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Systems in nature, composed of many microscopic components, exhibit
several distinctive global patterns. Can we understand the emergent pat-
terns in terms of the components? One possible device to address such
a question is  to scrutinize the “interactions” among these components,
from which the global behavior arises. In this paper, we introduce and
generalize the information-theoretic quantity called connected informa-
tion. It provides us with a measure of many-body interactions buried in
complex  systems.  While  the  original  connected  information  is  formu-
lated globally to include all contributions from the microscopic compo-
nents, we formulate decomposition rules for the connected information
to capture local interactions. The implication of our results will also be
discussed in relation to the identification of local functional modules in
neural systems based on experimental observations. 

1. Introduction 

In  statistical  mechanics,  the  probability  distributions  originated  from
quantum mechanics and/or chaotic dynamics provide us with the fun-
damental  description in  connecting  the  microscopic  dynamics  (or  the
first  principles)  and  the  macroscopic  dynamics  (or  thermodynamics).
In order to understand the dynamical hierarchies that exist in nature,
statistical mechanics requires that the first principles’ equation of mo-
tions  of  the  composite  elements  are  given  in  the  system  of  interest.
However, this is in general not the case, especially for systems in bio-
logical  and social  sciences.  This  raises  the  question:  how can we dis-
cuss the connection between different dynamical hierarchies for those
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systems whose microscopic dynamical rules are not known? One way
to resolve this  problem is  to extract  the underlying microscopic rules
by  examining  the  properties  of  multivariate  dependence  in  the  ob-
served probability distributions of the composite elements. In particu-
lar,  Schneidman  et  al.  recently  introduced  a  quantity  called
“connected information” that quantifies the strength of many-body in-
teractions, such as pairwise, triple, quadruple, and so on, among com-
posite elements in the given system [1].

The  connected  information  was  originally  formulated  to  capture
only global spatial properties, namely, the k-body interactions contain-
ing contributions from the set of all possible combinations in k bodies
in the system. In this paper, we formulate decomposition rules to ex-
press  the  global  interactions  as  a  superposition  of  local  interactions
that cannot be decomposed further. These indecomposable local inter-
actions can then serve as the fundamental building blocks of the multi-
variate systems. In Section 2,  we will  first  review connected informa-
tion constructed from the multivariate probability distributions. Some
mathematical  properties  of  the  connected  information  and  the  local
decomposition of the global interactions will be given in Section 3, fol-
lowed by the Conclusion in Section 4. 

2. Connected Information and the Multivariate Dependence  

We  first  describe  the  connected  information  that  measures  the
strength  of  correlation  of  different  orders  among  the  multiple  vari-
ables  in  the  system.  Let  us  consider  N  random  discrete  variables
x ! Hx1, … , xNL  whose  joint  probability  distribution  is  denoted  by
PHxL H ! PHx1, … , xNLL.  For  simplicity,  we  consider  that  x  are  binary
variables, that is, xj œ 80, 1<. The generalization to nonbinary cases is
straightforward.  In  terms  of  the  joint  probability,  the  Shannon  en-
tropy H@PD is defined by

(1)H@PD := -‚
x

PHxL log PHxL,
to measure the information content that is missing in order to predict
the value of x  [2]. Here ⁄x  denotes the summation over all  variables
in x. On the other hand, mutual information is a well-known measure
of statistical dependency among the variables given by

(2)Im@PD := ‚
x

PHxL log B PHxL
€j Pj IxjM F ! ‚

j!1

N

HAPjE - H@PD,
where

(3)PjIxjM ! ‚
x1

!‚
xj

`
!‚

xN

PHx1, … , xNL.
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The  notation  S
`
xj

 means  that  the  summation  over  xj  is  excluded  and

PjIxjM Hj ! 1, … , NL are referred to as the first order marginals. HAPjE
is the entropy of the single variable xj. Since mutual information only
measures  the  difference  between  the  information  content  of  the  full
joint  probability  PHx1, …, xNL  and that  of  €j PjIxjM  corresponding to
the fully statistically independent case,  it  cannot tell  us how much of
the  mutual  information  can  be  explained  by  pairwise,  triple,  and
higher-order correlations (interactions).

To quantify, for example, the pairwise interaction among the vari-

ables  of  a system similar  to equation (2),  consider a quantity I
èH2L  de-

fined by 

(4)I
èH2L@PD := ‚

i

H@PiD - 1

N - 1
‚
i<j

HAPi jE,
where Pi j are called the second order marginals given by

(5)Pi jIxi, xjM := ‚
x1

!‚
xi

`
!‚

xj

`
!‚

xN

PHx1, … , xNL.

However, I
èH2L@PD may not vanish when the joint probability distri-

bution  PHxL  has  no  pairwise  interactions.  Here,  k-body  interactions
such as pairwise, triple, and quadruple mean that the probability dis-
tribution PHxL can be decomposed into a product of functions of only
k  variables (e.g.,  xi  and xj  for pairwise interaction), which cannot be
further divided into functions of fewer variables. Thus, no pairwise in-
teraction in the system implies that either PHxL is written as a product
of  one-variable  functions  PiHxiL,  that  is,  all  variables  are  independent
of  each  other,  or  PHxL  is  written  as  a  product  of  functions  of  more
than two variables that cannot be reduced into functions of fewer vari-

ables.  Note  that  in  the  latter  case  I
èH2L  can  still  have  a  nonzero  value

while it  has zero in the former case.  Therefore,  we introduce the fol-
lowing probability distribution

(6)PHkLHxL := arg max
QœMk

H @QD,
which  we  call  the  kth  order  maximum  entropy  distribution  (MED).
This distribution maximizes the entropy on a space Mk defined by

(7)

Mk ! :Q ‚
xi1

, … , xiN-k

QHxL ! ‚
xi1

, … , xiN-k

PHxL,
" i1 < ! < iN-k œ 81, … , N<>.
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This space is called the kth marginal equivalence space in which all dis-
tributions  QHxL  have  the  same  kth  order  marginals  as  the  original
PHxL. Importantly, maximization of the entropy in Mk  means that the
kth  order MED (equation (6)) carries solely the part of information of
the  joint  probability  distribution  PHxL  associated  with  the  kth  order
marginals.  However,  the information of the kth  order marginals con-
tains that of the Hk - 1Lth  order marginals because Mk-1 Õ Mk. In or-
der  to  capture  solely  the  information  associated  with  exactly  k  vari-
ables  but  not  with  fewer,  it  is  necessary  to  subtract  the  contribution
of Hk - 1L variables from the information of k variables, resulting in a
quantity termed the kth order connected information IC

HkL@PD:
(8)IC

HkL@PD := I-HAPHkLEM - I-HAPHk-1LEM.
IC
HkL @PD vanishes if and only if the probability distribution PHxL has no

k-body interactions.
It  can be easily  verified that  equation (2)  can be hierarchically  de-

composed into the connected information of different orders as 

(9)Im@PD ! ‚
k!2

N

IC
HkL@PD.

Since the connected information of order k quantifies the k-body inter-
actions among all N variables in the system, equation (9) corresponds
to the “global” decomposition that cannot further resolve the “local”
contribution to IC

HkL@PD from a particular set of k variables. For exam-

ple,  the  second  order  connected  information  IC
H2L@PD  for  a  system  of

three variables consists of all pairwise interactions associated with the
second  order  marginals  (i.e.,  P12Hx1, x2L,  P23Hx2, x3L,  and
P31Hx3, x1L)  that  cannot  allow  us  to  evaluate  how  much  contribu-
tion(s)  arise(s)  from  a  specific  individual  or  set  of  pairs  of  variables
(e.g.,  from the pair x1  and x3  only).  Therefore,  it  is  natural  to ask if
the  concept  of  connection  information  can  be  generalized  to  identify
local  interactions  of  a  given  order.  This  generalization  becomes  cru-
cial  and  necessary  when  the  system  possesses  strong  spatial  hetero-
geneity.  In  the  following,  we  will  scrutinize  the  relationship  between
global  information  that  contains  all  pairwise  interactions  IC

H2L@PD  and
local  information that contains solely the individual  pairwise interac-
tions.  It  was  found  that  interactions  among  neurons  in  neural  net-
works  can  be  well  described  by  pairwise  interactions  even  when  the
neuronal  connectivity  becomes  complicated  [3,  4].  Margolin  et  al.
first addressed the decomposability into a set of pairwise interactions
numerically in a simple three-body problem, but the general condition
of  the  decomposability  in  many-body problems  remains  unresolved
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[5].  Therefore,  in this  paper we focus mainly on the decomposability
of global information into fundamental pairwise interactions. 

3. Local Multivariate Dependence

3.1 Coordinate Systems in the Space of Probability Distributions
How  many  degrees  of  freedom  are  required  to  specify  a  probability
distribution? We start with a brief overview of the coordinate systems
of the space of probability distribution [6, 7]. For the sake of simplic-
ity, suppose that the probability distributions are functions of N  vari-
ables whose values are discrete and taken to be 0 or 1, that is, binary
variables.  Then,  the  number  of  the  degrees  of  freedom  to  specify
PHx1, x2, … , xNL  is  2N - 1,  where  the  subtraction  of  unity  is  due  to
the  normalization  condition  S x PHxL ! 1.  For  N ! 2  we  can  choose,
for  example,  P H0, 0L, P H0, 1L,  and  P H1, 0L  as  coordinates  to  specify
PHx1, x2L.  The  choice  of  the  coordinate  system  is  not  unique.  In  the
following,  we  describe  three  coordinate  systems,  whose  distinct  fea-
tures are illustrated for N ! 3 for simplicity.

3.1.1 Marginal Coordinate System  

This  coordinate  system  has  coordinates  given  by  the  marginalsHh1, h2, h3, h12, h23, h13, h123L:
(10)hl@PD ! ‚

x

xl PHxL, l œ 81, 2, 3, 12, 23, 13, 123<,
where  we  introduce  the  notation  l  to  simplify  the  expression  such
that  xi j ! xi xj  (i, j œ 81, 2, 3<)  and  x123 ! x1 x2 x3.  These  hl  also
correspond to the marginals with the corresponding variables equal to
1 because xi ! 0 or 1; for example,

(11)
h1 @PD ! ‚

x2,x3

PHx1, x2, x3L x1!1 ! P1Hx1 ! 1L.
If two probability distributions have the same h1, their first marginals
P1Hx1L and Q1Hx1L are also the same because of the normalization re-
lation ⁄x1

P1Hx1L ! 1. Similarly, if two probability distributions have
the  same  h1, h2,  and  h12,  the  second  marginals  P12Hx1, x2L  and
Q12Hx1, x2L are also the same. Thus, by using this coordinate system,
we  can  rewrite  the  definition  of  the  marginal  equivalence  space  in
equation (7) as follows:

(12)ML := 8QHxL hl @QD ! hl @PD, l œ L<.
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Here  L  is  a  subset  of  the  combination  of  81, 2, 3<,  that  is,
L Õ 81, 2, 3, 12, 23, 13, 123<, and we rewrite the MED as

(13)PLHxL := arg max
QœML

H @QD.
The ML  easily enables us to quantify or assign the correlation at each
order;  for  example,  for  LH2L := 81, 2, 3, 12, 23, 13<,  PH2LHxL  corre-
sponds to the second order MED, implying that the distribution Q in
the  ML  space  carries  exactly  the  same  information  as  P  for  all  one
body and all pairwise correlations (interactions).

3.1.2 Correlation Coordinate System  

This coordinate system is determined by coefficients of the Maclaurin
expansion of log PHxL, q@ ! 8ql< ! Hq1, q2, q3, q12, q23, q13, q123LD:

(14)
log PHxL := ‚

i

qi xi +‚
i<j

qi j xi xj + q123 x1 x2 x3 - yHqL
where yHqL is the normalization factor.

The  condition  of  ql ! 0  tells  us  about  the  properties  of  statistical
independence of the probability distribution and the maximization of
entropy.  We  discuss  the  meaning  of  ql ! 0  in  more  detail  in  Sec-
tion!3.1.3. Maximizing the entropies yields the following equality [6]: 

(15)
!H @PD
!hl

! -ql.

This  equality  implies  that  ql  associated  with  hl  becomes  zero  when
the  probability  distribution  is  determined  so  as  to  maximize  the  en-
tropy with respect to hl.

3.1.3 Mixture Coordinate System  

As seen in equation (15), hl  is the marginal, while ql  is related to the
maximization  of  the  entropies.  In  the  marginal  coordinate  system8hl<, it is not easy to naturally incorporate the maximization of the en-
tropies.  In turn, the correlation coordinate system 8ql<  may not natu-
rally  handle  the  constraint  on the  marginals.  To resolve  this,  the  fol-
lowing coordinate system is proposed [6]:

(16)Ihl1
, … , hlk

, qlk+1
, … , ql7

M, 2 § k § 7.

For example, if k ! 4, that is, 

L ! 8l1, l2, l3, l4< Õ 81, 2, 3, 12, 23, 13, 123<,
the MED PLHxL is represented by the coordinates

(17)Ihl1
, hl2

, hl3
, hl4

, ql5
! 0, ql6

! 0, ql7
! 0M,
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where l5, l6, l7 œ 81, 2, 3, 12, 23, 13, 123<\L.  Since PLHxL œ ML,  PL

has  the  marginals  Ihl1
, hl2

, hl3
, hl4

M,  and the  other  three  coordinates
are  determined  by  the  condition  of  maximum  entropy.  By  choosing
the  other  three  coordinates  as  ql ! 0, l ! l5, l6, l7,  equation  (17)
can be obtained.

This description is not limited to the kth  order connected informa-
tion that  takes  into  account  all  possible  pairs  of  k-body interactions.
For example,  if  L12 := 81, 2, 3, 12<,  the coordinate of  the MED PL12

is given by Hh1, h2, h3, h12, q23 ! 0, q13 ! 0, q123 ! 0L.  This distribu-
tion has the information of one body and the correlation between x1
and x2. Thus, 

(18)IC
12 := J-H BPL12FN - J-H BPLH1LFN

(where LH1L := 81, 2, 3<) measures the information containing only the
correlation  between  x1  and  x2.  Equation  (18)  is  represented  graphi-
cally in Figure 1(a). The first order marginals hi correspond to the ver-
tices,  and  the  second  order  marginal  hi j  corresponds  to  the  edge  be-
tween i and j. The condition qi j ! 0 corresponds to no edge between i
and j. By using this graph, the second order connected information is
drawn in Figure 1(b).

Figure 1. (a)  One pairwise interaction information.  (b)  The second connected
information.  (c)  Two  pairwise  interactions  information.  (d)  Both  solid  and
dotted lines  represent  pairwise  interactions  and the  dotted lines  are  those  on
which rules 1 and 2 do not depend.  

3.2 The Coordinate q and the Markovian Properties   
As discussed  earlier,  the  values  of  the  q  coordinates  relate  to  the  de-
pendence among the variables. In this section, we discuss this relation-
ship  in  more  detail.  For  the  sake  of  brevity,  we  consider  systems
having  only  pairwise  correlations,  that  is,  the  third  or  higher  order
correlations are absent. In the three-variables case, for example, if x1
is not connected with x3, we have the relation

(19)P Hx1 x2, x3L ! PHx1 x2L,
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where  PHx yL  is  the  conditional  probability  defined  by  PHx yL !
PHx, yL ê PHyL.  Equation  (19)  is  the  Markov  process  relation,  meaning
that the information of x1  depends only on x2  and the knowledge of
x3  is  irrelevant  for  knowing  x1  (see  Figure  1(c)).  The  derivation  of
equation (19) is as follows. From the definition of q in equation (14),
the  conditions  q13 ! q123 ! 0  imply  that  the  probability  distribution
PHx1, x2, x3L  can  be  expressed  as  a  product  of  some  functions
f Hx1, x2L and gHx2, x3L,

(20)PHx1, x2, x3L ! f Hx1, x2L gHx2, x3L.
From this expression, we obtain the relation

(21)
P12Hx1, x2L P23Hx2, x3L

P2Hx2L ! PHx1, x2, x3L,
which is equivalent to equation (19).

This  Markovian  property  also  applies  to  cases  with  more  than
three  variables.  For  example,  see  Figure  1(d).  There  are  six  variables
such that the vertex x connects with only y, yc, and yd, and the vertex
y connects with only x, yc, and zc. The Markovian rules in Figure!1(d)
can be stated as 

1. PHx y, yc, yd, zc, zdL ! PHx y, yc, ydL 
2. PHy yc, yd, zc, zdL  cannot be reduced to probabilities  that  do not have

variable yd, even though y does not directly connect with yd. The vari-
able  zd  does  not  carry  any  information  about  y,  yielding
PHy yc, yd, zc, zdL ! PHy yc, yd, zcL. 

Note that these rules do not depend on how yc, yd, zc,  and zd  are
connected with each other, and hence we depicted these possible con-
nections as dotted lines in the figure. Rule 1 means that zc and zd  give
redundant information about x if we know y, yc, and yd  that connect
to x. Rule 2 means that the dependence on the variable yd in the distri-
bution  cannot  be  dropped  because  yd  contains  the  information  of  x
connecting directly to y. In contrast, zd  does not contain the informa-
tion of x so that variable zd  can be dropped. We can prove these rela-
tions in the same way as equation (19).

3.3 Three-Body Case  
As seen so  far,  the  second order  connected information,  in  principle,
involves all possible pairwise interactions. We need to establish the un-
derlying  relationship  between  the  global  connected  information  and
the composite pairwise interactions, or more generally, the local con-
nected information. First, consider the simplest case in which the num-
ber  of  variables  is  three.  Here,  the  second  order  connected  informa-
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tion has  all  three  pairwise  interactions.  It  might  be  expected that  the
second  order  connected  information  can  be  expressed  as  the  sum  of
the individual pairwise interactions, that is,

(22)IC
H2L !? IC

12 + IC
23 + IC

13.

Yet  this  expectation  is  incorrect  in  general.  Nevertheless,  it  can  be
found that the following decomposition holds:

(23)IC
12,23 ! IC

12 + IC
23,

whose graphical representation is shown in Figure 2. In what follows
we give the proof of equation (23).

Figure 2. Two edges that share one vertex.

From Figure 2, x1  does not connect with x3  (i.e.,  q123 ! q13 ! 0).

Thus,  we obtain the following relation for the MED PL12,23
 by using

the Markovian relations:

(24)PL12,23 Hx1, x2, x3L ! PL12,23 Hx1 x2, x3L P23
L12,23 Hx2, x3L,

(25)PL12,23 Hx1, x2, x3L ! PL12,23 Hx1 x2L P23
L12,23 Hx2, x3L,

(26)PL12,23 Hx1, x2, x3L !
P12
L12,23 Hx1, x2L P23

L12,23 Hx2, x3L
P2
L12,23 Hx2L

.

This results in the following relation among the entropies:

(27)H BPL12,23F ! H BP12
L12,23F + H BP23

L12,23F - H BP2
L12,23F,

(28)HBPL12,23F ! H BP12
L12F + H BP23

L23F - H BP2
LH1LF,

(29)HBPL12,23F ! H BPL12F + H BPL23F - H BPLH1LF,
where,  for  example,  PL12 !def

P12
L12

P3
L12

 and  PLH1L !def
P1
LH1L

P2
LH1L

P3
LH1L

.
The first equality simply arises from equation (26). The second equal-
ity follows from the nature of the coordinates of the probability distri-
bution;  for  example,  P12

L12,23 Hx1, x2L  has  two  binary  variables,  imply-
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ing that there are three degrees of freedom that can be specified by the
coordinates  Hh1, h2, h12L.  This  corresponds  to  that  of  the  probability

distribution P12
L12 Hx1, x2L.

This  example  tells  us  that  the  following  two  necessary  conditions
must be satisfied for a graph to be decomposable. The first condition
is that the vertices are not fully connected with each other so that the
conditional  probabilities  can  be  reduced  to  the  one  with  fewer  vari-
ables  (e.g.,  from  equation  (24)  to  equation  (25)).  The  second  condi-
tion is  that  the distributions of  the fewer variables  (e.g.,  P12

L12 Hx1, x2L
in  equation  (28))  are  the  same  as  those  with  more  variables  (e.g.,
P12
L12,23 Hx1, x2, x3L  in  equation  (27)).  In  the  full  graph  corresponding

to equation (22), the first condition is not met and therefore its global
second order connected information cannot be decomposed. 

We summarize the given results as follows.

The  information  of  all  pairwise  interactions  cannot  be  decom-
posed into those from a subset of pairwise interactions if all vari-
ables  are  fully  connected.  However,  if  unconnected  pairs  exist,
we  may  be  able  to  decompose  the  global  pairwise  interactions
into a certain set of local interactions. 

3.4 Decomposability of Global Connected Information: Graphs That 
Share One Edge or Vertex  

As shown earlier,  the  global  connected information corresponding to
the  fully  connected  graphs  cannot  be  decomposed  into  a  set  of  sub-
graphs.  This  does  not  mean  that  graphs  that  are  not  fully  connected
can always be decomposed. What kinds of graphs can be decomposed
into  smaller  pieces  of  subgraphs  that  enable  us  to  rationalize  global
features in terms of the composite elements? Here is the answer: if the
global  connected  information  corresponding  to  a  graph  consists  of
subgraphs that share only one edge or one vertex with each other, this
global connected information can be decomposed into the sum of the
local  connected  information  corresponding  to  these  subgraphs,  sub-
tracted by the local connected information associated with the sharing
edge or vertex of the subgraphs.

This  decomposability  rule  can be  generally  proven but  doing so is
beyond the scope of this paper. Here, we simply illustrate this rule by
considering  a  concrete  example  as  shown  in  Figure  3.  The  graph  in
Figure 3 consists of two squares that share only one edge. In this case,
the probability distribution can be decomposed as follows: 

(30)
PHx1, x2, x3, x4, x5, x6L !

PHx1, x2 x3, x4, x5, x6L PHx3, x4, x5, x6L,
(31)! PHx1, x2 x3, x4L PHx3, x4, x5, x6L,
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(32)!
PHx1, x2, x3, x4L PHx3, x4, x5, x6L

PHx3, x4L ,

where the first equality comes from the chain rule of probabilities and
the Markovian relations in Section 3.2 were used in the second equal-
ity.  Moreover,  since the marginal  distribution (MD) PHx1, x2, x3, x4L
is equal to ⁄x5,x6

PHx1, x2, x3, x4, x5, x6L, its coordinates in the mix-
ture coordinate system are given by 

Ih1, h2, h3, h4, h12, h24, h34, h13,

q14 ! 0, q23 ! 0, qi j k ! 0, q1234 ! 0M
with  i, j, k œ 81, 2, 3, 4<.  These  coordinates  are  the  same  as  those  of
the  probability  distribution  corresponding  to  the  square  subgraph
with vertices  1,  2,  3,  and 4 in  Figure  3.  Similarly,  the  coordinates  of
the  MD  PHx3, x4, x5, x6L  match  those  of  the  square  subgraph  with
vertices 3, 4, 5, and 6. Finally, the MD PHx3, x4L appearing in the de-
nominator of equation (32) has the same marginals h3, h4, h34  as the
subgraph corresponding to the  shared edge (the  edge connecting ver-
tices 3 and 4) of the two square subgraphs. Therefore, the decomposi-
tion  of  the  global  connected  information  associated  with  the  graph
with  two squares  sharing  one  edge  can  be  represented  graphically  as
shown in Figure 3.

Figure 3. Two squares that share one edge.  

3.5 Indecomposable Cases  
Here, we look into what circumstances prevent us from decomposing
global features into the individual composite elements. Namely, what
kinds  of  graphs  that  are  not  fully  connected  cannot  be  decomposed
into smaller pieces of subgraphs?

Similar to Section 3.1, by using some simple examples as shown in
Figure 4, we consider the cases in which two subgraphs share two or
more edges. 

The first example is a square (see Figure 4(a)) consisting of two sets
of two-edges that share two vertices (2 and 3) without any edge con-
necting them. The MED PHx1, x2, x3, x4L can be written as follows: 

(33)P Hx1, x2, x3, x4L ! P Hx1 x2, x3, x4L P Hx2, x3, x4L,
(34)PHx1, x2, x3, x4L ! PHx1 x2, x3L PHx2, x3, x4L,
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(35)PHx1, x2, x3, x4L !
P Hx1, x2, x3L P Hx2, x3, x4L

P Hx2, x3L .

The MD PHx1, x2, x3L ! ⁄x4
PHx1, x2, x3, x4L has the marginal co-

ordinates h1, h2, h3, h12, h13, and q123 ! 0. The number of degrees of
freedom  to  specify  PHx1, x2, x3L  is  7 ! 23 - 1  and  we  must  identify
the last variable, that is, q23.

Note  that  q23  for  the  MED PHx1, x2, x3, x4L  on  the  left-hand side
of  equation  (35)  vanishes  since  there  is  no  connection  between  ver-
tices 2 and 3 in the square graph in Figure 4(a). This can also be seen
from  the  fact  (and  the  Maclaurin  expansion,  see  equation  (14))  that
PHx1, x2, x3, x4L can be expressed by a product form of f12 f24 f34 f13,
where fi j  are some functions that depend on xi  and xj. Therefore, we
have 

(36)q23 !
!2

!x2 !x3

log f12 f24 f34 f13 x!0 ! 0.

On the other hand, the coordinate q23 does not vanish, in general, for
the MD PHx1, x2, x3L in equation (35) since we have

(37)q23 !
!2

!x2 !x3

log f12 f13 ‚
x4

Hf24 f34L x!0 " 0.

Since  q23 " 0  for  PHx1, x2, x3L,  the  graph  corresponding  to  the  local
connected  information  of  PHx1, x2, x3L  necessarily  contains  an  edge
connecting  vertices  2  and  3,  which  is  absent  in  the  original  square
graph. Therefore, the square graph fails to be decomposed into a sum
of its subgraphs. We note that the appearance of interaction between
x2  and  x3  (i.e.,  q23 " 0)  in  the  graph  corresponding  to  the  MD
PHx1, x2, x3L can be regarded as being induced by the simultaneous in-
teractions  of  8x2, x1<  and  8x1, x3<  (and  the  interactions  of  8x2, x4<
and  8x4, x3<;  see  Figure  4(a)).  The  detailed  discussion  of  the  proper-
ties of these induced interactions will  be given elsewhere. The second
example  in  Figure  4(b)  consists  of  two squares  that  share  two edges.
Similar  to  the  first  example,  the  MDs  PHx1, x3, x4, x5L  and
PHx2, x3, x4, x5L  contain  induced interaction between x3  and x5  that
is absent from the original MED, making it impossible to decompose
the global connected information.

In the last example shown in Figure 4(c), the graph consists of two
full  graphs  of  four  vertices  that  share  one  triangle.  The  MED of  the
global  connected  information  can  be  expressed  using  the  Markovian
relations as 
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(38)
PHx1, x2, x3, x4, x5L !

PHx3 x1, x2, x5L PHx1, x2, x4, x5L,
(39)!

PHx1, x2, x3, x5L PHx1, x2, x4, x5L
PHx1, x2, x5L .

Since  the  subgraphs  corresponding  to  the  MDs  PHx1, x2, x3, x5L
and  PHx1, x2, x4, x5L  are  fully  connected  graphs,  there  is  no  induced
“pairwise” interaction as in the first  and second examples.  However,
as shown in the following, PHx1, x2, x3, x5L contains induced “triple”
interaction that is absent from the original global connected informa-
tion.  Therefore,  the  graph  in  Figure  4(c)  cannot  be  decomposed
either.  The  possible  appearance  of  the  induced  triple  interaction  can
be  understood  as  follows.  The  MED PHx1, x2, x3, x4, x5L  can  be  ex-
pressed  using  the  Maclaurin  expansion  as  a  product  form
f12 f13 f14 f15 f23 f24 f25 f35 f45,  where  fi j  are  some  functions  depend-
ing  on  xi  and  xj.  We  can  also  express  the  marginal  probability
PHx1, x2, x3, x5L  as  f12 f13 f15 f23 f25 f35 ⁄x4

Hf14 f24 f45L,  in  which the
factor involving the summation depends on x1, x2, and x5. The coor-
dinate  q125  originating  from  the  Maclaurin  expansion  of  this
marginal probability is in general given by 

(40)

q125 !
!3

!x1 !x2 !x5

log‚
x4

P Hx1, x2, x3, x4, x5L x!0 " 0.

This  implies  the possible  appearance of  the induced triple  interaction
in the graph corresponding to the MD PHx1, x2, x3, x5L. Similar argu-
ments also hold for PHx1, x2, x4, x5L in equation (39).

The  common  feature  of  these  three  indecomposable  cases  is  that
MEDs resulting from the division of the original graph contain appar-
ent  interactions  the  original  MED  does  not  possess.  Such  apparent
interactions are regarded as a result of hidden variables. For example,
in Figure 4(a) PHx1, x2, x3L is an MD that is obtained by the summa-
tion  of  PHx1, x2, x3, x4L  over  x4.  In  the  original  probability  distribu-
tion x2 and x3 are not directly connected, but they are indirectly con-
nected via  x4.  The summation of  PHx1, x2, x3, x4L  over  x4  inevitably
results  in  a  “direct”  connection  between  x2  and  x3  in  PHx1, x2, x3L,
which  originally  arises  from  the  indirect  connection  via  the  variable
x4  hidden  in  the  MD.  In  addition,  such  emergent  interactions  (e.g.,
q23 " 0  in  PHx1, x2, x3L)  differ  from  the  corresponding  interactions
in  the  original  joint  probability  distribution  (i.e.,  h23  in
PHx1, x2, x3, x4L),  because  the  emergent  interactions  are  not  subject
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to  the  marginal  in  the  original  distribution.  As  seen  in  Figure  4(c),
apparent  direct  interactions  arising  from  hidden  variable(s)  can  also
create higher body interactions that the original distribution does not
possess. Such apparent direct interactions prevent us from decompos-
ing  the  global  connected  information.  We  can  summarize  these  find-
ings as: 

The  existence  of  interactions  due  to  hidden variable(s)  relate  to
the indecomposability of the connected information. 

Figure 4. Some  indecomposable  graphs.  (a)  One  square  that  shares  two  ver-
tices.  (b)  Two squares that  share two edges.  (c)  The five body case with one
missing  edge,  which  consists  of  two  full  graphs  of  four  variables  that  share
one triangle.  

4. Conclusion  

By  introducing  a  graphical  representation  for  the  multivariate  pair-
wise  interacting  network  and  establishing  the  corresponding  Marko-
vian  relations,  we  have  formulated  the  rules  for  decomposing  global
pairwise interaction into a sum of local pairwise interactions that can-
not  be  decomposed  further  (i.e.,  indecomposable).  Since  the  con-
nected  information  of  the  global  pairwise  interaction  is  a  superposi-
tion  of  those  from  its  indecomposable  subsystems,  the  consequences
obtained  in  this  paper  are  expected  to  provide  us  with  a  decomposi-
tion of a complex system (such as a neural network) into mutually in-
dependent  functional  modules  or  motifs  based  only  on  the  observa-
tion of its probability distributions.

Although  systems  with  binary  variables  and  pairwise  interactions
are  the  focus  in  this  paper  due  to  their  strong  connections  to  neural
systems,  the  generalization  of  the  given  discussion  to  nonbinary  and
higher-order  interactions  is  progressing  and  will  be  reported  sepa-
rately. On the other hand, it is interesting to extend the current time-
independent  picture, in  which  all  physical  quantities  are  time  inde-
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pendent,  to  the  time-dependent  regime  in  which  interactions  among
elements  in  complex  systems  can  change  in  time,  implying  the  possi-
bility of decomposing the global interaction into time-dependent func-
tional  modules.  Such generalization is  expected  to  provide  important
insights  in  revealing  the  evolution  of  neural  systems  and  in  the  large
scale  switching  of  global  neural  activities  in  response  to  external
stimuli. 
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