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Spin  glasses  are  disordered  magnetic  systems  that  exhibit  a  variety  of
properties  that  are  characteristic  of  complex  systems.  After  a  brief  re-
view of basic spin glass concepts, their use in areas such as computer sci-
ence,  biology,  and other  fields  is  explored.  This  use  and its  underlying
basis will be termed old complexity. Newer concepts and ideas flowing
from more recent studies of spin glasses will then be discussed, leading
to a proposal for a kind of new complexity. 

1. Introduction    

Spin  glasses  are  disordered  magnetic  systems  in  which  two  nearby
localized  magnetic  moments  have  a  roughly  equal  probability  of
interacting  either  through  a  ferromagnetic  interaction  (in  which
energy  is  lowered  by  the  moments  aligning)  or  an  antiferromagnetic
one (energy lowered by antialigning).  This can be achieved in several
ways. The most common is to substitute, at random locations, a very
small  concentration  (at  most  a  few  percent)  of  a  magnetic  element,
often iron or manganese,  inside a nonmagnetic metallic  host,  such as
one of the noble metals (copper, silver, or gold). In these dilute mag-
netic  alloys,  spins  localized  on  the  impurity  atoms  polarize  the  sur-
rounding  conduction  electron  gas  in  concentric  spheres  (roughly
speaking) of alternating spin polarization (this is known as the RKKY
interaction [1]). Depending on the placement of two nearby magnetic
impurities,  the  conduction-mediated  magnetic  interaction  can  there-
fore be either ferromagnetic or antiferromagnetic.  

But, there is more than one way to make a spin glass. For example,
europium strontium sulfide (EuxSr1-xS, with x typically a few tenths)
is  also  a  spin  glass.  Here  the  interaction  mechanisms  are  different:
nearest neighbors are ferromagnetic, while next-nearest neighbors are
antiferromagnetic. Because  the  magnetic  impurity  europium is  substi-
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tuted  randomly  for  nonmagnetic  strontium,  the  net  effect  is  again  to
generate competing ferromagnetic and antiferromagnetic interactions. 

The  first  mechanism  leads  to  a  metal,  the  second  an  insulator.  In
addition, spin glasses can be uniaxial (i.e., spins can point only along
one axis)  or isotropic;  they can be crystalline or amorphous.  Clearly,
spin glasses come in all varieties. What then are the features that they
do share? 

The most basic is that all possess a disordered ground state configu-
ration:  while  a  typical  low-energy  atomic  configuration  of  a  glass
lacks  long-range  translational  order,  the  spin  configuration  of  a  spin
glass lacks long-range orientational order; hence the nomenclature. 

The  signature  laboratory  features  of  all  spin  glasses  include  [2]  a
cusp  in  the  low-field  ac  susceptibility  at  a  frequency-dependent
temperature  Tf ,  a  smoothly  rounded  maximum  in  specific  heat  at  a
temperature  slightly  above  Tf ,  localized  magnetic  moments  frozen
into  random  orientations,  and  very  long  relaxational  or  equilibra-
tional timescales. 

So why are spin glasses interesting? 
There are  several  reasons.  From the point  of  view of  physics,  spin

glasses  and other  systems with quenched disorder  represent  a  serious
gap in our understanding of condensed matter.  In more conventional
systems,  long-range  order  and  useful  symmetries  enable  us  to  use
many of  the  powerful  tools  of  condensed matter  physics  and statisti-
cal  mechanics  to  establish  a  conceptual  framework  to  understand
their nature and behavior. Such notions include those of Bloch waves,
broken  symmetry,  order  parameters,  Goldstone  modes,  topological
singularities in order-parameter space, and many others. There are far
fewer tools  at  our  disposal  for  understanding systems with quenched
disorder, such as glasses or spin glasses. In this regard, spin glasses are
especially  interesting because,  unlike  ordinary glasses,  which must  be
cooled sufficiently rapidly to avoid the crystalline phase, the spin glass
has no competing ordered phase. So if a thermodynamic phase transi-
tion  does  exist,  then  the  low  temperature  phase  would  truly  be  an
equilibrium condensed disordered phase—a new state of matter. 

Note that important qualifier: if a thermodynamic phase transition
exists.  It  is  a  remarkable  fact  that,  40  years  since  spin  glasses  were
first  identified as  such [3],  this  most  basic  of  all  issues  remains unre-
solved. The susceptibility data show a cusp at a temperature identified
as  Tf ,  the  “freezing  temperature,”  indicating  a  phase  transition;  but
the  specific  heat  data  shows  only  a  rounded  maximum,  occurring  at
a  temperature  typically  10  to  20%  above  Tf .  Many  experiments
performed  since  have  failed  to  reconcile  these  conflicting  results.
Numerical  simulations  have  yielded  some information,  indicating  the
existence  of  a  phase  transition  in  three  and  higher  dimensions  [4–6].
But all we know for certain (from theoretical work) is that there is no
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phase  transition  in  one  dimension  and  that  there  is  one  in  infinite
dimensions. Everything in between remains conjectural. 

While  this  is  one  of  the  most  fundamental  questions  we  can  ask
about  any  condensed  matter  system,  it  is  only  one  of  many  that
remain  unanswered  after  decades  of  experimental,  theoretical,  and
numerical  investigations.  The  problem  is  that  spin  glasses  do  not
possess the kinds of symmetries that make studying crystals, ferromag-
nets, superconductors, and other homogeneous systems accessible; the
absence  of  these  symmetries  enormously  complicates  the  analysis  of
spin  glass  behavior.  The  simultaneous  presence  of  both  disorder  and
frustration can lead to new types of broken symmetries, a breakdown
of  the  thermodynamic  limit  for  certain  quantities,  the  emergence  of
new  phenomena  such  as  chaotic  temperature  dependence,  the  need
for  creating  new  thermodynamic  tools,  and  other  unanticipated  fea-
tures.  While  it  may not  be  necessary to  completely  revamp statistical
mechanics  in  order  to  understand  disordered  systems,  as  has  some-
times been suggested, it is at least necessary to carefully rethink some
deeply held assumptions. 

Finally,  the  study of  spin  glasses  has  led  to  a  surprising  variety  of
applications  to  problems  in  biology,  computer  science,  economics,
and other areas.  We briefly mention a few of these applications later
and  simply  note  now  that  the  usefulness  of  spin  glass  concepts,
enabling them to serve as a bridge to fields outside of physics,  is  one
of the early reasons spin glasses came to be regarded as relevant to the
study of complexity. 

2. Formulation of the Problem    

The  modern  theory  of  spin  glasses  began  with  the  work  of  Edwards
and  Anderson  (EA)  [7],  who  proposed  that  the  essential  physics  of
spin glasses lay not in the details of their microscopic interactions but
rather in the competition between quenched ferromagnetic and antifer-
romagnetic interactions. They proposed the Hamiltonian  

(1)
!! " - ‚

Xx,y\
Jx y sx sy - h‚

x

sx ,

where x is a site in a d-dimensional cubic lattice, sx  is the spin at site
x,  h  is  an  external  magnetic  field,  and  the  first  sum  is  over  nearest
neighbor  pairs  of  sites  only.  The  couplings  Jx y  are  independent  ran-
dom variables chosen from a common distribution (such as Gaussian
with mean 0 and variance 1), and the notation #  indicates a particu-
lar realization of the couplings, corresponding physically to a specific
spin  glass  sample.  We  hereafter  restrict  ourselves  to  Ising  models,
where the only allowed spin values are sx " !1.  

The  disorder  is  represented  by  the  Jx y  variables  and  is  quenched;
once chosen, the Jx y  remain fixed for all time, and the spins must ad-
just as best they can. Physically, this corresponds to the fact that local-
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ized  magnetic  moments  in  laboratory  spin  glasses  (e.g.,  dilute  mag-
netic  alloys)  are attached to their  host  impurity atoms,  which do not
diffuse on laboratory—or indeed, much longer—timescales. 

In  reality,  no  laboratory  spin  glass  has  an  energy  function  that
looks like equation (1). The great insight behind the EA Hamiltonian
is that it is conjectured to be the simplest Hamiltonian that accurately
models  real  spin  glasses.  The  essential  ingredient  is  quenched,  ran-
domly placed ferromagnetic and antiferromagnetic couplings between
nearby spins. Given this,  the spins on a regular lattice can be studied
just as well. In a real host material, the prime effect of randomly plac-
ing magnetic impurities is to generate both ferromagnetic and antifer-
romagnetic  couplings.  The  restriction  in  equation  (1)  to  spin-spin
interactions  between  nearest  neighbors  only  also  does  not  occur  in
real spin glass materials; again, the hope is that this is more of a detail
that  does not  alter  its  applicability.  (Since we are very far  from solv-
ing even the simple-looking EA Hamiltonian, these assertions have to
remain conjectures for now.) 

An  immediate,  and  nontrivial,  consequence  of  the  competition
between ferromagnetic and antiferromagnetic interactions in equation
(1) is the presence of frustration: no spin configuration can simultane-
ously satisfy all  couplings.  How then can the ground state be found?
Which  couplings  should  be  chosen  to  be  unsatisfied?  Or  could  it  be
that  there  are  possibly  many  ground  states—or  at  positive  tempera-
ture,  thermodynamic  pure  states—not  connected  by  any  simple
symmetry  transformation?  This  is  a  very  intriguing  question,  and
remains one of the central unsolved problems in spin glass research. It
is  also  one  of  the  prime  features  of  spin  glasses  that  has  caught  the
attention and interest of complexity researchers. 

Before  proceeding  further,  we  emphasize  that  there  can  be
quenched disorder without frustration (the most well-known example
being the Mattis model [8]), and on the flip side, there can be frustra-
tion  without  disorder  (e.g.,  a  planar  antiferromagnet  on  a  triangular
lattice). Spin glasses are hard to analyze at least partly because of the
joint  presence  of  quenched  disorder  and  frustration—but  this  also
makes them useful  as  a  model  system with which to examine certain
aspects of complexity, as shown later. 

3. Mean Field Theory    

The most studied and best understood spin glass model is the infinite-
ranged version of  the  EA Hamiltonian,  proposed by Sherrington and
Kirkpatrick  (SK)  [9].  For  a  system  of  N  Ising  spins  in  zero  external
field, the SK Hamiltonian is given by  

(2)!! ,N " -
1

N
‚

1§i<j§N

Ji j si sj,
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where the independent,  identically  distributed couplings Ji j  are  again
chosen from a Gaussian distribution with mean 0 and variance 1. Un-
like the EA model, which has OHNL couplings for a system of N spins,
the  SK model  has  OIN2M  couplings;  this  requires  a  1 ë N  rescaling
of the coupling magnitudes to ensure a sensible  thermodynamic limit
for free energy per spin and other thermodynamic quantities.  

Sherrington and Kirkpatrick showed that their model had an equi-
librium  phase  transition,  but  their  solution  for  the  low-temperature
phase was unstable [9].  The correct  solution for the low-temperature
phase  of  the  SK  model  was  found  several  years  later  by  Parisi  [10],
who  proposed  an  extraordinary  new  kind  of  symmetry  breaking,
known today  as  “replica  symmetry  breaking,”  or  RSB.  The  essential
idea  is  that  the  low-temperature  phase  consists  not  of  a  single
spin-reversed pair of states, but rather of “infinitely many pure  ther-
modynamic states” [11], not related by any simple symmetry transfor-
mations. 

But  the  most  striking  feature  of  RSB is  not  the  existence  of  many
thermodynamic  states  that  are  not  symmetry-related—though  this  is
already  very  unusual.  What  really  generated  a  huge  amount  of
interest and excitement was the way that the states were organized; in
particular, the joint properties of “nonself-averaging” of the distribu-
tion of spin overlaps between thermodynamic states, and an ultramet-
ric distance relation between triples of pure states [11–13]. 

These  require  some  explanation.  We  already  indicated  that  there
are  many  equilibrium  spin  glass  states,  and  since  all  are  disordered,
there  are  no  easily  distinguishable  features  to  categorize  them.  An
alternative is then to see how similar they are to each other by intro-
ducing a spin overlap function qab between two pure states a and b: 

(3)qab "
1

N
‚
i"1

N Xsi\a Xsi\b .

Although  there  are  many  pure  thermodynamic  states,  any  spin
glass  at  some  fixed  temperature  and  field  can  be  found  in  only  one,
and so we need to consider the probability Wa  that the system will be
found in state a  (this  of  course depends on temperature and field,  as
well  as  # ,  but  we  will  suppress  these  dependences  for  ease  of  nota-
tion).  Wa  is  usually  called  the  weight  of  state  a,  and  of  course⁄ a Wa " 1.  Consequently,  if  you  choose  two  spin  configurations
independently from the Gibbs measure,  the probability P! HqL dq  that
their spin overlap will be between q and q + dq is given by 

(4)
P! HqL " ‚

ab

Wa Wb dIq - qabM ,
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where d  is the Dirac delta function and P! HqL  is called the spin over-
lap density.  The subscript  #  indicates  that  the  procedure  is  done for
fixed coupling realization.  

In  the  SK  spin  glass,  the  overlap  density  has  a  complicated  form.
Lengthy analyses [12–16] have shown that only a handful of thermo-
dynamic  states  at  low  (but  nonzero)  temperature  have  weights  that
are not extremely small. The self-overlap of each pure state with itself
must  also  be  taken  into  account;  it  was  shown  that  all  pure  states
have  the  same  self-overlap,  regardless  of  coupling  realization  (as
always, aside from a set of measure zero). The fixed value of this self-
overlap  is  known  as  the  Edwards–Anderson  order  parameter  qE A.
Between -qE A  and +qE A  there is a complicated structure of overlaps
between different pure states. 

But that is not what is surprising. What is surprising is that it was
found that no matter how large N becomes, the positions and weights
of  all  overlaps  strictly  between !qE A  vary  with  coupling  realization.
(The overlaps !qE A, on the other hand, are the same for all coupling
realizations.) 

This  may  seem  problematic:  thermodynamics  works  because
different samples behave the same way in the large-N  limit. Here is a
situation where sample-to-sample fluctuations of an important macro-
scopic property do not diminish as N Ø ¶.  This is what is known as
nonself-averaging;  it  represents  an  important  and  distinguishing
feature of the SK spin glass. 

Although  nonself-averaging  is  unusual,  it  can  be  reconciled  with
our understanding of how thermodynamics should behave. The usual,
measurable  thermodynamic  quantities—energy,  free  energy,  magneti-
zation (in nonzero field),  and so on—are in fact  self-averaging in the
spin  glass.  The  spin  overlap,  though  important  as  a  theoretical  tool
for  understanding  spin  glass  order,  has  no  immediate  or  obvious
observable consequences. 

What  happens  if  we  average  the  overlap  distribution  over  all
coupling realizations? Analytically we have 

(5)PHqL " ‡ ‰
1§i<j§N

dJi j PIJi jM P! HqL,
also  known  as  the  (averaged)  Parisi  order  parameter.  Because  there
are  an  uncountable  number  of  coupling  realizations,  and  no  special
overlap  value  (aside  from the  self-overlap  qE A  and  its  negative)  that
might  either  appear  in  no  coupling  realization  (leading  to  a  gap)  or
else  appear  in  some positive-measure  set  of  realizations  (leading  to  a
spike), PHqL is smooth between the two spikes appearing at !qE A.  

This is strikingly different from anything seen in more conventional
homogeneous  systems.  But  there  is  yet  another  surprise.  Suppose  we
look at  overlaps from triples of  states rather than from a single pair.
If we do, we find that any three states have overlap relations of a very
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special kind. This is usually stated in terms of the “distance” between
the states, which is just the overlap subtracted from qE A, so the more
dissimilar two states—that is, the smaller the overlap—the larger their
distance in configuration space. (And, of course,  a state has zero dis-
tance from itself.) 

It turns out that the three distances from any three states form the
sides  of  an  equilateral  or  acute  isosceles  triangle.  A  space  where  this
distance relation always holds among any three points is known as an
ultrametric space. The canonical example of an ultrametric space is a
nested (or tree-like, or hierarchical) structure. 

All  this is  much different from anything observed in homogeneous
systems.  Now,  mean-field  theory  usually  provides  a  reliable  descrip-
tion  of  the  low-temperature  properties  of  finite-dimensional  models
(and becomes exact above some sufficiently high but still finite dimen-
sion);  in particular it  is  often used to reveal the nature of the broken
symmetry  in  more  difficult  to  solve  finite-dimensional  models.  So  it
was natural to expect that the RSB mean-field picture should similarly
describe  the  nature  of  ordering  in  the  EA and other  short-range  spin
glass  models.  This  generated a  lot  of  excitement;  in  particular,  could
these  properties  provide  a  “universality  class”  for  a  wide  range  of
disordered systems—in certain laboratory spin glasses and even struc-
tural  glasses?  We  return  to  this  question  shortly,  but  turn  now  to
what we might call the “old complexity” features of spin glasses. 

4. Old Complexity    

By  the  middle  of  the  1980s,  a  number  of  features  of  spin  glasses
brought them to the attention of scientists interested in problems that
had  come  to  be  known  as  “complex  systems.”  These  spin  glass
features  included  their  signature  properties  of  possessing  both
quenched  disorder  and  frustration  and  in  particular,  the  ease  of
precisely  formulating  these  properties  in  the  spin  glass  context.  All
complex  systems  must  exhibit  these  properties  in  one  form  or
another; certainly a strict homogeneity or rigid ordering (as in a crys-
tal)  would  preclude  any  chance  of  evolving  or  adapting  to  changing
environments.  And  without  conflicting  constraints  and  requirements,
it  is  difficult  to  see  how  anything  approaching  complexity—with  its
implied  storage  and  generation  of  large  information  content—could
develop.  

The spin glass feature that has probably done the most to catch the
attention and interest of complexity scientists, though, is the presence
of many metastable states, that is, states stable to flips of finite num-
bers  of  spins.  This  is  often  picturesquely  characterized  by  a  “rugged
energy  landscape”  (sometimes  also  used  to  denote  the  presence  of
many  pure  or  ground  states,  known  to  occur  in  the  SK  model  but
whose presence remains controversial in more realistic models such as
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EA).  This  feature  of  many  “near-optimal”  solutions,  along  with
higher-energy  (or  cost)  dynamical  traps,  is  a  feature  shared  by  many
problems in complexity. 

It is also significant that a hierarchical ordering emerges in the state
space  structure  of  states  in  the  SK  model.  This  type  of  structure,  or
“near-decomposability,” was proposed by Simon [17, 18] as a univer-
sal  feature  underlying  the  architecture  of  complex  systems.  The  fact
that such a structure emerges naturally from the relatively featureless
SK  Hamiltonian  is  profoundly  surprising.  Whether  this  structure
arises  in  more  realistic  models,  however,  is  unknown,  and its  signifi-
cance for complexity more generally remains unclear. 

All of the features discussed so far are static, equilibrium properties
and moreover are mostly derived from theoretical constructs. But real
spin  glasses  in  the  laboratory  exhibit  nonequilibrium  dynamical
features that might be equally, if not more, relevant to other complex
systems. That is, their dynamical behaviors are highly anomalous [2],
including such characteristics as slow relaxation, irreversibility, mem-
ory effects,  hysteresis,  and aging.  All  of  these are features  shared—in
one form or another—by other complex systems. 

Many  of  these  features,  whether  static  or  dynamical,  have  lent
themselves  to  the  development  of  new  approaches  to  studying  prob-
lems in computer science, biology, economics, and elsewhere [16, 19,
20];  the  construction  of  new  algorithms  and  computational  schema
for  hard  combinatorial  optimization  problems;  new  analytical
approaches  to  finding  bounds  on  costs  of  near-optimal  solutions  in
NP-complete  problems;  models  for  protein  folding  and  conforma-
tional  dynamics,  maturation  of  the  immune  response,  prebiotic  and
biological  evolution,  and  neural  networks;  and  new  methods  of
neural-based  computation.  The  “bridge”  [21]  that  spin  glasses
provided  to  numerous  problems  outside  of  physics  and  mathematics
led to their inclusion in systems of interest to complexity scientists. 

5. New Complexity    

Recent  work  on  the  structure  of  short-range  spin  glasses  (which  re-
main poorly understood) suggests that spin glasses may be “complex”
in  more  subtle  ways  [22,  23].  The  low-temperature  thermodynamic
structure  of  SK  spin  glasses  provides  a  rich  lode  of  phenomena  that
has had a significant impact on complexity studies—what we referred
to here and in [23] as old complexity. But alternative theoretical mod-
els  [24–26]  and  mathematical  investigations  [27–30]  suggest  that
short-range  spin  glasses  do  not  possess  mean-field  behavior  in  any
finite dimension (so that the d Ø ¶ limit is singular), though the issue
remains  controversial.  But  if  true,  then  spin  glasses  would  present  a
unique statistical mechanical example of such a phenomenon. 
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Equally  important,  they  could  help  us  understand  the  limits  of
applicability of analogies between different types of systems. Complex-
ity  science  thrives  on  analogy, and  the  resulting  transference  of
concepts and techniques from one field to another. But true complex-
ity  should  also  bump  up  against  the  limits  of  this  program;  at  some
point  every  complex  system  has  to  display  unique  features  of  some
kind, and at a fundamental  level.  The concept of universality classes,
which  has  been  one  of  the  central  and  unifying  ideas  of  statistical
mechanics,  may  be  less  than  well  suited  for  complex  systems.  The
(possibly)  wildly  different  behaviors  between short-range  spin  glasses
in  any  dimension  and  infinite-range  spin  glasses  (which  mimic  EA
models  in  infinite  dimensions)—where  one  would  certainly  expect
similar  low-temperature  ordering—could  be  a  foreshadowing  of  this
sort of sui generis behavior. 

As another example, consider the lack of a straightforward thermo-
dynamic limit  for  Gibbs states  in systems with many competing pure
states  [31]  (as  spin  glasses  are  often  claimed  to  possess).  A  core
assumption  throughout  statistical  mechanics  is  that  the  thermody-
namic  limit  reveals  the  bulk  properties  of  large  finite  systems.  But
suppose that  the  low-temperature  EA spin glass  possesses  many pure
states;  in  that  case,  the  connection  between  the  thermodynamic  limit
and  the  behavior  of  finite  macroscopic  systems  becomes  far  less
direct. In fact, the difference between the thermodynamic behavior of
conventional  ordered  systems  and  spin  glasses  would  bear  a  similar
relation to the difference between the dynamical behavior of a classi-
cal system with a single fixed point and one with a strange attractor. 

Spin glasses possess numerous other features that might be relevant
in  thinking  about  other  complex  systems  but  that  have  not  yet  been
explored  in  this  context.  Such  features  include  the  presence  of  disor-
der  chaos  [32,  33],  temperature  chaos  [26],  and  stochastic  stability
[34].  Finally,  the  construction  of  new  mathematical  tools  like  the
metastate  [28,  30,  35–37] may prove as  useful  for  the study of  com-
plex  systems  as  any  of  the  other  new  concepts  and  tools  that  have
arisen from the study of spin glasses. 
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