dube,  “Fractal  and  Recurrent  Behavior  of  Cellular
Automata,” Complex Systems, 3(3), 1989 pp. 253–267.
complex-systems.com/pdf/03-3-3.pdf.

[6] E.  Fredkin,  “An  Informational  Process  Based  on  Reversible  Universal
Cellular  Automata,”  Physica  D:  Nonlinear  Phenomena,  45(1–3),  1990
pp. 254–270. doi:10.1016/0167-2789(90)90186-S.

[7] S.  Mitra  and  S.  Kumar,  “Fractal  Replication  in  Time-Manipulated
One-Dimensional  Cellular  Automata,”  Complex  Systems,  16(3),  2006
pp. 191–197. complex-systems.com/pdf/16-3-1.pdf.

[8] J.  Gravner  and  D.  Griffeath,  “The  One-Dimensional  Exactly  1  Cellular
Automaton:  Replication,  Periodicity,  and  Chaos  from  Finite  Seeds,”
Journal of Statistical Physics, 142(1), 2011 pp. 168–200.
doi:10.1007/s10955-010-0103-9.

[9] P.  P.  Choudhury,  S.  Sahoo,  M.  Chakraborty,  S.  Kumar  Bhandari  and
A.  Pal,  “Investigation  of  the  Global  Dynamics  of  Cellular  Automata
Using Boolean Derivatives,” Computers and Mathematics with Applica-
tions, 57(8), 2009 pp. 1337–1351. doi:10.1016/j.camwa.2008.11.012.

[10] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[11] S.  Wolfram,  A  New  Kind  of  Science,  Champaign,  IL:  Wolfram  Media,
Inc., 2002. 

[12] S. Uguz, U. Sahin, H. Akin and I. Siap, “Self-Replicating Patterns in 2D
Linear  Cellular  Automata,”  International  Journal  of  Bifurcation  and
Chaos, 24(01), 2014 1430002. doi:10.1142/S021812741430002X.

[13] N.  J.  Fine,  “Binomial  Coefficients  Modulo  a  Prime,”  The  American
Mathematical Monthly, 54(10), 1947 pp. 589–592.
www.jstor.org/stable/2304500?origin=JSTOR-pdf.

[14] E.  W.  Weisstein.  “Trinomial  Coefficient”  from  Wolfram  MathWorld—
A Wolfram Web Resource.
mathworld.wolfram.com/TrinomialCoefficient.html.

430 U Srinivasa Rao  and Jeganathan L

Complex Systems, 27 © 2018

https://doi.org/10.1016/0166-218X(84)90082-9
https://doi.org/10.1016/0167-2789(87)90074-1
https://doi.org/10.1016/0167-2789(84)90250-1
http://complex-systems.com/pdf/03-3-3.pdf
https://doi.org/10.1016/0167-2789(90)90186-S
http://complex-systems.com/pdf/16-3-1.pdf
https://doi.org/10.1007/s10955-010-0103-9
https://doi.org/10.1016/j.camwa.2008.11.012
https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1142/S021812741430002X
http://www.jstor.org/stable/2304500?origin=JSTOR-pdf
http://mathworld.wolfram.com/TrinomialCoefficient.html

