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After giving definitions for novelty and causality for computational sys-
tems, we describe a simple computational system that is able to produce
genuine novelty. We explain how novelty can arise in systems of simple
interacting components and describe what it would mean for such emer-
gent properties to have causal powers.

1. Introduction

In this work we address two questions: first, what is the smallest num-
ber  of  components  a  computational  system needs  in  order  to  display
genuine  novelty?  And second,  can the  novel  features  of  such systems
also exhibit novel causal powers? 

The  possibility  of  generating  novelty  via  computational  processes
has been an ongoing topic of investigation and debate in artificial in-
telligence  research  for  several  decades.  More  recently,  topics  such  as
self-organization  and  emergence  have  been  discussed  in  computa-
tional terms within complex systems science. Researchers in complex-
ity  have  worked  to  understand  the  possibility  of  genuine  novelty  in
computational systems in order to understand the significance of com-
putational  models  of  putatively emergent properties.  Putatively emer-
gent  properties  such  as  the  flocking  behavior  of  birds  (Reynolds
1988),  the  adaptive  features  of  the  immune systems (Hofmeyer  et  al.
2000),  and  the  characteristic  patterns  of  traffic  flow  (Schreckenberg
1995) have been given computational models.

Since “novelty” and “causation” carry different meanings in differ-
ent scientific  contexts,  it  is  important to specify which definitions we
use in this work. In this context, a system can be thought to generate
genuine novelty given the appearance of processes or behaviors not ex-
plicitly  coded in  the  generating  algorithm [1]. We roughly  follow the
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spirit of the definition of emergence in computational models given by
Stephanie Forrest and others. However, we do not wish to rest a defi-
nition of novelty on the explicit intentions of the authors of the code.
Instead,  given  an  automaton,  we  define  novel  structures  as  those
which cannot arise solely from the code that determines the properties
of the automaton. By “causality,” we mean the possibility of interven-
tion or control in terms of idealized agency [2–4]. Our view of causa-
tion is explained in more detail in Section 3. Both definitions provide
constraints  that  we  believe  set  an  appropriately  high  bar  for  discus-
sions  of  novel  properties  in  computational  systems.  In  our  view,  if
more relaxed accounts of  causation and novelty were adopted,  many
of the more ambitious goals implicit in the scientific study of complex-
ity would become trivial.

One underlying problem in both artificial  intelligence and in com-
plex  systems  science  involves  determining  whether  novel  features  of
systems  are,  in  fact,  endowed  with  causal  power  independent  of  the
causal  powers of their  components.  Interest  in novel  causal  agency is
evident,  for  example,  in  the  desire  among  computer  scientists  to
develop  agents  that  exhibit  genuinely  autonomous  interaction  with  a
changing  environment.  In  a  somewhat  different  context,  researchers
in complexity science hope to provide models allowing us to study the
causal  characteristics  of  emergent  properties  in  complex  systems.
Emergent properties of complex systems are interesting precisely inso-
far  as  they are not  merely epiphenomenal,  but  instead result  in some
genuinely new agency in the system under consideration.

In  a  number  of  papers,  we  (along  with  co-authors)  have  stressed
that within computational systems, genuinely novel causal powers, as
described,  cannot  occur.  Our  argument  is  based  on  the  acknowledg-
ment  that  traditional  (non-interactive)  computational  systems  are
closed systems, whose dynamics are fully predetermined by the initial
conditions and a fixed set of rules; we refer the reader to our previous
work  for  more  details  [5,  6].  According  to  this  view,  emergent  pat-
terns arising from computational systems may appear novel to an ob-
server  with  incomplete  knowledge  of  the  system or  to  an  agent  who
does  not  possess  logical  omniscience.  By  contrast,  patterns  resulting
from  non-interacting  computational  processes  would  be  logically  de-
ducible, and thus not genuinely novel, given full knowledge of the sys-
tem’s  code  (and  logical  omniscience).  Thus,  while  weakly  emergent
features  of  computational  models  of  the  kind discussed by  Mark Be-
dau  and  others  [7,  8]  are  objective  features  of  those  systems,  they
would  not  count  as  genuinely  new  from  our  viewpoint.  (See  [9]  for
further  discussion.)  Following  a  similar  argument,  in  our  view,  pat-
terns arising from non-interacting computational systems do not pos-
sess  unique  causal  powers  independent  of  their  components,  since
whatever  causal  agency  the  system  exhibits  is  restricted  to  the  rules
written in the algorithm [10, 11]. Emergent patterns can convey infor-
mation to an agent who is not logically omniscient and who does not
have complete knowledge of the rules of the system, but they carry no
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novel information that has relevant consequences within the processes
in operation within the system [10].

The  idea  that  the  generation  of  genuine  novelty  and  independent
causal  processes  require  a  system  to  be  open  (and  thus  interaction
with at least one external system) has been discussed within different
contexts [12–15]. In the existing literature, notions of interaction and
openness tend to be imprecise. As a step toward clarifying these con-
cepts, we aim to develop a system of minimal size and complexity ca-
pable  of  generating  novel  patterns.  Here,  the  patterns  considered  are
strings  of  symbols.  The  system  we  propose  requires  three  compo-
nents: (a) two initial automata, (b) interaction, and (c) the ability of at
least one automaton to process strings not predefined in its alphabet.
For our purposes here, the latter would permit the capacity to engage
in genuine interaction. Of course, there are a variety of ways that sys-
tems could interact  and we call  this  general  feature interaction open-
ness.  In accounting for the interactive character of  a system, it  is  im-
portant to understand the nature of a system’s interaction openness.

Because of the close relation between the generation of novelty and
the  occurrence  of  genuine  causation  [10,  11],  we  also  aim to  discuss
whether  this  basic  system allows for  the  appearance of  patterns  with
novel causal powers. We suggest that even in such simple systems, the
judgment  of  whether  genuinely  novel  structures  and  genuine  causa-
tion  occur  depends  crucially  on  the  problem  of  determining  system
boundaries.

The problem of how one individuates systems poses a profound chal-
lenge  for  metaphysics  and  is  beyond  the  scope  of  the  present  paper.
While we do not rule out the possibility that oncologists may provide a
strategy  for  individuating  systems  in  a  non-arbitrary  way,  judgments
with respect to causal power in the contexts we discuss here will obvi-
ously be relative to the determination of those boundaries. (See [16].)

2. The System

2.1 The Automata
We first define two automata as follows:

† Machine  A:  Alphabet=[0,  1];  Initial  state=[0  0];  Transition  rules=[00Ø
1, 01Ø1, 10Ø0, 11Ø0]

† Machine  B:  Alphabet=[0,  1];  Initial  state=[0  0];  Transition  rules=[00Ø
1, 01Ø0, 10Ø1, 11Ø0]

Each  automaton  generates  periodic  strings  according  to  the  defined
transitions. In particular,
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We  can  use  the  causal  state  splitting  reconstruction  (CSSR)  algo-
rithm  [17]  to  reconstruct  the  !-machine  from  the  output  strings  and
to  estimate  the  statistical  complexity  and  the  entropy  rate  of  the
strings.  Since  both  machines  generate  periodic  output,  their  entropy
rate  is  zero.  The  statistical  complexity  is  2  and 1.58 for  Machines  A
and  B,  respectively,  since  Machine  A  has  a  period  4  and  Machine  B
has  a  period  3  (see  Appendix  A  for  a  brief  description  of  the  CSSR
algorithm).

Now suppose  that  an  external  observer  sees  the  combined  output
of  the  two  machines.  For  example,  the  observer  may  not  be  able  to
discern that a system is made up of the two machines, but may see the
output of a pair of symbols [[0 0], [0 0], [1 1], [1 0], … ], which is ob-
tained by  combining  the  symbols  emitted  at  the  same time.  The  out-
come is another periodic time series with period 12 and consequently
of zero entropy rate and a statistical complexity of 3.58.

Note  that  so  far  the  machines  are  not  interacting;  their  output  is
simply combined and appears more complex to an external observer. 

2.2 Interaction
Now we include in the system an interactive identity machine (IIM) as
defined in [13]; this performs a “unit of interaction” by taking an in-
put and emitting it unaltered as output.

The  IIM  enables  Machines  A  and  B  to  interact.  In  particular,  the
IIM takes a symbol from Machine B and copies it unaltered to a cer-
tain location of Machine A’s tape.

After the interaction has occurred, Machine A proceeds in the com-
putation by following its transition table:

As  a  result  of  the  interaction,  Machine  A  has  performed  a  transi-
tion [01Ø0] that was not specified in the original transition rules, and
consequently  the  output  contains  a  word  [010]  that  was  not  present
in  the  tape  before  the  interaction.  To  an  external  observer  the  state
“01”  now appears  to  have  a  non-determinist  transition  rule,  since  it
has  been  observed  transiting  to  either  “1”  or  “0”.  As  a  result,  both
the  statistical  complexity  and  the  entropy  rate  of  the  machine  in-
crease; the exact size of the increase depends on how often the interac-
tion occurs and is not relevant to our discussion.

154 F. Boschetti and J. Symons

Complex Systems, 20 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.2.151



We now define Machine C.

† Machine  C:  Alphabet=[22,  23,  32,  33];  Initial  state=[22];  Transition
rules=[22Ø3, 23Ø2, 32Ø2, 33Ø2]

Machine C is equivalent to Machine B, with the symbols 2 and 3 re-
placing 0 and 1, respectively. As a result,  Machine C has a statistical
complexity equal to 1.58 and zero entropy rate.

Then, we apply an IIM to Machines A and C:

Unlike  before,  now  Machine  A  is  not  able  to  proceed  since  the
word “13” is not in its alphabet and no transition rule is available to
process it. As a result, Machine A halts.

Finally, we introduce Machine D by modifying Machine A.

† Machine  D:  Initial  state=[0011];  Transition  rules=[go  back  4  steps
along the tape;  copy the next 3 symbols;  go forward 4 steps along the
tape and paste the 3 symbols]

Machine D generates the same output as Machine A, which results
in a statistical complexity equal to 2 and zero entropy rate.

We now apply an IIM to Machines D and C.

Despite  the  word  “03”  not  appearing  in  Machine  D’s  alphabet,
Machine D is able to process it by simply copying and pasting the val-
ues  along the tape.  This  is  because its  transition rule  is  a  function of
the tape position, not of the machine’s initial alphabet:

In  its  processing,  now  Machine  D  also  generates  the  word  “31”.
Note that the words “03” and “31” are new not only to Machine D,
but  also  to  Machine  C  and  consequently  also  to  the  larger  system
Machine D ‹ Machine C.
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An observer studying the output of  Machine D would now see an
entropy  rate  larger  than  zero,  as  for  Machine  A  after  it  interacted
with Machine B. This is due to the uncertainty generated by the sud-
den  appearance  of  symbol  3  and  the  resulting  unexpected  transition.
Also  the  observer  will  see  eight  states,  with  a  statistical  complexity
close  to  3  (the  exact  value  depends  on when the  interaction happens
and is not relevant to our discussion). 

Finally,  an  observer  external  to  the  system  Machine  D  ‹  Ma-
chine!C,  analyzing  the  combined  output  of  the  two  machines  [[0  2],
[0!2], [1 3], [1 2], … ], would see a time series with 24 states (12 be-
fore  the  interaction  and  12  afterwards)  and  an  entropy  rate  larger
than  zero.  To  this  observer,  this  combined  output  appears  the  most
complex among those described so far.

3. Causation

In  this  paper,  we adopt  an interventionist  view of  causation,  accord-
ing to which causation implies control in terms of an idealized agency
that can produce an effect by altering the course of a process [3, 18].
As Menzies and Price put it [19]: “an event A is a cause of a distinct
event B just in case bringing about the occurrence of A would be an ef-
fective means by which a free agent could bring about the occurrence
of B.” 

Hausman  [2]  defines  causal  control  as  a  relation  between  pro-
cesses.  This  allows  us  to  think  of  causation  in  terms  of  intervention,
free from any anthropocentric interpretations. This is achieved by re-
placing the intuitive idea of human intervention with the abstract con-
cept of an idealized agent able to carry out an intervention. To clarify,
imagine the relation between (a)  a  human actor A,  (b)  a  cause C the
human actor can manipulate, and (c) the resulting effect E. In all situa-
tions in which the relation between processes P1, P2, and P3 is analo-
gous  to  the  relation  between  A,  C,  and  E,  we  call  P1  a  generalized
agent, we call intervention the action of P1 on P2 [2, 19], and we call
effect  the  (potential)  impact  on  P3.  As  a  result,  neither  intervention
nor agency implies human intervention, while they nonetheless satisfy
the anthropocentric need for explanation.

Within  the  dynamical  evolution  of  a  system,  it  is  important  to
stress the difference between the transitions carried out by a computa-
tional process on the one hand and the interventionist view of causa-
tion on the other. What differs is the relation between the states of the
computational process (purely sequential and logically inevitable) and
the  idealized  processes  P1,  P2,  and  P3  mentioned  earlier  (inherently
parallel and dependent on the nature of the intervention).

This difference becomes important when we ask where the experi-
menter should intervene in order to change the behavior of a process.
In a closed, computational process the dynamics can be inferred from
the initial conditions and transition rules. Consequently, the only way
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to  interfere  with the  system’s  behavior  (to  intervene in  the  system) is
to modify either the input or the algorithm. Obviously, this would ap-
ply to the individual machines in isolation. When two machines inter-
act,  the  experiment  can  also  intervene  by  affecting  the  machine  in-
teraction itself.  In Section 2.2, we have seen that the interaction (and
thus  the  relation)  between  Machines  C and D allows  for  the  genera-
tion of  novel  structures.  In the following section,  we discuss  whether
the  relation  that  generates  these  novel  patterns  also  permits  novel
causal powers to arise.

4. System Boundaries 

In  the  previous  section,  we  have  seen  that  novel  strings  can  be  gen-
erated by allowing an automaton (Machine D) to interact with an out-
side  process  (Machine  C and IIM) and by defining  its  transition rule
in  terms  of  memory  positions  rather  than  a  predefined  alphabet.
Nevertheless,  if  both  the  automaton  and  the  outside  process
(Machine!D,  Machine  C,  and  IIM)  are  coded  in  the  same  program,
the entire  system would be closed and,  by applying the same reason-
ing discussed in Section 1, we would need to claim that genuine nov-
elty cannot be generated by the system. 

This problem reduces to defining the system boundary, an issue reg-
ularly encountered in complex systems science.  Let  us assume an ob-
server can detect only the string output by Machine D. With the help
of Figure 1, we can distinguish these four cases.

1. Machine  D  is  the  system  and  everything  else  constitutes  its  environ-
ment; this leads to a number of observations. First, the words “03” and
“31”  are  novel  to  the  system.  Second,  an  external  observer  notices  an
abrupt change in system behavior after the interaction occurs. This oc-
currence  is  defined  by  the  novel  transition  “10”Ø“3”.  What  follows
this  transition  appears  to  be  a  novel  behavior  characterized  both  by
new words and new transitions. For example, by applying a machine re-
construction algorithm like the CSSR, what happens before the interac-
tion would appear as a transient process and the word “01” as a tran-
sient state. Whether such a transient is a feature internal to Machine D
dynamics or external to it is something we would not be able to discern
without extra information. Elsewhere [16] we have argued that the pos-
sibility of transients simply cannot be excluded a priori. This provides a
basic challenge to judgments concerning system boundaries in contexts
where the boundaries cannot be stipulated by fiat.  Obviously, an algo-
rithm can be stipulated by fiat and the boundaries of the system behav-
ior  are  a  direct  consequence  of  that  stipulation.  However,  such  stipu-
lated boundaries  have a highly idealized status requiring all  contextual
and environmental  factors  to  be  bracketed.  By contrast,  in  natural  sci-
ence and in the modeling of complex systems, responsiveness to empiri-
cal considerations is directly relevant.

2. Machine D ‹  Machine C are the system and the IIM is  external  to it.
The  words  “03”  and  “31”  are  still  novel  to  the  system,  since  they
would not be generated without the IIM. Before the interaction occurs,
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to an observer the behavior of the system appears similar to the one in-
cluding only Machine D, since Machine C does not interfere with Ma-
chine  D  dynamics.  All  considerations,  including  the  possible  cause  of
the behavior change, would be as given earlier.

3. Machine  D  ‹  Machine  C  ‹  IIM  constitutes  the  system.  This  brings
about the crucial question of what triggers the IIM action. If the trigger
rule is not coded in either machine, then IIM must respond to an exter-
nal  trigger;  this  external  trigger then represents the idealized agent dis-
cussed in Section 3 and, within the interventionist view, constitutes the
“cause” of the change in system behavior. 

4. Machine D ‹ Machine C ‹ IIM constitutes the system and the trigger
for the IIM action is coded within Machine C. This reduces the overall
system to a closed system (a self-containing algorithm) in which, by defi-
nition, no causation can arise.

Figure 1. Relation between the two machines,  the IIM, and the trigger  to the
interaction.

5. Interaction Openness

While the role of interaction and system boundaries is often discussed
in the literature, to our knowledge less attention has been given to the
importance  of  what  we  characterized  earlier  as  interaction  openness.
In our previous discussion, an essential requirement for the generation
of novel strings is Machine D’s ability to process symbols in terms of
tape position, not of transition rules; this feature allows Machine D to
process  a  large  set  of  incoming  symbols,  without  any  need  for  such
symbols  to  be  predefined.  Loosely  speaking,  Machines  A,  B,  and  C
are  similar  to  traditional  engineering  systems,  designed  to  interact
with a predetermined class of processes, while Machine D is akin to a
more  “natural”  system,  able  to  interact  with  a  larger  class  of  pro-
cesses thereby, allegedly, generating genuine novelty.

It is important to note that this flexibility comes at a cost to the ob-
server.  While  it  is  in  principle  possible  for  an  observer  to  determine
the natural behavior of Machines A, B, and C, it may not be possible
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to  do  so  for  Machine  D.  It  is  so  for  two  related  reasons.  First,  after
Machine D interacts with Machine C, a number of transient states be-
come inaccessible, as will be discussed in detail in [16]. The possibility
of transients ensures that any state or system could be the result of a
process  of  emergence  via  interaction.  Second,  because  a  system’s  be-
havior is  determined,  at  least  partly,  by the type of  interaction it  un-
dergoes and the nature of the interacting process, the full range of pos-
sible  system  behaviors  may  itself  not  be  closed,  and  consequently  it
may not be possible to fully determine. This is at odds not only with
current  practice  of  computational  experimentation  in  complex  sys-
tems science (in which behavior of the agents is usually fully predeter-
mined)  but  also  with  the  assumption  that  the  behavior  of  the  basic
constituents  of  Nature  is  known and what  needs  to be explained are
emergent properties only [11]. An extreme example of this type of sys-
tem  is  provided  by  the  IIM,  whose  definition  is  meaningful  only
within the context of an interaction.

In  Section  4  we  have  seen  that  when  the  system  boundaries  are
such as to enclose all processes, neither novelty nor genuine causation
can  arise.  As  mentioned,  such  conditions  are  highly  idealized  and
make little sense apart from the realm of mathematical abstraction. It
is  useful  to  ask  what  happens  at  the  opposite  extreme,  that  is,  when
the  system  boundaries  include  only  one  element.  Our  discussion  is
based on three types of systems/processes: machines, IIM, and trigger
of interaction. From an emergentist perspective, there is a marked dif-
ference between them: a machine,  as  employed in this  paper,  already
involves a number of lower-level processes able, for example, to pro-
vide  for  interaction  between  a  computational  process  and  a  tape,  as
well  as  for  the  storage  and  implementation  of  a  number  of  instruc-
tions. Each of these processes is comparable to the IIM. At this level,
according  to  our  discussion,  not  only  is  interaction  the  determinant
for behavior, but also behavior itself does not have a meaning outside
interaction.  At this  level,  everything is  obviously emergent.  However,
in  order  to  be  so,  the  behavior  of  each  element  cannot  be  predeter-
mined by the specification of the element itself; some sort of flexibility
on  what  type  of  symbol  each  element  can  process  (or  respond  to)
must  be available  in order for  complex processes  to arise  at  all.  This
observation  suggests  that  properties  equivalent  to  interaction  open-
ness  must  be  available  to  most  basic  elements  for  interesting  novelty
to  emerge  in  Nature  at  all.  This  suggests  the  picture  of  a  continuum
ranging  from  a  world  in  which  no  genuine  novelty  can  arise  (when
system  boundaries  include  all  systems)  to  a  world  in  which  all  pro-
cesses  are  emergent  and  causal  (when  everything  but  one  element  is
external to the system) and in which the transition from one extreme
to  the  other  is  determined  by  the  level  of  interaction  openness.  We
plan to follow this direction in our future research.
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6. Conclusions

Interaction  is  clearly  a  path  to  novelty.  However,  understanding  the
significance of this novelty involves attention to the way we individu-
ate  the  components  of  the  interaction.  Discussions  of  novelty  and
emergence  in  complex  systems  science  and  computer  science  often
take place in a way that obscures the central problem of defining the
boundaries  of  the systems under consideration.  We have shown, in a
simple  form,  how the  conceptual  features  of  the  problem  of  interac-
tion  can  be  characterized  in  a  straightforward  and  non-question-
begging  way.  Our  initial  characterization  of  interaction  openness  for
systems  is  intended  to  focus  future  studies  of  interaction  on  specifi-
able  features  of  systems  that  allow  the  possibility  of  interaction  and
emergence.  What  remains  is  for  philosophers  and  scientists  to  shed
more  light  on  the  problem  of  the  individuation  of  systems.  In  the
meantime,  it  is  clear  that  our  commitments  with  respect  to  system
boundaries  will  determine  our  commitments  with  respect  to  the  na-
ture of interaction and the possibility of genuinely novel causal  pow-
ers for emergent properties.
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Appendix

A. Statistical Complexity and the Causal State Splitting 
Reconstruction Algorithm

In  the  information  theory  literature,  the  concept  of  complexity  is
closely related to predictability and in particular to the amount of in-
formation  required  (difficulty)  to  achieve  optimal  prediction.  This
idea  is  captured  by  Kolmogorov’s  algorithmic  complexity,  according
to which a fully random time series has maximum complexity.

In the complex systems science tradition, complexity is usually seen
as something in between order and randomness. This alternative view
is  captured  by  Crutchfield  and  Young  [20]  as  statistical  complexity,
defined as the amount of information needed to perform a useful pre-
diction, which is understood as a prediction that captures the statisti-
cal  properties  of  a  process/data.  The  approach  is  summarized  as
follows.

1. Take the output of a process as a symbolized time series.

2. Use a machine learning algorithm to reconstruct the causal states of the
process and their transitions.
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3. Define the complexity of the process as the entropy of the causal states;
this measures the uncertainty in predicting the next state of the system,
given  the  information  on  its  past  behavior,  and can  be  seen  as  a  mea-
sure of the amount of memory in the system (in bits) that does a useful
job in prediction.

A  suitable  machine  learning  algorithm  to  carry  out  step  2  is  the
causal  state  splitting  reconstruction  (CSSR)  [17],  which  works  as
follows.

We take a discrete sequence of N  measurements of the process we
want to analyze, Si, i = 1 ... N. At any time i, we can divide the series

S  into  two  half-series,  S  and  S,  where  S =..Si-2 Si-2 Si  represents  the

“past” and S =..Si+2 Si+2 Si+3 ... represents the “future.” Following the

same notation as in [17], we call S
L

 and S
L

 histories of length L sym-
bols in the past and in the future, respectively. Also, we call s (and sL)
specific  instances  of  histories  belonging  to  S.  Now,  suppose  we  scan
the series S, looking for occurrences of the history s

’
, and we store the

symbol  S
1

 seen  as  the  future  in  each  instance.  We  can  calculate

PKS1
s
’ O,  that is, the probabilities of occurrence of any of the k  sym-

bols in the alphabet A, given the history s, and we call the vector con-
taining these probabilities the morph of s

’
. We can then define a causal

state as the collection of all histories s
’
 with the same morph (i.e., histo-

ries that share the same probabilistic future). More formally, histories

s
’
1 and s

’
2 belong to the same causal state if PKS1

s
’
1O = PKS1

s
’
2O.

With the given definition, the purpose of the CSSR algorithm is to
reconstruct  the  set  of  the  causal  states  of  the  process  and  the  transi-
tion probabilities  between the causal  states.  Following the nomencla-
ture used in [17], the combination of causal states and their transition
probabilities is called a !-machine.

The CSSR algorithm can be divided into the following steps.

1. We  start  from the  null  hypothesis  that  the  process  is  independent  and
identically  distributed.  In  this  case,  each  of  the  k  symbols  a œ A  is
equally likely at each time step and only one causal state is necessary to
model the process: the morph of the state is the k-length vector of com-
ponents 1 ê k.

2. We  select  a  maximum  history  length  max_L  for  our  analysis.  This  is
the  length  of  the  longest  history  with  which  we  scan  the  series  S.  For
histories of length = 1… max_L,  we scan the series S,  storing both the
histories  found  and  their  futures.  Given  a  history  s

’
,  its  morph  is  triv-

ially  obtained  by  calculating  PIa s
’ M = vIa, s

’M ë vH s
’ L  for  each  a œ A,

where vH s
’ L  is  the number of occurrences of the history s

’
 and vIa, s

’ M  is
the number of occurrences of the symbol a given the history s

’
.
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3. We  group  histories  with  similar  morphs  into  the  same  causal  states.
This involves three steps: 

(a) We  need  a  measure  for  morph  similarity.  Real  time  series  are
characterized  by  both  the  presence  of  noise  and  by  finite  data
extent.  Consequently,  we  need  to  relax  the  requirement  of  exactly

matching  morphs  P S
1

s
’
1O = P S

1
s
’
2O  to  an  approximation

P S
1

s
’
1O º P S

1
s
’
2O.  In  particular,  we  accept  P S

1
s
’
1O -

P S
1

s
’
2O < !, where ! is a user defined parameter. 

(b)We define the morph for a state as the average of the morph of all
histories in that state.

(c) In  order  to  ensure  the  reconstruction  of  a  minimum  number  of
states,  new  states  are  created  only  when  a  history  is  found  that
cannot match any existent causal state. That is, for each history, we
look  for  an  existent  state  with  similar  morph  and  we  create  a  new
state only when we cannot find any. 

After  these  steps,  we  have  a  collection  of  states,  grouping  all  histories
found  in  the  time  series  S  according  to  the  similarity  between  their
morphs.

4. As a last step, we want to make sure that transitions between states, on
a given symbol,  are unique.  That is,  we want to make sure that,  given
any  history  in  a  state,  and  a  next  symbol  a œ A,  the  next  state  is
uniquely  determined.  Notice  the  difference  between  the  occurrence  of
the  next  symbol,  which  is  stochastic  and measured by  the  morph,  and
the transition to the next state, given a next symbol, which we want to
be  deterministic.  In  order  to  do  this,  for  each  state,  we  store  the  next
state transitions for each history, that is, we store the state a history at-
tained after seeing a certain symbol. This is also represented by a vector
of length k, containing, as elements, the next state on each symbol. If a
state has two histories whose next state transition vectors are different,
we split the state and create a new one.

Once  the  !-machine  is  reconstructed,  its  entropy  is  the  statistical
complexity of the process as proposed by Crutchfield and Young [20].
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