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The  author’s  simple  universal  Turing  machine  requires  the  description
of a specific Turing machine as data. In this article the coding of a spe-
cific Turing machine for unary multiplication is described. The descrip-
tion  is  a  list  of  transitions  with  unary  coded  links  between  them.  The
order of the transitions in the list  therefore makes a large difference in
the size of the resulting code and the speed at which it runs. Finding the
optimum ordering  is  a  quadratic  assignment  problem.  A simple  neigh-
borhood  search  procedure  starting  from  random  initial  samples  is  de-
scribed.  It  was  sufficient  to  locate  the  optimum  solution  for  a  Turing
machine  with  23  transitions.  The  reason  for  the  success  was  found  to
be due to the large basins of attraction for good solutions.

1. Introduction

In 2000, the author constructed a Turing machine in Conway’s Game
of Life [1]. Figure 1 shows an image of this machine with the magni-
fied portion showing details of one of the stack cells that represent the
Turing machine’s tape. In 2009, this was extended to a simple Game
of Life universal  Turing machine (GoL-UTM) [2].  Figure 2 shows an
image of this together with an image of the original at the same scale.
In 2011, growing stacks were added to make a fully universal Turing
machine; an image is shown in Figure 3. 

In this paper we describe aspects of two universal Turing machines
in  Conway’s  Game of  Life.  The  first  of  these  is  Wolfram’s  two state
three  symbol  machine [3].  Section 2 shows the  operation of  this  ma-
chine  in  a  cut-down  version  of  the  author’s  Turing  machine  [1].  In
subsequent  sections  we describe  the  coding  of  a  unary  multiplication
Turing  machine  to  run  in  the  GoL-UTM.  In  particular,  we  describe
the  procedure  used  to  optimize  the  order  of  the  transitions  that  pro-
vide  the  universal  Turing  machine  with  the  description  of  the  unary
multiplication  Turing  machine.  This  optimization  is  a  quadratic  as-
signment problem. 
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Figure 1. The Game of Life Turing machine [1].

Figure 2. Size comparison of  the Game of  Life  universal  Turing machine and
the original Turing machine.
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Figure 3. The full universal Turing machine with growing stacks. The data to
program the  stack is  provided externally  and can be  seen as  the  line  of  dots
from top right to the center.

The  Game  of  Life  is  a  cellular  automaton  invented  by  J.  H.  Con-
way [4].  It  has an infinite universe divided into cells,  where each cell
takes a state from a binary set and updates its state according to cer-
tain strict rules. All cells change their states simultaneously in discrete
time.  For  Conway’s  Game  of  Life  the  cells  have  two  states,  usually
called live and dead, and the rules are based on the number of neigh-
boring cells that are alive. 

A Turing machine is a finite state machine that interacts with an in-
finite data storage medium. The data storage medium takes the form
of  an  unbounded  tape  on  which  symbols  can  be  written  and  read
back via a moving read/write head. 

A universal  Turing machine  is  a  Turing machine  that  can emulate
any  another  Turing  machine.  It  has  on  its  tape  a  description  of  that
machine  and  its  tape.  A  universal  Turing  machine  can  perform  any
calculation  simply  by  emulating  a  more  dedicated  machine.  Turing
first described his universal Turing machine in 1936 [5]. 

The  quadratic  assignment  problem  is  an  optimization  problem
involving  allocation.  Typically  it  involves  allocating  facilities  to  loca-
tions in such a way as to minimize cost. This might be the cost of mov-
ing  things  between  locations  given  the  requirements  of  facilities  and
the transport costs between locations.  In this  case,  the simple univer-
sal  Turing  machine  requires  a  description  of  the  specific  Turing
machine in the form of a list of transitions. The length of a coded tran-
sition  depends  on  the  relative  position  of  related  transitions  and  the
processing speed depends on both the location of the transition in the
list and the relative location of the next transition. 
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2. Wolfram’s Two State Three Symbol Turing Machine

The smallest known universal Turing machine is Wolfram’s two state
three  symbol  machine [3].  This  is  small  enough to fit  in  the  author’s
original  Turing  machine  in  Conway’s  Game  of  Life  [1],  which  has
three states and three symbols. Wolfram’s two state three symbol ma-
chine was proved to be universal by Alex Smith in 2007 [6]. The cod-
ing of the Turing machine tape for universal Turing machine behavior
creates  a  tape  much  larger  than  can  be  demonstrated  in  Conway’s
Game of Life.

Wolfram’s  two  state  three  symbol  machine  was  coded  into  a  cut-
down version of the Game of Life Turing machine. The cut-down ver-
sion runs slightly faster than the original three state version at 10560
life  generations  per  Turing  machine  cycle.  The  three  symbols  are
coded  on  the  Turing  machine  stacks  as:  no  gliders,  one  glider  at  the
bottom of the stack cell,  and one glider in the middle of a stack cell.
Figure  4  shows  a  snapshot  of  the  machine.  Figure  5  shows  the  two
stacks after one complete cycle with a black tape. The stack contents
are  highlighted.  Figure  6  shows  the  stack  contents  after  13  cycles.
Note that  the symbol  under the read/write  head is  not  visible  as  it  is
cycling through the finite state machine. Table 1 shows the first 13 cy-
cles diagrammatically with the nonblank symbols shown as L for low
glider and M for middle glider. 

Figure 4. Game of Life two state three symbol Turing machine.
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Figure 5. The tape after one cycle at generation 21 130.

Figure 6. The tape after 13 cycles at generation 147 850.

Cycle 1 L [  ] 
Cycle 2 [ L ] M 
Cycle 3 [  ] M M 
Cycle 4 L [ M ] M 
Cycle 5 L [ M ] Ñ
Cycle 6 L [  ] L 
Cycle 7 L L [ L ] 
Cycle 8 L L M [  ] 
Cycle 9 L L [ M ] M 
Cycle 10 L [ L ] L M 
Cycle 11 [ L ] M L M 
Cycle 12 [  ] M M L M 
Cycle 13 L [ M ] M L M 

Table 1. The first  13 cycles  of  Wolfram’s  two state  three  symbol  Turing ma-
chine. The symbol under the read/write head is shown in brackets [ ].
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3. The Game of Life Simple Universal Turing Machine

The  GoL-UTM  [2]  was  required  to  meet  practical  considerations  as
well  as  theoretical.  One  such  consideration  is  speed,  the  ability  to
demonstrate  the  complete  operation  of  the  universal  Turing  machine
in  a  reasonable  time.  Universal  Turing  machines  with  low state/sym-
bol  counts  such  as  Wolfram’s  (two  states  with  three  symbols)  [3,  6]
and Rogozhin’s (four states with six symbols) [7] use tag systems that
run  in  exponential  time.  In  common  with  the  Neary  and  Woods  [8]
design  for  small  fast  universal  Turing  machines,  the  design  for  the
GoL-UTM is a direct simulation of a Turing machine. It uses relative
indexing to locate transitions between states.

The  Game  of  Life  Turing  machine  had  a  capability  of  eight  sym-
bols and 16 states. The design of the GoL-UTM made use of the extra
symbols  and  states  to  simplify  the  processing  cycle—it  required  all
eight symbols and 13 of the states. One simplification utilized the defi-
nition of  a  transition that  Minsky [9]  used in his  2-tag Post  machine
as  described  later  in  Section  5.  This  removed the  need  to  maintain  a
separate  record of  the  current  state  or  symbol.  The extra  states  were
also  used  to  speed  up  the  processing.  It  was  found  possible  to  have
just  one  traverse  of  the  GoL-UTM read/write  head between the  Tur-
ing machine’s  current transition and its  current read/write  head posi-
tion per GoL-UTM cycle. 

4. The Example Turing Machine

The initial example Turing machine used to demonstrate the universal
Turing machine [2] was the same as used in the original Game of Life
Turing  machine  [1].  This  was  deliberately  a  very  modest  machine  in
order to keep the Game of Life pattern as small as possible so that it
could be displayed by the tools then available. The tools we have to-
day—for  example,  Golly  [10],  which  uses  the  hashlife  [11]  algo-
rithm—are  much  more  powerful  and  can  display  much  larger  pat-
terns. It was therefore decided to use a more complex Turing machine
in the GoL-UTM in order to demonstrate its capabilities more fully.

A  Turing  machine  to  perform unary  multiplication  was  chosen.  It
was  written  by  D.  Boozer  at  the  California  Institute  of  Technology
and does  not  require  any  code  modifications  to  run  on the  universal
Turing  machine  and  does  not  have  large  input  or  output.  This  ma-
chine has 16 states and two symbols. The state transitions are listed in
Table 2. The initial tape is shown in Table 3. The final tape is shown
in Table 4. This Turing machine takes 443 cycles to multiply four by
four. 
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State/ Next State/ Next
Symbol State Write Move Symbol State Write Move
01/0 01 0 L 09/0 10 0 R
01/1 02 0 L 09/1 09 1 R
02/0 03 0 L 10/0 12 0 R
02/1 02 1 L 10/1 11 1 R
03/1 04 0 L 11/0 01 1 L
04/0 05 0 L 11/1 11 1 R
04/1 04 1 L 12/0 13 0 R
05/0 06 1 R 12/1 12 0 R
05/1 05 1 L 13/0 13 0 L
06/0 07 0 R 13/1 14 0 L
06/1 06 1 R 14/0 15 0 L
07/0 09 1 R 14/1 14 0 L
07/1 08 1 R 15/0 16 0 L
08/0 03 1 L 15/1 15 1 L
08/1 08 1 R 16/0 Halt 0 R

Table 2. State transitions of the unary multiplication Turing machine.

Table 3. The  unary  multiplication  Turing  machine’s  initial  tape  consists  of
two  strings  of  1s,  the  length  of  which  represents  the  value.  The  Turing  ma-
chine  starts  in  state  1  with the  read/write  head just  to  the  right  of  the  right-
most 1.

Table 4. The unary multiplication Turing machine’s final tape consists of one
string  of  1s,  the  length  of  which  represents  the  value.  The  Turing  machine
stops in state 16 with its read/write head just to the left of the leftmost 1.

5. Coding the New Example Turing Machine

The  transitions  of  the  example  Turing  machine  are  coded  onto  the
GoL-UTM tape in the format used by Minsky [9] in his Post machine.
The machine cycles for processing these transitions start by writing a
symbol on the tape, moving the read/write head, and reading the sym-
bol on the tape at the new position. Then there is a choice of the next
transition depending on the value read. The cycle then continues with
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the processing of the next transition overwriting the symbol used to se-
lect it. 

Table  5  shows  the  list  of  transitions  for  the  unary  multiplication
Turing machine in this format. The last column of Table 5 shows the
flow  information  that  is  used  as  the  frequency  data  in  the  optimiza-
tion in Section 6. Finding the optimum ordering of these transitions is
discussed in Section 6. 

Next Transition
for Symbol

No.
State

From - To
Symbol
Written

Move
Direction 0 Read 1 Read Flow

1 11 - 11 1 R 2 1 12

2 11 - 10 0 R 4 3 8

3 10 - 9 1 R 22 3 3

4 10 - 12 0 R 7 4 4

5 13 - 14 0 L 10 5 4

6 13 - 13 0 L 6 5 10

7 12 - 13 0 R 6 5 1

8 15 - 15 1 L 9 8 16

9 15 - 16 0 L H H 1

10 14 - 15 0 L 9 8 1

11 1 - 2 0 L 14 15 4

12 1 - 1 0 L 12 11 0

13 3 - 4 0 L 19 18 16

14 3 - 3 0 L 14 13 0

15 2 - 2 1 L 14 15 10

16 5 - 5 1 L 17 16 120

17 5 - 6 1 R 21 17 16

18 4 - 4 1 L 19 18 144

19 4 - 5 0 L 17 16 16

20 7 - 8 1 R 23 20 12

21 6 - 7 0 R 1 20 28

22 9 - 1 1 L 12 11 3

23 8 - 3 1 L 14 13 12

Table 5. The unary multiplication Turing machine transitions in the format re-
quired by the GoL-UTM.

Table  6  shows  the  optimally  ordered  list  of  transitions  for  the
unary multiplication. The GoL-UTM’s tape shown in Table 7 consists
of the tape of the example machine followed on the right by the list of
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transitions of the example machine. The initial transition is twelfth in
the list;  it  happens to be transition 12 in Table 5 as well.  The transi-
tion  numbers  are  not  coded  on  the  tape.  The  movement  direction  is
coded as “0” for left  and “1” for right.  The links to the next transi-
tion are a unary coding of the number of transitions to skip either for-
ward,  with  a  list  of  1s  or  backward,  with  a  list  of  0s.  A  zero  length
list  is  used  to  repeat  the  same  transition  and  the  special  string  “10”
represents halt. A separator C separates the two links and each transi-
tion starts and ends with the separator M. In addition, the GoL-UTM
codes  its  working  position  in  the  current  transition  and  the  position
of  the  example  Turing  machine’s  read/write  head  by  using  a  marked
form of the tape coding between these positions. The marked form of
the symbols 80, 1, C, M< are 8A, B, D, X<. Thus, the first transition on
the tape is coded XBABDX because it is to the left of the GoL-UTM’s
working position. It is transition 16 in Table 5, the symbol to write is
1,  the  direction  is  left,  and  the  next  transitions  are  one  forward  and
this one again. 

Transition
Number 

Symbol
Written 

Move 
Direction 

Next
Transition 
for 0 Read

Next
Transition 
for 1 Read

16 1 L 17 16 
17 1 R 21 17 
19 0 L 17 16 
18 1 L 19 18 
13 0 L 19 18 
21 0 R 1 20 
20 1 R 23 20 
23 1 L 14 13 
14 0 L 14 13 
15 1 L 14 15 
11 0 L 14 15 
12 0 L 12 11 
22 1 L 12 11 
1 1 R 1 1 
3 1 R 22 3 
2 0 R 4 3 
4 0 R 7 4 
7 0 R 6 5 
6 0 L 6 5 
5 0 L 10 5 

10 0 L 9 8 
8 1 L 9 8 
9 0 L H H 

Table 6. The unary multiplication Turing machine transitions in the format re-
quired by the GoL-UTM.
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Table 7. GoL-UTM initial tape for unary multiplication.

It  takes  56 561  transitions  of  the  GoL-UTM  to  convert  the  initial
tape  shown  in  Table  7  to  the  final  tape,  the  first  part  of  which  is
shown in  Table  8.  Each  GoL-UTM cycle  takes  23 040  Game  of  Life
generations giving just over 1300 million generations to complete the
program. This took less than 10 minutes on the author’s laptop with
the fixed length stack version of the GoL-UTM running in Golly [10]. 

Table 8. Part of the GoL-UTM final tape for unary multiplication.
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6. Optimizing the Order of Transitions

6.1 Problem Definition
The GoL-UTM will work with the transitions in any order. However,
the order makes a great deal of difference in the size of the list and the
speed of operation.

The  optimization  for  size  involves  minimizing  the  lengths  of  the
unary links between transitions. In order to maximize speed the links
used most frequently should be shorter and transitions used most of-
ten should be closer to the left to minimize the GoL-UTM’s read/write
head movement to and from the Turing machine’s tape. 

This problem can be formulated as the classic quadratic assignment
problem.  This  is  an  NP-hard  optimization  problem.  It  was  first  pro-
posed  by  Koopmans  and  Beckmann  in  1957  [12]  as  a  mathematical
model  for  maximizing  profit  when  production  is  distributed  over  a
number  of  sites.  The  objective  is  to  find  the  optimum  location  for
each plant to maximize profit and minimize transportation costs. 

In  our  case,  the  equivalent  is  the  allocation  of  transitions  to  posi-
tions in the list. We require the more general form with a linear com-
ponent  as  proposed  by  Koopmans  and  Beckmann  in  order  to  cope
with  the  “closest  to  the  left”  requirement  for  speed  optimization.
Most authors discarded this linear term as it is easy to solve [13]. 

The task is  to find an allocation O ! @oxD  which is  a  permutation
of the integers 1 to n, where n is the number of allocations that must
be made and ox is the activity allocated to location x. 

The  cost  of  an  allocation  is  calculated  using  three  matrices,
F = Afi jE, D ! Adx yE, and C ! @ci xD. The flows between activities is F,
in our case how often a link between two transitions is processed. The
cost  related  to  the  distance  between  two  locations  is  D,  in  our  case
the distance between the two transitions in the list. The cost of allocat-
ing an activity to a location is C, which in our case is the frequency of
use  of  the  transition  multiplied  by  how  far  this  location  is  from  the
left. 

The cost function which must be minimized is: 

(1)‚
x!1

n ‚
y!1

n

fox oy .dx y + ‚
x!1

n

cox x.

The  values  for  these  matrices  for  the  unary  multiplication  transi-
tions in Table 6 are shown in Table 9 for F,  equation (2) for D,  and
Table 10 for C: 

(2)D ! Adx yE where dx y ! †y - x§.
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10072, 10048, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 10034, 10046, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 10015, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10015, 0

0, 0, 0, 10032, 0, 0, 10008, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 10032, 0, 0, 0, 0, 10008, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 10029, 10071, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 10003, 10017, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 10151, 10009, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 20010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 10009, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10000, 10040, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10000, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10144, 10016, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10000, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10000, 10100, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11059, 10141, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10058, 0, 0, 0, 10102, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11296, 10144, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10141, 10019, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10060, 0, 0, 10060

10140, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10140, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10030, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10120, 10000, 0, 0, 0, 0, 0, 0, 0, 0, 0

  

Table 9. Quadratic  assignment  problem flow matrix  for  unary  multiplication
transitions.

A60,40,15,20,20,50,5,80,5,5,20,0,80,0,50,600,80,720,80,60,140,15,60 E  
Table 10. Quadratic  assignment  problem  linear  matrix  for  unary  multiplica-
tion transitions.  This  is  row 1 for position 1;  subsequent rows use these val-
ues multiplied by the row number.

6.2 Solution Method
The initial plan was to try a multistart tabu search along the lines pro-
posed by James et al. [14]. Following early results was advice in [14]
that “high quality results can be obtained from approaches that capi-
talize  on  the  strategic  use  of  information  learned  during  the  search
process.” A study of the structure of this particular problem was un-
dertaken. This involved generating random allocation samples and us-
ing  a  neighborhood  search  to  locate  the  closest  local  optimum.  The
number of times each local optima was found was recorded as well as
the  average  number  of  steps  the  neighborhood  search  took  to  locate
the local optima from the random starting points.
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This  approach  is  also  similar  to  the  multistart  approach  of  Boese
[15]  except  that  the  greedy method was not  used because  we wished
to  locate  the  closest  local  minimum  as  part  of  studying  the  problem
structure. 

The  neighborhood  definition  used  for  the  search  is  all  the  alloca-
tions that can be generated by swapping the positions of any two tran-
sitions. 

The  local  search  procedure  used  generated  a  random  allocation
and  then  looked  at  all  neighboring  allocations.  If  a  better  one  was
found,  a  step  was  taken  and  the  neighborhood  search  was  repeated
centered  on  this  sample.  This  was  continued  until  a  local  minimum
was located. 

The neighborhood definition was very successful with this particu-
lar problem. It took about 20 steps on average to find the local min-
ima  in  a  random  sample.  This  is  a  long  way  considering  that  any
point in the sample space can be reached in 22 steps. 

6.3 Analysis of Results
The following analysis is of one run of 2000 random samples.

Figure  7  shows  a  plot  of  the  number  of  hits  on  local  minima
against the cost function. This clearly shows an upward trend toward
the  overall  minimum  value.  Analysis  of  the  data  shows  that  the  10
best  local  minima  had  70  hits  and  all  10  minima  were  found  in  the
first  27 of  these,  which also  fell  in  the  first  half  of  the  total  of  2000
samples.  That  means  that  this  area  was  hit  43  times  without  finding
another local minima. The rest of the search space received 1930 hits
that found 1811 local minima, finding them at a rate of one per two
hits right up to the last sample. 

Figure 7. Plot  of  the  number  of  random  allocations  that  optimized  to  the
same local minima against the cost function value of the local minima.

Figure 8 shows the number of  local  minima against  the cost  func-
tion value.  This  looks remarkably symmetrical  in  comparison to Fig-
ure 7. 
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Figure 8. Plot of the number of local  minima against  the cost  function value.
The y axis is the count of minima in bands 25 000 wide of the cost units.

6.4 Comparison with the Greedy Search
It  is  noted  that  neither  Reeves  [16]  nor  Merz  [17]  noticed  any  evi-
dence for large basins of attraction. Reeves was looking for a “big val-
ley”  structure  in  a  flowshop  sequencing  problem in  1997.  Merz  was
looking at the relationship between local optima rather than how they
were  found.  One  reason  that  they  did  not  see  evidence  of  the  large
basins  of  attraction  could  be  that  they  were  using  a  greedy  local
search. This search takes a step toward the first better solution found
rather than looking at all the solutions in a neighborhood before tak-
ing a step. In order to compare the effect of this we collected samples
using this search. Figure 9 shows a plot of the number of hits on local
minima against the cost function. This is very similar to Figure 7 with
the following differences.

† The number of hits on any optima were lower with the greedy search. 

† The  average  number  of  steps  to  a  local  optima  was  up  for  the  greedy
search to 71 steps from 20 steps. 

† The lack  of  local  optima in  the  bottom left  corner  of  the  graph is  not
nearly so obvious. 

This  suggests  a  threshold  in  the  size  of  basins  of  attraction  above
which  the  simple  local  search  is  significantly  better  than  the  greedy
search.  The  small  steps  made  by  the  greedy  search  locate  small  op-
tima,  while  the  local  search  makes  the  biggest  possible  step  and  al-
ways finds the deepest local optimum. 

However,  the greedy version was completed in less  than a quarter
of the time and is therefore the faster method. 
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Figure 9. Plot  of  the  number  of  random  allocations  that  optimized  to  the
same local minima found by the local neighborhood greedy search against the
cost function value.

7. Expected Basin of Attraction Size

A possible  explanation for the large basins of  attraction for good lo-
cal minima is the structure created by the neighborhood definition. It
was decided to establish a baseline expected size for basins of attrac-
tion. A simulation was performed treating the cost function as a map-
ping  for  random  allocation  and  assuming  that  the  actual  scores  for
neighbors are independent.

7.1 Simulation for Expected Size of the Basin of Attraction
The simulation used the standard normal distribution for the distribu-
tion of allocation scores. For a quadratic assignment problem with 23
items  to  allocate  and  a  neighborhood  defined  by  swapping  alloca-
tions,  there  are  253  different  neighboring  allocations  to  each
allocation.

For  each  trial  i  of  the  simulation,  a  local  minima  Li  was  given  a
score Si  from the range of interest. The 253 neighbors Ni j  of Li  were
given  scores  Vi j  for  all  j  in  the  range  [0:252].  The  values  Vi j  were
drawn from the standard normal distribution with the additional con-
straint that Vi j > Si. 

The set  Bi  of  members of  the basin of  attraction of  the local  min-
ima  Li  was  initialized  with  all  Vi j.  The  simulation  then  examined
each member Bi k  of set Bi  in turn. Each Bi k  had 253 neighbors, Bi k l
for l in the range [0:252]. Each Bi k l  had Bi k as one neighbor and 252
others. If all these other neighbors had scores larger than the score of
Bi k  then  Bi k l  was  added  to  Bi.  All  the  scores  were  drawn  from the
standard normal distribution. 

The process continued until all members of Bi  were examined. The
result of one run is shown in Figure 10. The points plotted are the av-
erage of  40 samples. The average number of  steps followed the same

             
           

              
     

Code Optimization for a Simple Universal Turing Machine 15

Complex Systems, 20 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.1.1



          
              
          

curve rising to three steps. This shows a change in the expected size of
the  basin  of  attraction  from  the  minimum  of  253  at  a  standardized
score of  -2 to just  over 1000 at  a standardized score of  -4 and not
much change for lower values. 

Figure 10. Plot  of  the simulated size  of  basins  of  attraction for  standard nor-
mal distribution samples. Each point is the average of 40 samples.

The  average  local  optima  for  our  example  in  Figure  7  was
1 010 000  with  deviation  173 700,  which  translates  to  -6.6  when
standardized.  The  absolute  minimum  was  at  645 192,  which  trans-
lates to -8.0. There is not much difference in the expected size of the
basins of attraction for these values in Figure 10. 

7.2 Simulation for Expected Number of Neighbors in the Same 
Basin of Attraction

A simpler  simulation  was  performed  that  shows  a  similar  effect.  We
looked  at  a  local  optima  to  determine  how  many  of  its  immediate
neighbors  are  in  its  basin  of  attraction.  This  simulation  can  be  run
more quickly by allocating 254 random scores and picking the small-
est to be the local minima. Figure 11 shows the result having the same
change between -2 and -4 but with much less deviation.

Figure 11. Plot  of  a  simulation  of  1000  samples.  The  number  of  immediate
neighbors  in  the  basin  of  attraction  of  an  allocation  against  the  allocation
cost function value.
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7.3 Good Neighbor Assumption
We can  introduce  the  common assumption  that  the  neighbors  of  the
optimum solution are drawn from an atypical population. It is not un-
reasonable  to  assume  that  this  atypical  population  is  also  the  source
of other local optima. We know the mean and deviation for local op-
tima (1 010 000 and 173 700 respectively). If we use this for the distri-
bution  of  the  neighbors  for  a  good  solution  then  the  optimum
645 192  will  translate  to  -2.1  when  standardized.  This  is  just  the
point where the graphs in Figures 10 and 11 indicate a major change
in the expected size of the basin of attraction. Figures 12 and 13 show
the normalized versions of the data from the local search. 

Figure 12. Figure 7 normalized to the distribution of  local  optima.  The num-
ber  of  random  allocations  that  optimized  to  the  same  local  minima  against
the  cost  function  value  of  the  local  minima  generated  by  the  local  search
algorithm.

Figure 13. Figure 8 normalized to the distribution of  local  optima.  The num-
ber  of  local  minima  against  the  cost  function  value  generated  by  the  local
search algorithm. The y axis is the count of minima in bands 25 000 wide of
the cost units.

The  expected  size  of  the  basins  of  attraction  increases  by  a  factor
of  four  over  the  range  where  we  see  no  small  basins  of  attraction  in
the data. It is also noted that only one in 10 local optima have scores
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below -1 in the normalized data which is in the neighborhood of the
best solutions. This is probably only part of the story as the total num-
ber of  optima is  very large and the number of  steps to reach the op-
tima is very different. 

7.4 Time to Discovery
Figure 14 shows a plot of the number of the first trial to discover each
local  optima  found  in  a  series  of  10 000  trials.  It  clearly  shows  two
groups of optima on the left. The best group of four were all discov-
ered within 658 trails and the second group of 19 were discovered in
5522 trials.  In  both cases  additional  members  of  these  groups would
be very unlikely.

Figure 14. The number of trials it took to discover each local optima using the
local neighborhood. The total number of trials was 10 000.

8. Conclusion

8.1 The Game of Life Simple Universal Turing Machine
The optimum ordered description of  the  unary  multiplication Turing
machine  took  152  symbols  on  the  simple  universal  Turing  machine
tape,  which  works  out  as  an  average  of  6.6  over  the  23  transitions.
Each  transition  requires  two separator  symbols  and  two symbols  for
the symbol to write and the move direction. This leaves an average of
just  1.3 symbols for each of the two links to the next transitions.  By
way  of  comparison,  the  worst  possible  ordering  produces  a  descrip-
tion requiring 439 symbols.

Coding the Turing machine using a list of quintuplets as shown in
Table 6 requires 30 quintuples. If it were possible to code each quintu-
ple  with  just  five  symbols  this  comes  to  150  symbols  before  adding
any  formatting  symbols.  This  demonstrates  that  the  GoL-UTM  [2]
can have a very compact description of a Turing machine with a little
care over the ordering of the transitions. 

The unary multiplication Turing machine takes 443 cycles to multi-
ply  4ä4.  The  GoL-UTM  took  56 561  cycles  to  perform  the  same
calculation. That is just less than 128 cycles of the GoL-UTM per cy-
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cle of the Turing machine. The Turing machine’s tape was 31 symbols
long, giving a total tape length of 183 for the GoL-UTM. This shows
how  effective  the  optimization  was  for  speed  as  the  average  cycle  is
less than 70% of the average distance the GoL-UTM read/write head
has  to  move  before  taking  into  account  changing  state.  This  demon-
strates the speed of the GoL-UTM [2]. 

Figure 15 shows a size comparison of the Game of Life Turing ma-
chine, the universal Turing machine with the small doubling program,
and the  universal  Turing  machine  with  the  unary  multiplication pro-
gram. 

8.2 The Quadratic Assignment Problem Solution
This  example  quadratic  assignment  problem  of  size  23  was  solved
with 2000 samples taking half an hour on a modern laptop. The opti-
mum solution  was  found  in  the  first  200  samples  and  1000  samples
would  have  been  sufficient  to  be  confident  that  it  was  indeed  the
optimum.

The  comparison  between  a  simple  local  search  and  the  greedy
search in Section 6.4 showed that, for this problem, the greedy search
requires  twice  as  many  samples  to  give  a  similar  level  of  hits  on  the
optima  with  large  basins  of  attraction,  and  thus  the  same  level  of
confidence that the true optima has been found. However, the greedy
search  is  much  quicker,  with  the  2000  samples  for  Figure  9  taking
just less than 7 minutes. 

For  this  problem there  were  no  local  optima  with  low scores  and
small  basins  of  attraction  creating  a  void  in  the  bottom  left  of  Fig-
ure!7  and  the  top  left  of  Figure  14.  These  voids  generate  confidence
that the true optima has been found. 

The group of local minima with large basins of attraction and low
cost function values that includes the optimum local minima may be a
general  feature  of  quadratic  assignment  problems.  It  is  reasonable
that  the  best  solution  should  have  the  most  neighbors  with  good
scores and thus have a large basin of attraction. This may have some
relationship with the “big valley” structure found by Boese [15]. How-
ever, our analysis does not attempt to show how close together these
deep  optima  are  in  the  search  space.  We  do  find  however  that  the
basins of attraction of the optimum allocation for some smaller prob-
lems  is  large  enough  that  random  allocations  can  locate  the  optima
with a simple local search. 

The quadratic assignment problem has been described as one of the
most  difficult  problems  in  the  NP-hard  class  [13].  This  work  shows
that Moore’s law has caught up with some of the more modest exam-
ples of this class of problem and that they can now be solved convinc-
ingly with simple methods. 
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Figure 15. Size comparison of the Game of Life Turing machine, the universal
Turing  machine  with  the  small  doubling  program,  and  the  universal  Turing
machine with the unary multiplication program.
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