
Assessment of Geriatric-Specific Changes in 
Brain Texture Complexity Using a 
Backpropagation Neural Network Classifier

R. Kalpana*

S. Muttan†

Department of Electronics and Communication Engineering
Anna University
Chennai 600025, India
*kalpanatirth@gmail.com
†muthan_s@annauniv.edu

A method to assess the aging of a human subject by modeling the devo-
lution of the textural features in brain images using a backpropagation
neural network (BPNN) is described in this paper. Normally, the brain
white  matter  (BWM)  undergoes  degenerative  changes  in  its  physical
and functional stochastics during the aging process. Relevant structural
morphology observed in the brain complex can be measured via diffu-
sion  tensor  magnetic  resonance  imaging  (DTMRI).  Using  the  underly-
ing statistical details of the pixels in the brain image captured, BPNN is
used  to  classify  the  distinct  BWM  parameters,  which  are  then  corre-
lated to the subject’s age. The brain complex invariably shows an evolu-
tionary changing trend (in the negative direction) in its textural features
during the aging process. Clinical DTMRI datasets from subjects of dif-
ferent age groups are used to study the efficacy of the proposed method
of correlating brain-textural degeneration versus age.

1. Introduction

The brain textural  format is  a  typical  display of  a  biological  pattern,
which is  “carefully crafted to satisfy some elaborate constraints” [1].
Ascertaining  such  brain  textural  characteristics  is  of  clinical  interest.
Texture  analysis  can  identify  the  underlying  texture  and  express  the
patterns (associated with a smear of characteristic features) in quanti-
tative terms.

The  brain  complex  viewed  for  its  stochastical  features  of  macro-
scopic physical structure (anatomical aspects) and physio-neurological
functions typically exemplifies a biological complex system as defined
in  [2].  Further,  the  brain  complex  invariably  shows  an  evolutionary
changing trend (in the negative direction) in its  textural  features dur-
ing the aging process. Essentially, such changes indicate a decrease in
myelin  density  as  well  as  alterations  in  myelin  structure  [3].  That  is,
any morphology observed in the textural format of the brain complex
manifests,  for  example, in  the  so-called  cerebral  white  matter  (also
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known as brain white matter  or BWM). Typically,  such degenerative
changes occur with the progress  of  normal aging and can be visually
seen  in  the  scanned  images  across  the  textural  features.  That  is,
geriatric-specific  conditions  introduce  morphological  artifacts  to  the
image texture.  Likewise,  certain pathogenic symptoms may also indi-
cate  abnormalities  in  the  regions  of  interconnecting  white  matter
tracts [4]. 

Degenerative textural features in the BWM can be observed in the
clinical images obtained via diffusion tensor magnetic resonance imag-
ing  (DTMRI)  scans.  By  using  such  clinically  scanned  images  of  the
brain, the associated textural features can be modeled, identified, and
specified  by  a  set  of  statistical  parameters.  Changes  seen  as  distinct
characteristics in the BWM (expressed via statistical measures) can be
classified  by  a  tool  such  as  a  backpropagation  neural  network
(BPNN) trained to learn the mapping of such textural features. 

The scope of this study includes: (i) obtaining clinical BWM images
(via  DTMRI  scans)  from  adult  subjects  of  different  age  subgroups
(having  no  pathogenic  conditions);  (ii)  estimating  the  textural  com-
plexity  of  the  images  in  terms  of  statistical  features;  and  (iii)  using
such statistical feature data as input vectors to train a BPNN, wherein
data  is  mapped  and  stored  as  weight  vectors  with  the  output  of  the
BPNN  corresponding  to  each  image  depicting  the  age  of  the  subject
whose brain scan data is used. That is, the BPNN is designed to indi-
cate  the  age  linked  to  the  image  texture  statistics;  (iv)  we  exercise  a
prediction  phase  where  the  trained  BPNN  classifies  a  fresh  set  of
brain  image  statistical  features  (addressed  as  input  vectors)  of  a  sub-
ject of unknown age by comparing the input data with trained vectors
representing  the  patterns  of  the  image  and  declare  at  the  output  the
age of the subject.

In short, this study offers a BPNN-based method to classify a given
brain image of a subject versus the age of the subject. That is, DTMRI
images of the brains of human subjects (in the age group of about 50
to  80  years)  are  clinically  collected  and  the  specific  feature  data  of
BWM morphology is classified using a BPNN and correlated to the ag-
ing profile of the subjects.

2. Degenerative Features of the Brain versus Age of the Subject

BWM is a part of the brain made of cells called “axons” that connect
massively to one another in a parallel architecture so that communica-
tion flows between neural cells.  White matter gets its coloring due to
the myelin coating of axon nerve fibers. Healthy aging is normally as-
sociated with morphological changes in the structure, physiology, and
biochemistry  of  the  brain.  Brain  size  and  weight  inevitably  decline
with age. These changes begin in young adulthood but accelerate after
the  age  of  60, resulting  in  about  a  15%  decrease  in  the  ratio  of
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brain/skull  volume  [5].  Corresponding  changes  in  BWM  are  com-
monly known as leukoaraiosis.

The  textural  features  and  associated  changes  in  the  BWM  can  be
assessed via neuro-imaging [6, 7]. This technique allows scientific un-
derstanding of human brain development. Specifically, magnetic reso-
nance imaging provides detailed images of brain anatomy with a clear
definition  of  gray  and  white  matter  structures.  The  introduction  of
DTMRI offers  a  distinct  way  to  observe  such  gray  and white  matter
anatomy.  This  non-invasive  three-dimensional  modality  measures  the
water  molecule  motion  within  the  tissues  using  the  magnetic  reso-
nance  principle  [8].  In  this  paper,  DTMRI images  obtained  from the
center of the corpus callosum of clinical subjects (adults) are used and
analyzed in terms of their features characterized by statistical parame-
ters.  The  scope  of  this  study  would  lead  to  understanding  the  mor-
phology  of  BWM  versus  age.  Any  abnormal  changes  observed  that
are  inconsistent  with  the  age  would  mean  possible  pathological
conditions.

In this paper, relevant to the objective of correlating the scanned lo-
cal  image  data  of  the  BWM  (having  degenerative  attributes)  versus
the age of the subject, an image classification method is pursued.

3. Analysis of Brain Textural Complexity

Recognizing specific textural features in an image is a well-known im-
age processing technique [9]. Acquisition of such image feature infor-
mation is in essence a pattern recognition process. It can be done by a
system,  which  takes  the  set  of  pattern/feature  details  and identifies  it
as  a  specific  class  (among  a  number  of  previously  known  classes).
Functionally,  such pattern-recognition systems (or  machines)  need an
input vector set depicting the characteristic features of the test image.
It  can  then  associate  the  input  vector  set  as  closely  as  possible  to  a
known  set  of  patterns  (stored  as  key  vectors)  and  declare  an  output
vector specifying the class of the pattern consistent with the input in-
formation. 

Relevant  recognition  of  textural  features  in  an  image  (e.g.,  of  the
brain) involves the following basic steps.

Step 1: Modeling the textural features of the test image to yield the nec-
essary input vector set for pattern analysis

Step 2: Constructing an image-processing machine and exercising train-
ing phase of the machine to learn and store key patterns pertinent to a
set of input vector patterns

Step  3:  Addressing  the  machine  with  a  fresh  input  test  pattern  to  be
classified so that the machine performs an association of the input vec-
tor with the set of stored key patterns toward classification; hence, the
machine  declares  the  input  test  vector  belonging  to  a  specific  class  (of
known feature characteristics) 
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Step  1  involves  formulating  the  necessary  input  vector  set  of  the  un-
derlying image textural features. For this purpose, the test image tex-
ture has to be modeled so as to yield necessary input vectors for use in
the  image-processing  machine.  For  example,  pertinent  to  textural  as-
pects of brain complexity, a cellular automaton (CA) model has been
indicated  by  S.  Wolfram [1].  Essentially,  a  CA model  is  specified  by
the underlying dynamics of the system, mostly discrete in space, time,
and state variables [10]. Further, a CA is considered as a good model
for  the  study  of  nonlinear  complex  systems  characterized  by  posses-
sion  of  exclusively  local  mechanisms  of  interaction.  Inspired  by  this
notion,  Wolfram [1]  advocates  that  “images can be specified notably
with  systems  equivalent  to  additive  cellular  automata”  and  a  CA  is
convenient in depicting distinctive features as in the brain complex.

Notwithstanding  the  elegance  and  feasibility  of  CA  modeling  to-
ward textural  analysis  of  images,  there  are  also other  avenues  of  im-
age-analysis methods indicated in the literature [4, 9].

In  the  present  study,  relevant  modeling  of  textural  features  in  the
brain complex toward image classification is done via statistical char-
acterization  of  the  image  structure.  That  is,  textural  features  of
images are elucidated in terms of statistical norms on the basis of gray-
tone  spatial  dependencies  toward  image  classification.  The  heuristics
of this approach are as follows. Textural features possess information
about the spatial distribution of tonal variations within a band. Such
spatial dependence of feature statistics across the image pixels can be
gathered as parameters for use as input vectors in an image-classifica-
tion machine. 

4. Statistical Characterization of Image-Textural Features: Gray 
Level Cooccurrence Matrix Approach

Gray  levels  of  a  two-dimensional  (2D)  image  can  be  formalized  in
terms  of  the  gray  level  cooccurrence  matrix  (GLCM).  The  basics  of
the GLCM approach are as follows.

For  each  test  image  (such  as  the  brain  scan  obtained  via  clinical
DTMRI), a 2D histogram of gray levels distinguishing a pair of pixels
(separated by a fixed spatial  relationship) can be constructed. A rele-
vant matrix denotes the GLCM of the test image. It is sized to accom-
modate the number of gray levels with the cooccurrence probabilities
stored as the elements of the matrix.  Thus,  GLCM quantitatively de-
scribes the associated gray level statistical variations in the image. It is
therefore expected that any statistical  feature changes seen in the im-
age (manifesting as gray-level changes across 2D pixels), as a result of
aging or otherwise, should imply corresponding variations in the mea-
sured  GLCM  parameters.  If  such  statistical  attributes  of  gray-level
changes are classified and extracted from the test image data, they can
then  be  used  as metrics  toward  correlating  the  observed  morphology
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to the aging process.  The procedural aspect of constructing a GLCM
is outlined below.

In  image  analysis,  apart  from  size,  shape,  and  color,  texture  is  a
property widely considered as an input vector. Texture can be defined
as a function of the spatial variation in pixel intensities. Typically, rep-
etition  of  some  basic  pattern  is  involved  in  texture  attributes  and  as
such, textural details provide information about the structural arrange-
ment  of  surfaces.  Such  details  get  mapped  into  the  images  captured
via scanning the surfaces of interest. The associated textural feature in-
formation can be extracted by texture analysis toward image coding.

An application of image-texture analysis, for example, is the recog-
nition of specific image regions and classifying them in terms of the as-
sociated  statistics  of  texture  properties.  In  such  image-texture  analy-
ses,  for  the  purpose  of  classification,  the  complex  test  texture  has  to
first  be specified in terms of a certain number of measurable features
or parameters (step 1). In the relevant procedures, statistical measures
on the image section being analyzed can be defined and used.

If the GLCM concept is used in such pursuits, the textural charac-
teristics  can be  identified  and defined in  terms of  13 texture  features
as proposed by Haralick et al. [11]. Relevant algorithms denote statis-
tical  measures  of  image  texture  features  such  as  homogeneity,  gray-
tone  linear  dependency,  contrast,  number  and  nature  of  boundaries
present, the complexity of the image, and more. Such Haralick param-
eters  are  determined  from  the  GLCM  based  on  cooccurrence
probabilities.

In summary, given an image composed of pixels each with an inten-
sity with a probabilistic value of gray level, the corresponding GLCM
is  a  tabulation  of  how  often  different  combinations  of  gray  levels
cooccur in an image or an image section. It estimates image properties
via  statistics  aspects  of  the  pixel  details.  Such  image  properties
(commonly known as Haralick texture features) are used in this study
for image classification [11]. That is, having constructed a GLCM de-
picting the image textural statistics of the test image, the associated lo-
cal features can be sorted out by means of a classifying tool/machine.

For the purpose of constructing the GLCM of an image, a displace-
ment vector d with reference to a pixel (expressed by a radial distance
d and orientation angle q) is defined so as to decide on relative pixel-
to-pixel locations and their extent of correlation. Every pixel is consid-
ered  to  have  eight  neighboring  pixels  allowing  q  to  be  0°,  45°,  90°,
135°,  180°,  225°,  270°,  or  315°.  However,  considering  the  diagonal
symmetry  of  the  matrix  format  of  the  GLCM,  the  cooccurring  pairs
obtained by choosing q equal to 0° are the same as q being 180°. Like-
wise,  this  concept  extends  to  45°,  90°,  and  135°,  as  well.  Therefore,
there are four choices in selecting the value of!q. 

Pertinent to the choice of quantized gray levels, the dimension of a
GLCM  is  determined  by  the  maximum  gray  value  of  the  pixel.  The
number  of  gray levels  is  an  important  factor  in  GLCM computation.
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More levels  would mean a more accurate  depiction of  textural  infor-
mation, but it implies more computational costs.

Figure  1  illustrates  the  plane  (2D  form)  of  the  brain  sliced  and
scanned in the experiment. Relevant pixel-by-pixel gray-level intensity
measured across the 2D profile is denoted by JHxm, ynL at any coordi-
nate  Hxm, y nL.  The  scale  of  intensity  level  is  indicated  by  !mn.  Also,
the  size  of  the  GLCM  is  HM µ NL  with  m = 1, 2, … , M  and
n = 1, 2, … , N. 

Figure  1. Universe  of  a  2D  BWM  surface  with  the  associated  intensities  of
gray levels along the x and y axes.

Consider  two  pixels  at  the  coordinates  Ixa, ybM œ 8xm, yn<  andHxc, ydL œ 8xm, yn< in the Hx, yL space depicting the 2D brain structure
of  Figure  2.  Let  the  measured  gray-level  intensities  at  these  locations
be  JIxa, ybM!ab

 and  JHxc, ydL!cd
,  respectively.  Further,  0 § !mn § L  de-

notes the scale of integer values of the gray level at Hxm, ynL, with zero
representing  the  black  level  and  L  denoting  the  maximum gray  level
toward white). The Euclidean distance between Ixa, ybM and Hxc, ydL is
denoted by a vector dab-cd.

Using  the  J  matrix  in  the Hx, yL  plane,  9JHxm, ynL!mn
=  as  illustrated

in Figure 1, four other matrices can be constructed involving q.

† Horizontal  (q = 0 °)  matrix  (Ho  matrix):  Consider  any  arbitrary  ele-
ment JHxm, ynL!mn  in the J matrix and note its gray-scale (integer) value
!mn  lying  in  the  range  0 § !mn § L. Scan  the  entire  row  (horizontal
scan)  containing  this  element  and  count  the  number  of  times  the  !mn
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value  cooccurs  as  the  neighbor  (implying  †d§ = 1),  0, 1, … and  L.  The
count value is denoted as h. This is repeated for each row starting with
!11, !12, … , !1 N.  The resulting matrix  is  constructed as  shown in  Fig-
ure 2(a).

† Vertical  (q = 90 °)  matrix  (V90  matrix):  Similar  to  the  Ho  matrix  con-
struction, scanning vertically along each column of the J matrix, the re-
sulting  V90  matrix  is  obtained  as  illustrated  in  Figure  2(b),  where  n
stands  for  the  count  of  cooccurring  values  along  the  vertical  direction
and horizontal direction, respectively.

† Slant  (q = 45 °, q = 135 °) matrix  (s45,  s135  matrix):  Likewise, a diago-
nal count matrix along the 45° slant and the 135° slant can be specified
as shown in Figure 3,  where s45  and s135  represent the count of  cooc-
curring values diagonally along 45 and 135 degrees, respectively.

HaL HbL
Figure  2. Matrix  representation  of  (a)  horizontal  and  (b)  vertical  cooccur-
rences of gray levels.

Figure 3. Matrix representing diagonal cooccurrences of gray levels.

The  four  matrices  indicated  earlier  denote  implicitly  the  intensity
level  count  variations  in  terms  of  the  gradient,  and  by  determining
such intensity variations along the four directions, account for the as-
sociated anisotropy of the image. Further, an average of the four cooc-
currence  matrices  can  be  taken  to  ensure  rotational  invariance  as
suggested by Caban et al. [12]. However, in the present study, each of
the four matrices is considered separately in order to evaluate the sta-
tistical feature map of the BWM under discussion on an ensemble ba-
sis; the statistical features evaluated for the four matrices are then av-
eraged.  This  would  again  maintain  the  rotational  invariance  and  the
anisotropy considerations.
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Now,  the  method  of  deducing  GLCM-based  statistical  parameters
can be considered. These parameters can be explicitly specified by the
underlying statistics of the image data compiled. They can be grouped
into the following categories of entities.

† Energy:  This measures the textural uniformity of pixel pair repetitions,
which is deduced via angular second moment of the statistics. High en-
ergy  values  imply  the  gray  level  distribution  is  constant  or  in  periodic
form.  In  the  normalized  format,  the  maximum  level  of  computed  en-
ergy  is  set  equal  to  one.  A  less  homogeneous  image  would  present  a
large number of small entries in the GLCM. 

† Entropy:  This  statistic  measures  the  “disorder”  of  an  image.  Again,
large entropy means the image is  not  texturally  uniform. As such,  sev-
eral  of  the GLCM elements  will  have low values.  Complex textures  of
random features will tend to have higher entropy. Entropy metric is an
inverse of energy-specific metric. 

† Contrast: The statistical attributes of an image expressed via spatial fre-
quency  signifies  the  contrast  feature,  which  can  be  deduced  by  differ-
ence moment of the GLCM. It is the difference between the highest and
the lowest values of a contiguous set of pixels and measures the amount
of local  variations present in the image.  A low-contrast  image presents
a  GLCM  concentration  term  around  the  principal  diagonal  and  fea-
tures low spatial frequencies. 

† Variance: This statistic measures heterogeneity and is related to the first-
order  statistical  variable,  namely  standard  deviation.  Variance  is  the
spread around the central tendency; therefore it increases with the gray
level values differing (spreading) from their mean. 

† Homogeneity:  Known  as  inverse  difference  moment,  the  associated
statistic  measures  the  extent  of  homogeneity  of  the  image  in  terms  of
larger  values  for  smaller  gray  tone  differences  in  pair  elements.  It  is
more sensitive to the presence of near-diagonal elements in the GLCM
and  has  maximum value  when  all  elements  in  the  image  are  identical.
The  GLCM  contrast  metric  is  an  inverse  of  the  homogeneity  measure
when  both  are  expressed  in  terms  of  an  equivalent  distribution  of  the
pixel  pairs  population.  It  means  homogeneity  would  decrease  if  con-
trast increases, keeping the energy level invariant.

† Correlation: The correlation feature is a measure of gray tone linear de-
pendencies in the image. 

Consistent  with  these  notions  of  quantifying  the  image  statistics,
Haralick et al. [11] proposed 14 textural features that can be deduced
via GLCM [13]. Explicitly, these refer to the following metrics: (1) an-
gular second moment; (2) contrast; (3) correlation; (4) sum of squares
variance; (5) inverse difference moment; (6) sum average; (7) sum vari-
ance;  (8) sum entropy; (9) entropy; (10) difference variance;  (11) dif-
ference  entropy;  (12–13)  a  pair  of  information  measures  of  correla-
tion  (in  Shannon’s  sense);  and  (14)  maximal  correlation  coefficient.
Relevant  definitions  and  algorithms  are  explicitly  furnished  in  [11].
However,  only  13  features  (1  to  13)  are  computed  and  used  in  this
study.
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5. Image Classification Based on Pixel-Feature Statistics

As summarized in Section 3, recognizing textural features in an image
(e.g., of the brain) involves three basic steps: (i) modeling textural im-
age  features  to  get  the  necessary  input  parameter  vector  set  for  pat-
tern  analysis  (step  1);  (ii)  creating  an  image-processing  machine  and
training it to learn and store known key patterns (step 2); and (iii) ad-
dressing  the  details  of  any  test  pattern  (to  be  classified)  as  the  input
parameter  vector  set  to  the  machine,  where  an  association  of  the  in-
put vector with the set of stored key patterns is done; hence, the input
data  is  classified  and  declared  as  belonging  to  a  specific  class  of
known feature characteristics (step 3).

The texture classification of step 2 can be done in a classifier or im-
age-processing machine. A variety of pattern classification algorithms
to compare the input vector set with the stored key patterns has been
indicated  in  the  literature  [9].  Popular  methods  include  the  artificial
neural network (ANN) [14], genetic algorithm-based machines, maxi-
mum-likelihood  classifier,  minimum-distance  classifier,  statistical
discrimination  or  information  theoretic-based  classifying  machine,
syntactic  classifier,  graph-theoretic  matching  machine,  various  ma-
chine-intelligence concepts,  swarm intelligence approach (such as fish
flocking or ant-colony schemes), and biologically inspired divergence-
based classifiers.

In  this  study,  the  ANN  adopted  functions  as  a  trainable  classifier
using  a  BPNN architecture.  The  training  set  (TS)  corresponds  to  the
input vectors gathered from test images of BWM obtained via clinical
DTMRI scans. Those input feature vectors referred to an ensemble of
the details acquired from the GLCM-based set of Haralick parameters
(13  Haralick  parameters  obtained  from  each  sample  image  and  so
from 60 DTMRI scanned images). Thus learning of the network corre-
sponds to 60 ensemble runs of training executed, each with 13 feature
values at the network input. 

The network is trained (or made to learn) a test image by compar-
ing  its  output  with  a  supervising  teacher  value.  In  this  context,  the
teacher  value  corresponds  to  the  known  age  of  the  subject  whose
scanned  brain  image  data  forms  the  input  vector  set.  Thus,  using  a
number  of  images,  the  BPNN  is  trained  with  the  TS  of  each  image.
These images used in the training phase are stored in the classifier as
key vectors  for  future  comparison with any new images  intended for
classification.

In the prediction phase,  if  a  vector set  description of  a new BWM
image  is  addressed  at  the  input  of  the  network,  this  image  informa-
tion will be classified (and correlated to the age of the subject) at the
BPNN output.  Thus,  with  the  acquisition of  clinical  DTMRI data  of
BWM of  any  subject,  the  relevant  dataset  is  preprocessed  to  capture
its  statistical  features  (through  GLCM-based  Haralick  parameters)
and  addressed  as  the  input  to  the  trained  BPNN,  which  will  classify
how  the  input belongs  among  the  stored  key  patterns  of  feature
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vectors. Hence, it will predict the age of the subject (as its output) ver-
sus the input BWM characteristics.

The computational steps of the BPNN training are indicated in Fig-
ure  4  and  a  similar  pursuit  is  also  exercised  in  the  prediction  phase.
The  description  of  the  BPNN  architecture  used  is  described  in
Section!6.

Figure  4. Flow  chart  depicting  BPNN-based  test  procedure  to  correlate  the
changes measured in BWM versus aging. 

6. Backpropagation Neural Network Classifier: Description

BPNN is a collective network of massively interconnected sets of neu-
ral  units.  One of  the network’s  abilities  is  to enable the functionality
of  a  classifier.  In this  paper,  a  BPNN architecture is  adopted to clas-
sify  the  images  as  required. The  BPNN  is  built  with  four  input
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neurons (to take a set of four input vectors) and can be expanded to
accommodate 13 input vectors corresponding to the Haralick parame-
ters when needed. 

At  the  output  formed  by  a  single  neuron,  a  teacher  value  (age  of
the  brain  image  subject)  is  specified  toward  supervised  learning  as
shown in Figure 5. Furthermore, this test network has two hidden lay-
ers,  each  with  eight  neurons.  (Selection  of  the  number  of  neurons  in
the hidden layer is done by trial and error. With a few neurons—four,
for  example—the network did not  converge.  Excess  neurons increase
the computational complexity.)

Figure  5. BPNN  architecture  with  8ci, i = 1, 2, 3, … , 13<  depicting  the  fea-
ture vectors (specified in Haralick parameters deduced via GLCM) of the test
image  applied  to  input  neurons  of  the  BPNN.  Teacher  value  corresponds  to
the  age  of  the  subject  whose  brain  image  is  being  analyzed  via  input  data.
HL1  and HL2  are hidden layers 1 and 2, respectively. Further, F 1  and F2  de-
note sigmoidal squashing functions.

The  conceived  BPNN  is  to  cohesively  address  and  train  the  net-
work  with  all  available  sets  of  Haralick  parameters  as  the  input  and
correlate  them to  the  age  of  the  subject.  Since  it  is  a  straightforward
set of input to a single output decision, the BPNN strategy is pursued.

Considering  the  BPNN with  the  entities  as  shown  in  Figure  5,  its
function as a backpropagation network in the training (learning) and
prediction phases is summarized as follows.

Training/learning phase: This addresses the BPNN with the test im-
age data statistics as input vectors pertinent to a subgroup of subjects
whose  ages  are  already  known (and used  as  teacher  values).  That  is,
for each test image used in this phase, the input corresponds to the TS
expressed  in  terms  of  GLCM-based  Haralick  parameters;  and,  for
each input dataset (TS), the resulting net output is compared with the
corresponding (known) teacher value. The computed error is then iter-
atively  fed  back  to  appropriately  change  the  interconnecting  weight
vectors  between  the  layers  until  the (mean-square)  error  observed  at
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the output is minimized or is less than a preset stop criterion [15, 16],
such  as  0.001.  The  sequence  of  functions  (in  Figure  5)  of  BPNN
computations  corresponds  to  the  standard  routines  of  a  typical
BPNN [14]. 

The TS presented to the network input layer propagates from layer
to layer until the output neuron indicates an output value. If this out-
put value is different from the desired (teacher) value, a mean-squared
error is  calculated and back-propagated through network layers.  The
weights of the interconnections are then modified proportional to the
gradient  of  the  error.  Initial  settings  of  the  weights  are  taken as  ran-
dom  numbers  (0  to  1)  of  uniform  distribution.  In  summary,  the
network is trained to recognize the various datasets obtained from dif-
ferent  samples  supervised  by  corresponding  preset  teacher  values  on
age at the output. Depending on the error (depicting the difference be-
tween output and teacher value), the network weights are updated as
per the resilient, gradient-descent backpropagation algorithm. Further-
more,  traditional  sigmoidal  transfer  functions  of  hyperbolic  tangent
are  used  between  the  first  and  second  hidden  layers,  which  enable
“squashing” of layer outputs toward convergence. Also, a linear func-
tion is used between the second hidden and output layers to set appro-
priate scaling on the output depicting the age levels involved.

In  terms  of  the  notations  indicated  in  Figure  5,  the  following  are
the explicit computations involved.  

1(a)Output of HL1 !j = Yj µ F1IYjM,
where F1 depicts sigmoidal nonlinearity and

1(b)Yi = ‚
i

HWILijä ci + qi; qi is the biasêmomentum.

1(c)Output of HL2 = vk = Uk µ F2HUkL,
where F2 again depicts sigmoidal nonlinearity and

1(d)Uk = ‚
j

HWIILjkä!j + fj; fj is the biasêmomentum.

1(e)
Network output Oit Hper iterationL = ‚

k

kk vk;

kk : a linear constant

2(a)
Correction on 8WII< jk : 8WII< jk-new =

8WII< jk-old ! Hd!i ê dOiLäL1
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2(b)
Correction on 8WI<ij : 8WI<ij-new =

8WII<ij-old ! Id2 !i ë dOi
2MäL2

where L1 and L2 are learning coefficients.
Prediction phase: Having trained the BPNN with a set of image tex-

ture details so as to indicate an output classifying the age of the sub-
ject of each test image used, the next phase is to use the BPNN in the
prediction phase. That is, given image-texture data of a subject whose
age  is  not  already  known and  addressed  at  the  trained  BPNN input,
the classifier will deliver an output prediction of the age of the subject
classified  into  one  of  the  values  corresponding  to  the  key  images
stored in the net during the training phase.

Input  vector  datasets:  As  indicated  in  Section  5  of  this  paper,  the
BPNN inputs  correspond to  the  vector  set  of  textural  image  features
corresponding to the GLCM approach envisaged in the present study.
Following the details of Haralick et al. [11], the textural feature map
of  the  image  is  specified  as  a  matrix  of  13  Haralick  parameters  de-
duced from the GLCM of the image. 

In the training phase, only a select subset of four Haralick parame-
ter features are used as the TS to the network. That is,  in the BPNN
simulations carried out, the network reads four feature values (out of
13).  Hence,  the  image  data  collected  from  60  clinical  volunteers/
subjects  and used as  input  vector  sets  correspond to  a  matrix  of  size
4ä60; the corresponding supervisory (teacher) vector of 60ä1 depicts
the age of the subjects.

In the prediction phase, any arbitrary set of four Haralick parame-
ters (out of 13) is considered. This select set of Haralick parameters is
henceforth referred to as the prediction set (PS). Now, given a PS cor-
responding to a test image of a subject (with no prior information on
his/her  age)  as  the  input  to  the  trained  network,  it  is  classified  com-
pared with the stored key patterns,  and the corresponding age of the
subject is predicted as the output. For validation and assessing the effi-
cacy of  BPNN simulation,  this  predicted age is  compared against  the
value if known clinically.

7. Experiments, Simulations, and Results

Relevant  to  the  present  study,  brain  image  data  compilation
(pertinent  to  a  subgroup  of  adult  subjects)  is  done  via  MRI  acquisi-
tions performed on a GE 3Tesla Signa HDX system equipped with an
8-channel  brain  array  coil.  The  equipment  computer  does  Fourier
transforms of the image data using a diffusion tensor imaging system.
Details  on  the  acquisition  protocol  are:  image  field-of-view  (FoV)
is  240ä240  mm;  pixel  matrix  size  is  256ä256;  TR is  7400;  number
of  diffusion  direction  is  25; b  value  is  1000;  voxel  size  is
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0.9375 mmä0.9375 mmä5 mm; slice thickness is 5 mm; and scanning
time is  8  minutes.  Scanning is  done in  the  axial  plane  parallel  to  the
long axis of the body of the corpus callosum. They are segmented for
white matter alone.

Ten images in a specified age group, totaling 60 images of assorted
male and female adult subjects without neuropathological conditions,
are collected. The mean age of the subjects is 64.4483 with a standard
deviation equal to 8.7841.

The  BPNN  simulation  and  image  analysis  are  implemented  in
MATLAB (Version  7.6).  Selecting  a  limited  set  of  four  inputs  (as  TS
or  PS)  allows  715  possible  combinations.  There  are  13  Haralick  pa-
rameters  available  on each scanned image.  Out  of  these  13,  we tried
to  train  the  network  with  only  a  four  input  sample  set  without  any
preference. That is,  as indicated in Table 1, any four parameters per-
mutatively taken are used. There are 715 combinations of taking four
out  of  13.  However,  in  order  to  look  for  the  efficacy  of  the  system,
only 11 out of the 715 combinations (Table 1) were arbitrarily chosen
in  training  the  network.  The  network  is  trained  with  this  ensemble
of  11  sets.  That  is,  with  four  inputs  (TS)  at  a  time  in  the  training/
learning  phase,  these  11  ensemble  sets  of  TS  are  used  to  get  the  key
vectors being stored in the constructed network.  Convergence is  seen
in the  learning phase  with all  training sets  of  the  ensemble  used.  For
example,  two  samples  of  learning  curves  obtained  are  shown  in  Fig-
ures  6(a)  and  6(b).  Mostly,  the  network  converges  between  60  and
220 iterations.

Input
Sample Sets

Prediction
Accuracy H%L Input

Sample Sets
Prediction

Accuracy H%L
2, 3, 4, 5 94.1320 8, 9, 13, 10 90.028

1, 2, 4, 5 91.6239 8, 9, 4, 5 89.267

1, 4, 5, 6 93.1059 8, 9, 10, 12 94.341

1, 5, 6, 7 93.6209 9, 10, 11, 12 90.322

1, 6, 7, 13 89.5470

7, 11, 10, 3 92.2900

Table  1.  Results  obtained on age  prediction accuracy  with  four  input  feature
sets taken out of 13 GLCM-based Haralick parameters (listed in Section 4).

In the prediction phase, any arbitrary set of four inputs (out of 11
ensembles)  is  considered as  PS  and given as  input  to  the  trained net-
work.  The  BPNN  compares  this  input  vector  set  (PS)  against  the
stored key patterns. Hence, the classified age prediction is indicated as
the output, which can be compared against the age, if already known
clinically.  Relevant  results  on  prediction  accuracy  are  presented  in
Table 1.

318 R. Kalpana and S. Muttan

Complex Systems, 20 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.4.305



HaL HbL
Figure  6. Sample  BPNN  training  curves  obtained  with  arbitrary  sets  of  four
inputs.

In addition to the testing and predictions with ensembles of four in-
puts,  the  network  is  expanded  to  include  all  13  inputs  as  TS  and/or
PS. (The other architecture of the BPNN is kept unaltered.) Again, the
network is seen converging around 150 epochs (Figure 7). Also in the
prediction phase, the age is classified by the network accurately 96%
of the time.

Figure 7. BPNN training curve obtained with 13 inputs.

Instead  of  using  the  GLCM-based  input  vectors  (of  Haralick  pa-
rameters) gathered from the images, another set of simulation experi-
ments is carried out with four simple statistical measures. These refer
to  the  mean,  the  standard  deviation,  the  Shannon  entropy,  and  the
variance  of  the  normalized  gray-level  values  [17,  18]  in  the  2D pixel
matrix. These measures are not as extensive in describing the underly-
ing  statistics  as  the  Haralick  parameters, yet  they  are  simpler  in  for-
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mat for feature representation. When adopted in the simulations, rele-
vant  TS  and  PS  (in  lieu  of  GLCM  features)  also  show  convergence
around 120 epochs  (Figure  8)  with  accuracy  on age  prediction being
about 90%.

Figure 8. BPNN training curve obtained with four inputs of first order statistic
measures.

Shown  in  Figures  9(a)  through  9(d)  are  curves  depicting  various
(normalized)  statistical  measures  of  the  DTMRI-based  Haralick  pa-
rameter data versus the age of the subjects ascertained via BPNN pre-
dictions.  In  general,  the  textural  features  of  the  BWM  (expressed  in
terms  of  their  statistical  measures)  show  a  devolutionary  trend  with
aging. The curve (2) in Figure 9(d),  however, depicts an evolutionary
trend inasmuch as it denotes a metric of information loss or entropy.
Therefore, its increasing trend implicitly depicts deterioration.

8. Discussions and Conclusions

The inferential aspects of this paper are as follows.
† Prediction of age versus textural deformity of the brain complex can be

done  using  clinical  diffusion  tensor  magnetic  resonance  imaging
(DTMRI)  data  on  the  brain.  A  backpropagation  neural  network
(BPNN) can then be trained to classify the input of the brain’s textural
features  and  correlate  such  input  data  to  the  age  of  the  subject  whose
brain image is analyzed.

† The  clinical  data  collected  on  brain  textural  complexity  can  be  orga-
nized in a statistical format of two categories:

i.  Metrics denoting relative divergence of textural features

ii. Measures depicting the statistical features
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HcL HdL
Figure 9. (a) to (d): Age versus various measures of DTMRI-based feature pa-
rameters (normalized and expressed in terms of Haralick parameter values de-
duced from the GLCMs of test images).

† In all, there are 13 statistical measures (known as Haralick parameters)
that  frame  the  gray  level  cooccurrence  matrix  (GLCM)  of  the  image,
which can be used for training and age prediction efforts in a classifier
such as BPNN. In essence, the BPNN uses an ensemble of Haralick pa-
rameter sets as input vectors and gets trained to store corresponding fea-
ture  data  as  key  vectors.  Subsequently,  addressing  the  trained  BPNN
with input Haralick parameter vectors of a test image, the network clas-
sifies  the  input  against  the  key  vectors  so  as  to  predict  the  age  of  the
subject whose brain image is tested.

† It is observed in this study that, by using only a select set of four inputs
(out  of  13  Haralick  parameters),  the  BPNN shows  reasonable  conver-
gence. However, the prediction accuracy is better seen when all 13 Har-
alick parameter inputs are exercised.

† BPNN simulation is also done with four (non-GLCM/Haralick parame-
ter) measures based on simple statistical metrics like mean and entropy
of normalized gray values in the pixel  matrix.  Such input data also al-
lows the network to converge fast, but the prediction accuracy is some-
what lower than the case of using Haralick parameter metrics.
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† The test  results  of  this  study with regard to statistical  textural  features
of the brain white matter (BWM) complex show a devolutionary trend
with  aging  (Figure  9).  The  exception  of  the  evolutionary  trend  seen  in
curve (2) of Figure 9(d) depicts the result obtained with a metric of in-
formation loss or entropy. As such, its increasing trend therefore implic-
itly depicts deterioration. 

As shown in Figure 9, the growing/decaying aspects of the trends in
brain  textural  pattern  versus  age  can  be  modeled  as  follows.  The
brain  is  a  structure  made  of  massively  interconnected  neural  cellular
parts that interact across the spatial domain; also, the associated neu-
ral  activity  depicts  a  temporal  interaction  between  the  cells.  Further-
more, depending on the nature of such temporal activity involved and
spatial  proliferation of neural  information,  the underlying interaction
could  be  largely  stochastical  and  partly  deterministic;  changes  in  the
associated physical organization and/or functional activity would lead
to a significant change in the inherent self-organizational attributes of
the  system [2,  19].  With  aging,  the  brain  complex  may  pose  distinct
degenerative  changes  in  its  activity  dynamics  as  well  as  in  the  mass
and  structural/textural  features  that  are  seen  as  a  decrease  in  myelin
density and alterations in myelin structure across the BWM. A simple
model  can  be  evolved  to  relate  the  associated  degeneration  observed
versus  time  (aging).  Suppose  the  textural  features  of  the  brain  com-
plex  and  the  associated  functional  activity  is  specified  by  a  function
C, given by:

(3)CHx, y, z; tL = CoäFHx, y, zLäGHtL
where F  and G  depict  independent  spatial  and temporal  functions of
the brain complex respectively and Co  is a scaling constant. The func-
tional  attributes  of  F  and  G  in  general  are  nonlinear  [19]  and  there-
fore C can be more explicitly written in terms of the following logistic
function with associated stochastical considerations [19]:

(4)CHx, y, z; tL = Co µ @1 - La HsLD µ A1 - LbHtLE
where  a  and  b  denote  order  functions  H1 ê 2 § a < ¶; 1 ê 2 § b < ¶L
of the stochastical profile of the brain complex and L is the Langevin–
Bernoulli function depicting the nonlinear aspects of the logistic devo-
lutions for the reasons described by Neelakanta et al. in [19]. Further,
s  denotes  any  spatial  coordinate  x,  y,  or  z,  and  the  Langevin–
Bernoulli function is explicitly given by:

(5)

LqHvL j =

1 +
1

2 q
coth 1 +

1

2 q
v -

1

2 q
coth

1

2 q
v .

When showing degenerative BWM versus aging, it can be regarded
in general  as  the  loss  of  information in  the  brain complex attributes.
That  is, the  system  entropy  starts  becoming  overwhelmed  as  a  result
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of  age-related  degeneration.  Hence  the  functional  relation  given  by
equation  (4)  is  a  compatible  model  to  depict  such  a  scenario  as  de-
scribed  in  [19].  Rigorous  modeling  of  the  aforesaid  nonlinear  evolu-
tions/changes  in  brain-textural  complexity  versus  age  needs  further
study.

In summary, this study enables assessing the geriatric state of a hu-
man adult  subject  via DTMRI images of  the brain.  For this  purpose,
the image textural data of the subject’s brain is specified in statistical
entities,  and is  used as  feature  vectors  in  an artificial  neural  network
for  training  and  prediction  purposes.  The  BPNN  classifies  any  given
feature vector of the images to predict the age of the subject of the im-
age.  The  test  results  obtained  on  a  subgroup  of  adult  subjects  indi-
cate,  in  general,  a  degenerative  textural  feature  trend  versus  aging.
Such  trends  can  be  modeled  via  nonlinear  growth/decay  considera-
tions.  Further,  this  work  can  be  extended  with  fuzzy  parameters  of
texture descriptions inasmuch as the gray level variations between dif-
ferent  tissues  are  not  abrupt.  Gradual  changes  in  gray  level  depict
rather  the  nature  of  variations  across  tissues  being  fuzzy.  Relevant
fuzzy details can also be accommodated in a BPNN simulation, which
forms an open question for future research.
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