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Complex  matter  may  take  various  forms  from  granular  matter,  soft
matter,  fluid-fluid,  or  solid-fluid  mixtures  to  compact  heterogeneous
material.  Cellular  automata models  make a  suitable  and powerful  tool
for  catching  the  influence  of  the  microscopic  scale  in  the  macroscopic
behavior of these complex systems. Rather than a survey, this paper at-
tempts to bring out the main concepts underlying these models. A tax-
onomy is  presented with four general  types proposed: sandpile,  lattice-
gas, lattice-grain, and hybrid models. A discussion follows with general
questions; namely, grain-size, synchronization, topology and scalability,
and consistency of the models. 

1. Introduction

Complex  matter  may  take  various  forms  from  granular  matter,  soft
matter,  fluid-fluid,  or  solid-fluid  mixtures  to  compact  heterogeneous
material.  Complex matter involves a diversity of dynamical processes
including sandpile equilibrium or avalanches, mixing, stratification or
segregation, various flow patterns in silos, emulsion or sedimentation
in multiphase suspensions, miscible or immiscible flows in porous me-
dia,  and  so  forth.  Long-range  propagative  phenomena  may  include
the void propagation in a porous medium, the force transmission in a
granular  packing,  the  progression  of  wave  fronts  in  active  media,  or
the evolution of a fissuration at the onset of a defect in a compact ma-
terial.  Various  aspects  of  critical  phenomena  are  encountered  in  the
behavior  of  complex  matter.  Some  transition  examples  are  liquid/
solid  transitions,  from  free  flow  to  arching  effects  in  hoppers,
mixed/unmixed  transitions  of  bidisperse  mixtures,  laminar  to  turbu-
lent  evolution  in  fluid  flows,  or  instabilities  near  percolation  thresh-
olds. It stands to reason that a thorough investigation of the behavior
of complex matter is therefore of major importance for industrial and
scientific applications.  

The  theoretical  methods  currently  used  to  tackle  these  problems
can be split into the three distinct levels of continuum models, particle
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dynamics, and cellular automata (CAs). CAs make suitable and pow-
erful  tools  for  catching  the  influence  of  the  microscopic  scale  in  the
macroscopic behavior of complex systems. In short, a cellular automa-
ton (CA) network is a spacetime discretization of time into steps and
space  into  interconnected  cells.  The  cells  take  on  integer  values  and
the  time  evolution  is  governed  by  a  transition  function  that  updates
the new state of the cells synchronously from the current state of their
local  neighborhood.  A  CA  can  be  one-  or  multi-dimensional.  In  the
simplest  case,  one-dimensional  elementary  cellular  automata  (ECAs)
are  constructed  from the  binary-valued  (k ! 2)  transition  rule  acting
from  nearest-neighbors  (r ! 1).  Following  Wolfram,  there  exist  256
possible  transitions  denoted  by  their  rule  number  [1].  Even  with  this
minimal  definition,  very  complex  dynamics  may  be  revealed  in  the
spacetime  diagram,  depending  on  the  random  initial  configuration.
Starting from the fact that complex matter may behave like a particu-
late  system,  a  CA for  complex  matter  (CACM) can  be  viewed  as  an
extreme  simplification  of  particle  dynamics.  A  frequent  misreading
about  CACM  tells  that  they  would  be  nothing  more  than  ersatz  or
succedanea used as a substitute for unduly time-consuming computa-
tional methods and that they will be dumped soon because of the fu-
ture generation teraflops computers. But, observing that primitive CA
rules  are  able  to  capture  the  essence  of  complex  behaviors  readily
leads  to  refuting  this  erroneous  statement.  According  to  Toffoli’s
“rather than” paradigm, CAs are the outstanding alternative to find-
ing the ordinary (ODE) or partial (PDE) differential equation of a phe-
nomenon in complex matter [2]. 

Rather than a survey, this paper will attempt to bring out the main
concepts underlying CACM models and give insights for future work.
None  whatsoever  of  our  own  outcomes  are  presented  herein,  but  a
taxonomy  as  a  proposal  intended  to  tidy  up  the  broad  world  of
CACM. The paper is organized as follows. The CACM set is divided
into four sections. The first is the sandpile models underlying the uni-
versal concept of self-organized criticality. The second section consists
of the lattice-gas models and why they evolved from pure lattice-gas,
to lattice-Boltzmann, and then to extended lattice-Boltzmann models.
The third section is the lattice-grain models in their miscellaneous as-
pects,  including  the  related  traffic  flow  model  that  is  beyond  our
scope of study. The final section is  a unified subset of hybrid models
including  a  neural  approach  in  reaction/diffusion,  an  environment
dealing  with  the  rheology  of  composite  pastes,  and  movable  CAs.  A
discussion  is  proposed  about  general  questions  related  to  CAs;
namely, grain-size, synchronization, topology and scalability, and con-
sistency of the models.  We focus on models and applications,  not on
CACM  architectures.  For  this  reason  and  except  in  specific  cases,
such  names  as  von  Neumann,  Ulam,  Burks,  Margolus,  Vichniac,
Clouqueur, Adamatsky, Latkin, Yepez, and other pioneers not forgot-
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ten  will  neither  be  referenced nor  mentioned.  This  work is  an  exten-
sion  of  a  previous  study  related  to  parallel  computing  technologies
and presented elsewhere [3]. 

2. Sandpile Models  

This section may show how a universal concept of self-organized criti-
cality  (SOC)  can  arise  from a  simple  sandpile  model  when a  flow of
grains is poured on the top.

2.1 Self-Organized Criticality in the Sandpile  
The  primary  sandpile  model  is  the  “BTW”  CA  of  Bak,  Tang,  and
Wiesenfeld  [4],  where  a  one-dimensional  CA simulates  a  two-dimen-
sional heap. At each time step, a cell n contains an integer zn  that de-
notes  the  height  difference  (or  local  slope)  between  two  neighboring
sites.  The  process  is  symmetric  so  only  the  right-hand side  is  consid-
ered.  Adding  a  grain  is  accomplished  by  an  elementary  operation.
Whenever a critical state zn > zc  is reached, where zc  is a user-defined
local critical slope, then grains fall. As a matter of fact, the transition
that  yields  the  new state  of  cell  n  from its  current  state  and the  cur-
rent state of its left and right neighbors follows a simple but nonlinear
(because of the threshold condition) discretized diffusion equation. Al-
though this  rule  is  really  plain,  the  model  exhibits  complex phenom-
ena at the macroscopic level, introducing the concept of SOC [5]: the
angle  of  equilibrium of  the  heap is  noised  by  multiscale  fluctuations,
which  can  lead  to  avalanches  of  various  intensities.  Rules  of  two-
dimensional  CAs  for  three-dimensional  heaps  acting  on  square  cells
were also defined by the authors.  

According  to  Kadanoff  et  al.  [6],  the  process  is  shown  to  be  self-
similar with scale invariance. Since the sandpile algorithm acts on sys-
tems of finite size, and in order to understand how this fact affects the
system behavior,  the  techniques  of  finite-size  scaling  (borrowed from
Wilson’s  renormalization  procedure)  and  of  multifractal  analysis  are
used to extract the power-laws and critical exponents that govern the
sizes and frequencies of avalanches. 

2.2 Stratification and Segregation in a Binary Sandpile  
The  sandpile  paradigm  is  applied  by  Makse  et  al.  [7,  8]  to  granular
mixtures of two different species where four different generalized an-
gles of repose can coexist. The angle of repose depends on the size of
(small  or  large)  rolling  grains  and  on  the  aspect  of  their  (rough  or
smooth)  surface.  At  each  time  step,  a  set  of  grains  of  two  different
species is poured onto the top of the pile. Two macroscopic phenom-
ena  are  observed:  either  a  stratification  of  a  mixture  of  large  rough
grains  and  small  smooth  grains, or  a  complete  segregation  of  a  mix-
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ture  of  small  rough  grains  and  large  smooth  grains.  Moreover,  the
stratification displays the formation of a two-layered kink moving up-
hill at constant velocity whereas the segregation shows a clear biparti-
tion separated by a thin mixed barrier.  

The twofold dynamics are confirmed experimentally,  and theoreti-
cally, using the recent “BCRE” continuum formalism introduced first
by  Mehta,  and by Bouchaud et  al.  for  a  single  species  sandpile,  then
extended  by  Boutreux  and  de  Gennes  (BdG)  to  bidisperse  mixtures.
The resulting set of “convective/diffusion” equations that governs the
interface between the “fluid” surface and the underlying “solid” bulk
is  argued  to  include  the  essential  features  of  the  physics  of  granular
flow (see [8] and references therein). 

2.3 Self-Organization and Stratigraphy in Aerolian Sand Ripples  
A well-known self-organized process  derived from sandpile  dynamics
and commonly found in sand deserts, atop dunes, or sandy beaches is
the metamorphosis of a flat sandy surface into a periodic rippled pat-
tern due to the action of an external force, from wind or water. This
process  can  be  explained  by  the  combination  of  two  types  of  sand
grain  movement:  saltation  and  reptation.  If  we  restrict  ourselves  to
the aerolian case, saltating grains fly above the bed and strike the sur-
face while  reptating grains are ejected out of  their  bed under the im-
pact, and creep forward. Similar artifacts are also observed during sur-
face erosion via ion-sputtering in amorphous materials.  

The  first  self-organized  CA approach  for  the  analysis  of  sand  rip-
ples is the “worm” model (whose creeping metaphor is easy to imag-
ine on a rippled surface) of Haff and others [9–11]: the time evolution
is  governed  by  the  advancement  of  a  worm’s  head  incrementing  its
size  and  simultaneously  decrementing  the  size  of  the  worm  in  front.
Since short worms run faster than long ones, a merging of two succes-
sive worms should occur. Werner and Gillespie focus on average size
and standard deviation resulting from random fluctuations of the wor-
m’s size: the evolution of the system is a Markov process whose analy-
sis follows a mean-field approximation. 

A  quite  different  approach  is  the  “NO”  CA  of  Nishimori  and
Ouchi  [12]  that  maps  an  explicit  linear,  continuous  saltation/repta-
tion  process  onto  a  two-dimensional  lattice  wherein  the  saltation
length  depends  on  the  local  slope  and  the  reptation  follows  a  two-
dimensional  diffusion  equation.  Whenever  the  wind  force  exceeds  a
critical  value,  ripple  patterns  spontaneously  appear.  Besides,  Barchan
dune-like  patterns  are  yielded  by  a  large-scale  model  that  affects  the
saltation procedure.  The drawback of the NO CA is  that the growth
of a ripple’s height is unbounded since it is linear in time. Hence, it is
not  self-organized  and  ripples  may  become  infinitely  high.  The  ap-
proach was recently improved by the saltation-creep-avalanche (SCA)
model of Caps and Vandewalle [13] who reintroduced the angle of re-
pose into the system. 
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Anderson and Bunas [11] focus on the stratigraphy carried out by
a binary mixture but the relevant result of Makse [14], whose BCRE-
BdG  formalism  again  takes  into  account  the  interactions  within  the
fluid-solid  interface,  leads  to  realistic  morphologies  of  either  inverse-
graded or normal-graded lamination or cross-stratification depending
on the size and shape of the grains. 

2.4 Self-Organized Criticality in Natural Hazards  
The unified  concept  of  SOC was  applied  to  earthquakes  by  Bak and
Tang [15] as a consequence of Earth’s crust being in a self-organized
critical  state.  A  simple  CA  “stick-slip”  model  yields  two-  and  three-
dimensional  exponents  as  a  prediction  for  the  Gutenberg–Richter
power-law distribution for energy released at earthquakes. Their pio-
neering work gave rise to a broad research field in geophysics. A sim-
plification  of  the  so-called  stick-slip  motion  of  the  Burridge–Knopoff
slider-block  is  the  one-dimensional  CA  of  Nakanishi  [16],  which
shows  behavior  similar  to  the  Carlson–Langer  formalism  describing
the  Newtonian  equations  of  motion  by  coupled  ODEs.  In  the  two-
dimensional “OFC” CA of Olami et al. [17], a nonconservative, qua-
sistatic  rule  yields  a  dynamical  phase  transition  from  localized  to
nonlocalized  effects.  By  observing  that  a  short-range  interaction,
where  energy  is  only  transferred  to  the  nearest-neighbors  of  a  trig-
gered cell, may lead to nonphysical stress distributions, Weatherley et
al. [18] defined a new type of CA with long-range energy transfer. In
the same way, the CA of Castellaro and Mulargia [19] includes effects
due to the transient loads of elastic waves. They observed that a load-
ing rate acts on a larger time scale than that of fracture propagation,
which is assumed to be comparatively instantaneous.  

Landslides  are  commonly  caused  by  a  trigger  such  as  an  earth-
quake, a downpour, or a sudden snow melt. Their study also gave rise
to various approaches of sandpile-type CAs in order to extract the crit-
ical exponents of their power-law behavior. Most of the authors have
calibrated their theoretical results from thorough inventories of topo-
graphic databases to forecast the risk conditions of real events: debris-
flows [20–22]  or  snow avalanches  [23].  More  theoretically,  the  SOC
of the landslide model of Hergarten and Neugebauer [24] is implicitly
based on a set of PDEs that includes the aspects of slope stability and
mass  movement.  Recently,  the  CA  of  Piegari  et  al.  [25],  which  is
claimed to be at the edge of the SOC limit, is a dissipative, anisotropic
version  of  the  OFC  CA  including  a  space-time  dependent  factor  of
safety derived from the stability criterion of Terzaghi. 

It should be noted that an earthquake has nothing to do with a pile
of  sand,  except  for  its  self-organized  behavior,  which  emphasizes  the
universal  character  of  SOC.  Turcotte  and  Malamud [26]  propose  an
inverse-cascade model of metastable clusters as a general explanation
for the power-law frequency-size statistics produced by these self-orga-
nized  CA and  their  associated  natural  hazards  which  may  lie  far  be-
yond our scope of complex matter. 

Cellular Automata in Complex Matter 71

Complex Systems, 20 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.1.67



3. Lattice-Gas Models  

Owing  to  the  copious  amount  of  literature  about  lattice-gas  models
and to the wide diversity of their application fields spreading from hy-
drodynamics of homogeneous or multicomponent fluid flows, thermo-
hydrodynamics,  magnetohydrodynamics  to  particle  suspensions,  soft
matter,  reaction/diffusion  processes,  crystallization  or  growth  pro-
cesses,  and  even  to  other  areas  observed  in  some  granular  systems
which may be related to other types of CACM that are tackled in sub-
sequent  sections  of  this  paper,  we  refer  the  reader  for  more  general
questions to the monographs of Rothman and Zaleski [27], Chopard
and Droz [28], Wolf-Gladrow [29], and to some recent reviews on the
subject (Boghosian [30], Luo [31], and Chopard et al. [32]).  

3.1 Historicity of Lattice-Gas Cellular Automata  
An  important  class  of  CACM  includes  all  lattice-gas  automata
(LGAs),  applied  first  to  hydrodynamics.  A  fluid  “particle”  is  a  large
group  of  molecules.  The  first  discrete  velocity  model  comes  from
Broadwell  [33]  nearly  10  years  before  the  “HPP”  gas  of  Hardy,
Pomeau, and de Pazzis [34], wherein a two-stage transition follows a
collision-propagation  scheme  (the  term  “collision-advection”  is  now
preferred  to  avoid  confusion  with  long-range  propagative  interac-
tions). In the input step of the collision, two particles can collide on a
site  of  a  square  lattice.  The  output  step  starts  the  advection,  where
density (namely the number of particles),  momentum, and energy are
conserved at each site. Upon completion of the advection stage, parti-
cles have moved to their  nearest-neighbor site.  According to the now
popular DnQm terminology where n denotes the dimension of the lat-
tice  and  m  the  number  of  velocity  directions  incident  to  a  site,  the
HPP gas will be said to follow a D2Q4 scheme.  

Some analogy is  often observed between the Ising spin model  [35]
(seldom  called  Lenz–Ising  [36])  and  the  LGA.  Whereas  a  lattice-gas
site may be either occupied or empty, a spin in the Ising lattice may be
either  up  or  down.  The  Ising  model  applies  to  various  phenomena
wherein  collective  effects  are  produced  by  local  interactions  between
two-state  particles.  Ferromagnetism  is  a  typical  case,  and  so  are  bi-
nary alloys or liquid/gas transitions. The correspondence between den-
sity  Hn ! 0, 1L  in  lattice-gas  and  spin  direction  Hs ! !1L  in  the  Ising
lattice is simply given by the variable transformation n ! Hs + 1L ê 2. 

3.2 Pure Lattice-Gas Models  
After  the  HPP,  the  “FHP” model  of  Frisch,  Hasslacher,  and Pomeau
[37] deals with a D2Q6 hexagonal lattice where up to three particles
can collide. It was shown by the authors that the HPP LGA could not
be consistent with the Navier–Stokes equation while the FHP symme-
tries ensure consistency. The evolution equation of the FHP can be av-
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eraged  from  Boltzmann’s  molecular  chaos  approximation  and  ex-
panded  in  a  Taylor  series  up  to  the  second  order.  The  equilibrium
state  follows  a  Fermi–Dirac  distribution  from  which  a  Chapman–
Enskog  analysis  yields  the  hydrodynamic  equations  of  the  FHP,  but
under  the  condition  of  a  low Mach number,  that  is,  small  velocities.
For  more  details,  the  reader  is  also  referred  to  Wolfram,  who  pro-
duced at the same time a LGA for fluids [38], and Doolen [39].  

An extended FHP model [40] includes all possible conservative col-
lisions,  with up to a seven-velocity D2Q7 template (one particle may
stay  at  rest).  From  this  model,  a  three-dimensional  gas  may  handle
three-dimensional  problems  on  a  cubic  grid  with  a  D3Q15  template
(six  neighboring  nodes  sharing  a  surface,  eight  neighbors  sharing  a
corner) or with up to a D3Q27 template (by adding the 12 neighbors
sharing an edge). 

An important feature of LGAs is their capability of handling com-
plicated  geometries  and  boundary  conditions:  slip,  no-slip,  or  partial
slip conditions are easily carried out by reflection, bounce-back, or by
a combination of both schemes for particle/wall as well as particle/par-
ticle  interactions.  Therefore,  LGAs  have  proved  their  efficiency  with
various  applications  in  hydrodynamics:  miscible  or  immiscible  fluids
or  flow  through  porous  media  (as  in  Rothman  [41],  Rothman  and
Keller  [42],  Stockman  et  al.  [43,  44])  are  some  relevant  examples
where classical computational methods may fail or involve extra diffi-
culty to model. 

3.3 Lattice-Boltzmann Models  
Nevertheless,  pure  LGAs  have  some  shortcomings  that  appear
through  the  mentioned  analytical  transformation  of  the  evolution
equation.  That  is,  statistical  noise,  lack of  Galilean invariance,  spuri-
ous  nonphysical  quantities  resulting  from  the  symmetries  of  the
network and, at least in the three-dimensional case, huge collision ma-
trices  or  look  up  tables.  Indeed,  some  of  them can  be  overcome:  for
example, the noisy effect may be shortened by averaging the results of
simulation in space and time or by running a lot of samples with dif-
ferent seeds for their random sequence. But the best way seems to av-
erage  the  microdynamics  before  rather  than  after  a  simulation,
whence the intrinsic specificity of lattice-Boltzmann (LB) models.  

In  LB  models,  the  evolution  equation  no  longer  contains  the
Boolean motion of actual particles. It does contain a real-valued prob-
ability  of  presence,  namely,  the  single  distribution  function.  McNa-
mara and Zanetti [45] introduced the Bhatnagar–Gross–Krook (BGK)
approximation [46], an ODE that equalizes the Lagrangian derivative
of  the  distribution  along  the  local  velocities  with  the  difference  be-
tween  the  Maxwell–Boltzmann  equilibrium  distribution  and  a  single
distribution,  normalized  by  a  relaxation  time  due  to  collisions.  The
moments  should ensure  the  conservation of  density,  momentum, and
energy.  The  BGK  equation  yields  the  evolution  equation, again
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expanded  in  a  Taylor  series  up  to  the  second  order,  from  which  a
Gaussian-type  quadrature  yields  the  hydrodynamic  Navier–Stokes
equation.  It  should  be  pointed out  that  the  collision operator  is  now
linearized [47–49]. 

To prevent inconsistency due to insufficient symmetries in the HPP
grid,  the given development dealt  with a D2Q9 template.  Similar  de-
velopments  may  be  derived  from the  FHP templates  D2Q7,  D3Q15,
or  D3Q27  [50]  depending  on  the  symmetry  required.  More  details
about the theoretical aspects of LB models can be found in Lallemand
and Luo [51]. 

Typical applications of LB models to hydrodynamics show relevant
phenomena  in  fluid  flow  [52],  complex  fluids  [53],  or  multicompo-
nent  fluids  in  complicated  geometries  [54].  We  should  also  mention
the problem of particle suspensions, which is difficult to tackle by clas-
sical computational methods [55, 56]. 

3.4 Extended Lattice-Boltzmann Models  
The “pure” LB model may suffer from some limitations depending on
particular  situations.  For  instance,  although  LB  simulations  show  a
good behavior for laminar flow or slightly turbulent flow, new exten-
sions are needed for turbulent flow at a high Reynolds number. How-
ever, knowing that momentum and configuration spaces can be freely
discretized from the BGK construction, this property was explored to
redefine arbitrary mesh grids for a significant increase of the Reynolds
number [57–60]. The LB equation turns into a discretized Boltzmann
equation and the collision-advection into a three-stage collision-advec-
tion-interpolation process.  

Another weakness of the LB model appears in the situation of com-
pressible flow. Presently, a quite different approach leading to a “gas
kinetic scheme” is proposed to simulate shocks of interfaces and high
Mach  number  flows  [61].  Besides,  a  generalized  LB  model  has  been
carried  out  to  prevent  a  risk  of  numerical  instability  of  the  con-
strained BGK approximation and to release the Prandtl number, fixed
to unity because of the uniform relaxation time [51, 62]. 

New extensions of the LB model are likely to appear and will con-
tinue  to  evolve  from  fine-  to  coarse-grain  in  order  to  tackle  new  or
still  unsolved  problems,  or  problems  that  remain  up  to  now the  pri-
vate area of classical computational fluid dynamics [63, 64]. 

4. Lattice-Grain Models  

The fact that granular media are neither a gas nor a liquid nor a solid
or that they can encompass the three phases as a whole likely induced
the  concept  of  “lattice-grain”  or  “granular  media  lattice-gas”  owing
to the lack of terminology about this kind of complex matter.  
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4.1 Historicity of Lattice-Grain Cellular Automata  
Historicity  of  discrete  models  of  granular  flow  under  gravity  may
cover  a  period of  40 years,  from the  pioneering  work of  Litwiniszyn
about random walk stochastic processes [65, 66] to the emergence of
the first “granular” CAs in the 1990s. The Litwiniszyn model is a two-
dimensional  random  walk  within  a  brickwork  pattern  of  “cages”
with  a  stepwise  grain/cavity  exchange  rule  acting  under  gravity  and
wherein a trough pattern is induced by an output of dry sand through
a  bottom  slot  (in  short,  a  silo-like  emptying  process).  In  addition,  a
memory  effect  that  could  be  likened  to  an  inertial  effect  allows  the
cavity  to  “remember”  its  left  or  right  direction  at  the  previous  step.
Later  on  and  in  related  works,  Müllins  [67]  claims  that  these  prob-
lems  of  granular  flow  under  gravity  may  be  converted  to  boundary
value  problems  in  ordinary  diffusion  theory.  It  is  also  observed  that
by  reversing  the  emptying  process  into  a  memoryless  filling  process,
the  Galton  picture  is  recovered,  with  a  simple  Gaussian  distribution
of  the  heap.  Following  Litwiniszyn  and  Müllins,  Caram  and  Hong
[68] reintroduce a similar, so-called “diffusing void model” that deals
with free surfaces and obstacles.  

4.2 Cellular Automata for Granular Flow  
Constructed  from  the  preceding  terminology,  prototypes  of  CAs  or
CA-like models applied to granular flow were brought out by Savage
[69]  and  Osinov  [70].  The  underlying  process  is  proved  to  follow  a
Fokker–Planck equation, reducible into a simple diffusion equation in
the memoryless case. Furthermore, it is observed that while the model
is  embedded  onto  an  orthogonal  lattice  that  does  not  exactly  reflect
the  Litwiniszyn  brickwork,  this  discrepancy  only  affects  the  coeffi-
cients and not the form in the equation.  

Although  this  model  is  able  to  display  some  realistic  patterns  like
funnel  or  Couette  flows  depending  on  the  boundary  conditions,  it
clearly suffers from insufficiency due to the physical limitations in the
local  interaction  law.  Some  correlative  attempts,  sometimes  with
somewhat  sophisticated  transition  rules,  were  applied  to  hopper  and
Couette flows [71] and to the free surface segregation of a binary mix-
ture [72]. In the first case, Gutt and Haff mimic Newton’s law of par-
ticle dynamics where the gravitational acceleration is simulated by an
integer “position offset” and the time evolution undergoes a periodic
partial  scanning  of  the  cells.  In  the  second  case,  Fitt  and  Wilmott
adopt a mesoscopic approach where a cell stands for a box containing
a  volume  of  small  and  large  particles  and  with  a  bottom-up  driven
time evolution. 

A  conclusive  contribution  to  lattice-grain  CAs  is  the  energetic
model  of  Baxter  and  Behringer  [73]  that  deals  with  a  hexagonal  lat-
tice where an anisotropy of (long) grains is considered. The two-stage
transition follows an interaction/collision rule using a criterion of en-
ergy  minimization.  Applied  to  hoppers, the  process  displays  realistic
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patterns of grain segregation as well as density waves in the flow. The
main  contribution  of  our  model  is  the  use  of  crystal-like  exclusion
rules in a multiphase context [74]. The time evolution in the hexago-
nal lattice follows a two-stage request/exchange transition rule using a
criterion of kinematic exclusion. Realistic patterns may appear in vari-
ous configurations: mass or funnel flow, density waves, arching effect
in  hopper  processes,  and  mixing  or  segregation  of  a  bidisperse
medium  in  rotating  drum  processes  are  some  examples.  It  would  be
fruitful to study both types of granular CAs to find whether there ex-
ists  an  underlying  differential  scheme  to  be  consistent  with  the  time
evolution induced by their transition rule and to try to unify other ki-
netic,  CA-based  approaches  of  granular  behavior  that  are  not  driven
by  the  Boltzmann  equation  (see  the  recent  work  of  Jasti  and  Higgs
[75] and references therein). 

4.3 Lattice-Gas Related Models  
Modified  versions  of  LGAs  are  introduced  by  Peng  and  Herrmann
[76] to reveal the phenomena of density waves formation in granular
flow through a  vertical  pipe  under  gravity.  A power-law distribution
of the power spectrum of the density fluctuations shows that interpar-
ticle  dissipation  and  roughness  of  the  pipe  walls  are  responsible  for
the generation of waves, similar to the kinetic waves observed in traf-
fic jams. The basic model is a FHP-gas, but the dissipation (a specific
feature of granular media) is simulated in a simple way by additional
collision rules. While the FHP-gas must satisfy the principle of single-
occupancy, here an off-site collision mechanism is created, where col-
liding particles may be driven back to their source site during a tran-
sient state until equilibrium.  

A similar approach is the granular media “GMLG” LGA proposed
by Károlyi et al. [77], applied to the study of the friction-induced seg-
regation  observed  during  a  silo  filling  process  with  a  mixture  of
grains,  and which is  again an extended FHP-gas.  Extra rules  are cre-
ated in order to include energy dissipation through particle  collisions
and  friction:  a  neat  scheme  defines  one  restitution  coefficient  as  the
probability of energy conservation and four friction coefficients (since
we are in a binary mixture) for moving particles as probabilities of ei-
ther  to  scatter  or  to  stop  upon  advection.  Although  this  model  uses
the same BdG formalism as in the Makse sandpile [8], it should be em-
phasized that we deal here with a right FHP extended model [78] and
not with a sandpile model. 

4.4 Force Chains in Granular Packing  
Another model  that is  in no way related to the BTW sandpile  would
be  a  first  attempt  to  tackle  the  process  of  force  chains  forming  in  a
granular packing. As noted by Liu et al. [79], no confusion should be
made with the primary BTW sandpile, which is more a concept than a
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bead pack. In all cases, a two-dimensional CA simulates a two-dimen-
sional heap. Liu et al.  introduce a probabilistic “q” model,  acting on
a layered two-dimensional lattice, and assume that the dominant phys-
ical  mechanism  leading  to  force  chains  is  the  inhomogeneity  of  the
packing. It is a random walk process where each particle transmits its
weight  to  exactly  one  neighbor  in  the  layer  below.  The  network  of
force distribution is carried out by a mean-field theory approach. The
“HHR” sandpile of Hemmingsson, Herrmann, and Roux [80] gives a
description  of  static  forces  in  a  granular  system.  The  time  evolution,
based on a downward row-by-row computation of the force distribu-
tion in the triangular lattice, appears to be not fully synchronous. But,
the  relevant  fact  is  the  dip  observed under  the  heap,  where  the  force
network  displays  a  depression  underneath  the  apex.  The  related
model  of  Goles  et  al.  [81]  seems  to  reproduce  a  variant  of  the  time
evolution  in  the  “sandpile”  paradigm,  while  provided  with  an  addi-
tional parameter of inertia. Finally, the introduction of force transmis-
sion  into  our  kinetic  version  [74]  by  a  top-down  scheme  allows  the
model to take into account the influence of the initial stress state and
of the wall roughness in silo flow modeling [82]. 

This new field focusing on the formation of force networks in gran-
ular packing seems to be somewhat immature and would likely open
gates  for  further  research.  Moreover,  as  noted  by  the  authors  in  the
HHR  CA  [80],  the  downward  sequential  approach  of  these  models
suffers from a lack of Galilean invariance that should somehow be re-
stored.  

4.5 Traffic Flow Related Models  
A somewhat surprising observation is that granular flow may in some
cases  behave  the  same  as  road  traffic  flow.  Therefore,  considering
that  Bak’s  sandpile  is  more  a  paradigm  than  a  pile  of  sand,  traffic
flow theory may help clarify our understanding of the complex behav-
ior  of  granular  matter.  Whence  this  emergence  of  works  with  Leibig
[83], Kurtze and Hong [84], or Helbing [85] and from [86] to [87] to
bridge the gap. The study of road traffic flow is not a recent deal: one-
dimensional  models  fit  into  single  or  multilane  traffic,  whereas  two-
dimensional  models  fit  into  urban  traffic.  The  theory  of  traffic  flow
arose with the “car-following” model of Lighthill and Whitham, who
state  some  analogy  with  the  pressure  in  compressible  flow  in  fluid-
dynamics. Although the first single-bit CA was due to Gerlough some
decades ago, it was only recently that a lot of “particle hopping mod-
els” (including [88–93]) were carried out. See the theory now unified
with the “ASEP” and “STCA” models,  simple enough to be outlined
hereafter, in Nagel [94] and references therein.  

Let v H0 § v § vmaxL and g ¥ 0 be two integers that denote the par-
ticle velocity and the gap or number of empty sites ahead. The asym-
metric  stochastic  exclusion  process  (ASEP)  is  defined  by  rules:  Hr1L
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pick one particle randomly; Hr2L if g > 0 move one site ahead. The one-
dimensional  synchronous,  two-stage,  stochastic  traffic  cellular  au-
tomaton  (STCA)  is  defined  as  follows.  Interaction:  Hr1L  v > g  (too
fast) fl v " g  (slow down); Hr2L  v < g  (enough headway) fl v " v + 1
(speedup); Hr3L v > 0 fl v " v - 1 (slow down) with probability p. Ad-
vection: Hr4L move v sites ahead. 

Let  us  now  consider  Wolfram’s  ECA  184  constructed  from  rule
184 [1]. Observing that ECA 184 is the deterministic limit Hp Ø 0L of
the STCA ê 1 (where vmax ! 1) is straightforward. The spacetime dia-
grams  of  ECA  184  from  single  site  seeds  show  a  car  moving  alone
with  constant  velocity.  But,  from an  initial  disordered  state,  the  dia-
grams exhibit complex phenomena with critical points in phase transi-
tions from jams to congestion depending on the flow density. Related
works  focus  on  the  formation  of  kink  solitons  that  appear  in  the
physics  of  traffic  jams [84,  95,  96].  The  particle  hopping models  are
consistent  with  the  nonlinear  diffusion  Burgers  equation  (ECA  184)
or  the  noisy  Burgers  equation  (STCA,  ASEP)  whereas  the  density
waves are described by the associated Korteweg–de Vries (KdV) equa-
tion. 

The well-stated similarities  between traffic  flow and granular  flow
should then provide a suitable framework to unify the phenomena of
density waves produced by the various lattice-grain model approaches
[73,  74,  76].  Note  also  that  similar  problems  exist  in  computer  sci-
ence,  such  as  when  internet  traffic  is  likened  to  fluid  models,  or  the
deadlock  event  in  distributed  computing  for  resource  allocation  that
can readily be likened to a kink front. 

5. Hybrid Models  

The three following CACM that are related to different species of mat-
ter  and  were  not  placed  in  any  previous  category  are  gathered  here
into a unified set of hybrid models.  

5.1 Cellular-Neural Models of Reaction/Diffusion  
Reaction/diffusion processes, often referred to as “autowave” phenom-
ena  [97],  arise  in  various  types  of  active  media  in  complex  matter.
The first CA approaches to display realistic patterns of crystal-growth
forms  [98],  stripes  and  streaks  [99],  Belouzov–Zhabotinski  (BZ)  or
BZ-like  rings,  spirals  [100],  turbulence  [101],  or  Liesegang  fronts
[102] highlight such physical, biological, or chemical examples. More
recently,  lattice-gas  and  lattice-Boltzmann  theories  were  successfully
applied  to  those  reactive  systems in  a  more  unified  way:  see  Boon et
al. and Weimar [103, 104] and Chopard et al. [32].  

The outcome of  Bandman and Pudov’s  works is  a  hybrid,  special-
purpose “CA-CNN” system devoted to the study of reaction/diffusion
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phenomena [105]. It is a novel, fine-grain application of the “parallel
substitution  algorithm,”  which  compounds  the  discrete  character  of
the  CA  with  the  intelligency  of  neural  networks  (NNs)  [106],  lying
within a range between extended CA with real numbers and restricted
NNs  with  local  connections.  During  the  simulation  of  active  media,
the time evolution follows a stepwise, two-stage transition until equi-
librium: the cell performs the diffusion rules and a neural function per-
forms the reaction explicitly from a given PDE. Note that this model
departs  distinctly  from  Toffoli’s  paradigm  [2]  wherein  the  task  of
PDE solving is implicit. The system is intended to avoid the shortcom-
ing  of  redundant  discrete-continuous-discrete  transformations  that
often cause problems of inaccuracy or instability in numerical compu-
tation.  Simulations  in  the  square  lattice  are  carried  out  with  promis-
ing issues [107]. 

5.2 Cellular Automata for Hydration of Cement-Based Materials  
Correctly predicting the hydration and microstructure development of
cement-based materials is not an easy task. Cement paste is probably
one  of  the  most  complex  materials,  containing  up  to  15  different
phases  arranged into  a  complex microstructure.  This  complexity  fur-
ther increases in mortar where cement powder and medium grains co-
exist, and even more so in concrete as coarse aggregates are added in
the  mixture.  A hybrid  virtual  cement  and concrete  testing  laboratory
(VCCTL)  environment  is  provided  at  the  National  Institute  of  Stan-
dards and Technology (NIST) for simulating the hydration of cement-
based materials and predicting their physical properties by virtual test-
ing [108].  

The  hydration  code  of  VCCTL  is  a  CA  whose  input  is  a  three-
dimensional microstructure of a mixture of cement grains and water.
This microstructure is obtained using a two-dimensional digital image
of the cement powder, its particle-size distribution, and a given water-
to-cement  ratio.  The  output  is  the  cement  paste  microstructure  after
hydration [109]. The simulation runs during a user-defined number of
hydration cycles. The hydration cycle is split into three steps: dissolu-
tion,  random  walk  diffusion  of  the  mobile  agents,  and  reaction  be-
tween colliding pixels. The result serves as the input for finite-element
or  finite-difference  methods  to  extract  macroscopic  properties  from
the microstructure, that is, elastic Young’s modulus and Poisson ratio
[110]. 

Besides  its  use  for  a  normal  hydration  process,  VCCTL  can  also
simulate  degradations  such as  leaching,  a  dissolution of  one  or  more
phases that causes harmful effects to quality and durability of the ma-
terial.  The  leaching  simulation  consists  of  replacing  the  pixels  repre-
senting  the  leached  phases  by  water-pixels.  The  influence  of  dissolu-
tion on the porous network percolation [111] as well as on the global
capillary  porosity  of  the  paste  is  highlighted  and  serves  again,  as  in
the  unleached  case, as  input  data  to  evaluate  the  effect  on  the  de-
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graded  elastic  moduli  [112].  Multiscale  simulations  of  leaching  on
mortar are also carried out and representative elementary volumes are
defined for both micro and meso different scales by a homogenization
procedure in [113]. 

5.3 Movable Cellular Automata  
The  movable  cellular  automata  (MCAs)  method  of  Psakhie,  Horie,
and  their  coworkers  [114,  115],   which  may  also  be  referred  to  as
“movable  lattice  particles”  according  to  Popov’s  terminology  [116],
provides  a  novel,  alternative  approach  to  the  conventional  finite-ele-
ment method applied to the elastoplastic behavior of materials under
the  action  of  small  or  large  deformations.  This  hybrid  model  com-
bines the advantages of CAs and molecular dynamics within a meso-
scopic representation of the material.  

Like  the  fictitious  “fluid”  particles  in  the  hexagonal  symmetry  of
the  FHP  lattice-gas,  “solid”  particles  are  created,  but  the  basic  con-
cept is a pairwise switching parameter that defines a linked state as a
“chemical bond” whenever two neighboring particles overlap. The dis-
tance  between  centers  is  considered  and,  during  a  local  deformation,
the  time  evolution  of  their  linked  or  unlinked  state  acts  as  in  a
bistable medium. As well as in molecular dynamics, the particle’s mo-
tion is governed by a set of translational and rotational equations fol-
lowing the Newton–Euler interaction law. In this sense, the dynamics
may  be  related  to  the  Cundall–Strack  distinct  element  method  for
granular  media  except  that  particles  are  here  fictitious  and  con-
strained by the lattice structure (thus the term “movable” in the MCA
concept).  As  a  matter  of  fact,  a  (micropolar)  Cosserat  continuum  is
provided  by  additional  degrees  of  freedom  for  each  material  point
[117]. 

Although it  is  argued that if  the MCA method, except for its nov-
elty as an alternative approach, does not bring actual advantages over
usual computational methods in elasticity, it may on the contrary ap-
pear as the only practicable approach in areas of large plastic deforma-
tion or in ultimate states of the matter where those methods may fail
or  undergo  highly  time-consuming  remeshing  schemes.  The  effective-
ness of MCAs are revealed in various situations: behavior of steel un-
der load at the onset of fracture, response of heterogeneous structures
like  concrete  under  static  or  dynamic  loads,  strength  properties  of
anisotropic  material  like  lignite,  fracture  energy  absorption,  rough-
ness  at  surface  interface,  friction  and  melting  in  rail-wheel  contact,
wear phenomena in combustion engines, or crash tests (see [115, 118]
and references therein). 
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6. Discussion  

This  attempted  CACM taxonomy will  identify  several  relevant  ques-
tions and problems; a few are pointed out in the following. Where is
the  border  between  fine-  and  coarse-grain  CACM?  Should  the  time
evolution  be  synchronous?  What  about  topology  and  scalability  of
the network? How can we validate the consistency of a model? We fo-
cus  on  and  limit  ourselves  to  this  short  list  of  often  unsolved  ques-
tions, issued from our local experience and knowledge.  

6.1 From Fine-Grain to Coarse-Grain
From  Wolfram’s  bit-scale  ECAs  to  more  sophisticated  models,  the
range of complexity in CACM may be extremely wide. The increasing
complexity in lattice-gas models from pure lattice-gas, to lattice-Boltz-
mann,  until  the  extended  lattice-Boltzmann as  described  in  Section  3
is  a  relevant  example.  While  a  monophase  fluid  particle  is  encoded
with a 4-bit (resp. 6-bit) word in the HPP (resp. FHP) cell, a real-val-
ued  distribution  function  is  encoded  in  the  lattice-Boltzman  cell,
whereas arbitrary meshes are redefined to encode the discretized Boltz-
mann  equation  in  the  extended  models.  Some  models  are  essentially
coarse-grained; the MCAs give typical examples in nature. 

As  a  coarse  paradigm in  parallel  computing,  consider  the  subdivi-
sion  of  a  spatial  problem into  cells  according  to  a  given  tessellation.
This is  done in the framework of a cell-processor allocation strategy,
whatever the computational method of the solver might be. Each cell
solves  its  own  subproblem  at  mesoscale  and  should  exchange  data
with  its  near-neighbors  at  each  time  step  according  to  a  predefined
neighborhood  template.  Why  is  this  grid-based  network  not  a  CA?
This  odd  question  should  raise  a  frequently  claimed  assertion  that
CAs  would  have  lost  their  attractiveness  over  the  growing  computa-
tional  power of  today’s  computers.  Observing that  a simple HPP gas
is  able  to  reveal  realistic  phenomena,  though possibly  inconsistent,  is
sufficient  to  take  this  assertion as  wrong.  CAs will  remain  a  genuine
approach  per  se  and  the  finer  the  grain,  the  better  the  model.  Any-
how, the model-to-architecture correspondence from fine-grain to spe-
cial-purpose  and  from  coarse-grain  to  general-purpose  is  straightfor-
ward. 

6.2 Synchronous or Asynchronous Time Evolution  
In several CACM, the time evolution is sometimes governed by asyn-
chronous  rules.  The  principle  of  simultaneity  of  a  transition  rule  is
not  respected  in  the  asynchronous  case,  when  some  models  adopt  a
bottom-up  or  top-down  scanning  of  the  cells  in  the  case  of  gravity
flows  [69,  72],  or  a  partial  scanning  in  order  to  avoid  coupling  be-
tween  a  moving  particle  and  its  vicinity  [71].  During  the  force  net-
work generation in granular systems, the time evolution is based on a
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downward  row-by-row  computation  of  the  force  distribution  in  the
triangular  lattice  [79–82].  Our  idea,  which  can  be  denied,  is  that
“there  is  always  something  happening  at  a  complex  medium”  and
that top-down, bottom-up (gravity-based), or partial (implementation-
based)  asynchronous  modes  should  be  avoided.  A  sequential,  asyn-
chronous  mode  breaks  the  capability  for  an  effective  parallel  imple-
mentation of the model. Moreover, and more physically, it may break
the Galilean invariance of the physical process [51, 80]. So, the ques-
tion is: how do we get a pure, synchronous transition rule?  

Let us focus on a particular case, namely, our crystal-like granular
CA  [74].  The  basic  two-stage  transition  is  unable  to  move  two  con-
tiguous  particles  when  one  sends  a  request  to  the  site  of  the  other.
Therefore,  it  does  not  allow  a  void  to  propagate  and  solid  grains  to
tumble  down  simultaneously.  Other  similar  observations  arise  in  the
situation of long-range interactions [18, 19]. Including a synchronous
propagative  mode  leads  to  considering  the  transition  and  the  time
evolution at two different scales and to considering the process as in-
stantaneous  within  one  time  step.  This  condition  needs  to  set  up  a
mechanism  to  stop  this  transitional  sequence,  namely,  a  criterion  of
termination for the current time step. This criterion is carried out by a
global all-to-all communication over the whole network. 

In the general case, synchronizing a transition using CAs is relevant
to Myhill’s “firing squad” problem (see Mazoyer [119] and references
therein). 

6.3 Topology and Scalability of the Network  
The local topology of a CA, that is, the neighborhood template of the
cell  that  governs  the  local  computation  in  the  transition  rule,  may
have  an  important  impact  on  the  behavior  of  the  model.  In  general,
nearest-neighbor interactions are considered. For the one-dimensional
case,  that  means  that  the  individual  computation  works  upon  Wol-
fram’s  triplet  (r ! 1)  centered  on  the  cell  [1].  The  two-dimensional
case  allows  several  nearest-neighbor  templates,  the  usual  ones  being
either the (4-valent) von Neumann or the (8-valent) Moore neighbor-
hood in the square tiling and, on the other hand, either the (3-valent)
star  or  the  (6-valent)  honeycomb  neighborhood  in  the  hexagonal
tiling. As an example, lattice-grain flow simulations act on the Moore
template  [69,  72]  or  on  the  honeycomb  template  [71,  73,  74],
whereas the brickwork Litwiniszyn template [66] is homeomorphic to
the  honeycomb.  As  in  [107],  the  Margolus  split-swap  seesaw  in  the
Moore  template  is  sometimes  encountered  in  CA  rules.  The  good
properties  of  the  hexavalent  grid  are  important  to  notify:  more  sym-
metries,  isotropy  with  maximal  number  of  degrees  of  freedom,  and
maximal  coordinence.  A  relevant  observation  upon  the  lattice-gas
models  is  the  inconsistency  of  the  (von  Neumann)  HPP  gas  and  the
consistency of the (honeycomb) FHP gas with the Navier–Stokes equa-
tion.  In  the  three-dimensional  case,  the  face-centered  hypercubic
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lattice,  although  non-isotropic,  is  unfortunately  the  least  frustrating
solution, since no isotropic tessellation of the three-dimensional space
exists.  

At  the  global  level,  the  question  of  scalability  should  be  pointed
out:  is  a  recursive  network needed for  scaling  laws?  Scaling  laws are
concerned with the choice of the model size, power-laws, renormaliza-
tion  or  homogenization  and/or  localization  procedures,  critical  phe-
nomena,  and critical  exponents.  For  illustration,  consider  the  case  of
a composite material. At the microscopic scale the material is inhomo-
geneous,  whereas  at  the  macroscopic  scale  it  appears  as  homoge-
neous.  A  common  procedure,  acting  at  intermediate,  mesoscopic
scale,  should evaluate a representative elementary volume (REV) that
defines  the  minimal  size  of  a  homogeneous  sample.  The  property  of
scalability for the underlying CA network is able to facilitate this kind
of procedure. For the one-dimensional case, it is easy to choose a peri-
odic ring of length 2n  in ergodic conditions. For the two-dimensional
chessboard, one can refer to the recursive framework of Kadanoff for
the ferromagnetic Ising model when four spins in a cell are condensed
into  one  single  spin  in  the  renormalization  procedure  [120].  For  the
hexagonal  case,  the  underlying  graph  is  a  hierarchical  Cayley  graph
with periodic boundaries and maximal symmetries compared with the
skewed framework of Niemeijer and van Leeuwen [121]. 

6.4 Consistency of the Models  
Although  difficult,  the  question  of  proving  whether  a  CA  model  is
consistent with mathematical equations involves the most challenging
problems  that  depend  upon  a  diversity  of  factors.  Proofs  of  consis-
tency are never easy even for simple cases and the deal may often be
worse.  To  demonstrate  this,  we  need  to  use  the  renormalization/
homogenization  procedures  and  comparative  studies  with  other  non-
CA  models  such  as  particle  dynamics,  finite-difference,  and  finite-
element, or volume methods, at least when these continuum methods
are practicable. In several cases, the useful information of power-laws
and  critical  exponents  can  yet  be  somehow extracted,  the  context  of
SOC being a meaningful example.  

It  is  worthwhile  keeping  track  of  the  diversity  of  PDEs  that  oc-
curred  throughout  our  enumeration  of  simple  CACM  models:  the
simple  diffusion  equation,  the  Fokker–Planck  equation,  the  Navier–
Stokes  equation,  the  Burgers  one  with  its  correlated  Korteweg–
de  Vries  equation  and  the  recent  outcome  of,  say,  the  Boutreux–
de  Gennes  equation.  Incidentally,  the  CA-neural  hybrid  environment
[105] that might be extended beyond the area of active media jointly
with  the  “programmable  matter”  methods  [2,  122]  provide,  by  their
respective explicit and implicit approaches, an idealized laboratory of
prospective studies and investigations upon the CA/PDE relationship. 
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