
Novel Properties Generated by Interacting
Computational Systems

Fabio Boschetti

CSIRO Marine and Atmospheric Research, Australia
and
School of Earth and Environment
The University of Western Australia

John Symons

University of Texas at El Paso
El Paso, Texas 79968, USA
jsymons@utep.edu

After giving definitions for novelty and causality for computational sys-
tems, we describe a simple computational system that is able to produce
genuine novelty. We explain how novelty can arise in systems of simple
interacting components and describe what it would mean for such emer-
gent properties to have causal powers.

1. Introduction

In this work we address two questions: first, what is the smallest num-
ber of components a computational system needs in order to display
genuine novelty? And second, can the novel features of such systems
also exhibit novel causal powers?

The possibility of generating novelty via computational processes
has been an ongoing topic of investigation and debate in artificial in-
telligence research for several decades. More recently, topics such as
self-organization and emergence have been discussed in computa-
tional terms within complex systems science. Researchers in complex-
ity have worked to understand the possibility of genuine novelty in
computational systems in order to understand the significance of com-
putational models of putatively emergent properties. Putatively emer-
gent properties such as the flocking behavior of birds (Reynolds
1988), the adaptive features of the immune systems (Hofmeyer et al.
2000), and the characteristic patterns of traffic flow (Schreckenberg
1995) have been given computational models.

Since “novelty” and “causation” carry different meanings in differ-
ent scientific contexts, it is important to specify which definitions we
use in this work. In this context, a system can be thought to generate
genuine novelty given the appearance of processes or behaviors not ex-
plicitly coded in the generating algorithm [1]. We roughly follow the

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

spirit of the definition of emergence in computational models given by
Stephanie Forrest and others. However, we do not wish to rest a defi-
nition of novelty on the explicit intentions of the authors of the code.
Instead, given an automaton, we define novel structures as those
which cannot arise solely from the code that determines the properties
of the automaton. By “causality,” we mean the possibility of interven-
tion or control in terms of idealized agency [2–4]. Our view of causa-
tion is explained in more detail in Section 3. Both definitions provide
constraints that we believe set an appropriately high bar for discus-
sions of novel properties in computational systems. In our view, if
more relaxed accounts of causation and novelty were adopted, many
of the more ambitious goals implicit in the scientific study of complex-
ity would become trivial.

One underlying problem in both artificial intelligence and in com-
plex systems science involves determining whether novel features of
systems are, in fact, endowed with causal power independent of the
causal powers of their components. Interest in novel causal agency is
evident, for example, in the desire among computer scientists to
develop agents that exhibit genuinely autonomous interaction with a
changing environment. In a somewhat different context, researchers
in complexity science hope to provide models allowing us to study the
causal characteristics of emergent properties in complex systems.
Emergent properties of complex systems are interesting precisely inso-
far as they are not merely epiphenomenal, but instead result in some
genuinely new agency in the system under consideration.

In a number of papers, we (along with co-authors) have stressed
that within computational systems, genuinely novel causal powers, as
described, cannot occur. Our argument is based on the acknowledg-
ment that traditional (non-interactive) computational systems are
closed systems, whose dynamics are fully predetermined by the initial
conditions and a fixed set of rules; we refer the reader to our previous
work for more details [5, 6]. According to this view, emergent pat-
terns arising from computational systems may appear novel to an ob-
server with incomplete knowledge of the system or to an agent who
does not possess logical omniscience. By contrast, patterns resulting
from non-interacting computational processes would be logically de-
ducible, and thus not genuinely novel, given full knowledge of the sys-
tem’s code (and logical omniscience). Thus, while weakly emergent
features of computational models of the kind discussed by Mark Be-
dau and others [7, 8] are objective features of those systems, they
would not count as genuinely new from our viewpoint. (See [9] for
further discussion.) Following a similar argument, in our view, pat-
terns arising from non-interacting computational systems do not pos-
sess unique causal powers independent of their components, since
whatever causal agency the system exhibits is restricted to the rules
written in the algorithm [10, 11]. Emergent patterns can convey infor-
mation to an agent who is not logically omniscient and who does not
have complete knowledge of the rules of the system, but they carry no

152 F. Boschetti and J. Symons

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

novel information that has relevant consequences within the processes
in operation within the system [10].

The idea that the generation of genuine novelty and independent
causal processes require a system to be open (and thus interaction
with at least one external system) has been discussed within different
contexts [12–15]. In the existing literature, notions of interaction and
openness tend to be imprecise. As a step toward clarifying these con-
cepts, we aim to develop a system of minimal size and complexity ca-
pable of generating novel patterns. Here, the patterns considered are
strings of symbols. The system we propose requires three compo-
nents: (a) two initial automata, (b) interaction, and (c) the ability of at
least one automaton to process strings not predefined in its alphabet.
For our purposes here, the latter would permit the capacity to engage
in genuine interaction. Of course, there are a variety of ways that sys-
tems could interact and we call this general feature interaction open-
ness. In accounting for the interactive character of a system, it is im-
portant to understand the nature of a system’s interaction openness.

Because of the close relation between the generation of novelty and
the occurrence of genuine causation [10, 11], we also aim to discuss
whether this basic system allows for the appearance of patterns with
novel causal powers. We suggest that even in such simple systems, the
judgment of whether genuinely novel structures and genuine causa-
tion occur depends crucially on the problem of determining system
boundaries.

The problem of how one individuates systems poses a profound chal-
lenge for metaphysics and is beyond the scope of the present paper.
While we do not rule out the possibility that oncologists may provide a
strategy for individuating systems in a non-arbitrary way, judgments
with respect to causal power in the contexts we discuss here will obvi-
ously be relative to the determination of those boundaries. (See [16].)

2. The System

2.1 The Automata
We first define two automata as follows:

† Machine A: Alphabet=[0, 1]; Initial state=[0 0]; Transition rules=[00Ø
1, 01Ø1, 10Ø0, 11Ø0]

† Machine B: Alphabet=[0, 1]; Initial state=[0 0]; Transition rules=[00Ø
1, 01Ø0, 10Ø1, 11Ø0]

Each automaton generates periodic strings according to the defined
transitions. In particular,

Novel Properties Generated by Interacting Computational Systems 153

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

We can use the causal state splitting reconstruction (CSSR) algo-
rithm [17] to reconstruct the !-machine from the output strings and
to estimate the statistical complexity and the entropy rate of the
strings. Since both machines generate periodic output, their entropy
rate is zero. The statistical complexity is 2 and 1.58 for Machines A
and B, respectively, since Machine A has a period 4 and Machine B
has a period 3 (see Appendix A for a brief description of the CSSR
algorithm).

Now suppose that an external observer sees the combined output
of the two machines. For example, the observer may not be able to
discern that a system is made up of the two machines, but may see the
output of a pair of symbols [[0 0], [0 0], [1 1], [1 0], …], which is ob-
tained by combining the symbols emitted at the same time. The out-
come is another periodic time series with period 12 and consequently
of zero entropy rate and a statistical complexity of 3.58.

Note that so far the machines are not interacting; their output is
simply combined and appears more complex to an external observer.

2.2 Interaction
Now we include in the system an interactive identity machine (IIM) as
defined in [13]; this performs a “unit of interaction” by taking an in-
put and emitting it unaltered as output.

The IIM enables Machines A and B to interact. In particular, the
IIM takes a symbol from Machine B and copies it unaltered to a cer-
tain location of Machine A’s tape.

After the interaction has occurred, Machine A proceeds in the com-
putation by following its transition table:

As a result of the interaction, Machine A has performed a transi-
tion [01Ø0] that was not specified in the original transition rules, and
consequently the output contains a word [010] that was not present
in the tape before the interaction. To an external observer the state
“01” now appears to have a non-determinist transition rule, since it
has been observed transiting to either “1” or “0”. As a result, both
the statistical complexity and the entropy rate of the machine in-
crease; the exact size of the increase depends on how often the interac-
tion occurs and is not relevant to our discussion.

154 F. Boschetti and J. Symons

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

We now define Machine C.

† Machine C: Alphabet=[22, 23, 32, 33]; Initial state=[22]; Transition
rules=[22Ø3, 23Ø2, 32Ø2, 33Ø2]

Machine C is equivalent to Machine B, with the symbols 2 and 3 re-
placing 0 and 1, respectively. As a result, Machine C has a statistical
complexity equal to 1.58 and zero entropy rate.

Then, we apply an IIM to Machines A and C:

Unlike before, now Machine A is not able to proceed since the
word “13” is not in its alphabet and no transition rule is available to
process it. As a result, Machine A halts.

Finally, we introduce Machine D by modifying Machine A.

† Machine D: Initial state=[0011]; Transition rules=[go back 4 steps
along the tape; copy the next 3 symbols; go forward 4 steps along the
tape and paste the 3 symbols]

Machine D generates the same output as Machine A, which results
in a statistical complexity equal to 2 and zero entropy rate.

We now apply an IIM to Machines D and C.

Despite the word “03” not appearing in Machine D’s alphabet,
Machine D is able to process it by simply copying and pasting the val-
ues along the tape. This is because its transition rule is a function of
the tape position, not of the machine’s initial alphabet:

In its processing, now Machine D also generates the word “31”.
Note that the words “03” and “31” are new not only to Machine D,
but also to Machine C and consequently also to the larger system
Machine D ‹ Machine C.

Novel Properties Generated by Interacting Computational Systems 155

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

An observer studying the output of Machine D would now see an
entropy rate larger than zero, as for Machine A after it interacted
with Machine B. This is due to the uncertainty generated by the sud-
den appearance of symbol 3 and the resulting unexpected transition.
Also the observer will see eight states, with a statistical complexity
close to 3 (the exact value depends on when the interaction happens
and is not relevant to our discussion).

Finally, an observer external to the system Machine D ‹ Ma-
chine!C, analyzing the combined output of the two machines [[0 2],
[0!2], [1 3], [1 2], …], would see a time series with 24 states (12 be-
fore the interaction and 12 afterwards) and an entropy rate larger
than zero. To this observer, this combined output appears the most
complex among those described so far.

3. Causation

In this paper, we adopt an interventionist view of causation, accord-
ing to which causation implies control in terms of an idealized agency
that can produce an effect by altering the course of a process [3, 18].
As Menzies and Price put it [19]: “an event A is a cause of a distinct
event B just in case bringing about the occurrence of A would be an ef-
fective means by which a free agent could bring about the occurrence
of B.”

Hausman [2] defines causal control as a relation between pro-
cesses. This allows us to think of causation in terms of intervention,
free from any anthropocentric interpretations. This is achieved by re-
placing the intuitive idea of human intervention with the abstract con-
cept of an idealized agent able to carry out an intervention. To clarify,
imagine the relation between (a) a human actor A, (b) a cause C the
human actor can manipulate, and (c) the resulting effect E. In all situa-
tions in which the relation between processes P1, P2, and P3 is analo-
gous to the relation between A, C, and E, we call P1 a generalized
agent, we call intervention the action of P1 on P2 [2, 19], and we call
effect the (potential) impact on P3. As a result, neither intervention
nor agency implies human intervention, while they nonetheless satisfy
the anthropocentric need for explanation.

Within the dynamical evolution of a system, it is important to
stress the difference between the transitions carried out by a computa-
tional process on the one hand and the interventionist view of causa-
tion on the other. What differs is the relation between the states of the
computational process (purely sequential and logically inevitable) and
the idealized processes P1, P2, and P3 mentioned earlier (inherently
parallel and dependent on the nature of the intervention).

This difference becomes important when we ask where the experi-
menter should intervene in order to change the behavior of a process.
In a closed, computational process the dynamics can be inferred from
the initial conditions and transition rules. Consequently, the only way

156 F. Boschetti and J. Symons

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

to interfere with the system’s behavior (to intervene in the system) is
to modify either the input or the algorithm. Obviously, this would ap-
ply to the individual machines in isolation. When two machines inter-
act, the experiment can also intervene by affecting the machine in-
teraction itself. In Section 2.2, we have seen that the interaction (and
thus the relation) between Machines C and D allows for the genera-
tion of novel structures. In the following section, we discuss whether
the relation that generates these novel patterns also permits novel
causal powers to arise.

4. System Boundaries

In the previous section, we have seen that novel strings can be gen-
erated by allowing an automaton (Machine D) to interact with an out-
side process (Machine C and IIM) and by defining its transition rule
in terms of memory positions rather than a predefined alphabet.
Nevertheless, if both the automaton and the outside process
(Machine!D, Machine C, and IIM) are coded in the same program,
the entire system would be closed and, by applying the same reason-
ing discussed in Section 1, we would need to claim that genuine nov-
elty cannot be generated by the system.

This problem reduces to defining the system boundary, an issue reg-
ularly encountered in complex systems science. Let us assume an ob-
server can detect only the string output by Machine D. With the help
of Figure 1, we can distinguish these four cases.

1. Machine D is the system and everything else constitutes its environ-
ment; this leads to a number of observations. First, the words “03” and
“31” are novel to the system. Second, an external observer notices an
abrupt change in system behavior after the interaction occurs. This oc-
currence is defined by the novel transition “10”Ø“3”. What follows
this transition appears to be a novel behavior characterized both by
new words and new transitions. For example, by applying a machine re-
construction algorithm like the CSSR, what happens before the interac-
tion would appear as a transient process and the word “01” as a tran-
sient state. Whether such a transient is a feature internal to Machine D
dynamics or external to it is something we would not be able to discern
without extra information. Elsewhere [16] we have argued that the pos-
sibility of transients simply cannot be excluded a priori. This provides a
basic challenge to judgments concerning system boundaries in contexts
where the boundaries cannot be stipulated by fiat. Obviously, an algo-
rithm can be stipulated by fiat and the boundaries of the system behav-
ior are a direct consequence of that stipulation. However, such stipu-
lated boundaries have a highly idealized status requiring all contextual
and environmental factors to be bracketed. By contrast, in natural sci-
ence and in the modeling of complex systems, responsiveness to empiri-
cal considerations is directly relevant.

2. Machine D ‹ Machine C are the system and the IIM is external to it.
The words “03” and “31” are still novel to the system, since they
would not be generated without the IIM. Before the interaction occurs,

Novel Properties Generated by Interacting Computational Systems 157

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

to an observer the behavior of the system appears similar to the one in-
cluding only Machine D, since Machine C does not interfere with Ma-
chine D dynamics. All considerations, including the possible cause of
the behavior change, would be as given earlier.

3. Machine D ‹ Machine C ‹ IIM constitutes the system. This brings
about the crucial question of what triggers the IIM action. If the trigger
rule is not coded in either machine, then IIM must respond to an exter-
nal trigger; this external trigger then represents the idealized agent dis-
cussed in Section 3 and, within the interventionist view, constitutes the
“cause” of the change in system behavior.

4. Machine D ‹ Machine C ‹ IIM constitutes the system and the trigger
for the IIM action is coded within Machine C. This reduces the overall
system to a closed system (a self-containing algorithm) in which, by defi-
nition, no causation can arise.

Figure 1. Relation between the two machines, the IIM, and the trigger to the
interaction.

5. Interaction Openness

While the role of interaction and system boundaries is often discussed
in the literature, to our knowledge less attention has been given to the
importance of what we characterized earlier as interaction openness.
In our previous discussion, an essential requirement for the generation
of novel strings is Machine D’s ability to process symbols in terms of
tape position, not of transition rules; this feature allows Machine D to
process a large set of incoming symbols, without any need for such
symbols to be predefined. Loosely speaking, Machines A, B, and C
are similar to traditional engineering systems, designed to interact
with a predetermined class of processes, while Machine D is akin to a
more “natural” system, able to interact with a larger class of pro-
cesses thereby, allegedly, generating genuine novelty.

It is important to note that this flexibility comes at a cost to the ob-
server. While it is in principle possible for an observer to determine
the natural behavior of Machines A, B, and C, it may not be possible

158 F. Boschetti and J. Symons

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

to do so for Machine D. It is so for two related reasons. First, after
Machine D interacts with Machine C, a number of transient states be-
come inaccessible, as will be discussed in detail in [16]. The possibility
of transients ensures that any state or system could be the result of a
process of emergence via interaction. Second, because a system’s be-
havior is determined, at least partly, by the type of interaction it un-
dergoes and the nature of the interacting process, the full range of pos-
sible system behaviors may itself not be closed, and consequently it
may not be possible to fully determine. This is at odds not only with
current practice of computational experimentation in complex sys-
tems science (in which behavior of the agents is usually fully predeter-
mined) but also with the assumption that the behavior of the basic
constituents of Nature is known and what needs to be explained are
emergent properties only [11]. An extreme example of this type of sys-
tem is provided by the IIM, whose definition is meaningful only
within the context of an interaction.

In Section 4 we have seen that when the system boundaries are
such as to enclose all processes, neither novelty nor genuine causation
can arise. As mentioned, such conditions are highly idealized and
make little sense apart from the realm of mathematical abstraction. It
is useful to ask what happens at the opposite extreme, that is, when
the system boundaries include only one element. Our discussion is
based on three types of systems/processes: machines, IIM, and trigger
of interaction. From an emergentist perspective, there is a marked dif-
ference between them: a machine, as employed in this paper, already
involves a number of lower-level processes able, for example, to pro-
vide for interaction between a computational process and a tape, as
well as for the storage and implementation of a number of instruc-
tions. Each of these processes is comparable to the IIM. At this level,
according to our discussion, not only is interaction the determinant
for behavior, but also behavior itself does not have a meaning outside
interaction. At this level, everything is obviously emergent. However,
in order to be so, the behavior of each element cannot be predeter-
mined by the specification of the element itself; some sort of flexibility
on what type of symbol each element can process (or respond to)
must be available in order for complex processes to arise at all. This
observation suggests that properties equivalent to interaction open-
ness must be available to most basic elements for interesting novelty
to emerge in Nature at all. This suggests the picture of a continuum
ranging from a world in which no genuine novelty can arise (when
system boundaries include all systems) to a world in which all pro-
cesses are emergent and causal (when everything but one element is
external to the system) and in which the transition from one extreme
to the other is determined by the level of interaction openness. We
plan to follow this direction in our future research.

Novel Properties Generated by Interacting Computational Systems 159

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

6. Conclusions

Interaction is clearly a path to novelty. However, understanding the
significance of this novelty involves attention to the way we individu-
ate the components of the interaction. Discussions of novelty and
emergence in complex systems science and computer science often
take place in a way that obscures the central problem of defining the
boundaries of the systems under consideration. We have shown, in a
simple form, how the conceptual features of the problem of interac-
tion can be characterized in a straightforward and non-question-
begging way. Our initial characterization of interaction openness for
systems is intended to focus future studies of interaction on specifi-
able features of systems that allow the possibility of interaction and
emergence. What remains is for philosophers and scientists to shed
more light on the problem of the individuation of systems. In the
meantime, it is clear that our commitments with respect to system
boundaries will determine our commitments with respect to the na-
ture of interaction and the possibility of genuinely novel causal pow-
ers for emergent properties.

Acknowledgments

John Symons’ work on this paper was supported by the John Temple-
ton Foundation’s individual research grants program.

Appendix

A. Statistical Complexity and the Causal State Splitting
Reconstruction Algorithm

In the information theory literature, the concept of complexity is
closely related to predictability and in particular to the amount of in-
formation required (difficulty) to achieve optimal prediction. This
idea is captured by Kolmogorov’s algorithmic complexity, according
to which a fully random time series has maximum complexity.

In the complex systems science tradition, complexity is usually seen
as something in between order and randomness. This alternative view
is captured by Crutchfield and Young [20] as statistical complexity,
defined as the amount of information needed to perform a useful pre-
diction, which is understood as a prediction that captures the statisti-
cal properties of a process/data. The approach is summarized as
follows.

1. Take the output of a process as a symbolized time series.

2. Use a machine learning algorithm to reconstruct the causal states of the
process and their transitions.

160 F. Boschetti and J. Symons

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

3. Define the complexity of the process as the entropy of the causal states;
this measures the uncertainty in predicting the next state of the system,
given the information on its past behavior, and can be seen as a mea-
sure of the amount of memory in the system (in bits) that does a useful
job in prediction.

A suitable machine learning algorithm to carry out step 2 is the
causal state splitting reconstruction (CSSR) [17], which works as
follows.

We take a discrete sequence of N measurements of the process we
want to analyze, Si, i = 1 ... N. At any time i, we can divide the series

S into two half-series, S and S, where S =..Si-2 Si-2 Si represents the

“past” and S =..Si+2 Si+2 Si+3 ... represents the “future.” Following the

same notation as in [17], we call S
L

 and S
L

 histories of length L sym-
bols in the past and in the future, respectively. Also, we call s (and sL)
specific instances of histories belonging to S. Now, suppose we scan
the series S, looking for occurrences of the history s

’
, and we store the

symbol S
1

 seen as the future in each instance. We can calculate

PKS1
s
’ O, that is, the probabilities of occurrence of any of the k sym-

bols in the alphabet A, given the history s, and we call the vector con-
taining these probabilities the morph of s

’
. We can then define a causal

state as the collection of all histories s
’
 with the same morph (i.e., histo-

ries that share the same probabilistic future). More formally, histories

s
’
1 and s

’
2 belong to the same causal state if PKS1

s
’
1O = PKS1

s
’
2O.

With the given definition, the purpose of the CSSR algorithm is to
reconstruct the set of the causal states of the process and the transi-
tion probabilities between the causal states. Following the nomencla-
ture used in [17], the combination of causal states and their transition
probabilities is called a !-machine.

The CSSR algorithm can be divided into the following steps.

1. We start from the null hypothesis that the process is independent and
identically distributed. In this case, each of the k symbols a œ A is
equally likely at each time step and only one causal state is necessary to
model the process: the morph of the state is the k-length vector of com-
ponents 1 ê k.

2. We select a maximum history length max_L for our analysis. This is
the length of the longest history with which we scan the series S. For
histories of length = 1… max_L, we scan the series S, storing both the
histories found and their futures. Given a history s

’
, its morph is triv-

ially obtained by calculating PIa s
’ M = vIa, s

’M ë vH s
’ L for each a œ A,

where vH s
’ L is the number of occurrences of the history s

’
 and vIa, s

’ M is
the number of occurrences of the symbol a given the history s

’
.

Novel Properties Generated by Interacting Computational Systems 161

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

3. We group histories with similar morphs into the same causal states.
This involves three steps:

(a) We need a measure for morph similarity. Real time series are
characterized by both the presence of noise and by finite data
extent. Consequently, we need to relax the requirement of exactly

matching morphs P S
1

s
’
1O = P S

1
s
’
2O to an approximation

P S
1

s
’
1O º P S

1
s
’
2O. In particular, we accept P S

1
s
’
1O -

P S
1

s
’
2O < !, where ! is a user defined parameter.

(b)We define the morph for a state as the average of the morph of all
histories in that state.

(c) In order to ensure the reconstruction of a minimum number of
states, new states are created only when a history is found that
cannot match any existent causal state. That is, for each history, we
look for an existent state with similar morph and we create a new
state only when we cannot find any.

After these steps, we have a collection of states, grouping all histories
found in the time series S according to the similarity between their
morphs.

4. As a last step, we want to make sure that transitions between states, on
a given symbol, are unique. That is, we want to make sure that, given
any history in a state, and a next symbol a œ A, the next state is
uniquely determined. Notice the difference between the occurrence of
the next symbol, which is stochastic and measured by the morph, and
the transition to the next state, given a next symbol, which we want to
be deterministic. In order to do this, for each state, we store the next
state transitions for each history, that is, we store the state a history at-
tained after seeing a certain symbol. This is also represented by a vector
of length k, containing, as elements, the next state on each symbol. If a
state has two histories whose next state transition vectors are different,
we split the state and create a new one.

Once the !-machine is reconstructed, its entropy is the statistical
complexity of the process as proposed by Crutchfield and Young [20].

References

[1] S. Forrest and J. H. Miller, “Emergent Behavior in Classifier Systems,”
Physica D, 42(1–3), 1990 pp. 213–227.
doi:10.1016/0167-2789(90)90075-Z.

[2] D. Hausman, Causal Asymmetries (Cambridge Studies in Probability, In-
duction and Decision Theory), Cambridge: Cambridge University Press,
1998.

162 F. Boschetti and J. Symons

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

[3] H. Pattee, “Causation, Control, and the Evolution of Complexity,” in
Downward Causation (P. B. Andersen, C. Emmeche, N. O. Finnemann,
and P. V. Christiansen, eds.), Århus: University of Århus Press, 1997
pp. 322–348.

[4] J. Pearl, “Statistics and Causal Inference: A Review,” Test Journal,
12(281), 2003 pp. 281–345.

[5] F. Boschetti and R. Gray, “Emergence and Computability,” Emergence:
Complexity and Organization, 9(1–2), 2007 pp. 120–130.

[6] F. Boschetti, D. McDonald, and R. Gray, “Complexity of a Modelling
Exercise: A Discussion of the Role of Computer Simulation in Complex
System Science,” Complexity, 13(6), 2008 pp. 21–28.
doi:10.1002/cplx.20215.

[7] A. Baker, “Simulation-Based Definitions of Emergence,” Journal of Arti-
ficial Societies and Social Simulation, 13(1), 2010.
http://jasss.soc.surrey.ac.uk/13/1/9.html.

[8] M. Bedau, “Weak Emergence,” in Philosophical Perspectives (J. Tober-
lin, ed.), vol. 11, Oxford: Blackwell Publishers, 1997 pp. 375–399.

[9] J. Symons, “Computational Models of Emergent Properties,” Minds and
Machines, 18(4), 2008 pp. 475–491. doi:10.1007/s11023-008-9120-8.

[10] F. Boschetti and R. Gray, “A Turing Test for Emergence,” in Advances
in Applied Self-Organizing Systems (M. Prokopenko, ed.), London:
Springer-Verlag, 2007 pp. 349–364.

[11] F. Boschetti, “Causality, Emergence, Computation and Unreasonable Ex-
pectations,” Synthese, 181(3), 2010 pp. 405–412.
doi:10.1007/s11229-010-9720-8.

[12] R. Rosen, Life Itself: A Comprehensive Inquiry into the Nature, Origin,
and Fabrication of Life, New York: Columbia University Press, 2001.

[13] P. Wegner, “Why Interaction Is More Powerful than Algorithms,” Com-
munications of the ACM, 40(5), 1997 pp. 80–91.
doi:10.1145/253769.253801.

[14] J. Wiedermann and J. Van Leeuwen, “The Emergent Computational Po-
tential of Evolving Artificial Living Systems,” Ai Communications,
15(4), 2002 pp. 205–215.

[15] R. Milner, “Elements of Interaction: Turing Award Lecture,” Communi-
cations of the ACM, 36(1), 1993 pp. 78–89.
doi:10.1145/151233.151240.

[16] J. Symons, “Completeness and Metaphysical Fundamentalism,” in Sys-
tematic Thinking: Hintikka, Neville and the Future of Philosophy
(R. E. Auxier and D. R. Anderson, eds.), forthcoming.

[17] C. R. Shalizi and K. L. Shalizi, “Blind Construction of Optimal Nonlin-
ear Recursive Predictors for Discrete Sequences,” in Uncertainty in Arti-
ficial Intelligence: Proceedings of the Twentieth Conference (2004),
Banff, Canada (J. Halpern, ed.), Arlington, VA: AUAI Press, 2004
pp. 504–511.

[18] H. Pattee, “The Physics of Symbols and the Evolution of Semiotic Con-
trol,” in Workshop on Control Mechanisms for Complex Systems: Is-
sues of Measurement and Semiotic Analysis, Las Cruces, NM, 1996,
Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Vol-
ume, Redwood City, CA: Addison-Wesley, 1997.

Novel Properties Generated by Interacting Computational Systems 163

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

[19] P. Menzies and H. Price, “Causation as a Secondary Quality,” The
British Journal for the Philosophy of Science, 44(2), 1993 pp. 187–203.
doi:10.1093/bjps/44.2.187.

[20] J. P. Crutchfield and K. Young, “Inferring Statistical Complexity,”
Physical Review Letters, 63(2), 1989 pp. 105–108.
doi:10.1103/PhysRevLett.63.105.

164 F. Boschetti and J. Symons

Complex Systems, 20 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.2.151

<<
 /ASCII85EncodePages false
 /AllowPSXObjects false
 /AllowTransparency false
 /AlwaysEmbed [
 true
]
 /AntiAliasColorImages false
 /AntiAliasGrayImages false
 /AntiAliasMonoImages false
 /AutoFilterColorImages true
 /AutoFilterGrayImages true
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CheckCompliance [
 /None
]
 /ColorACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorConversionStrategy /LeaveColorUnchanged
 /ColorImageAutoFilterStrategy /JPEG
 /ColorImageDepth -1
 /ColorImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorImageDownsampleThreshold 1.50000
 /ColorImageDownsampleType /Bicubic
 /ColorImageFilter /DCTEncode
 /ColorImageMinDownsampleDepth 1
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /ColorImageResolution 300
 /ColorSettingsFile ()
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /CreateJDFFile false
 /CreateJobTicket false
 /CropColorImages false
 /CropGrayImages false
 /CropMonoImages false
 /DSCReportingLevel 0
 /DefaultRenderingIntent /Default
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>
 >>
 /DetectBlends true
 /DetectCurves 0
 /DoThumbnails false
 /DownsampleColorImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /EmbedOpenType false
 /EmitDSCWarnings false
 /EncodeColorImages true
 /EncodeGrayImages true
 /EncodeMonoImages true
 /EndPage -1
 /GrayACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageAutoFilterStrategy /JPEG
 /GrayImageDepth -1
 /GrayImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageDownsampleThreshold 1.50000
 /GrayImageDownsampleType /Bicubic
 /GrayImageFilter /DCTEncode
 /GrayImageMinDownsampleDepth 2
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /GrayImageResolution 300
 /ImageMemory 1048576
 /JPEG2000ColorACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000ColorImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /LockDistillerParams false
 /MaxSubsetPct 100
 /MonoImageDepth -1
 /MonoImageDict <<
 /K -1
 >>
 /MonoImageDownsampleThreshold 1.50000
 /MonoImageDownsampleType /Bicubic
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /MonoImageResolution 1200
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /NeverEmbed [
 true
]
 /OPM 1
 /Optimize true
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.25000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXBleedBoxToTrimBoxOffset [
 0
 0
 0
 0
]
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXOutputCondition ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputIntentProfile ()
 /PDFXRegistryName ()
 /PDFXSetBleedBoxToMediaBox true
 /PDFXTrapped /False
 /PDFXTrimBoxToMediaBoxOffset [
 0
 0
 0
 0
]
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /ParseICCProfilesInComments true
 /PassThroughJPEGImages true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /sRGBProfile (sRGB IEC61966-2.1)
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

