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A  susceptible-infected-susceptible  (SIS)  cellular  automaton  model  for
collective  neural  interactions  proposed  recently  is  revisited.  In  this
model,  neurons  are  simple  network  nodes  with  different  states:  active
or  firing,  and  quiescent.  The  main  thesis  of  this  approach  is  that  the
electroencephalogram  (EEG)  could  emerge  as  the  fluctuations  in  the
number  of  firing  neurons.  In  this  framework,  EEG  is  understood  as  a
statistical  epiphenomenon.  In  this  paper,  the  mean  number  of  active
sites  and  the  self-correlation  function  both  in  the  SIS  stochastic  model
and in elementary cellular automata (ECAs) are considered. Damped os-
cillatory  relaxation  to  the  stationary  state  is  found  both  in  the  SIS
model  and  in  ECA  rule  30;  periodic  oscillations  are  found  for  other
class  3  and  class  4  cellular  automata.  A  statistical  analysis  of  the  self-
correlations in real EEG shows that the damped oscillatory relaxations
are found both in delta and alpha waves. The normalized amplitude of
these  correlations  is  predicted  by  cellular  automata  models.  This  rein-
forces  the  view  of  the  brain  as  a  highly  complex  cellular  automata
system. 

1. Introduction

Hans  Berger,  a  German  medical  doctor,  discovered  in  1929  that  be-
tween  electrodes  attached  to  the  human  scalp,  a  potential  difference
in  the  millivolt  range  could  be  detected  by  means  of  a  precision  gal-
vanometer [1]. He observed that a rhythmic pattern with a frequency
of  8  to  12  Hz  was  recorded  from  subjects  with  their  eyes  closed
(known  as  the  alpha  rhythm  or  Berger’s  wave).  After  opening  their
eyes, the frequency increased to 12 to 30 Hz (beta rhythm).

In  his  work,  Berger  was  inspired  by  the  findings  of  the  surgeon
Richard Caton, who in 1875 measured electrical potentials on the cor-
tex  of  laboratory  animals.  The  discovery  of  intracranial  measures  of
electrical activity preceded Berger’s epoch-making discovery by half a
century.  The  importance  of  Berger’s  method  is  that,  as  an
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extracraneal and non-invasive technique, it  could develop into a very
useful  monitoring  and  diagnostic  tool  for  neurologists  and  psychia-
trists. 

Electroencephalogram  (EEG)  discovery  was  ignored  for  almost  a
decade. Most researchers thought that these small  currents were arti-
facts of the experimental apparatus and the human body. Finally, this
pioneering work was publicly recognized in 1937 when Berger was in-
vited  to  an  international  psychology  conference  in  Paris.  The  same
year,  A.  Lee  Loomis  and  his  collaborators  classified  the  different
stages  of  sleep  in  relation  with  EEG signals  [2].  At  that  time,  it  was
clear  that  during  sleep,  the  EEG  pattern  underwent  changes  that
could  be  recognized  by  counting  the  number  of  zero  crossings  (as  a
qualitative measure of frequency) and their amplitude. The transitions
as proposed today by the American Academy of Sleep Medicine are as
follows: 

† Stage  1:  As  observed  by  Berger,  during  awareness  the  brain  produces
the alpha wave with a mixture of frequencies in the 8 to 12 Hz range.
This is a fast rhythm with low amplitude. When the individual becomes
drowsy, the pattern changes to the theta wave with lower frequencies in
the 4 to 7 Hz range. 

† Stage  2:  In  this  stage,  the  basal  EEG is  sporadically  interrupted  by  K-
complexes (high-voltage peaks around 100 mV occurring with a period-
icity  of  1.0  to  1.7  minutes)  and  the  so-called  sleep  spindles  or  sigma
waves with a frequency of 13 to 17 Hz appear every 0.5 to 1.5 seconds. 

† Stage 3: This is the most deep stage of sleep. It is characterized by delta
waves ranging from 0.5 to 2 Hz and an amplitude from the negative to
the  positive  peak  around  75  mV.  The  small  frequency  of  these  waves
has led to the name slow-wave sleep for this stage. 

Frequencies of EEG patterns are commonly associated with a subcorti-
cal  pacemaker  located  at  the  thalamus.  This  has  been  criticized  re-
cently as a fallacy in EEG research [3].  An explanation of EEG must
resort to models of brain dynamics. One of the most evident and still
unexplained features of EEG during the transition through the stages
of sleep is the negative correlation between amplitude and frequency,
that is, amplitude increases when the subject becomes drowsy and gen-
erates  theta  waves  and,  subsequently,  the  subject  falls  deeply  asleep,
resulting in delta waves that are recorded by the EEG. It seems para-
doxical  that  when  the  individual  is  in  the  deep  sleep  state  and  the
global  brain activity is  apparently smaller  that  the amplitude of  EEG
becomes  larger.  Explaining  this  phenomenon  should  be  an  objective
of  any  theory  of  brain  dynamics.  The  susceptible-infected-susceptible
(SIS) cellular automaton model provides an explanation in terms of a
phase  transition  as  the  probability  of  infection  a  approaches  the
threshold bN [4, 5].

Cellular  automata  models  that  relate  EEG  with  statistical  fluctua-
tions  of  the  neural  network  could  provide  an  approach  to  this  un-
solved  problem.  In  this  paper,  we  explore  the  self-correlation  behav-
ior  of EEG in  comparison with  the  solution of  the  stochastic  cellular
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automaton  model  of  the  brain.  The  structure  of  the  paper  is  as  fol-
lows.  In  Section  2,  we  describe  the  SIS  cellular  automaton  model  of
the brain and an exact solution by means of modal series is found by
means  of  the  technique  in  [6,  7].  In  this  section,  the  self-correlation
function is also calculated for the SIS model. A classification of the be-
havior for elementary cellular automata (ECAs) is  also performed. In
Section 3,  the self-correlations of  EEG signals  are calculated and dis-
cussed in relation to the solution of the SIS model and ECAs. The pa-
per ends with some conclusions in Section 4. 

2. The Brain as a Stochastic Cellular Automaton Model

In  previous  works,  a  cellular  automaton  model  for  the  evolution  of
the number of firing neurons in the brain at a given time has been pro-
posed [4, 5]. This model follows the rules of the SIS model from math-
ematical  epidemiology [8],  where  the  quiescent  neurons play the  role
of susceptible individuals and the firing neurons correspond to the in-
fected  sites.  In  the  homogeneous  mixing  regime,  every  individual  is
connected  to  any  other  individual  in  the  network  (complete  graph)
and the probability for a given site for changing its state from suscepti-
ble to infected under the influence of an infected site in the network is
a constant, a. We must take into account that susceptible sites have a
chance  of  being  infected  by  any  infected  site  in  the  network  because
we  assume  homogeneous  mixing  (every  node  is  connected  to  every
other node). Therefore, the probability for a susceptible site not being
infected  by  any  infected  site  in  the  network  is  H1 - aLIHtL.  Conse-
quently,  the  probability  for  a  susceptible  individual  to  become  in-
fected at the next time step is given by the complementary as

(1)!HS Ø IL " 1 - H1 - aLI HtL º a IHtL,
where  the  approximation  is  valid  for  small  values  of  the  infection
probability, a. However, in order to avoid the overcounting of proba-
bilities  (a  site  being  infected  two  times  by  another  site),  it  has  been
shown by M. A. M. de Aguiar et al. [9] that this approximation is in-
deed the correct answer to the problem of infection by multiple neigh-
boring  sites.  The  recovery  from the  disease  proceeds  with  a  constant
probability b. In this case, the infected sites again become susceptible.
Taking  these  rules  into  account,  we  can  easily  write  the  following
mean-field evolution equation for IHtL:

(2)IHt + 1L " IHtL + a IHtL HN - I HtLL - b IHtL.
Alternatively, we can write this equation in terms of the fraction of in-
fected sites, xHtL " IHtL ê N, as follows:

(3)x Ht + 1L " xHtL + HNa - bL xHtL - Nax2HtL.
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The  critical  points  of  this  Markovian  process  are  xc " 0  or
xc " HNa - bL ê Na.  The  trivial  point  xc " 0  is  stable  for  Na < b.  If
a ¥ ac " b ê N,  the  second point  is  stable  and corresponds to a  posi-
tive  fraction  of  infected  sites.  An  exact  solution  of  the  susceptible-
infected-recovered-susceptible  (SIRS)  epidemic  model  has  recently
been found by using a modal series expansion [6, 7]. We now imple-
ment this  technique in the discrete  domain to solve equation (3).  We
propose a modal series for xHtL of the form  

(4)xHtL " ‚
k!0

¶

#k ak t.

By  inserting  this  expression  into  the  evolution  equation  in  equa-
tion!(3), we find

(5)

‚
k!0

¶

#k ak Ht+1L "

‚
k!0

¶

#k ak tH1 + Na - bL - Na ‚
j!0

¶ ‚
l!0

¶

#j #l aHj+lL t.

We can reorder  the  double  sum as  a  Cauchy product  by  introducing
the index k " j + l, which runs from 0 to ¶. So, we have

(6)‚
j!0

¶ ‚
l!0

¶

#j #l aHj+lL t " ‚
k!0

¶ ‚
j!0

k

#j #k-j ak t.

This equation must be satisfied for every k, so we obtain a set of infi-
nite equations for the coefficients:

(7)#k ak " #kH1 + Na - bL - Na ‚
j!0

k

#j #k-j.

In particular, for k " 0 we obtain the equation with a solution that is
the fixed point of the SIS model:

(8)#0 " #0H1 + Na - bL - #0
2 Na,

whose solutions are

(9)#0 " 0 or #0 "
Na - b

Na
.

The  first  solution  corresponds  to  the  extinction  of  the  epidemic,
which happens for a < ac " b ê N. In this case, the trivial solution is a
stable  state.  For  a > ac, the  stable  state  is  given  by  the  second  solu-
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tion, that is,  #0 " Ha - acL ê a.  Notice that,  as is  obvious,  #0 > 0 for
a > ac corresponding to a positive number of active sites.

In  the  following,  we  assume  that  a > ac  and  #0  is  given  by  the
nonzero  value.  The  deduction  is  very  similar  for  #0 " 0.  For  k " 1,
we obtain the following from equation (5): 

(10)#1 a " #1H1 + Na - bL - 2 #0 #1 Na.

We now take into account that #1 ! 0 because this value should cor-
respond  to  the  initial  condition  of  our  problem,  as  shown  later.
Consequently, equation (10) yields an expression for the basic mode a:

(11)
a " 1 + Na - b - 2 #0

Na " 1 - HNa - bL, Na > b,

where we have taken into account that #0  is the nonzero solution in
equation (9). From equation (7), we now know that for any k ¥ 2,

(12)#k ak " #kH1 + Na - bL - Na 2 #0 #k + ‚
j!1

k-1

#j #k-j

(13)#k ak " #k a - Na ‚
j!1

k-1

#j #k-j,

where  we  have  used  equation  (11)  in  the  last  step.  From  equa-
tion!(12), we obtain the recurrence relation as follows:

(14)#k "
Na

a - ak
‚
j!1

k-1

#j #k-j, k " 2, 3, ….

It  can  be  easily  shown  that  equation  (14)  also  holds  for  #0 " 0,
#1 ! 0, but in this case the fundamental mode is given by

(15)a " 1 + Na - b, Na < b.

Notice that in equations (11) and (15), we have a < 1. This is compat-
ible  with  the  convergence  of  the  modal  series  in  equation  (4).  More-
over,  for  a < 0,  the  series  becomes  oscillatory.  We  have  already
shown that the best fitting of the EEG model for EEG seems to be just
above  the  critical  threshold  value  ac " b ê N  [5]  and  this  implies
a < 0. So, oscillatory damping in the mean activity of the brain must
also be found. In Figures 1 and 2, we plot the exact solution obtained
from equations (5) and (14) for some typical values of the parameters.
For N " 10 000 and b " 0.03, we obtain an exponential decay behav-
ior for a " 2ä10-5  (with a fundamental mode a " 0.83) and oscilla-
tory  damping  for  a " 2ä10-4.  In  the  latter  case,  the  fundamental
mode is negative, a " -0.97, and this gives rise to the oscillations.
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Figure 1. Exact  solution  of  the  discrete  SIS  model  for  N ! 10 000,
a ! 2ä10-5,  and  b ! 0.03.  The  stationary  state  is  "0 ! 0.85.  The  initial
condition  is  xHt ! 0L ! "0 + 0.0538427  corresponding  to  "1 ! 0.05.  The
difference xHtL - "0 is plotted versus time. 

Figure 2. The  same  as  Figure  1  but  for  N ! 10 000,  a ! 2ä10-4,  and
b ! 0.03.  The  stationary  state  is  "0 ! 0.985.  The  initial  condition  is
xHt ! 0L ! "0 + 0.0588801 corresponding to "1 ! 0.05. 

However, it is not possible to obtain any information about the av-
erage number of firing neurons in the brain from EEG because of two
reasons:  (i)  EEG  is  the  potential  difference  between  two  electrodes
and measures  the  difference  of  activity  between two brain areas  or  a
brain  area  and a  reference  electrode,  and (ii)  there  is  no  way to  per-
form the average implicit in xHtL from EEG because we do not know if
two  different  points  in  the  record  correspond  to  the  same  deviation
from the stationary asymptotic activity. 

So,  we  will  consider  the  self-correlation  function  of  the  signal  de-
fined as follows: 

(16)fHtL " Xx Ht x0L x0\ - XxHtL\2,
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where x0  is the initial fraction of active sites and xHt x0L is the activ-
ity at time t  starting from an initial  state with a fraction x0  of active
sites. The average is performed over all possible initial states. The av-
erage activity at any instant is given by the asymptotic value #0.

It  has  been shown that  EEG has  a  Gaussian histogram and this  is
predicted by the SIS model: 

(17)!HxL "
1

2 ps2

e-Hx-"0L2ëI2s2M,

where s2 > 1 ë N for a t ac. The average in equation (16) can be cal-
culated approximately:

(18)

XxHt x0L x0\ " ‡
0

1
xHt x0L x0 !Hx0L d x0 >

‡
-c

c
xHt x0L H#0 + eL !H#0 + eL de,

where  we  have  used  the  approximation  x0 " #0 + e,  which  is  valid
for  small  values  of  #1 " e  as  deduced  from  equations  (4)  and  (14).
The  integral  can  also  be  truncated  to  a  small  intervalH#0 - c, #0 + cL.  For  example,  we  have  chosen  the  values
a " 2ä10-4,  b " 0.35,  and  N " 10 000,  which  correspond  to  the
mode a " -0.65. The integral in equation (18) can now be truncated
with c " 0.05 with an error of 10-6 in the normalization of the Gaus-
sian. Using this data, we have found the results in Figure 3. Damped
oscillatory behavior is also found.

Figure 3. Normalized  self-correlation  function,  f HtL ë "0
2,  for  the  SIS  model

with  N ! 10 000,  a ! 2ä10-4,  and  b ! 0.35.  The  solid  line  interpolation
was  obtained by  taking  the  real  part  of  equation (18)  for  non-integer  values
of time t. Values in the vertical axis have been multiplied by a factor 104. 

          
          

          
          

           
           

           
          

Self-Correlations of Electroencephalograms 295

Complex Systems, 20 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.4.289



It  is  useful  to  investigate  how  general  these  behaviors  are  within
the general context of cellular automata models. In particular, we will
consider ECA rules [10]. Starting from a random configuration with a
certain  fraction  of  active  sites  (Boolean  state  1),  we  perform  simula-
tions  for  an  interval  of  time  and  calculate  the  average  number  of
active  sites  for  every  time  step.  This  average  is  obtained  over  many
evolutions, all  starting with the same fraction of active sites but with
a distribution of the 1 and 0 states randomly chosen. 

Following this method, we observe periodic oscillations in the case
of  ECA rules  26,  28,  38,  50,  and 52.  Damped oscillations  are  found
for ECA rule 30 as shown in Figure 4.  

Figure 4. Average  number  of  active  sites  for  ECAs.  Solid  lines  correspond  to
ECA rules  26,  28,  38,  50,  and 52.  Dotted  line  corresponds  to  ECA rule  30.
An  average  over  5000  simulations  of  a  cellular  automaton  with  1000  sites
was performed. 

The  self-correlation  function  for  ECA  rule  30  can  also  be  calcu-
lated if we assume a distribution of initial fractions of active sites. For
example, by choosing

(19)! Hx0L "
0.25 for x0 = 2 ê 3

0.5 for x0 " 1 ê 2

0.25 for x0 " 1 ê 3,

we obtain the results in Figure 5.
We must also notice that some deterministic versions of the SIS cel-

lular automaton model discussed in this paper have been recently pro-
posed.  In  particular,  Brian’s  Brain  is  a  deterministic  two-dimensional
cellular automaton whose rule is as follows: off cells turn on if exactly
2 of their 8 neighbors are on, on cells go into recovery mode, and re-
covered cells become off [11]. This model displays a sufficient level of
complexity  that,  according  to  Wolfram’s  Principle  of  Computational
Equivalence  [10], it  would  be  computationally  universal.  However,
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universality  has  not  been  definitely  proved.  On  the  other  hand,  it  is
obvious  that,  if  the  brain  is  described  by  a  cellular  automaton,  it
should  be  a  computationally  universal  one  because  the  brain  is  the
paradigm of a general-purpose computational device. In Figure 6, we
have plotted the evolution of the SIS rule for a system with 50 nodes. 

Figure 5. Self-correlations for ECA rule 30. An average over 5000 random ini-
tial conditions according to the distribution in equation (19) was performed. 

Figure 6. Array  plot  for  the  evolution  of  the  SIS  rule  starting  with  an  initial
condition  corresponding  to  50% of  active  sites.  Time  steps  run  from top  to
bottom since t ranges from 0 to 50. 
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The  evolution  pattern  is  sufficiently  complex  to  suggest  computa-
tional universality for the SIS model. 

In Section 3, we discuss the relevance of these statistical behaviors
for EEG. 

3. Correlation Behavior of Electroencephalograms

Quantitative EEG analysis is a broad field with many clinical applica-
tions [12]. In a pioneering study, N. Wiener proposed that EEG could
be understood in terms of a set of nonlinear coupled oscillators [13].
The  correlation  dimension  developed  as  a  tool  in  the  context  of  the
theory  of  chaotic  attractors  by  Grassberger  and  Procaccia  [14]  has
been  recently  used  as  a  way  to  characterize  EEG  in  different  sleep
stages  [15].  However,  the  more  traditional  spectral  decay  has  been
found to be more robust [16].

Explaining brain dynamics in terms of chaotic attractors in a deter-
ministic  chaotic  system is  currently losing supporters.  The hypothesis
of understanding EEG as a fractal structure is more promising. In this
context,  the  widely  extended  term  of  “brain  waves”  to  describe  the
different EEG states has been contributing to the confusion. The epi-
demic model discussed in this paper provides a scenario in which the
erratic activation of nodes in a complete network could mimic the ran-
dom  oscillations  of  EEG.  In  every  state  (awake  subject,  initiation  of
sleep,  deep  sleep,  etc.)  the  brain  achieves  a  stationary  state  but,  as  it
occurs  in  the  dynamical  equilibrium  of  systems  composed  by  many
particles,  fluctuations  around  the  mean  are  observed.  In  this  model,
EEG should be a measure of these fluctuations obtained as the differ-
ence in the electric potentials of two electrodes attached to the scalp.
These  electrodes  perform an  average  over  many  neurons  located  un-
der the scalp and, consequently, the potential VHtL oscillates randomly
depending on the number of active neurons in these areas. 

In order to analyze the relaxation of correlations in EEG, we have
divided EEG records corresponding to the same state and with a total
length  that  varies  from  30  minutes  to  1  hour  in  portions  of  10  sec-
onds.  These  portions  are  then  considered  as  independent  records  be-
cause  autocorrelations  are  supposed  to  vanish  after  a  few  seconds.
This is confirmed in the subsequent analysis. The self-correlation func-
tion f HtL is calculated as follows: 

(20)f HtL " XVHtLVHt " 0L\ - XV HtL\2,

where  the  average  is  performed  over  the  different  portions  obtained
from the full EEG records and XVHtL\ denotes the average potential in
the full record. Results for slow-wave sleep (delta rhythm) and the al-
pha  rhythm are  plotted  in  Figures  7  and  8,  respectively.  In  both  fig-
ures,  we see that fHtL  behaves as a damped oscillation.  This behavior
is  particularly  conspicuous  in  the  case  of  the  delta  rhythm, where  a
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more smooth average is obtained. We also see that EEG autocorrela-
tions  decay  faster  for  slow-wave  sleep  than  for  awake  individuals.
This  is  consistent  with  a  larger  coordination  of  different  brain  areas
during wakefulness.

Figure 7. The self-correlation function of the delta rhythm. Time is  measured
in  seconds.  fHtL  is  normalized  with  the  average  activity  XVHtL\2  in  the  corre-
sponding data interval. 

Figure 8. The same as Figure 7 except for the alpha rhythm. The vertical axis
represents fHtL ë XVHtL\2 in units of 10-4. 

Moreover,  damped  oscillatory  oscillations  are  common  in  certain
regimes of  epidemic models.  This  is  found in the SIS model  analyzed
in Section 2 and also for ECA rule 30. The order of magnitude of the
normalized  self-correlations  is  similar.  By  comparing  Figure  3  and
Figure  7,  we  can  estimate  that  the  underlying  brain  cellular  automa-
ton updates two times per second. A complete oscillation for the cellu-
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lar automaton takes two units of time, which corresponds to one sec-
ond in the behavior of fHtL  as shown in Figure 7. This could seem to
be a slow update schedule. However, the phi phenomenon (the visual
illusion responsible for the merging of the individual images in a film
projection into a continuous movie when the brain receives more than
12 images  per  second)  suggests  that  the  visual  cortex has  a  temporal
resolution corresponding to the processing of only several images per
second [17]. We conclude that the shape of the correlation function of
the SIS model is qualitatively similar to that of EEG data from alpha
and  delta  rhythms,  and  therefore  the  SIS  model  warrants  further
study as a possible mean-field model of neuron dynamics. 

4. Concluding Remarks

In  this  paper,  we  have  revisited  the  susceptible-infected-susceptible
(SIS)  model  for  brain  dynamics.  This  model  can  be  understood  as
stochastic cellular automata with a population of individual automata
placed upon the  nodes  of  a  complete  graph.  An interpretation of  the
SIS model in terms of neural physiology has been proposed: firing neu-
rons  correspond  with  the  infected  sites,  while  quiescent  neurons  are
mimicked  by  susceptible  sites.  In  several  previous  papers  [4,  5],  this
model  was  investigated  in  connection  with  a  proposal  to  understand
the  electroencephalogram (EEG)  as  a  statistical  epiphenomenon,  that
is,  EEG  is  simulated  as  the  fluctuations  in  the  number  of  firing
(infected) sites in a finite-size complete network evolving according to
the SIS model’s rules.

In the SIS model of brain activity, firing neurons incite other quies-
cent  neurons  in  the  network to  start  firing with a  probability  a.  The
return to the  quiescent  state  for  firing neurons is  modeled by a  Pois-
son stochastic  process  with a probability  b  per  unit  time.  The higher
amplitude and lower frequencies of the delta wave were found as a de-
creases  because  fluctuations  become  larger  in  this  regime  [4].  This
could explain the paradox of higher amplitude of EEG signals during
deep sleep,  where the effectiveness  of  the propagation of  firing activ-
ity,  a,  could  be  lower.  This  is  compatible  with  the  rebound  of  the
levels  of  glutamic  acid,  the  main  excitatory  neurotransmitter  in  the
cerebral cortex, observed after sleep deprivation in rats [18–21] or the
decline or cerebral glucose utilization during sleep [22]. 

In  this  paper,  we  have  shown  that  the  damped  oscillatory  relax-
ation  behavior  that  appears  in  the  SIS  model  and  can  be  fully  de-
scribed analytically is also a pattern found in the EEG signals. This be-
havior is also found in ECA rule 30. 

Cellular  automata have  already been studied as  models  of  cortical
physiology in a rough model  by Hofmann [23] and also as  a way to
disclose  spatio-temporal  patterns  of  activity  in  the  hippocampal  net-
work [24]. Models of neural populations motivated by the confluence
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of the theory of cellular automata defined upon networks have devel-
oped as a field unto itself known as neuropercolation [25]. 

In  our  model,  we  describe  the  relations  between  individual  au-
tomata by means of a complete graph. This is, apparently, a very sim-
ple  structure  for  a  brain,  but  a  complete  set  of  connections  between
compartments  in  the  brain  has  also  been  proposed  as  a  reasonable
model  predicting  some  invariances  observed  between  different
species![26]. 

Nevertheless,  the  number  of  synapses  that  a  typical  neuron  in  the
human cortex projects toward their neighbors is in the range of 7000
to  12 000  [27].  Consequently,  a  more  realistic  cellular  automaton
model  of  the  brain  should  be  defined  upon  a  more  sparse  network:
random network [28] or a Watts–Strogatz network [29]. It  would be
interesting  to  analyze  the  computational  capabilities  of  these  cellular
automata and their relevance to EEG analysis. Nevertheless, the com-
putational  effort  to  simulate  a  cellular  automaton model  in  a  signifi-
cantly  large  system  incorporating  at  least  one  million  nodes  is  vast
and will  require the implementation of  a distributed computing solu-
tion. Work along these lines is in progress. 
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