
The Quadratic Assignment Problem in
Code Optimization for a Simple Universal
Turing Machine

Paul W. Rendell

Department of Computer Science
University of the West of England
Bristol BS6 Y

The author’s simple universal Turing machine requires the description
of a specific Turing machine as data. In this article the coding of a spe-
cific Turing machine for unary multiplication is described. The descrip-
tion is a list of transitions with unary coded links between them. The
order of the transitions in the list therefore makes a large difference in
the size of the resulting code and the speed at which it runs. Finding the
optimum ordering is a quadratic assignment problem. A simple neigh-
borhood search procedure starting from random initial samples is de-
scribed. It was sufficient to locate the optimum solution for a Turing
machine with 23 transitions. The reason for the success was found to
be due to the large basins of attraction for good solutions.

1. Introduction

In 2000, the author constructed a Turing machine in Conway’s Game
of Life [1]. Figure 1 shows an image of this machine with the magni-
fied portion showing details of one of the stack cells that represent the
Turing machine’s tape. In 2009, this was extended to a simple Game
of Life universal Turing machine (GoL-UTM) [2]. Figure 2 shows an
image of this together with an image of the original at the same scale.
In 2011, growing stacks were added to make a fully universal Turing
machine; an image is shown in Figure 3.

In this paper we describe aspects of two universal Turing machines
in Conway’s Game of Life. The first of these is Wolfram’s two state
three symbol machine [3]. Section 2 shows the operation of this ma-
chine in a cut-down version of the author’s Turing machine [1]. In
subsequent sections we describe the coding of a unary multiplication
Turing machine to run in the GoL-UTM. In particular, we describe
the procedure used to optimize the order of the transitions that pro-
vide the universal Turing machine with the description of the unary
multiplication Turing machine. This optimization is a quadratic as-
signment problem.

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

Figure 1. The Game of Life Turing machine [1].

Figure 2. Size comparison of the Game of Life universal Turing machine and
the original Turing machine.

2 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

Figure 3. The full universal Turing machine with growing stacks. The data to
program the stack is provided externally and can be seen as the line of dots
from top right to the center.

The Game of Life is a cellular automaton invented by J. H. Con-
way [4]. It has an infinite universe divided into cells, where each cell
takes a state from a binary set and updates its state according to cer-
tain strict rules. All cells change their states simultaneously in discrete
time. For Conway’s Game of Life the cells have two states, usually
called live and dead, and the rules are based on the number of neigh-
boring cells that are alive.

A Turing machine is a finite state machine that interacts with an in-
finite data storage medium. The data storage medium takes the form
of an unbounded tape on which symbols can be written and read
back via a moving read/write head.

A universal Turing machine is a Turing machine that can emulate
any another Turing machine. It has on its tape a description of that
machine and its tape. A universal Turing machine can perform any
calculation simply by emulating a more dedicated machine. Turing
first described his universal Turing machine in 1936 [5].

The quadratic assignment problem is an optimization problem
involving allocation. Typically it involves allocating facilities to loca-
tions in such a way as to minimize cost. This might be the cost of mov-
ing things between locations given the requirements of facilities and
the transport costs between locations. In this case, the simple univer-
sal Turing machine requires a description of the specific Turing
machine in the form of a list of transitions. The length of a coded tran-
sition depends on the relative position of related transitions and the
processing speed depends on both the location of the transition in the
list and the relative location of the next transition.

Code Optimization for a Simple Universal Turing Machine 3

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

2. Wolfram’s Two State Three Symbol Turing Machine

The smallest known universal Turing machine is Wolfram’s two state
three symbol machine [3]. This is small enough to fit in the author’s
original Turing machine in Conway’s Game of Life [1], which has
three states and three symbols. Wolfram’s two state three symbol ma-
chine was proved to be universal by Alex Smith in 2007 [6]. The cod-
ing of the Turing machine tape for universal Turing machine behavior
creates a tape much larger than can be demonstrated in Conway’s
Game of Life.

Wolfram’s two state three symbol machine was coded into a cut-
down version of the Game of Life Turing machine. The cut-down ver-
sion runs slightly faster than the original three state version at 10560
life generations per Turing machine cycle. The three symbols are
coded on the Turing machine stacks as: no gliders, one glider at the
bottom of the stack cell, and one glider in the middle of a stack cell.
Figure 4 shows a snapshot of the machine. Figure 5 shows the two
stacks after one complete cycle with a black tape. The stack contents
are highlighted. Figure 6 shows the stack contents after 13 cycles.
Note that the symbol under the read/write head is not visible as it is
cycling through the finite state machine. Table 1 shows the first 13 cy-
cles diagrammatically with the nonblank symbols shown as L for low
glider and M for middle glider.

Figure 4. Game of Life two state three symbol Turing machine.

4 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

Figure 5. The tape after one cycle at generation 21 130.

Figure 6. The tape after 13 cycles at generation 147 850.

Cycle 1 L []
Cycle 2 [L] M
Cycle 3 [] M M
Cycle 4 L [M] M
Cycle 5 L [M] Ñ
Cycle 6 L [] L
Cycle 7 L L [L]
Cycle 8 L L M []
Cycle 9 L L [M] M
Cycle 10 L [L] L M
Cycle 11 [L] M L M
Cycle 12 [] M M L M
Cycle 13 L [M] M L M

Table 1. The first 13 cycles of Wolfram’s two state three symbol Turing ma-
chine. The symbol under the read/write head is shown in brackets [].

Code Optimization for a Simple Universal Turing Machine 5

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

3. The Game of Life Simple Universal Turing Machine

The GoL-UTM [2] was required to meet practical considerations as
well as theoretical. One such consideration is speed, the ability to
demonstrate the complete operation of the universal Turing machine
in a reasonable time. Universal Turing machines with low state/sym-
bol counts such as Wolfram’s (two states with three symbols) [3, 6]
and Rogozhin’s (four states with six symbols) [7] use tag systems that
run in exponential time. In common with the Neary and Woods [8]
design for small fast universal Turing machines, the design for the
GoL-UTM is a direct simulation of a Turing machine. It uses relative
indexing to locate transitions between states.

The Game of Life Turing machine had a capability of eight sym-
bols and 16 states. The design of the GoL-UTM made use of the extra
symbols and states to simplify the processing cycle—it required all
eight symbols and 13 of the states. One simplification utilized the defi-
nition of a transition that Minsky [9] used in his 2-tag Post machine
as described later in Section 5. This removed the need to maintain a
separate record of the current state or symbol. The extra states were
also used to speed up the processing. It was found possible to have
just one traverse of the GoL-UTM read/write head between the Tur-
ing machine’s current transition and its current read/write head posi-
tion per GoL-UTM cycle.

4. The Example Turing Machine

The initial example Turing machine used to demonstrate the universal
Turing machine [2] was the same as used in the original Game of Life
Turing machine [1]. This was deliberately a very modest machine in
order to keep the Game of Life pattern as small as possible so that it
could be displayed by the tools then available. The tools we have to-
day—for example, Golly [10], which uses the hashlife [11] algo-
rithm—are much more powerful and can display much larger pat-
terns. It was therefore decided to use a more complex Turing machine
in the GoL-UTM in order to demonstrate its capabilities more fully.

A Turing machine to perform unary multiplication was chosen. It
was written by D. Boozer at the California Institute of Technology
and does not require any code modifications to run on the universal
Turing machine and does not have large input or output. This ma-
chine has 16 states and two symbols. The state transitions are listed in
Table 2. The initial tape is shown in Table 3. The final tape is shown
in Table 4. This Turing machine takes 443 cycles to multiply four by
four.

6 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

State/ Next State/ Next
Symbol State Write Move Symbol State Write Move
01/0 01 0 L 09/0 10 0 R
01/1 02 0 L 09/1 09 1 R
02/0 03 0 L 10/0 12 0 R
02/1 02 1 L 10/1 11 1 R
03/1 04 0 L 11/0 01 1 L
04/0 05 0 L 11/1 11 1 R
04/1 04 1 L 12/0 13 0 R
05/0 06 1 R 12/1 12 0 R
05/1 05 1 L 13/0 13 0 L
06/0 07 0 R 13/1 14 0 L
06/1 06 1 R 14/0 15 0 L
07/0 09 1 R 14/1 14 0 L
07/1 08 1 R 15/0 16 0 L
08/0 03 1 L 15/1 15 1 L
08/1 08 1 R 16/0 Halt 0 R

Table 2. State transitions of the unary multiplication Turing machine.

Table 3. The unary multiplication Turing machine’s initial tape consists of
two strings of 1s, the length of which represents the value. The Turing ma-
chine starts in state 1 with the read/write head just to the right of the right-
most 1.

Table 4. The unary multiplication Turing machine’s final tape consists of one
string of 1s, the length of which represents the value. The Turing machine
stops in state 16 with its read/write head just to the left of the leftmost 1.

5. Coding the New Example Turing Machine

The transitions of the example Turing machine are coded onto the
GoL-UTM tape in the format used by Minsky [9] in his Post machine.
The machine cycles for processing these transitions start by writing a
symbol on the tape, moving the read/write head, and reading the sym-
bol on the tape at the new position. Then there is a choice of the next
transition depending on the value read. The cycle then continues with

Code Optimization for a Simple Universal Turing Machine 7

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

the processing of the next transition overwriting the symbol used to se-
lect it.

Table 5 shows the list of transitions for the unary multiplication
Turing machine in this format. The last column of Table 5 shows the
flow information that is used as the frequency data in the optimiza-
tion in Section 6. Finding the optimum ordering of these transitions is
discussed in Section 6.

Next Transition
for Symbol

No.
State

From - To
Symbol
Written

Move
Direction 0 Read 1 Read Flow

1 11 - 11 1 R 2 1 12

2 11 - 10 0 R 4 3 8

3 10 - 9 1 R 22 3 3

4 10 - 12 0 R 7 4 4

5 13 - 14 0 L 10 5 4

6 13 - 13 0 L 6 5 10

7 12 - 13 0 R 6 5 1

8 15 - 15 1 L 9 8 16

9 15 - 16 0 L H H 1

10 14 - 15 0 L 9 8 1

11 1 - 2 0 L 14 15 4

12 1 - 1 0 L 12 11 0

13 3 - 4 0 L 19 18 16

14 3 - 3 0 L 14 13 0

15 2 - 2 1 L 14 15 10

16 5 - 5 1 L 17 16 120

17 5 - 6 1 R 21 17 16

18 4 - 4 1 L 19 18 144

19 4 - 5 0 L 17 16 16

20 7 - 8 1 R 23 20 12

21 6 - 7 0 R 1 20 28

22 9 - 1 1 L 12 11 3

23 8 - 3 1 L 14 13 12

Table 5. The unary multiplication Turing machine transitions in the format re-
quired by the GoL-UTM.

Table 6 shows the optimally ordered list of transitions for the
unary multiplication. The GoL-UTM’s tape shown in Table 7 consists
of the tape of the example machine followed on the right by the list of

8 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

transitions of the example machine. The initial transition is twelfth in
the list; it happens to be transition 12 in Table 5 as well. The transi-
tion numbers are not coded on the tape. The movement direction is
coded as “0” for left and “1” for right. The links to the next transi-
tion are a unary coding of the number of transitions to skip either for-
ward, with a list of 1s or backward, with a list of 0s. A zero length
list is used to repeat the same transition and the special string “10”
represents halt. A separator C separates the two links and each transi-
tion starts and ends with the separator M. In addition, the GoL-UTM
codes its working position in the current transition and the position
of the example Turing machine’s read/write head by using a marked
form of the tape coding between these positions. The marked form of
the symbols 80, 1, C, M< are 8A, B, D, X<. Thus, the first transition on
the tape is coded XBABDX because it is to the left of the GoL-UTM’s
working position. It is transition 16 in Table 5, the symbol to write is
1, the direction is left, and the next transitions are one forward and
this one again.

Transition
Number

Symbol
Written

Move
Direction

Next
Transition
for 0 Read

Next
Transition
for 1 Read

16 1 L 17 16
17 1 R 21 17
19 0 L 17 16
18 1 L 19 18
13 0 L 19 18
21 0 R 1 20
20 1 R 23 20
23 1 L 14 13
14 0 L 14 13
15 1 L 14 15
11 0 L 14 15
12 0 L 12 11
22 1 L 12 11
1 1 R 1 1
3 1 R 22 3
2 0 R 4 3
4 0 R 7 4
7 0 R 6 5
6 0 L 6 5
5 0 L 10 5

10 0 L 9 8
8 1 L 9 8
9 0 L H H

Table 6. The unary multiplication Turing machine transitions in the format re-
quired by the GoL-UTM.

Code Optimization for a Simple Universal Turing Machine 9

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

Table 7. GoL-UTM initial tape for unary multiplication.

It takes 56 561 transitions of the GoL-UTM to convert the initial
tape shown in Table 7 to the final tape, the first part of which is
shown in Table 8. Each GoL-UTM cycle takes 23 040 Game of Life
generations giving just over 1300 million generations to complete the
program. This took less than 10 minutes on the author’s laptop with
the fixed length stack version of the GoL-UTM running in Golly [10].

Table 8. Part of the GoL-UTM final tape for unary multiplication.

10 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

6. Optimizing the Order of Transitions

6.1 Problem Definition
The GoL-UTM will work with the transitions in any order. However,
the order makes a great deal of difference in the size of the list and the
speed of operation.

The optimization for size involves minimizing the lengths of the
unary links between transitions. In order to maximize speed the links
used most frequently should be shorter and transitions used most of-
ten should be closer to the left to minimize the GoL-UTM’s read/write
head movement to and from the Turing machine’s tape.

This problem can be formulated as the classic quadratic assignment
problem. This is an NP-hard optimization problem. It was first pro-
posed by Koopmans and Beckmann in 1957 [12] as a mathematical
model for maximizing profit when production is distributed over a
number of sites. The objective is to find the optimum location for
each plant to maximize profit and minimize transportation costs.

In our case, the equivalent is the allocation of transitions to posi-
tions in the list. We require the more general form with a linear com-
ponent as proposed by Koopmans and Beckmann in order to cope
with the “closest to the left” requirement for speed optimization.
Most authors discarded this linear term as it is easy to solve [13].

The task is to find an allocation O ! @oxD which is a permutation
of the integers 1 to n, where n is the number of allocations that must
be made and ox is the activity allocated to location x.

The cost of an allocation is calculated using three matrices,
F = Afi jE, D ! Adx yE, and C ! @ci xD. The flows between activities is F,
in our case how often a link between two transitions is processed. The
cost related to the distance between two locations is D, in our case
the distance between the two transitions in the list. The cost of allocat-
ing an activity to a location is C, which in our case is the frequency of
use of the transition multiplied by how far this location is from the
left.

The cost function which must be minimized is:

(1)‚
x!1

n ‚
y!1

n

fox oy .dx y + ‚
x!1

n

cox x.

The values for these matrices for the unary multiplication transi-
tions in Table 6 are shown in Table 9 for F, equation (2) for D, and
Table 10 for C:

(2)D ! Adx yE where dx y ! †y - x§.

Code Optimization for a Simple Universal Turing Machine 11

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

10072, 10048, 0

0, 0, 10034, 10046, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 10015, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10015, 0

0, 0, 0, 10032, 0, 0, 10008, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 10032, 0, 0, 0, 0, 10008, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 10029, 10071, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 10003, 10017, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 10151, 10009, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 20010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 10009, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10000, 10040, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10000, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10144, 10016, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10000, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10000, 10100, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11059, 10141, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10058, 0, 0, 0, 10102, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11296, 10144, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10141, 10019, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10060, 0, 0, 10060

10140, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10140, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10030, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10120, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0

Table 9. Quadratic assignment problem flow matrix for unary multiplication
transitions.

A60,40,15,20,20,50,5,80,5,5,20,0,80,0,50,600,80,720,80,60,140,15,60 E
Table 10. Quadratic assignment problem linear matrix for unary multiplica-
tion transitions. This is row 1 for position 1; subsequent rows use these val-
ues multiplied by the row number.

6.2 Solution Method
The initial plan was to try a multistart tabu search along the lines pro-
posed by James et al. [14]. Following early results was advice in [14]
that “high quality results can be obtained from approaches that capi-
talize on the strategic use of information learned during the search
process.” A study of the structure of this particular problem was un-
dertaken. This involved generating random allocation samples and us-
ing a neighborhood search to locate the closest local optimum. The
number of times each local optima was found was recorded as well as
the average number of steps the neighborhood search took to locate
the local optima from the random starting points.

12 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

This approach is also similar to the multistart approach of Boese
[15] except that the greedy method was not used because we wished
to locate the closest local minimum as part of studying the problem
structure.

The neighborhood definition used for the search is all the alloca-
tions that can be generated by swapping the positions of any two tran-
sitions.

The local search procedure used generated a random allocation
and then looked at all neighboring allocations. If a better one was
found, a step was taken and the neighborhood search was repeated
centered on this sample. This was continued until a local minimum
was located.

The neighborhood definition was very successful with this particu-
lar problem. It took about 20 steps on average to find the local min-
ima in a random sample. This is a long way considering that any
point in the sample space can be reached in 22 steps.

6.3 Analysis of Results
The following analysis is of one run of 2000 random samples.

Figure 7 shows a plot of the number of hits on local minima
against the cost function. This clearly shows an upward trend toward
the overall minimum value. Analysis of the data shows that the 10
best local minima had 70 hits and all 10 minima were found in the
first 27 of these, which also fell in the first half of the total of 2000
samples. That means that this area was hit 43 times without finding
another local minima. The rest of the search space received 1930 hits
that found 1811 local minima, finding them at a rate of one per two
hits right up to the last sample.

Figure 7. Plot of the number of random allocations that optimized to the
same local minima against the cost function value of the local minima.

Figure 8 shows the number of local minima against the cost func-
tion value. This looks remarkably symmetrical in comparison to Fig-
ure 7.

Code Optimization for a Simple Universal Turing Machine 13

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

Figure 8. Plot of the number of local minima against the cost function value.
The y axis is the count of minima in bands 25 000 wide of the cost units.

6.4 Comparison with the Greedy Search
It is noted that neither Reeves [16] nor Merz [17] noticed any evi-
dence for large basins of attraction. Reeves was looking for a “big val-
ley” structure in a flowshop sequencing problem in 1997. Merz was
looking at the relationship between local optima rather than how they
were found. One reason that they did not see evidence of the large
basins of attraction could be that they were using a greedy local
search. This search takes a step toward the first better solution found
rather than looking at all the solutions in a neighborhood before tak-
ing a step. In order to compare the effect of this we collected samples
using this search. Figure 9 shows a plot of the number of hits on local
minima against the cost function. This is very similar to Figure 7 with
the following differences.

† The number of hits on any optima were lower with the greedy search.

† The average number of steps to a local optima was up for the greedy
search to 71 steps from 20 steps.

† The lack of local optima in the bottom left corner of the graph is not
nearly so obvious.

This suggests a threshold in the size of basins of attraction above
which the simple local search is significantly better than the greedy
search. The small steps made by the greedy search locate small op-
tima, while the local search makes the biggest possible step and al-
ways finds the deepest local optimum.

However, the greedy version was completed in less than a quarter
of the time and is therefore the faster method.

14 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

Figure 9. Plot of the number of random allocations that optimized to the
same local minima found by the local neighborhood greedy search against the
cost function value.

7. Expected Basin of Attraction Size

A possible explanation for the large basins of attraction for good lo-
cal minima is the structure created by the neighborhood definition. It
was decided to establish a baseline expected size for basins of attrac-
tion. A simulation was performed treating the cost function as a map-
ping for random allocation and assuming that the actual scores for
neighbors are independent.

7.1 Simulation for Expected Size of the Basin of Attraction
The simulation used the standard normal distribution for the distribu-
tion of allocation scores. For a quadratic assignment problem with 23
items to allocate and a neighborhood defined by swapping alloca-
tions, there are 253 different neighboring allocations to each
allocation.

For each trial i of the simulation, a local minima Li was given a
score Si from the range of interest. The 253 neighbors Ni j of Li were
given scores Vi j for all j in the range [0:252]. The values Vi j were
drawn from the standard normal distribution with the additional con-
straint that Vi j > Si.

The set Bi of members of the basin of attraction of the local min-
ima Li was initialized with all Vi j. The simulation then examined
each member Bi k of set Bi in turn. Each Bi k had 253 neighbors, Bi k l
for l in the range [0:252]. Each Bi k l had Bi k as one neighbor and 252
others. If all these other neighbors had scores larger than the score of
Bi k then Bi k l was added to Bi. All the scores were drawn from the
standard normal distribution.

The process continued until all members of Bi were examined. The
result of one run is shown in Figure 10. The points plotted are the av-
erage of 40 samples. The average number of steps followed the same

Code Optimization for a Simple Universal Turing Machine 15

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

curve rising to three steps. This shows a change in the expected size of
the basin of attraction from the minimum of 253 at a standardized
score of -2 to just over 1000 at a standardized score of -4 and not
much change for lower values.

Figure 10. Plot of the simulated size of basins of attraction for standard nor-
mal distribution samples. Each point is the average of 40 samples.

The average local optima for our example in Figure 7 was
1 010 000 with deviation 173 700, which translates to -6.6 when
standardized. The absolute minimum was at 645 192, which trans-
lates to -8.0. There is not much difference in the expected size of the
basins of attraction for these values in Figure 10.

7.2 Simulation for Expected Number of Neighbors in the Same
Basin of Attraction

A simpler simulation was performed that shows a similar effect. We
looked at a local optima to determine how many of its immediate
neighbors are in its basin of attraction. This simulation can be run
more quickly by allocating 254 random scores and picking the small-
est to be the local minima. Figure 11 shows the result having the same
change between -2 and -4 but with much less deviation.

Figure 11. Plot of a simulation of 1000 samples. The number of immediate
neighbors in the basin of attraction of an allocation against the allocation
cost function value.

16 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

7.3 Good Neighbor Assumption
We can introduce the common assumption that the neighbors of the
optimum solution are drawn from an atypical population. It is not un-
reasonable to assume that this atypical population is also the source
of other local optima. We know the mean and deviation for local op-
tima (1 010 000 and 173 700 respectively). If we use this for the distri-
bution of the neighbors for a good solution then the optimum
645 192 will translate to -2.1 when standardized. This is just the
point where the graphs in Figures 10 and 11 indicate a major change
in the expected size of the basin of attraction. Figures 12 and 13 show
the normalized versions of the data from the local search.

Figure 12. Figure 7 normalized to the distribution of local optima. The num-
ber of random allocations that optimized to the same local minima against
the cost function value of the local minima generated by the local search
algorithm.

Figure 13. Figure 8 normalized to the distribution of local optima. The num-
ber of local minima against the cost function value generated by the local
search algorithm. The y axis is the count of minima in bands 25 000 wide of
the cost units.

The expected size of the basins of attraction increases by a factor
of four over the range where we see no small basins of attraction in
the data. It is also noted that only one in 10 local optima have scores

Code Optimization for a Simple Universal Turing Machine 17

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

below -1 in the normalized data which is in the neighborhood of the
best solutions. This is probably only part of the story as the total num-
ber of optima is very large and the number of steps to reach the op-
tima is very different.

7.4 Time to Discovery
Figure 14 shows a plot of the number of the first trial to discover each
local optima found in a series of 10 000 trials. It clearly shows two
groups of optima on the left. The best group of four were all discov-
ered within 658 trails and the second group of 19 were discovered in
5522 trials. In both cases additional members of these groups would
be very unlikely.

Figure 14. The number of trials it took to discover each local optima using the
local neighborhood. The total number of trials was 10 000.

8. Conclusion

8.1 The Game of Life Simple Universal Turing Machine
The optimum ordered description of the unary multiplication Turing
machine took 152 symbols on the simple universal Turing machine
tape, which works out as an average of 6.6 over the 23 transitions.
Each transition requires two separator symbols and two symbols for
the symbol to write and the move direction. This leaves an average of
just 1.3 symbols for each of the two links to the next transitions. By
way of comparison, the worst possible ordering produces a descrip-
tion requiring 439 symbols.

Coding the Turing machine using a list of quintuplets as shown in
Table 6 requires 30 quintuples. If it were possible to code each quintu-
ple with just five symbols this comes to 150 symbols before adding
any formatting symbols. This demonstrates that the GoL-UTM [2]
can have a very compact description of a Turing machine with a little
care over the ordering of the transitions.

The unary multiplication Turing machine takes 443 cycles to multi-
ply 4ä4. The GoL-UTM took 56 561 cycles to perform the same
calculation. That is just less than 128 cycles of the GoL-UTM per cy-

18 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

cle of the Turing machine. The Turing machine’s tape was 31 symbols
long, giving a total tape length of 183 for the GoL-UTM. This shows
how effective the optimization was for speed as the average cycle is
less than 70% of the average distance the GoL-UTM read/write head
has to move before taking into account changing state. This demon-
strates the speed of the GoL-UTM [2].

Figure 15 shows a size comparison of the Game of Life Turing ma-
chine, the universal Turing machine with the small doubling program,
and the universal Turing machine with the unary multiplication pro-
gram.

8.2 The Quadratic Assignment Problem Solution
This example quadratic assignment problem of size 23 was solved
with 2000 samples taking half an hour on a modern laptop. The opti-
mum solution was found in the first 200 samples and 1000 samples
would have been sufficient to be confident that it was indeed the
optimum.

The comparison between a simple local search and the greedy
search in Section 6.4 showed that, for this problem, the greedy search
requires twice as many samples to give a similar level of hits on the
optima with large basins of attraction, and thus the same level of
confidence that the true optima has been found. However, the greedy
search is much quicker, with the 2000 samples for Figure 9 taking
just less than 7 minutes.

For this problem there were no local optima with low scores and
small basins of attraction creating a void in the bottom left of Fig-
ure!7 and the top left of Figure 14. These voids generate confidence
that the true optima has been found.

The group of local minima with large basins of attraction and low
cost function values that includes the optimum local minima may be a
general feature of quadratic assignment problems. It is reasonable
that the best solution should have the most neighbors with good
scores and thus have a large basin of attraction. This may have some
relationship with the “big valley” structure found by Boese [15]. How-
ever, our analysis does not attempt to show how close together these
deep optima are in the search space. We do find however that the
basins of attraction of the optimum allocation for some smaller prob-
lems is large enough that random allocations can locate the optima
with a simple local search.

The quadratic assignment problem has been described as one of the
most difficult problems in the NP-hard class [13]. This work shows
that Moore’s law has caught up with some of the more modest exam-
ples of this class of problem and that they can now be solved convinc-
ingly with simple methods.

Code Optimization for a Simple Universal Turing Machine 19

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

Figure 15. Size comparison of the Game of Life Turing machine, the universal
Turing machine with the small doubling program, and the universal Turing
machine with the unary multiplication program.

References

[1] P. Rendell, “Turing Universality of the Game of Life,” in Collision-
Based Computing, London: Springer-Verlag, 2001 pp. 513–539.

[2] P. Rendell, “A Simple Universal Turing Machine for the Game of Life
Turing Machine,” in Game of Life Cellular Automata, London:
Springer-Verlag, 2010 pp. 519–545.

[3] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[4] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for your
Mathematical Plays, Vol. 1–3, 2nd ed., Natick, MA: A K Peters, Ltd.,
2001–2004.

[5] A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, 42, 1937 pp. 203–265. doi:10.1112/plms/s2-42.1.230.

[6] A. Smith. “Universality of Wolfram’s 2, 3 Turing Machine.” (Oct 24,
2007) http://www.wolframscience.com/prizes/tm23/TM23Proof.pdf.

[7] Y. Rogozhin, “Small Universal Turing Machines,” Theoretical Com-
puter Science, 168, 1996 pp. 215–240.

[8] T. Neary and D. Woods, “Small Fast Universal Turing Machines,” Theo-
retical Computer Science, 362(1), 2006 pp. 171–195.

[9] M. L. Minsky, Computation: Finite and Infinite Machines, Englewood
Cliffs, NJ: Prentice-Hall, 1967.

20 P. W. Rendell

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

[10] A. Trevorrow, T. Rokicki, T. Hutton, D. Greene, J. Summers, and
M. Verver. “Golly, a Game of Life Simulator.” (June 22, 2011)
http://golly.sourceforge.net.

[11] Wikipedia. “Hashlife.” (June 29, 2011)
http://en.wikipedia.org/wiki/Hashlife.

[12] T. C. Koopmans and M. Beckmann, “Assignment Problems and the Lo-
cation of Economic Activities,” Econometrica, 25(1), 1957.
http://cowles.econ.yale.edu/P/cp/p01a/p0108.pdf.

[13] E. M. Loiola, N. M. M. Abreu, P. O. Boaventura-Netto, P. Hahn, and
T. Querido, “An Analytical Survey for the Quadratic Assignment Prob-
lem,” European Journal of Operational Research, 176(2), 2007
pp. 657–690.

[14] T. James, C. Rego, and F. Glover, “Multistart Tabu Search and Diversifi-
cation Strategies for the Quadratic Assignment Problem,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A: Systems and Humans,
39(3), 2009 pp. 579–596. doi:10.1109/TSMCA.2009.2014556.

[15] K. D. Boese, A. B. Kahng, and S. Muddu, “A New Adaptive Multi-start
Technique for Combinatorial Global Optimizations,” Operations Re-
search Letters, 16(2), 1994 pp. 101–113.
doi:10.1016/0167-6377(94)90065-5.

[16] Colin R. Reeves, “Landscapes, Operators and Heuristic Search,” Annals
of Operations Research, 86(0), 1999 pp. 473–490.
doi:10.1023/A:1018983524911.

[17] P. Merz and B. Freisleben, “Fitness Landscape Analysis and Memetic Al-
gorithms for the Quadratic Assignment Problem,” IEEE Transactions
on Evolutionary Computation, 4(4), 2000 pp. 337–352.
doi:10.1109/4235.887234.

Code Optimization for a Simple Universal Turing Machine 21

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.1.1

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /LeaveColorUnchanged

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 300

 /ColorSettingsFile ()

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>

 >>

 /DetectBlends true

 /DetectCurves 0

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 300

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /NoConversion

 /DestinationProfileName ()

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

