
Complex Shift Dynamics of Some 
Elementary Cellular Automaton Rules

Junbiao Guan

School of Science, Hangzhou Dianzi University
Hangzhou, Zhejiang 310018, P.R. China
junbiaoguan@gmail.com

Kaihua Wang

School of Mathematics and Statistics
Hainan Normal University
Haikou, Hainan 571158, P.R. China

This paper presents a discussion of complex shift dynamics of some ele-
mentary  cellular  automaton  rules  (rules  30,  41,  and  110).  Equations
that  show  some  degree  of  self-similarity  are  obtained.  It  is  demon-
strated  that  rules  30,  41,  and  110  exhibit  Bernoulli  shifts  and  are
topologically  mixing  on  one  of  their  own closed  invariant  subsystems.
Furthermore, many complex Bernoulli shifts are explored for finite sym-
bolic sequences with periodic boundary conditions. 

1. Introduction

It  is  natural  to  study  a  dynamical  system either  directly  or  via  other
equivalent  systems  that  are  better  understood.  Another  good  way  to
study  a  dynamical  system is  through  its  subsystems,  which  may  also
to some extent help to understand its dynamical properties. Symbolic
representations  are  methods  for  studying  dynamical  systems  through
shifts  and  subshifts  [1,  2].  It  is  well  known  that  shifts  and  subshifts
defined on a space of abstract symbols are special discrete dynamical
systems  called  symbolic  dynamical  systems.  Symbolic  dynamics,  as  a
powerful  tool  for  studying  more  general  discrete  dynamical  systems,
often contain invariant  subsets  on which the dynamics  are  similar  or
even equivalent to a shift or subshift.

Cellular  automata  are  spatially  and  temporally  discrete  dynamical
systems characterized by local interactions [3, 4]. Such systems can be
better  investigated  if  each  rule  is  assigned  to  an  interval  map  [5–8].
The construction of the interval map associated to a cellular automa-
ton rule depends on the choice of an underlying subshift of finite type,
say,  a  cellular  automaton  rule,  that  accounts  for  the  configurational
space,  and  depends  on  the  choice  of  the  interval  map  implementing
the subshift of finite type. If we choose subshifts of finite type that are
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invariant for cellular automata, we obtain some simple interval maps
that can be presented in a closed form. 

Motivated  by  the  cited  works,  the  aim of  this  paper  is  to  explore
complex  shift  dynamics  of  some  special  elementary  cellular  automa-
ton rules,  in  particular  rules  30,  41,  and 110,  from the  viewpoint  of
symbolic dynamics.  The structure of the remainder of the paper is  as
follows:  Section 2 provides some notations and definitions.  Section 3
focuses  on  the  discussion  of  complex  shift  dynamical  properties  of
rules  30,  41,  and  110.  By  associating  these  rules  with  the  interval
maps defined in @0, 1D, it is shown that the interval maps exhibit some
degree of self-similarity. Based on directed graph theory, it is demon-
strated that rules 30, 41, and 110 exhibit Bernoulli shifts and are topo-
logically  mixing  on  one  of  their  own  closed  invariant  subsystems.
Moreover,  many  complex  Bernoulli  shifts  are  explored  for  the  finite
symbolic  sequences  with  periodic  boundary  conditions.  Finally,  Sec-
tion 4 concludes the text of this paper. 

2. Preliminaries

Before turning to Section 3 to investigate the complex shift dynamics
of  hyper  Bernoulli-shift  rules  30,  41,  and  110,  we  shall  introduce
some notations and recall some definitions.

Let ! be a finite set. For a finite alphabet ! " 80, 1, … , r<, denote
by  !* := ‹n¥0 !n  the  set  of  words  over  !.  The  length  of  a  word
x œ !n  is  denoted by †x§ := n.  We say that x œ !*  appears in x œ !*

if  there  exists  k  such  that  xk+i " xi  for  all  i < †x§.  We  denote  by
x@i,jD " xi … xj  subwords  of  x  associated  with  intervals.  Let

!! " 9x " HxiLiœZ : xi œ ! for all i œ !=
I!!+ " 9x " HxiLiœ!+ : xi œ ! for all i œ !+=M  be  the  two-sided  (one-

sided) infinite sequences equipped with the metric dHx, yL := H1 + kL-1,
where k " min 9k ¥ 0 : x†k§ ! y†k§=. We call !! the state space. 

The  left  shift  map  (simply  shift  map)  sL : !! Ø !!  is  defined  by@sL HxLDi := xi+1;  the  right  shift  map  sR : !! Ø !!  is  defined  by@sR HxLDi := xi-1 for any i œ !. The full r-shift (or simply r-shift) is the
full  shift  over  the  alphabet  ! " 80, 1, … , r<  on  the  state  space  !!.
Each sequence x œ !!  is called a point of the state space. Points from
the full 2-shift are also called binary sequences. A cellular automaton
is  a  continuous  map  f¶ : !! Ø !!  which  commutes  with  the  shift
map,  that  is,  f¶ sL " sL f¶.  For  a  cellular  automaton  f¶,  a  local
rule  f : !2 r+1 Ø !  can  be  described  as  @f¶HxLDi " f Ix@i-r,i+rDM,
x œ !!. 

Let #  be a collection of blocks over ! that we will consider as be-
ing the forbidden blocks. For any such # , define X!  to be the subset
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of sequences in !!  that do not contain any block in # . A shift space
is subset X of a full shift I!!, sLM such that X " X!  for some collec-
tion #  of forbidden blocks over !. For a given shift space there may
be  many  collections  #  describing  it.  When  a  shift  space  X  is  con-
tained in a shift space Y, we say that X is a subshift of Y. More pre-
cisely,  let  S Œ !!  be closed and invariant for sL,  that is,  sL HSL Œ S,
then  HS, sLL  forms  a  subsystem  of  I!!, sLM.  We  call  HS, sLL  a  sub-

shift  of  the  full  shift  I!!, sLM,  denoted  by  HS, sLL § I!!, sLM.  On
each shift space there is a shift map from the space to itself. A type of
mapping from one shift  space  to  another  is  called a  cellular  automa-
ton.  We  can  make  up  infinitely  many  shift  spaces  by  using  different
forbidden  collections  # .  Indeed,  there  are  uncountably  many  shift
spaces possible. As subsets of full shifts, these spaces share a common
feature  called  shift  invariance.  A  shift  of  finite  type  is  a  shift  space
that  can  be  described  by  a  finite  set  of  forbidden  blocks,  that  is,  a
shift  space X  having the form X!  for  some finite  set  #  of  blocks.  A
shift of finite type is M-step (or has memory M) if it can be described
by a collection of forbidden blocks all of which have length M + 1. 

One of the basic constructions in symbolic dynamics involves pass-
ing  to  a  higher  block shift,  which provides  an alternative  description
of  the  same  shift  space.  Let  X  be  a  shift  space  over  the  alphabet  !,
and !X

@ND " $NHXL be the collection of all allowed N-blocks in X. We

can consider  !X
@ND  as  an  alphabet  in  its  own right,  and form the  full

shift  J!X
@NDN!.  Define the Nth  higher block code  bN : X Ø J!X

@NDN!  by

@bN HxLDi " x@i,i+N-1D.  Then  the  Nth  higher  block  shift  X@ND  or  higher

block  presentation  of  X  is  the  image  X@ND " bNHXL  in  the  full  shift

over !X
@ND. 

Although in real life sequences of symbols are finite, it is often ex-
tremely useful to treat long sequences as infinite in one direction (one-
sided  infinite)  or  both  directions  (two-sided  infinite).  Directed  graph
theory  provides  a  powerful  tool  for  studying  such  infinite  sequences.
A  fundamental  method  for  constructing  finite  shifts  starts  with  a  fi-
nite, directed graph and produces the collection of all bi-infinite walks
(i.e., sequences of edges) on the graph. A graph G  consists of a finite
set  % " %HGL  of  vertices  (or  states)  together  with  a  finite  set
& " &HGL  of  edges.  Each edge  e œ &HGL  starts  at  a  vertex denoted by
iHeL œ %HGL  and terminates  at  a  vertex tHeL œ %HGL.  Equivalently,  the
edge e has initial state iHeL and terminal state tHeL. We usually shorten
%HGL  to  V  and  &HGL  to  &  when  G  is  understood.  A  path
p " e1 e2 … em  on a  graph G  is  a  finite  sequence of  edges  ei  from G
such  that  t HeiL " i Hei+1L  for  1 § i § m - 1.  The  length  of
p " e1 e2 … em  is  †p§ " m.  The  path  p " e1 e2 … em  starts  at  vertex
i HpL " i He1L  and  terminates  at  vertex  t HpL " t HemL,  and  p  is  a  path
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from i HpL  to  t HpL.  A  cycle  is  a  path  that  starts  and  terminates  at  the
same vertex. We say that a graph G is irreducible if for every ordered
pair of vertices I and J there is a path in G starting at I and terminat-
ing at  J.  The following definitions developed in [1]  are  useful  for  di-
rected graph theory. 

Definition 1. Let G be a graph with vertex set %. For vertices I, J œ %,
let AI J  denote the number of edges in G with initial state I and termi-
nal state J. Then the adjacency matrix of G is A " AAI JE, and its for-
mation from G is denoted by A " AHGL or A " AG. 

Definition 2. Let G be a graph with edge set & and adjacency matrix A.
The  edge  shift  XG  or  XA  is  the  shift  space  over  the  alphabet  ! " &
specified by 

XG " XA " 9e " HeiLiœ! œ &! : t HeiL " i Hei+1L for all i œ !=.

3. Complex Shift Dynamics of Rules 30, 41, and 110

In  this  section  we  focus  our  attention  on  the  discussion  of  complex
shift  dynamics  of  the  special  elementary cellular  automaton rules  30,
41, and 110. We are dedicated to studying fractal structures and some
complex  Bernoulli  shift  dynamics  of  subsystems  of  these  rules.  It  is
worthwhile  to  mention  that  rule  30  was  utilized  to  generate  random
sequences  [9],  rule  41  has  complex  shift  dynamics,  and  rule  110 has
proved  to  be  capable  of  universal  computation  [10].  Therefore,  it  is
very interesting to analyze the complex shift  dynamics of  these rules.
We consider ! " 80, 1<  and AfR¶Ei " fRIx@i-1,i+1DM,  where R  represents
the rule number. In order to gain further insight on complex shift dy-
namics of these rules via an interval map from the viewpoint of sym-
bolic dynamics, we consider the one-sided infinite symbolic sequences
and  represent  them  through  the  real  number  described  by
r2HxL " ⁄i"0

¶ 2-Hi+1L xi.  Let  cR  be  the  interval  map  corresponding  to
fR
¶. Therefore the following diagram commutes:

SH!L fR
¶

SH!L
r2 r2

@0, 1D cR @0, 1D
Let  I  be  the  interval  @0, 1D.  The  binary  representation  for  a  one-

sided  infinite  symbolic  sequence  x0 x1 …  is  given  by

f " ⁄i"0
¶ xi 2-Hi+1L. Denote  by I0  the  interval  @0, 1 ê 2D,  I1  the  interval
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i 0         @1 ê 2, 1D. For the Bernoulli shift bHfL " 2 fmod 1, its inverse branches
denoted by g are given by g0 : I Ø I0 with g0HfL " f ê 2 and g1 : I Ø I1

with  g1HfL " f ê 2 + 1 ê 2.  For  a  block  x ! @x0 x1 … xI-1 xID,  define
g
x
HfL! gx0

È gx1
È! È gxI

HfL and I
x

" g
x
H@0, 1DL. 

We consider the case I Ø ¶. To show the self-similarity of the inter-
val map c30, c41, and c110, we present the following lemma. 

Lemma 1. The interval map cR satisfies the following general equation 

(1)
cRHfL " @cRHgHfLL + fRHx* x0 x1LD

2-1 + @fRHx0 x1 x2L - fRHx* x1 x2LD 2-2,

where x* is determined by boundary conditions. 

Proof. Let f " ⁄i"0
¶ xi 2-Hi+1L. The interval map cR yields 

(2)cRHfL " fRHx* x0 x1L 2-1 +‚
i"1

¶

fRHxi-1 xi xi+1L 2-Hi+1L.

Hence, we have 

(3)cRHg HfLL " fRHx* x1 x2L 2-1 +‚
i"2

¶

fRHxi-1 xi xi+1L 2-i.

It  follows  from  equations  (2)  and  (3)  that  equation  (1)  holds.  Thus,
the proof is completed. ·

3.1 Fractal Structures of Rules 30, 41, and 110
It is notable that the update law of rule 30 is given by

000 Ø 0, 001 Ø 1, 010 Ø 1, 011 Ø 1,

100 Ø 1, 101 Ø 0, 110 Ø 0, 111 Ø 0.

Therefore, the following results are obtained. 

Theorem 1. For the interval map c30, when x* " 0, 

(4)c30HfL =

1
2
c30H2 fL, if f œ I00,

1
2
c30H2 fL + 1

2
if f œ I01,

1
2
c30H2 f - 1L + 3

4
, if f œ I100,

1
2
c30H2 f - 1L + 1

4
, if f œ I101,

1
2
c30H2 f - 1L + 1

4
, if f œ I11;
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when x* " 1, 

(5)c30HfL "

1
2
c30H2 fL + 1

4
, if f œ I000,

1
2
c30H2 fL + 3

4
, if f œ I001,

1
2
c30H2 fL + 1

4
, if f œ I01,

1
2
c30H2 f - 1L, if f œ I1.

Proof. We only show the case when x* " 0; the proof when x* " 1 is 
similar. When x* " 0, if f œ I00, then x0 " x1 " 0; it follows from 
equation (1) and the update law of rule 30 that 
c30HfL " 1 ê 2 c30H2 fL. Following the same analysis, if f œ I01, then 
c30HfL " 1 ê 2 c30H2 fL + 1 ê 2; if f œ I100, then 
c30HfL " 1 ê 2 c30H2 f - 1L + 3 ê 4; if f œ I101, then 
c30HfL " 1 ê 2 c30H2 f - 1L + 1 ê 4; if f œ I11, then 
c30HfL " 1 ê 2 c30H2 f - 1L + 1 ê 4. Thus, equation (4) holds and the 
proof is completed. ·

We can see from equations (4) and (5) that the interval map c30 ex-
hibits some fractal structures, as illustrated in Figure 1, which to some
extent reflect the complex shift dynamics of rule 30. 

HaL HbL
Figure 1. Fractal  structures  exhibited  by  the  interval  map  c30  with  different
boundary conditions. (a) x* ! 0, (b) x* ! 1.

The update law of rule 41 is given by 

000 Ø 1, 001 Ø 0, 010 Ø 0, 011 Ø 1,

100 Ø 0, 101 Ø 1, 110 Ø 0, 111 Ø 0.

Hence, we have the following results. 
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Theorem 2. For the interval map c41, when x* " 0, 

(6)c41HfL "

1
2
c41H2 fL + 1

2
, if f œ I00,

1
2
c41H2 fL, if f œ I01,

1
2
c41H2 f - 1L - 1

4
, if f œ I100,

1
2
c41H2 f - 1L + 1

4
, if f œ I101,

1
2
c41H2 f - 1L + 1

2
, if f œ I110,

1
2
c41H2 f - 1L + 1

4
, if f œ I111;

when x* " 1, 

(7)c41HfL "

1
2
c41H2 fL + 1

4
, if f œ I000,

1
2
c41H2 fL + 3

4
, if f œ I001,

1
2
c41H2 fL + 1

2
, if f œ I010,

1
2
c41H2 fL + 3

4
, if f œ I011,

1
2
c41H2 f - 1L, if f œ I1.

Proof. When x* " 0, if f œ I00, then x0 " x1 " 0; it follows from equa-
tion (1) and the update law of rule 41 that 
c41HfL " 1 ê 2 c41H2 fL + 1 ê 2. Carrying out the same analysis, if 
f œ I01, then c41HfL " 1 ê 2 c41H2 fL; if f œ I100, then 
c41HfL " 1 ê 2 c41H2 f - 1L - 1 ê 4; if f œ I101, then 
c41HfL " 1 ê 2 c41H2 f - 1L + 1 ê 4; if f œ I110, then 
c41HfL " 1 ê 2 c41H2 f - 1L + 1 ê 2; if f œ I111, then 
c41HfL " 1 ê 2 c41H2 f - 1L + 1 ê 4. Thus, equation (6) holds. The proof 
of the case when x* " 1 is similar, and therefore equation (7) also 
holds. The proof is completed. ·

Figure  2  illustrates  the  fractal  structures  exhibited  by  the  interval
map c41, which in some sense demonstrates the complex shift dynam-
ics of rule 41. 
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HaL HbL
Figure 2. Fractal  structures  exhibited  by  the  interval  map  c41  with  different
boundary conditions. (a) x* ! 0, (b) x* ! 1.

It  is  well  known  that  the  update  law  of  universal  rule  110  is
given!by 

000 Ø 0, 001 Ø 1, 010 Ø 1, 011 Ø 1,

100 Ø 0, 101 Ø 1, 110 Ø 1, 111 Ø 0.

Therefore, the following results are obtained. 

Theorem 3. For the interval map c110, when x* " 0, 

(8)c110HfL "

1
2
c110H2 fL, if f œ I00,

1
2
c110H2 fL + 1

2
, if f œ I01,

1
2
c110H2 f - 1L + 1

2
, if f œ I10,

1
2
c110H2 f - 1L + 1

2
, if f œ I110,

1
2
c110H2 f - 1L + 1

4
, if f œ I111;

when x* " 1, 

(9)c110HfL "

1
2
c110H2 fL, if f œ I00,

1
2
c110H2 fL + 1

2
, if f œ I010,

1
2
c110H2 fL + 3

4
, if f œ I011,

1
2
c110H2 f - 1L + 1

4
, if f œ I100,

1
2
c110H2 f - 1L + 3

4
, if f œ I101,

1
2
c110H2 f - 1L, if f œ I11.
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Proof. We show the case when x* " 0; the proof when x* " 1 is simi-
lar. When x* " 0, if f œ I00, then x0 " x1 " 0; it follows from equa-
tion (1) and the update law of rule 110 that c110HfL " 1 ê 2 c110H2 fL. 
Following the same analysis, if f œ I01, then 
c110HfL " 1 ê 2 c110H2 fL + 1 ê 2; if f œ I10, then 
c110HfL " 1 ê 2 c110H2 f - 1L + 1 ê 2; if f œ I110, then 
c110HfL " 1 ê 2 c110H2 f - 1L + 1 ê 2; if f œ I111, then 
c110HfL " 1 ê 2 c110H2 f - 1L + 1 ê 4. Thus, equation (8) holds and the 
proof is completed. ·

We  can  see  some  fractal  structures  exhibited  by  the  interval  map
c110, as illustrated in Figure 3. 

HaL HbL
Figure 3. Fractal  structures  exhibited by the interval  map c110  with different
boundary conditions. (a) x* ! 0, (b) x* ! 1.

3.2 Subshifts of Rules 30, 41, and 110
Another  good way to explore  the  complex shift  dynamical  behaviors
is through subsystems that are better understood. To this end, in what
follows  we  are  dedicated  to  studying  subshifts  of  rules  30,  41,  and
110.

In fact, there are many closed invariant subsystems for these rules.
Here  we  respectively  present  one  simple  subsystem  for  rules  30,  41,
and 110 as follows. 

† Here are the edges of directed graph G1:  e1 ! 0 011 100, 
e2 ! 0 111 001, e3 ! 1 001 110, e4 ! 1 100 111, e5 ! 1 110 011.

† Here are the edges of directed graph G2:  e1 ! 0 000 011, 
e2 ! 0 000 100, e3 ! 0 000 110, e4 ! 0 000 111, e5 ! 0 001 000, 
e6 ! 0 001 100, e7 ! 0 001 110, e8 ! 0 010 000, e9 ! 0 010 100, 
e10 ! 0 011 000, e11 ! 0 011 101, e12 ! 0 100 000, e13 ! 0 100 001, 
e14 ! 0 100 100, e15 ! 0 100 101, e16 ! 0 101 001, e17 ! 0 110 001, 
e18 ! 0 111 010, e19 ! 1 000 001, e20 ! 1 000 010, e21 ! 1 000 110, 
e22 ! 1 000 111, e23 ! 1 001 000, e24 ! 1 001 010, e25 ! 1 010 010, 
e26 ! 1 100 011, e27 ! 1 101 001, e28 ! 1 110 100.

† Here are the edges of directed graph G3:  e1 ! 0 001 001, 
e2 ! 0 001 110, e3 ! 0 010 011, e4 ! 0 011 010, e5 ! 0 011 011, 
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e6 ! 0 011 100, e7 ! 0 011 101, e8 ! 0 100 110, e9 ! 0 110 100,  
e10 ! 0 110 111, e11 ! 0 111 000, e12 ! 0 111 010, e13 ! 0 111 011, 
e14 ! 0 111 110, e15 ! 1 000 100, e16 ! 1 000 111, e17 ! 1 001 101, 
e18 ! 1 010 011, e19 ! 1 011 100, e20 ! 1 011 101, e21 ! 1 011 111, 
e22 ! 1 100 010, e23 ! 1 100 011, e24 ! 1 101 001, e25 ! 1 101 110, 
e26 ! 1 101 111, e27 ! 1 110 001, e28 ! 1 110 100, e29 ! 1 110 111, 
e30 ! 1 111 000, e31 ! 1 111 010, e32 ! 1 111 011, e33 ! 1 111 100, 
e34 ! 1 111 101.

The  edges  constitute  the  higher  7-block  edge  shift,  which  is  a  1-step
shift  of  finite  type,  as  depicted  in  Figures  4,  5,  and  6.  All  bi-infinite
walks on the graph constitute the closed invariant subsystem denoted
by L1, L2, and L3. The graph Gi  is strongly connected and its corre-
sponding  adjacency  matrix  Ai  is  irreducible.  According  to  the  well-
known  Perron–Frobenius  theory,  we  know  that  the  topological  en-
tropy hIXGi

M " log lAi
HGiL > 0,  where  the  positive  eigenvalue  lAi

HGiL
is  the  Perron  eigenvalue  of  irreducible  matrix  Ai  (i " 1, 2, 3).  Hence
f30
¶ ,  f41

¶ ,  f110
¶  is  topological  mixing  on  L1,  L2,  and  L3,  respectively.

Moreover, there exists a Bernoulli shift attractor on Li  Hi " 1, 2, 3L as

If30
¶ M3 †L1

" sL§L1
, If41

¶ M3 †L2
" sR§L2

, If110
¶ M3 †L3

" sR
2 §L3

 holds. In or-
der to perfectly characterize the Bernoulli shift, we introduce the two
parameters t and s developed in [5] to predict its dynamic evolution,
where  t  denotes  the  relevant  forward  time-t  map  and  s  denotes  the
shift  related with t.  As an example for illustration,  we take a special
symbolic sequence 

x1 " @0111001110D, 
x2 " @10001110100100000110001D, and

x " @0110100110111000111010D 

Figure 4. Graph representation of a subsystem for rule 30 (graph G1).
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Figure 5. Graph representation of a subsystem for rule 41 (graph G2).

Figure 6. Graph representation of a subsystem for rule 110 (graph G3).
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with periodic boundary conditions that  are extracted from a cycle  of
the directed graphs G1, G2, and G3, respectively. For the same initial

configuration xi Hi " 1, 2, 3L, we can see in Figure 7 that the dynamics
evolving  under  f30

¶  exhibit  the  Bernoulli  shift  with  s " 1  and  t " 3,
which means shift the symbolic sequence to the left by one pixel after
every three evolution steps. In Figure 8 we can see that the dynamics
evolving under f41

¶  exhibit the Bernoulli shift with s " -1 and t " 3,
which means shift the symbolic sequence to the right by one pixel af-
ter every three evolution steps. In Figure 9 we can see that the dynam-
ics  evolving  under  f110

¶  exhibit  the  Bernoulli  shift  with  s " -2  and
t " 3,  which  means  shift  the  symbolic  sequence  to  the  right  by  two
pixels after every three evolution steps. 

In fact, many complex Bernoulli shifts exist that are components of
attractors of rules 30, 41, and 110. In order to illustrate this, we con-
sider the finite symbolic sequences with the length denoted by L.  For
different L, we pick out one symbolic sequence as an initial configura-
tion,  which  is  extracted  from  one  of  the  periodic  attractors  under
rules 30, 41, and 110, respectively. We can see that complex Bernoulli
shifts  exist  for  each  initial  configuration,  as  illustrated  in  Tables  1
through  3.  This  also  to  some  extent  perfectly  characterizes  the  com-
plex shift dynamics of rules 30, 41, and 110. 

Figure 7. Bernoulli  shift  extracted  every  three  steps  from  the  dynamic  evolu-
tion of f30

¶  with the initial configuration x ! @0111001110D.

Figure 8. Bernoulli  shift  extracted  every  three  steps  from  the  dynamic  evolu-
tion of f41

¶  with the initial configuration x ! @10001110100100000110001D.
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Figure 9. Bernoulli  shift  extracted  every  three  steps  from  the  dynamic  evolu-
tion of f110

¶  with the initial configuration x ! @0110100110111000111010D.

L Initial Configuration Period s t
11 11100001110 154 1 56
12 000001111110 102 4 68
13 1000110000001 832 1 192
14 01111101110011 1428 1 1326
15 011000111000011 1455 -2 679

Table 1. List  of  complex  Bernoulli  shifts  of  rule  30  for  different  L  ranging
from L ! 11 to L ! 15.

L Initial Configuration Period s t
10 0000001001 40 2 24
11 00000000001 44 -1 12
12 000000100011 36 -1 15
13 0100000011000 117 1 18
14 00000000000001 28 2 12
15 000000000000001 60 -1 16
16 0010000100000000 176 -2 22

Table 2. List  of  complex  Bernoulli  shifts  of  rule  41  for  different  L  ranging
from L ! 10 to L ! 16.

L Initial Configuration Period s t
11 11101110011 110 1 50
12 011111000111 18 -2 3
13 1111111000100 351 1 189
14 01101111111110 91 -2 13
15 001111100110001 295 -3 118
16 1111100010011000 32 2 4
17 00111001100111110 578 -1 238
18 111000001101000011 81 2 9

Table 3. List  of  complex  Bernoulli  shifts  of  rule  110  for  different  L  ranging
from L ! 11 to L ! 18. 
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4. Concluding Remarks

This  paper  has  demonstrated  some  complex  shift  dynamics  of  rules
30, 41, and 110 from the viewpoint of symbolic dynamics. By associ-
ating  an  interval  map  with  these  rules,  it  is  shown  that  the  interval
map  exhibits  some  degree  of  self-similarity.  Based  on  directed  graph
theory, it is demonstrated that rules 30, 41, and 110 exhibit Bernoulli
shifts  and  are  topologically  mixing  on  one  of  their  own  subsystems.
Last  but  not  least,  for  the  finite  symbolic  sequences  with  periodic
boundary  conditions,  many  complex  Bernoulli  shifts  are  explored
from the periodic attractors.
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