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This paper solves the problem of determining the number of cells in an
invertible  three  neighborhood  null-boundary  uniform  cellular  automa-
ton (CA) by using its rule vector graph (RVG). The RVG represents an
efficient data structure designed to characterize CA evolution and is de-
rived out of its rule vector (RV). The concept of a horizontal rule vector
subgraph (HRVS)  is  introduced to  formulate  the  analytical  framework
of the solution. The RVG of a CA is partitioned into a number of identi-
cal  HRVSs.  It  has  been  shown  that  invertible  CA  size  depends  on  the
size of the HRVS. 

1. Introduction

The theory and applications of cellular automata (CAs) were initiated
in [1] and carried forward by a large number of authors [2–27].  The
rule  vector  (RV)  of  an  n  cell  hybrid  CA  is  denoted  asYR0 R1 R2 … Ri … RHn-1L] where rule Ri  is employed on the ith  cell. If
the  same  rule  is  employed  for  each  of  the  cells,  it  is  referred  to  as  a
uniform CA, where R0 ! R1 ! R2 ! ! ! Ri ! ! ! RHn-1L. This pa-
per  deals  with  uniform  CAs  unless  mentioned  otherwise.  Uniform
null-boundary three neighborhood CAs are referred to as simply CAs
in  the  rest  of  this  paper.  We address  the  problem of  determining  the
number of cells in an invertible CA. 

A linear time algorithm is reported in [27] to identify the invertibil-
ity of a CA (uniform or hybrid). All 256 rules of three neighborhood
CAs,  as  per  [26],  can  be  divided  into  88  groups  of  elementary  rules.
The  value  of  n  for  which  a  rule  group  generates  invertible  CAs  has
been reported in Table 3 [27] without any formal proof. Section 4 of
this  paper presents  a formal proof of  the correctness  of  those results.
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The  proof  has  been  derived  by  employing  the  horizontal  rule  vector
subgraph (HRVS) introduced in Section 3. A brief introduction to the
RVG follows in Section 2. 

2. Rule Vector Graph of a Cellular Automaton  

The RVG construction from the RV of a CA (Figure 1) has been de-
tailed  in  [27].  For  the  sake  of  completeness  of  the  current  paper,  a
brief  overview  of  the  RVG  is  introduced  along  with  an  explanation
for a few basic terminologies.

The eight minterms of the three-variable Boolean function fi, corre-
sponding to the rule  Ri  employed on the ith  cell  (Figure 1(b))  are  re-
ferred to as rule minterms (RMTs) (Table 1). The three Boolean vari-
ables  are  ai-1,  ai,  ai+1,  the  current  state  values  of  cells  Hi - 1L,  i,  andHi + 1L  respectively, whereby the minterm m ! Xai-1 ai ai+1\.  The sym-
bol T(m)  denotes a single RMT in the text and is  noted simply as m
for  clarity  in  the  figures.  8T<  represents  the  set  of  all  eight  RMTs,
whereby {T} = {T(0), T(1), T(2), T(3), T(4), T(5), T(6), T(7)} = {T(m)}. 

A CA rule divides the RMTs into two subsets referred to as 0-RMT
and  1-RMT,  denoted  as  9T0

i =  and  9T1
i =  respectively,  where

9T0
i = › 9T1

i = ! f, 9T0
i = ‹ 9T1

i = ! 8T<. 
The  derivation  of  RMT  Ti+1  for  cell  Hi + 1L  out  of  Ti œ  {T(m)}  is

noted  in  Table  2.  The  RVG  of  an  n  cell  CA  with  the  RVXR0 R1 … Rn-1\ has n levels 0 to Hn - 1L. 
A node in a RVG represents a subset of RMTs. An output node of

level  i  is  derived  from  its  input  node  through  the  RMT  transitions
given in Table 2. The output node of level i is the input node of levelHi + 1L corresponding to the rule Ri+1. 

Figure 1. General structure of a CA employing the RV YR0 R1 … Ri … RHn-1L]
of an n cell CA.
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Next State Value bi for Present StatesXai-1 ai ai+1\ Represented by the RMTs
T H7L T H6L T H5L T H4L T H3L T H2L T H1L T H0L Rule Number

7 6 5 4 3 2 1 0
1 1 0 0 1 0 1 0 202
1 0 1 0 0 1 1 0 166
0 1 0 1 1 0 1 0 90
0 0 0 1 0 1 0 0 20
0 1 1 1 1 0 0 0 120

Table 1.  The RMT and CA rules. Note 1: (a) The left column represents the
next  state  value  bi  of  cell  i  for  the  present  state  values  Xai-1 ai ai+1\  of  theHi - 1L,  i,  and Hi + 1L  cells.  (b)  The eight  minterms Xai-1 ai ai+1\ ! 000 to 111
are represented as T(0) to T(7) in the text and 0 to 7 in the figures.  Note 2:
The decimal value of the 8-bit binary pattern in the left columns is referred to
as the rule number. 

RMT Ti Xai-1 ai ai+1\ RMT Ti+1 Xai ai+1 ai+2\ 
TH0L H000L and TH4L H100L TH0L ! 000 H0L TH1L ! 001 H1L
TH1L H001L and TH5L H101L TH2L ! 010 H2L TH3L ! 011 H3L
TH2L H010L and TH6L H110L TH4L ! 100 H4L TH5L ! 101 H5L
TH3L H011L and TH7L H111L TH6L ! 110 H6L TH7L ! 111 H7L

Table 2.  RMT transition. The left  column refers to the RMTs of cell  i  while
the right column refers to the corresponding RMTs of the Hi + 1L cell (derived
by deleting ai-1 and appending 0 and 1 as ai+2). 

A  RVG  edge  represents  the  RMT  transition  from  the  input  to  an
output node of a level. 

The  0-edge  and  1-edge  refer  to  the  edges  from  an  input  node  of
level  i  corresponding  to  the  rule  Ri  employed  on  cell  i  (i ! 0  to

Hn - 1L).  The  bi  edge  (bi œ 80, 1<)  is  assigned  the  edge  weight

:Tbi

i > í bi,  where  :Tbi

i >  represents  the  set  of  RMTs  for  rule  Ri  for

which the next state value is bi. 
Generating  RVG(i)  (i.e.,  the  ith  level  RVG for  rule  Ri)  is  noted  in

Algorithm 1 [27]. For deriving the RVG of an n cell CA, Algorithm 2
[27]  calls  Algorithm  1  for  each  level  i  (i ! 0  to  Hn - 1L).  Figure  2
shows the RVG and state transition graph (STG) for the noninvertible
CA with RV X202 202 202\.  Figure 3 shows the RVG and STG of an
invertible CA. 
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Figure 2. (a) RVG and (b) STG of a four cell uniform CA with RV X202 202
202 202\.

Figure 3. (a) RVG and (b) STG of a four cell uniform invertible CA with RVX195 195 195 195\.
For  a  null-boundary  CA,  the  leftmost  cell  (i.e.,  cell  0)  can  have

RMTs T(0), T(1), T(2), T(3). Consequently, the input node for level 0
{T(0), T(1), T(2), T(3)} is referred to as the root node (RN). 

For  a  null-boundary  n  cell  CA,  the  Hn - 1L  cell  can  have  RMTs
T(0),  T(2),  T(4),  T(6).  Consequently,  the  input  nodes  and  edges  on
level  Hn - 1L  can  have  only  even  valued  RMTs.  The  output  node  of
level (n - 1) is marked as the sink node (SN). 
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Let V  and V£  be a pair of output nodes generated by Algorithm 1
[27],  where  each  node  covers  a  subset  of  RMTs.  The  node  V£  gets
merged with the node V  if V£ Œ V. The resulting node V  is referred to
as  a  merged  node.  The  two  output  nodes  8T(0)  T(1)  T(2)  T(3)<  and8T(4)  T(5)  T(6)  T(7)<  (shown  within  bold  line  enclosures  in  Fig-
ure!2(a)) are merged nodes. 

A node V  is marked with the “Type 1” tag if there is a missing 0-
or 1-edge outgoing from the node. The level 3 input nodes {T(0) T(4)}
and  {T(0)  T(2)}  are  two Type  1  nodes  (within  dotted  line  enclosures
in Figure 2(a)) due to missing 1-edges. 

A merged node V  is marked with the “Potential Type 2” tag if the
merging  has  occurred  for  two  nodes  V£  and  V  (where  V£ Õ V).  The
nodes  8T(0)  T(1)  T(2)  T(3)<  and  8T(4)  T(5)  T(6)  T(7)<  (within  bold
line  enclosures  in  the  level  1  output  nodes)  are  the  Potential  Type  2
nodes in Figure 2(a). The subset V£ is generated out of RMTs :Tbi

£
£ i> of

the  edge  having  weight  :Tbi
£

£ i> í bi
£  and  V  is  generated  out  of  RMTs

:Tbi

i >  of  the  edge  having  weight  :Tbi

i > í bi,  (bi œ 80, 1<,  bi
£ œ 80, 1<),

where ¢:Tbi

i >¶ > ¢:Tbi
£

£ i>¶. 
A Potential Type 2 node is noted with reference to the edge having

weight  :Tbi
£

£ i> í bi
£  that  has  fewer  RMTs.  The  node  {T(4),  T(5),  {T(6)

T(7)}  (Figure  2(a))  is  a  Potential  Type  2  node  with  reference  to  the
edge  having  weight  TH2L ê 0  that  has  fewer  RMTs  than  the  other  in-
coming edge with weight 8TH3L, 8TH6LTH7L< ê 1.

A  Potential  Type  2  node  V  (at  output  level  i)  is  marked  as  a
“Type!2” node if: 

1. A  subpath  can  be  identified  from  the  node  to  the  SN  starting  with  a
RMT Ti+1 œ 8V - V£<; and 

2. no parallel subpath exists starting with a RMT T£i+1 œ V£, where T£i+1

is derived out of T£i employing Table 2. 

The  Potential  Type  2  nodes  8T(0)  T(1)  T(2)  T(3)<  and  8T(4)  T(5)
T(6) T(7)< (Figure 2(a)) are the Type 2 nodes. 

The  presence  of  a  Type  1  and/or  a  Type  2  node  in  the  RVG of  a
CA confirms the  presence of  nonreachable  states  (NRSs).  Figure  2(a)
illustrates the RVG of a noninvertible four cell CA with Type 1 and 2
nodes. The states 1, 5, 9, 13, and 6, 10, 11, as shown in Figure 2(b),
are the NRSs due to Type 1 and 2 nodes, respectively. 

The  RVG  of  a  CA  can  be  traversed  to  locate  the  Type  1  and  2
nodes along with the identification of NRSs. If no Type 1 or 2 nodes
exist, the CA is invertible (Theorem 1). Figure 3(a) shows the RVG of
a  four  cell  CA  with  the  RV  X195 195 195 195\.  Since  there  are  no
Type 1 or 2 nodes (Figure 3(a)), the four cell CA X195 195 195 195\ is
invertible. The value of n for such an n cell invertible CA is identified
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in Section 4 subsequent to the introduction of the horizontal rule vec-
tor subgraph in Section 3. 

3. Horizontal Rule Vector Subgraphs

The  level  i  (i ! 0, 1, … Hn - 1L)  rule  vector  subgraph  RVS(i)  of  the
RVG of  an  n  cell  CA refers  to  the  input  and  output  nodes  of  level  i
connected with weighted edges. 

RVSHi, jL  (j ¥ i)  refers  to  a  subgraph  that  covers  RVS(i),
RVSHi + 1L, … , RVSHjL  where  the  output  nodes  of  RVS(k)  are  the  in-
put  nodes  of  RVS(k + 1),  k ! HiL,  Hi + 1L, … , HjL.  In  view of  enforcing
the horizontal partitioning of a RVG, a RVSHi, jL in subsequent discus-
sions  is  referred  to  as  a  horizontal  rule  vector  subgraph  HRVSHi, jL.
For i ! j, RVS(i, j) is the same as RVS(i). 

3.1 HRVS(i , j) and the Root and Sink Horizontal Rule Vector 
Subgraphs 

A  HRVSHi, jL  is  a  horizontal  partition  of  the  RVG  from  level  i  to  j
such that it repeats after every x levels Hx ! Hj + 1L - iL. 

The HRVSHi, jL derived from the RVG of the seven cell CA X90 90
90 90  90  90  90\  is  shown in  Figure  4.  The  HRVSHi, jL  (i ! 1, j ! 2)
covers  RVS(1)  and  RVS(2)  and  repeats  after  every  two  levels.  The
first HRVS covers level 1 to 2, while the second covers level 3 to 4. 

Figure 4. The RVG of a seven cell  uniform CA with RV X90 90 90 90 90 90
90\.

             
           

            
             

52 S. Ghosh, N. S. Maiti, P. Pal Chaudhuri, and B. K. Sikdar

Complex Systems, 20 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.1.47



In  general,  the  root  HRVS  covers  level  0  to  the  level  prior  to  the
first  HRVS,  while  the  sink  HRVS  covers  the  levels  from  the  last
HRVS  to  level  (n - 1).  For  the  example  CA  of  Figure  4,  the  root
HRVS covers level 0, while the sink HRVS covers levels 5 and 6. 

4. Size of an Invertible Cellular Automaton  

The  necessary  and  sufficient  conditions  for  the  RVG of  an  invertible
CA (both hybrid and uniform) reported in Theorem 3 of [27] are re-
produced below.

Theorem 1.  Necessary and sufficient  conditions  for  the  RVG of  an in-
vertible CA are that no Type 1 or 2 nodes exist. 

Theorem 1 leads to Theorem 2 stated next. 

Theorem 2. The RVG of an invertible CA satisfies these conditions: 

(a) For i ! 0 to (n - 2) there are four RMTs in each node and the number

of RMTs in the edge weight :Tbi

i > í bi is two. 

(b)For i ! Hn - 1L, the number of RMTs in each input node is two and the
number of RMTs in the edge weight is one. 

Proof. The proof of necessity is given by contradiction. A RMT at the
level  i  edge,  as  per  Table  2,  generates  one  odd  and  one  even  valued
RMT at  the  level  i  output  node,  which is  an Hi + 1L  level  input  node.
The presence of a Type 1 node at the input of level i demands that ei-
ther  a  0-  or  1-edge  from  the  node  is  missing.  If  the  edge  is  missing
from  a  node  having  four  RMTs,  then  the  number  of  RMTs  in  the
edge  weight  must  be  four,  not  two.  On the  other  hand,  if  an  output
node at  level  i  (having two outgoing edges)  has  k  (k ! 4) RMTs,  the
number of RMTs in at least one edge with weight 8Tbi

i > í bi  must not

be two. 
Similarly,  for  the  Hn - 1L  level  having  only  even  valued  RMTs,  the

presence  of  a  Type  1  node  with  a  0-  or  1-edge  missing  demands  the
presence  of  two  RMTs  in  the  edge  weight.  Hence,  the  contradiction
arises that ensures the absence of a Type 1 node if both stated condi-
tions are true simultaneously. 

The presence of a Type 2 node ensures that it is a merged node and
the  merging  has  occurred  for  two  nodes  V£  and  V  (V£ Õ V).  If  the
number  of  RMTs  in  the  edge  weight  of  each  edge  is  two  with  each
node having four RMTs, then merging of two nodes V£  and V, where
V£  is a subset of V (V£ Õ V) cannot occur. The contradiction ensures
that no Potential Type 2 node exists in the RVG. If there are no Poten-
tial Type 2 nodes, a Type 2 node cannot exist. 

Proof  of  the  sufficiency  directly  follows  from  the  fact  that  the
stated conditions (a) and (b) of the theorem lead to the results of Theo-
rem 1. Hence the proof. ·
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Invertibility of  a CA (hybrid or uniform) can be checked from the
RVG employing the result of Theorems 1 or 2. Section 4.1 reports the
analytical  framework  to  identify  the  value  of  n  of  an  n  cell  uniform
CA that is invertible. 

4.1 Invertible Cellular Automata  
Lemmas 1 through 3 identify 10 CA rules that are invertible. The re-
maining  246  (256 - 10)  rules  generate  noninvertible  n  cell  CAs  for
any  value  of  n.  The  following  terminologies  are  introduced  to  facili-
tate  subsequent  discussions  in  regards  to  the  next  state  bit  string
(NSBS).  Table  1  illustrates  the  next  state  bit  bi  for  each  of  the  eight
RMTs. 

The NSBS Xb7 b6 b5 b4\  for the RMTs T(7), T(6), T(5), T(4) is de-
noted as 1-NSBS since the most significant bit of each RMT has bit 1;
the NSBS Xb3 b2 b1 b0\ for the RMTs T(3), T(2), T(1), T(0) is denoted
as 0-NSBS. 

A 0- or 1-NSBS is marked as balanced if two 1s and two 0s exist in
the string. 

A  0-NSBS  is  the  mirror  image  of  its  1-NSBS  and  vice  versa  if
b7 ! b0, b6 ! b1, b5 ! b2, b4 ! b3. 

On  the  other  hand,  if  b3 ! b4
£ ,  b2 ! b5

£ ,  b1 ! b6
£ ,  b0 ! b7

£ ,  where

bj
£  is  the  inverse  of  bj  (j ! 7, 6, 5, 4),  bj ! 0 or  1,  the  0-NSBS is  the

complementary mirror image of its 1-NSBS and vice versa. 
A rule Ri  is complementary to a rule Rj  if both the 0- and 1-NSBSs

of Ri have strings that are complementary to Rj. 
For example, the rule 204 (1 1 0 0 1 1 0 0) is the complementary

rule for 51 (0 0 1 1 0 0 1 1). 

Lemma 1.  If the RVG has no Type 1 or 2 nodes, the CA rule has bal-
anced 0- and 1-NSBSs. 

Proof.  As per  Theorem 2,  each node at  each level  i  (i ! 0 to (n - 2))
has four RMTs and the number of  RMTs in the edge weight  is  two.
For  level  (n - 1),  the  number  of  RMTs in  the  input  node  is  two and
the number of RMTs in the edge weight is one. The RMTs at the level
i  output  node  are  derived  out  of  the  0-  and  1-RMTs  on  the  level  i
edges.  While  the  0-RMTs  have  their  next  state  bit  0,  the  1-RMTs
have their next state bit 1. Further, as per Table 2, a RMT on a level i
edge  generates  one  odd  and  one  even  valued  RMT  resulting  in  four
RMTs (two odd and two even valued) in an output node. This situa-
tion can be true only if each of the 1- and 0-NSBSs of the rule are bal-
anced strings with two 1s and two 0s. ·

Lemma 2. There are only 18 CA rules whose RVG has no Type 1 or 2
nodes. 
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Proof.  As per Lemma 1, the 0- and 1-NSBSs of the rule of an invert-
ible  CA  should  be  balanced.  Consequently,  there  can  be  4C2×
4C2 = 6 µ 6 = 36 rules that satisfy the specified condition. The Hn - 1L
level input node has a pair of even valued RMTs derived out of T(0),
T(2),  T(4),  T(6).  In  order  to  avoid  Type  1  nodes  at  level  (n - 1),  the
next state value for one RMT of the pair is 0, while for the other it is
1  or  vice  versa.  Hence,  out  of  36  rules  50%  are  discarded.  Hence,
only 36 ê 2 ! 18 rules exist whose RVG has no Type 1 or 2 nodes. ·

The 18 rules that are probable candidates for generating invertible
CAs can be divided into two classes. 

Class A: (51, 204), (60, 195), (90, 165), (102, 153), (105, 150). 
Class B: (54, 201), (57, 198), (99, 156), (108, 147). 
The  second  rule  in  the  pair  (1st,  2nd)  is  complementary  to  the

other.  Consequently,  the properties  of  the RVG of one rule  are valid
for the other with a 0-  and 1-edge interchanged.  The 0-  and 1-NSBS
of each rule of the Class A rule pairs is either a mirror image or a com-
plementary mirror image of the other. While for Class B, the NSBS of
each rule of the four rule pairs is neither a mirror image nor a comple-
mentary  mirror  image  of  the  other.  Figure  5  illustrates  the  RVG  of
two  class  B  rules.  Lemma  3  analyzes  the  Class  B  rules  based  on  the
HRVS. 

Figure 5. RVG of two Class B CA rules: (a) RV X198 198 198 198 198 198\;
(b) RV X99 99 99 99 99 99\.
Lemma 3.  The  root  HRVS  of  a  CA  with  Class  B  rules  has  k  RMTs
(k ! 4) in a node and hence is marked as noninvertible. 
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Proof.  The mirror or complementary mirror imaged 0- or 1-NSBS of
a rule satisfies the conditions stated in Theorem 2. The 0- or 1-NSBS
of each rule of the rule pairs of Class B is neither a mirror image nor a
complementary  mirror  image  of  the  other.  As  per  Table  2,  one  odd
and one even valued RMT is generated at the level i (i ! 0, 1, …) out-
put node out of a RMT on the level i edge. As a result, merged nodes
are generated in the root HRVS. Hence, the conditions noted in Theo-
rem 2 get violated and the CA is noninvertible. ·

The result of Lemma 3 is illustrated in the output nodes of the root
HRVS that  are merged nodes (Figure 6).  While  for  rules  198 and 54
(Figure  5),  merged nodes  with six  RMTs get  generated at  the  output
of level 1, for rules 99 and 147 it occurs at the output of level 2. Each
merged node is  a  Potential  Type 2  node with  k  RMTs,  where  k ! 4.
This violates the results of Theorem 2. 

Figure 6. RVG of two Class B CA rules: (a) RV X54 54 54 54 54 54\; (b) RVX147 147 147 147 147 147\.
The earlier results and discussions can be summarized in the follow-

ing theorem. 

Theorem 3. The necessary and sufficient conditions for a rule to gener-
ate an invertible CA is that it has balanced 0- and 1-NSBSs with one
NSBS  as  the  mirror  image  or  complementary  mirror  image  of  the
other. 

Proof.  The  proof  directly  follows  from  the  results  of  Lemmas  1,  2,
and 3. ·
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4.2 Size of Invertible Cellular Automata  
Each of the rules in Class A (noted in Section 4.1) satisfies the condi-
tion  of  Theorem 3.  These  rules,  as  noted  in  Table  3,  can  be  divided
into six groups. An analysis of the HRVS of these six elementary rule
groups leads to three different subgroups:

Subgroup 1: The rules 51, 60, 102, 153, 195, and 204. 
Subgroup 2: The rules 90 and 165. 
Subgroup 3: The rules 105 and 150. 
Lemmas 4 through 7 characterize  the HRVS for  the rules  of  these

subgroups.  Such  a  characterization  identifies  the  value  of  n  of  an  n
cell CA that is invertible. 

Elementary Rule Group CA Size for which the CA is Invertible

H51, 51, 51, 51L for all values of n 

H51 ! 00110011L 
H60, 195, 102, 153L for all values of n 

H60 ! 00111100L 
H195 ! 11000011L 
H102 ! 01100110L 
H153 ! 10011001L 
H90, 165, 90, 165L for even values of n 

H90 ! 01011010L 
H165 ! 10100101L 
H105, 105, 105, 105L for all values of n

H105 ! 01101001L excepting n ! 2 + 3 y Hy ! 0, 1, 2, 3 …L 
H150, 150, 150, 150L for all values of n

H150 ! 10010110L excepting n ! 2 + 3 y Hy ! 0, 1, 2, 3 …L 
H204, 204, 204, 204L for all values of n 

H204 ! 11001100L 
Table 3.  The  Class  A  invertible  elementary  rules  with  subgroup  1:  (51,  60,
102, 153, 195, 204), subgroup 2: (90, 165), and subgroup 3: (105, 150).

Lemma 4. The nodes at a level i (i ! 0 to Hn - 2L) of the RVG of an in-
vertible CA have any one of these three node pair combinations: 

1. 8T(0), T(1), T(2), T(3)< and 8T(4), T(5), T(6), T(7)<; 
2. 8T(0), T(1), T(4), T(5)< and 8T(2), T(3), T(6), T(7)<; and 

3. 8T(0), T(1), T(6), T(7)< and 8T(2), T(3), T(4), T(5)<. 
Proof. As per Theorem 2, the output nodes (with four RMTs) at any
level  i  (i ! 0 to Hn - 2L) are derived out of  the RMT pair  available  in

              
         

!              
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the edge weight at level i. (a) The 0- or 1-NSBS of invertible CA rules
satisfy  the  necessary  and  sufficient  conditions  noted  in  Theorem  3.
(b)!As per Table 2, four RMTs of an output node are derived. Two of
the four RMTs are even valued while the other two are odd valued. 

In view of (a) and (b) only 2ä3 ! 6 possible nodes can exist: 8T(0),
T(1),  T(2),  T(3)<,  8T(0),  T(1),  T(4),  T(5)<,  8T(0),  T(1),  T(6),  T(7)<,8T(2), T(3), T(4), T(5)<, 8T(2), T(3), T(6), T(7)<, and 8T(4), T(5), T(6),
T(7)<.  A  pair  of  such  nodes  cover  all  eight  RMTs.  Hence,  for  each
level, a pair of such nodes are generated out of the three possible node
pair combinations noted in the lemma. ·

Lemma 5.  The  HRVSHi, jL  in  the  RVG  of  each  rule  of  Class  A  has
length x where x ! Hj + 1L - i § 3. 

Proof.  As  per  Lemma 4,  only  three  different  combinations  are  possi-
ble. So a node pair of HRVSHi, jL  that appears at level i  can reappear
at level j, where MaxHHj + 1L - iL ! 3. Hence, x § 3. ·

The length of HRVSHi, jL  for each subgroup of Class A is specified
in Lemmas 6 through 8 based on an analysis  of the 0- and 1-NSBSs.
In  subsequent  discussions,  the  symbol  bm  (m ! 0, 1, 2, 3, 4, 5, 6, 7)
refers to the next state bit of RMT T(m). 

Lemma 6. The length of the HRVS is 1 if the 0- and 1-NSBSs of a CA
rule have the following properties:

1. one  is  the  mirror  image  or  complementary  mirror  image  of  the  other;
and 

2. either b0 ! b1 or b0 ! b3. 

Proof. For a rule with b0 ! b1: Since the number of 1s in each NSBS
is two and one is the mirror image or complementary mirror image of
the other, we have b2 ! b3, b4 ! b5, and b6 ! b7. Hence, level 0 out-
put  nodes  are  8T(0),  T(1),  T(2),  T(3)<  and  8T(4),  T(5),  T(6),  T(7)<.
Also, the RMT pairs 8T(0), T(1)<, 8T(2), T(3)<, 8T(4), T(5)<, and 8T(6),
T(7)< appear on level 1 edges. Consequently, as per Table 2, level 1 in-
put  nodes  8T(0),  T(1),  T(2),  T(3)<  and  8T(4),  T(5),  T(6),  T(7)<  reap-
pear as its output node, that is, as the input node of level 2 (Figure 7).
This situation continues for each level. Hence, the length of the HRVS
is 2 - 1 ! 1. 

For a rule with b0 ! b3: For this case we have b1 ! b2  with 8T(0),
T(1),  T(6),  T(7)<  and  8T(2),  T(3),  T(4),  T(5)<  as  the  level  0  output
nodes.  From  the  mirror  image  property  we  get  b0 ! b7,  b1 ! b6,
b2 ! b5,  and  b3 ! b4.  Consequently,  the  level  1  input  nodes  8T(0),
T(1),  T(6),  T(7)<  and  8T(2),  T(3),  T(4),  T(5)<  reappear  as  its  output
nodes. Hence, the length of the HRVS is again 1. ·
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Figure 7. The RVG of a six cell uniform CA with RV X60 60 60 60 60 60 60\.
Each  of  the  rules  of  subgroup  1  (51,  60,  102,  153,  195,  204)

(Table 3) satisfies the conditions of Lemma 6 and generate HRVSs of
length 1. Hence, the next results follow. 

Theorem 4. The CA with subgroup 1 rules (51, 60, 102, 153, 195, and
204) is invertible for all values of n. 

Proof.  As  per  Lemma  6,  the  length  of  the  HRVS  of  each  rule  is  1.
Also, the length of the root HRVS is 1. For the case b0 ! b1, the node
pair  8T(0),  T(1),  T(2),  T(3)<  and  8T(4),  T(5),  T(6),  T(7)<  repeats  at
each level i. Since for this case b0 ! b2  and b4 ! b6, no Type 1 nodes
exist  if  level  i  becomes  level  Hn - 1L.  Similarly,  for  the  b0 ! b3  case,
the node pair  8T(0),  T(1),  T(6),  T(7)<  and 8T(2),  T(3),  T(4),  T(5)<  re-
peats  at  each  level  i.  Since  for  this  case  b0 ! b6  and  b2 ! b4,  no
Type!1  nodes  exist  if  level  i  becomes  level  Hn - 1L.  So  there  are  no
Type 1 or 2 nodes in any HRVS of the RVG of the rules covered by
subgroup 1.  Hence,  such  a  rule  generates  an  n  cell  invertible  CA for
any value of n. ·

Lemma 7 characterizes subgroup 2 rules 90 and 165. 

Lemma 7. The length of the HRVS is 2 if the 0- and 1-NSBSs of a CA
rule have the following properties: 

1. one is the mirror image of the other; and 

2. b0 ! b2. 
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Proof. With 8T(0), T(1), T(2), T(3)< as the level 0 input node, the rela-
tion b0 ! b2  generates  8T(0),  T(1),  T(4),  T(5)<  and 8T(2),  T(3),  T(6),
T(7)< as the level 1 input nodes. Further, the mirror imaged 0- and 1-
NSBSs lead to the following two situations: 

S1: b0 ! b2, b1 ! b3, b5 ! b7, b4 ! b6; 
S2: b0 ! b5, b1 ! b4, b2 ! b7, b3 ! b6 with b0 ! b4, b2 ! b6. 

Either of these two situations appear in the RVG generated with an in-
put  node  8T(0),  T(1),  T(4),  T(5)<  and  8T(2),  T(3),  T(6),  T(7)<  at  lev-
el!1. For each situation, the output node of a level i is one of the three
node pair combinations noted in Lemma 4. The situation S2 leads to
the level 1 output node pairs 8T(0), T(1), T(2), T(3)<  and 8T(4), T(5),
T(6), T(7)<, which are input node pairs of level 2. Next, the situation
S1  with  level  2  input  node  pair  8T(0),  T(1),  T(2),  T(3)<  and  8T(4),
T(5),  T(6),  T(7)<  generates  the  output  nodes  8T(0),  T(1),  T(4),  T(5)<
and  8T(2),  T(3),  T(6),  T(7)<.  Thus,  the  level  1  input  node  pair  reap-
pears as the level 3 input nodes. This situation continues for any pair
of  levels  i  and Hi + 1L  (i ! 1, 3, 5, …).  Consequently,  the  level  i  input
nodes reappear at level j, where Hj + 1L - i ! x ! 2. ·

The rules 90 and 165 covered by subgroup 2 satisfy the properties
noted  in  Lemma  7  and  generate  RVGs  having  HRVSs  of  length  2
(Figure 8). Hence, the next result follows. 

Theorem 5. An n cell CA with rules of subgroup 2 (90 or 165) is invert-
ible for even values of n. 

Proof. The RVG of such a CA has root and sink HRVSs of length 1,
while  the  length  of  each  HRVS  is  2.  The  input  nodes  at  level  i  (for
odd  values  of  i)  are  8T(0),  T(1),  T(4),  T(5)<  and  8T(2),  T(3),  T(6),
T(7)<,  while  the  Hi + 1L  level  nodes  are  8T(0),  T(1),  T(2),  T(3)<  and8T(4), T(5), T(6), T(7)<. The situation repeats for two successive levels
i  and  Hi + 1L  (i ! 1, 3, 5, …).  For  an  n  cell  CA with  odd values  of  n,
the  Hn - 1L  level  input  nodes  are  8T(0),  T(1),  T(2),  T(3)<  and  8T(4),
T(5),  T(6),  T(7)<.  Due to the null  boundary,  only even valued RMTs
can exist  at  the Hn - 1L  level  input  nodes  generating two nodes  8T(0),
T(2)<  and  8T(4),  T(6)<.  Since  for  such  a  CA  b0 ! b2  and  b4 ! b6
(situation  S1,  Lemma  7),  the  Hn - 1L  level  input  nodes  are  Type  1
nodes with either a 0- or 1-edge missing. 

However, this condition is not true for even values of n,  while theHn - 1L  level  input  nodes  are  8T(0),  T(1),  T(4),  T(5)<  and  8T(2),  T(3),
T(6),  T(7)<.  On  deleting  odd  valued  RMTs  the  input  nodes  at  levelHn - 1L  are 8T(0),  T(4)<  and 8T(2),  T(6)<.  Because of the mirror image
of  the  0-  and  1-NSBSs  (situation  S2,  Lemma  7),  b0 ! b4  and  also
b2 ! b6.  Hence,  the  Hn - 1L  level  input  nodes  are  not  Type  1  nodes.
Hence, for all even values of n the CA is invertible. ·
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Figure 8. The  RVG  of  a  seven  cell  uniform  CA  with  RV  X165  165  165  165
165 165 165\.

Lemma  8  characterizes  the  length  of  the  HRVSs  of  subgroup  3
rules 105 and 150. The RVG of rule 150 is shown in Figure 9. 

Lemma 8. The length of the HRVS is 3 if the 0- and 1-NSBSs of a CA
rule have the following properties: 

1. one is the complementary mirror image of the other; and 

2. b0 ! b3. 

Proof. Let the level i input nodes of the RVG for the rules of this sub-
group  be  8T(0),  T(1),  T(6),  T(7)<  and  8T(2),  T(3),  T(4),  T(5)<.  These
are  also  the  output  nodes  of  level  0  for  rules  105 and 150.  The  bal-
anced 0- and 1-NSBSs and the specified conditions of the lemma lead
to the following situation: 

S3: b0 ! b3, b1 ! b2, b4 ! b7, b5 ! b6 with b0 ! b2, b4 ! b6. 
Situation S3, in turn, leads to one of the following two situations due
to the complementary mirror imaging of the 0- and 1-NSBSs:

S4: b0 ! b5, b1 ! b4, b2 ! b7, b3 ! b6 with b0 ! b4, b2 ! b6. 
S5: b0 ! b6, b1 ! b7, b2 ! b4, b3 ! b5. 
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Figure 9. The  RVG  of  a  seven  cell  uniform  CA  with  RV  X150  150  150  150
150 150 150\.
The  situation  S5  for  level  i  input  nodes  8T(0),  T(1),  T(6),  T(7)<  and8T(2),  T(3),  T(4),  T(5)<  generate  the  output  nodes  8T(0),  T(1),  T(4),
T(5)< and 8T(2), T(3), T(6), T(7)<. With these nodes as the level Hi + 1L
input  nodes,  the  output  nodes  due  to  situation  S4  are  8T(0),  T(1),
T(2),  T(3)<  and  8T(4),  T(5),  T(6),  T(7)<.  These  nodes  are  the  input
nodes  for  level  Hi + 2L.  Next,  due  to  situation  S3,  level  Hi + 2L  input
nodes  generate  the  output  nodes  8T(0),  T(1),  T(6),  T(7)<  and  8T(2),
T(3), T(4), T(5)<, which are the input nodes of level Hi + 3L and identi-
cal to the level i input nodes. Thus, level i and level Hi + 3L input nodes
are identical with the length of the HRVS as Hi + 3L - i ! 3. ·

Theorem 6.  An n  cell  CA with rules of subgroup 3 (105 or 150) is in-
vertible  for  all  values  of  n  excepting  the  cases  where  n ! 2 + 3 y,
where y ! 0, 1, 2, …. 

Proof.  The  input  node  pair  8T(0),  T(1),  T(6),  T(7)<  and  8T(2),  T(3),
T(4),  T(5)<  at  level  i  generates  the  output  nodes  8T(0),  T(1),  T(4),
T(5)<  and 8T(2), T(3), T(6), T(7)<  which are the input nodes for levelHi + 1L.  Consequently,  the  Hi + 2L  level  input  nodes  are  8T(0),  T(1),
T(2), T(3)< and 8T(4), T(5), T(6), T(7)<. 
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The  proof  concentrates  on  analyzing  each  of  the  levels  i,  Hi + 1L,
and Hi + 2L  constituting  a  HRVS and the  associated situations  S3,  S4,
and  S5  noted  in  the  proof  of  Lemma  8.  For  any  level  i  with  input
nodes  8T(0),  T(1),  T(6),  T(7)<  and  8T(2),  T(3),  T(4),  T(5)<,  the  situa-
tion S5 leads to the conditions b0 ! b6 and b2 ! b4. Consequently, if
level  i  becomes  the  Hn - 1L  level,  the  nodes  8T(0),  T(6)<  and  8T(2),
T(4)<  (on  deletion  of  odd  valued  RMTs)  become  Type  1  nodes  with
missing 0- or 1-edges. The length of the root HRVS is 1. So, an n cell
CA  with  n ! 2,  H2 + xL,  H2 + 2 xL, …  ,  (x ! length  of  HRVS ! 3)  is
noninvertible  due  to  the  presence  of  the  Type  1  node.  Hence,  for
n ! 2 + 3 y (y ! 0, 1, 2, …), the n cell CA is noninvertible. 

The situation as noted for level i is not true if level Hi + 1L or Hi + 2L
is  considered  as  level  Hn - 1L.  For  level  Hi + 1L  with  8T(0),  T(1),  T(4),
T(5)<  and  8T(2),  T(3),  T(6),  T(7)<  as  input  nodes,  situation  S4  leads
to  the  conditions  b0 ! b4,  and  b2 ! b6.  Consequently,  if  level  Hi + 1L
becomes  the  Hn - 1L  level,  the  resulting  input  nodes  8T(0),  T(4)<  and8T(2),  T(6)<  do  not  become  Type  1  nodes  since  there  are  no  missing
0-  or  1-edges.  Similarly,  for  level  Hi + 2L  with  8T(0),  T(1),  T(2),  T(3)<
and 8T(4),  T(5),  T(6),  T(7)<  as  input  nodes,  situation  S3  leads  to  the
conditions  b0 ! b2,  and  b4 ! b6.  Consequently,  if  level  Hi + 2L  be-
comes the Hn - 1L level, the resulting input nodes (with deletion of odd
valued  RMTs)  8T(0),  T(2)<  and  8T(4),  T(6)<  do  not  become  Type  1
nodes. Considering all three cases, an n cell CA with a rule from sub-
group  3  is  invertible  for  all  values  of  n  other  than  n ! 2 + 3 y
(y ! 0, 1, 2, …). ·

5. Conclusion  

This paper solves the problem of identifying the value of n of an n cell
three  neighborhood  null-boundary  uniform  cellular  automaton  (CA)
that is invertible. The rule vector graph (RVG) of a CA derived out of
its rule vector (RV) represents an efficient data structure to character-
ize  CA  evolution.  The  solution  is  based  on  an  analysis  of  the  sub-
graph  referred  to  as  a  horizontal  rule  vector  subgraph  (HRVS).  The
HRVS is generated out of the RVG. The analytical framework of the
HRVS presented in this paper identifies 10 CA rules that generate in-
vertible CAs and specifies the value of n for which each of these rules
generates an invertible CA.
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