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The sequences generated by neuronal recurrence equations of the form
xHnL ! 1A⁄j!1

h aj xHn - jL - qE  are  studied.  From  a  neuronal  recurrence
equation  of  memory  size  h  that  describes  a  cycle  of  length
rHmLä lcmIp0, p1, … , p-1+r HmLM,  a  set  of  rHmL  neuronal  recurrence
equations  is  constructed  with  dynamics  that  describe  respectively  the
transient  of  length  OHrHmLä lcmHp0, … , pdLL  and  the  cycle  of  length
OIrHmLä lcmIpd+1, … , p-1+rHmLMM  if  0 § d § -2 + rHmL  and  1  if
d ! rHmL - 1.  This  result  shows  the  exponential  time  of  the  conver-
gence of the neuronal recurrence equation to fixed points and the exis-
tence of the period-halving bifurcation. 

1. Introduction

Caianiello and De Luca [1] have suggested that the dynamic behavior
of  a  single  neuron  with  a  memory  that  does  not  interact  with  other
neurons can be modeled by the following recurrence equation:

(1)x HnL ! 1B‚
j!1

k

aj xHn - jL - qF
where:

† xHnL is a variable representing the state of the neuron at t ! n. 

† xH0L, xH1L, … , xHk - 2L, xHk - 1L are the initial states. 

† k is the memory length, that is, the state of the neuron at time t ! n de-
pends on the states xHn - 1L, … , xHn - kL assumed by the neuron at the
k previous steps t ! n - 1, … , n - k. 

† aj  (j ! 1, … , k)  are  real  numbers  called  the  weighting  coefficients.
More precisely, aj  represents the influence of the state of the neuron at
time n - j on the state assumed by the neuron at time n. 
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† q is a real number called the threshold. 

† 1@uD ! 0 if u < 0, and 1@uD ! 1 if u ¥ 0. 

The  system  obtained  by  interconnecting  several  neurons  is  called  a
neural  network.  These  networks  were  introduced  by  McCulloch  and
Pitts [2] and are quite powerful. Neural networks are able to simulate
any  sequential  machine  or  Turing  machine  if  an  infinite  number  of
cells  is  provided.  Neural  networks  have  been  studied  extensively  as
tools for solving various problems such as classification, speech recog-
nition, and image processing [3]. The field of application of threshold
functions  is  large  [3–6].  The spin moment  of  the  spin glass  system is
one of the most cited examples in solid state physics that has been sim-
ulated by neural networks.

Neural networks are usually implemented by using electronic com-
ponents or are simulated in software on a digital computer. One way
in which the collective properties of a neural network may be used to
implement  a  computational  task  is  by  way  of  the  concept  of  energy
minimization.  The  Hopfield  network  is  a  well-known  example  of
such  an  approach.  It  has  attracted  great  attention  in  literature  as  a
content-addressable memory [7]. 

Given a finite neural network, the configuration assumed by the sys-
stem at time t is ultimately periodic. As a consequence, there is an inte-
ger p > 0 called the period (or a length of a cycle) and another integer
T ¥ 0 called the transient length such that YHp + TL ! YHTL, and ± T£,
p£  HT£, p£L ! HT, pL  T ¥ T£,  and  p ¥ p£  such  that  YHp£ + T£L ! YHT£L
where  YHtL ! HxHtL, xHt - 1L, … , xHt - k + 2L, xHt - k + 1LL.  The  period
and the transient length of the sequences generated are good measures
of  the  complexity  of  the  neuron.  A  bifurcation  occurs  when  a  small
smooth change made to the parameter values (the bifurcation parame-
ters) of a system causes a sudden “qualitative” or topological change
in its behavior. A period-halving bifurcation in a dynamical system is
a  bifurcation  in  which  the  system  switches  to  a  new  behavior  with
half  the period of  the original  system. A great  variety of  results  have
been established on recurrence equations modeling neurons with mem-
ory  [4,  8–15].  However,  some  mathematical  properties  are  still  very
intriguing  and  many  problems  are  being  posed.  For  example,  the
question  remains  as  to  whether  there  exists  one  neuronal  recurrence
equation with transients of exponential  lengths [16].  In [17],  we give
a positive answer to this question by exhibiting a neuronal recurrence
equation with memory that generates a sequence of exponential tran-
sient length and exponential period length with respect to the memory
length. Despite this positive answer, one question remains: does there
exist  one  neuronal  recurrence  equation  with  exponential  transient
length and fixed point?

In  this  paper,  from  a  neuronal  recurrence  equation  of  memory
size  H6 m - 1Lä HrHmLL2  whose dynamics  contain  a  cycle  of  lengthI M         
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rHmLä lcmIp0, p1, … , p-1+rHmLM,  we  build  a  set  of  rHmL  neuronal  re-
currence equations whose dynamics describe respectively: 

† the  transient  of  length  rHmLä lcmHp0, p1, … , pdL + h + d + 1 - HrHmLäH1 + pdLL, if 0 § d § -1 + rHmL, and 

† the cycle of length rHmLä lcmIpd+1, pd+2, … , p-1+rHmLM if 0 § d § -2 +
rHmL and 1 if d ! rHmL - 1. 

Thus, we give a positive answer to the preceding question.
The technique used in this paper to obtain the period-halving bifur-

cation  is  to  modify  some  parameters  (weighting  coefficients  and
threshold)  of  the  neuronal  recurrence  equation.  This  technique  relies
on control theory.  Controllability is  related to the possibility of forc-
ing the system into a particular state by using an appropriate control
signal. 

The paper is  organized as  follows:  in  Section 2,  some previous re-
sults are presented. Section 3 presents some preliminaries. Section 4 is
devoted  to  the  construction  of  neuronal  recurrence  equation  zHn, dL.
Section  5  deals  with  the  behavior  of  neuronal  recurrence  equation
zHn, dL. Concluding remarks are stated in Section 6. 

2. Previous Results

The  only  study  of  bifurcation  was  done  by  Cosnard  and  Goles  in
[10], which studied the bifurcation in two particular cases of neuronal
recurrence equations. 

Case 1: Geometric coefficients and bounded memory. Cosnard and
Goles completely described the structure of the bifurcation of the fol-
lowing equation: 

xn+1 ! 1 q - ‚
i!0

k-1

bi xn-i

when q varies. They showed that the associated rotation number is an
increasing number of the parameter q. 

Case  2:  Geometric  coefficients  and  unbounded  memory.  Cosnard
and Goles completely described the structure of the bifurcation of the
following equation:  

xn+1 ! 1 q -‚
i!0

n

bi xn-i

when q  varies.  They showed that the associated rotation number is  a
devil’s staircase. 

In [9], this conclusion is drawn: “This shows that, if there is a neu-
ronal  recurrence  equation  with memory  length  k  that  generates  se-
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quences  of  periods  p1, … , pr,  then  there  is  a  neuronal  recurrence
equation with memory length k r  that  generates a sequence of  period
lcmHp1, … , prL r,  where  lcm  denotes  the  least  common  multiple.”
This allows us to write the following fundamental lemma of composi-
tion of a neuronal recurrence equation.

Lemma 1.  [9]  If  there  is  a  neuronal  recurrence  equation  with  memory
length k that generates sequences of periods p1, p2, … , pr, then there
is a neuronal recurrence equation with memory length k r  that gener-
ates a sequence of period r ÿ lcm Hp1, … , prL. 

Lemma  1  does  not  take  into  account  the  study  of  the  transient
length. Lemma 1 can be amended to obtain the following lemma.

Lemma 2.  [13,  17]  If  there  is  a  neuronal  recurrence  equation  with
memory  length  k  that  generates  a  sequence  8x’HnL : n ¥ 0<,  1 § ’ § g
of  transient  length  T’  and  of  period  p’,  then  there  is  a  neuronal
recurrence equation with memory length k g that generates a sequence
of  transient  length  g ÿ maxIT1, T2, … , TgM  and  of  period
g ÿ lcmIp1, p2, … , pgM. 

In  the  following example,  we will  show that  Lemmas 1 and 2 are
incomplete.

Example 1.  Let  us  suppose  that  the  neuronal  recurrence  equation  de-
fined by equation (1) generated six sequences 

(2)9xi HnL : n ¥ 0=, 0 § i § 5

of periods

(3)pi ! 1, 0 § i § 5.

It is clear that each sequence defined by equation (2) is a fixed point.
We present two different cases of evolution.

First case: We suppose that 

(4)x2 iHnL ! 0; " n, i such that n ¥ 0 and 0 § i § 2

(5)x2 i+1HnL ! 1; " n, i such that n ¥ 0 and 0 § i § 2.

It is easy to verify that the shuffle of the neuronal recurrence equation
defined by equations (4) and (5) is

(6)
x0H0L x1H0L… x5H0L x0H1L x1H1L… x5H1L… x0HiL x1HiL…

x5HiL! ! 010 101 010 101 010 101 010 101
… 010 101 010 101 ….
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The sequence  defined by  equation (6)  describes  a  period of  length  2.
By  application  of  Lemma  1,  the  period  of  the  sequence  defined  by
equation (6) should be 6 (more precisely, 6ä lcmH1, 1, 1, 1, 1, 1L).

Second case: We suppose that 

(7)xiHnL ! 0, " n, i such that n ¥ 0 and i œ 80, 1, 3, 4<
(8)xiHnL ! 1, " n, i such that n ¥ 0 and i œ 82, 5<.

It is easy to verify that the shuffle of the neuronal recurrence equation
defined by equations (7) and (8) is

(9)

x0H0L x1H0L… x5H0L x0H1L x1H1L
… x5H1L… x0HiL x1HiL… x5HiL! !

001 001 001 001 001 001 001 001 001 001 001 001
… 001 001 ….

The sequence  defined by  equation (9)  describes  a  period of  length  3.
By  application  of  Lemma  1,  the  period  of  the  sequence  defined  by
equation (9) should be 6 (more precisely, 6ä lcmH1, 1, 1, 1, 1, 1L).

The first and second cases of Example 1 show that Lemmas 1 and
2 do not take into account all of the cases. 

Lemma 1 can be amended as follows.

Lemma 3.  If  there  is  a  neuronal  recurrence  equation  with  memory
length  k  that  generates  r  sequences  of  periods  p1, p2, … , pr,  then
there  is  a  neuronal  recurrence  equation  with  memory  length  k r  that
generates a sequence of period Per. Per is defined as follows.

First case: $ j, 1 § j § r such that pj ¥ 2 

Per ! rä lcmHp1, … , prL.
Second case: pj ! 1; " j, 1 § j § r. 

Per is a divisor of r.

The improvement of Lemma 1 does not modify all the main results
about  periods  obtained  in  the  papers  [9,  11–14]  because  all  these
main results consider only the case where the periods p1, p2, … , pr of
the r sequences are greater than or equal to 2. 

We can also amend Lemma 2 as follows.

Lemma 4.  If  there  is  a  neuronal  recurrence  equation  with  memory
length  k  that  generates  a  sequence  8x’HnL : n ¥ 0<,  1 § ’ § g  of  tran-
sient  length  T’  and  of  period  p’,  then  there  is  a  neuronal  recurrence
equation  with  memory  length  k g  that  generates  a  sequence  of  tran-
sient  length  g ÿ maxIT1, T2, … , TgM  and  of  period  Per.  Per  is  defined
as follows. 
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First case: $ j, 1 § j § r such that pj ¥ 2 

Per ! rä lcmIp1, … , pgM.
Second case: pj ! 1; " j, 1 § j § r. 

Per is a divisor of g.

3. Preliminaries

Let  k  be  a  positive  integer  for  a  vector  a œ !k,  a  real  number q œ !,
and a vector f œ 80, 1<k.  We define the sequence 8xHnL : n œ "<  by the
following recurrence:

(10)xHtL !
fHtL; t œ 80, … , k - 1<
1 I⁄i=1

k ai xHt - iL - qM; t ¥ k.

We denote by SHa, q, fL the sequence generated by equation (10), with
PerHa, q, fL as its period and TraHa, q, fL as its transient length.

Let  m  be  a  positive  integer.  We  denote  the  cardinality  of  the  set
" ! 8p : p prime and 2 m < p < 3 m<  by  rHmL.  Let  us  denote  by
p0, p1, … , p-1+rHmL  the  prime  numbers  belonging  to  the  set82 m + 1, 2 m + 2, … , 3 m - 2, 3 m - 1<.  The  sequence  8ai : 0 § i §
-1 + rHmL< is defined as ai ! 3 m - pi, 0 § i § -1 + rHmL. 

We also suppose that

(11)p-1+rHmL < p-2+rHmL < ! < pi+1 < pi < ! < p1 < p0.

Subsequently, we consider only the integers m such that rHmL ¥ 2.
It is easy to check that 82 m + 1, 2 m + 2, … , 3 m - 2, 3 m - 1< con-

tains at most bm-1
2

r odd integers. It follows that 

(12)rHmL § m - 1

2
.

We set k ! H6 m - 1L rHmL and " i œ ", 0 § i § -1 + rHmL. We define

mHm, aiL !
k

3 m - ai

bHm, aiL ! k - HH3 m - aiL mHm, aiLL.
From  the  previous  definitions,  we  find  k ! HH3 m - aiL mHm, aiLL +
bHm, aiL.
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It is clear that " i œ ", 0 § i § -1 + rHmL 
2 m + 1 § m - ai § 3 m - 1.

This implies that

H6 m - 1L rHmL
3 m - 1

§
k

3 m - ai

§
H6 m - 1L rHmL

2 m + 1
.

Therefore,

(13)2 rHmL § mHm, aiL § 3 rHmL,
" i œ ",  0 § i § -1 + r HmL.  We  want  to  construct  a  neuronal  recur-
rence  equation  8xai HnL : n ¥ 0<  with  memory  of  length  k  that  evolves
as follows:

(14)
00 … 0
bHm,aiL

100 … 0
3 m-ai

100 … 0
3 m-ai

! 100 … 0
3 m-ai

! 100 … 0
3 m-ai

!

and that describes a cycle of length 3 m - ai ! pi.
" i œ ",  0 § i § -1 + r HmL;  let  fai œ 80, 1<k  be  the  vector  defined

by 

(15)
fai H0L… fai Hk - 1L ! 0 … 0

bHm,aiL
10 … 0

pi

! 10 … 0
pi

mHm,aiL pi

.

In other words, fai  is defined by

fai HjL !
1 if $ #, 0 § # § mHm, aiL - 1 such that j ! bHm, aiL + # pi

0 otherwise.

We define the neuronal recurrence equation 8xai HnL : n ¥ 0< by the fol-
lowing recurrence: 

(16)xai HtL !
fai HtL; t œ 80, … , k - 1<
1 I⁄j!1

k aj xai Ht - jL - qM; t ¥ k

where aj is defined as follows.
First case: rHmL is even and " i2 œ ", 0 § i2 § -1 + r HmL 

(17)aj !

2 if j œ Pos Iai2 M and j §
3ärHmLäpi2

2
,

-2 if j œ Pos Iai2 M and j >
3ärHmLäpi2

2
,

0 otherwise.
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Second  case:  rHmL  is  odd,  rHmL ¥ 3  and  " i2 œ ",
0 § i2 § -1 + rHmL 

(18)aj !

2 if j œ PosIai2 M and j §
H3 rHmL-1L

2
äpi2 ,

-2 if j œ PosIai2 M and
H3 rHmL+1L

2
ä

pi2 § j § H2 rHmL - 2Läpi2 ,

-1 if j œ 9H2 rHmL - 1Läpi2 , 2 rHmLäpi2=,
0 otherwise.

We also define

(19)PosHaiL ! 8j pi : j ! 1, … , 2 rHmL<
(20)

Pos HaiL ! 8pi, 2 pi, … , H-1 + 2 r HmLL pi, 2 r HmL pi<,
0 § i § -1 + r HmL

(21)D ! 8i : i ! 1, … , k< ! 81, 2, … , k - 1, k<
(22)F ! Ê

i!0
-1+r HmL

PosHaiL
(23)G = D\F

(24)q = 2ä rHmL
(25)k = H6 m - 1Lä rHmL.

By  definition,  PosHaiL  represents  the  set  of  indices  j,  1 § j § k  such
that xai Hk - jL ! 1.

From the definition of PosHaiL and from equation (15), it can easily
be verified that

(26)j œ PosHaiLïxai Hk - jL ! 1

(27)j œ D\PosHaiLï xai Hk - jL ! 0.

" d œ ",  0 < d < pi;  we  also  denote  P PosHai, dL  (the  set  of  indices  j)
such that xai Hk + d - jL ! 1. In other words:

P PosHai, dL ! 8j : xai Hk + d - jL ! 1 and 1 § j § k<.
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" i, d œ ", 0 § i § -1 + r HmL, and 0 < d < pi. We denote

QHai, dL ! 8d + j pi : j ! 0, 1, … , mHm, aiL<, 0 < d § bHm, aiL
QHai, dL ! 8d + j pi : j ! 0, 1, … , -1 + mHm, aiL<,

bHm, aiL < d < pi

EHai, dL ! QHai, dL › F.

The  neuronal  recurrence  equation  8xai HnL : n ¥ 0<  with  memory  of
length k is defined by equations (15) and (16).

We will show that the neuronal recurrence equation 8xai HnL : n ¥ 0<
evolves as specified in equation (14).  

In the following proposition, we present an important property. 

Proposition 1. [13] " i œ ", 0 § i § -1 + rHmL and " d œ ", 1 § d < pi:

card EHai, dL § rHmL - 1.

The following proposition characterizes  the sum of  the interaction
coefficients aj when j œ PosHaiL.
Proposition 2. " i œ ", 0 § i § -1 + rHmL, so

‚
jœPos HaiL

aj ! 2ä rHmL.
The  following  lemma  characterizes  the  evolution  of  the  sequence8xai HnL : n ¥ 0< at time t ! k. 

Lemma 5. xai HkL ! 1.

From Lemma 5 and equation (15), it is easy to verify that 

(28)P PosHai, 1L ! QHai, 1L.
From  the  definition  of  EHai, 1L,  equation  (15),  equation  (28),  and
Lemma 5, we easily check that

(29)# œ D\EHai, 1L ï xai Hk + 1 - #L ! 0 or a" ! 0.

The  values  of  the  sequence  8xai HnL : n ¥ 0<  at  time  t ! k + 1, … ,
k - 1 + pi are given by the following lemma.

Lemma 6. " t œ " such that 1 § t § 3 m - 1 - ai; we find xai Hk + tL ! 0.

It is easy to verify that " i œ ", 0 § i § -1 + r HmL: 
P Pos Hai, jL ! QHai, jL " j, 1 § j § 3 m - 1 - ai.

Lemma 7. There exists a, fai œ !k, and q œ ! such that

PerIa, q, fai M ! pi.
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Lemma 8. " t, i œ ", t ¥ k, and 0 § i § -1 + rHmL:
mHm, aiL § ‚

j!1

k

xai Ht - jL § 1 + mHm, aiL.
In order to present some properties of the sequence 8xai HnL : n ¥ 0<,

we introduce the following notation. 

Notation 1. Let us define S1 Hai, nL as

S1 Hai, nL ! ‚
j!1

k

aj xai Hn - jL
and  let  l  be  a  strictly  negative  real  number  such  that
" i, 0 § i § rHmL - 1:

max 9S1 Hai, nL - q : S1 Hai, nL < q and n ¥ k= § l.

Lemma 9. " i, n œ " such that 0 § i § -1 + r HmL and n ¥ k, 

S1 Hai, nL œ A-2 H1 + mHm, aiLL, q - 1E ‹ 8q<,
l œ @-1, 0 @.

Let  8vai HnL : n ¥ 0<  be  the sequence where the first  k  terms are  de-
fined as follows: 

(30)vai H0L vai H1L… vai Hk - 1L ! xai H1L… xai Hk - 1L xai HkL,
and  the  other  terms  are  generated  by  the  following  neuronal  recur-
rence equation:  

(31)vai HnL ! 1B‚
j!1

k

aj vai Hn - jL - qF, n ¥ k.

Remark 1.  The  term xai HkL  is  equal  to  1;  this  implies  that  vai Hk - 1L  is
equal to 0. 

The  parameters  aj,  1 § j § k,  and  q  used  in  neuronal  recurrence
equation (31) are those defined in equations (17), (18), and (24).  

The following lemma, which is easy to prove, characterizes the evo-
lution of the sequence 8vai HnL : n ¥ 0<. 
Lemma 10.  In  the  evolution  of  the  sequence  8vai HnL : n ¥ 0<,
" t œ ", t ¥ k, we find: 

(a) vai HtL ! 0
(b) ⁄j!1

k aj vai Ht - jL § q - 2
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(c)  The  sequence  8vai HnL : n ¥ 0<  describes  a  transient  of  length
k - pi and a fixed point. 

The instability of the sequence 8xai HnL : n ¥ 0<  occurs as a result  of
the convergence of the sequence 8vai HnL : n ¥ 0< to 00 … 00.  

Notation 2.  h ! rHmLäk ! H6 m - 1Lä HrHmLL2  is the length of the mem-
ory of some neuronal recurrence equations.

Let us also note: 

(32)

L0HdL !
rHmLä lcmIpd+1, pd+2, …, p-2+r HmL, p-1+r HmLM,

if 0 § d § -2 + rHmL
1, if d ! -1 + rHmL

(33)L1HdL ! rHmLä lcmHp0, p1, … , pdL, 0 § d § rHmL - 1

(34)L2 ! rHmLä lcmIp0, p1, … , p-1+r HmLM.
L0HdL,  L1HdL,  and  L2  represent  the  periods  of  some  neuronal  recur-
rence equations.  

Let 8yHnL : n ¥ 0< be the sequence whose first h terms are defined as
follows: 

(35)
" j œ ", 0 § j § k - 1

yHHrHmLä jL + iL ! xai H1 + jL, 0 § i § -1 + rHmL
and  the  other  terms  are  generated  by  the  following  neuronal  recur-
rence equation:  

(36)yHnL ! 1B‚
f !1

h

bf yHn - f L - q1F; n ¥ h

where  

(37)bf !
aj, if f ! rHmLä j, 1 § j § k

0, otherwise

(38)q1 ! q.

The  parameters  aj  are  those  defined  in  equations  (17)  and  (18).  The

parameters q and k are defined in equations (24) and (25).  

Remark 2.  (a)  The  first  h  terms  of  the  sequence  8yHnL : n ¥ 0<  are  ob-
tained  by  shuffling  the  k  terms  of  each  subsequence8xai HnL : 1 § n § k< where 0 § i § -1 + rHmL. 
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(b) The neuronal recurrence equation (36) is  obtained by applying
the construction of Lemma 1 to the neuronal recurrence equation (16)
whose parameters are given in equations (17), (18), (24), and (25).

Because the sequence 8yHnL : n ¥ 0<  is the shuffle of the rHmL  subse-
quences and due to its construction, we can write Lemma 11.

Lemma 11.  " t œ "  such  that  t ! qä rHmL + i  with  q œ "  and
0 § i § -1 + rHmL, so

yHtL ! xai H1 + qL.
The next lemma gives the period of the sequences 8yHnL : n ¥ 0<. 

Lemma 12. The sequence 8yHnL : n ¥ 0< describes a cycle of length L2. 

" d œ "  such  that  0 § d § -1 + rHmL.  We  denote  by8wHn, dL : n ¥ 0< the sequence whose first h terms are defined as

(39)

" i, 0 § i § d

wHrHmL j + i, dL !
xai H1 + jL, 0 § j § k - 2

xai HkL, j ! k - 1

and  

(40)
" i, d + 1 § i § -1 + rHmL
wHrHmL j + i, dL ! yHrHmL j + i + L1HdLL; 0 § j § k - 1.

The first h terms of the sequence 8wHn, dL : n ¥ 0< are obtained by shuf-
fling the k terms of each of the sequences:  

(41)vai H0L vai H1L vai H2L… vai Hk - 1L; 0 § i § d

and  

(42)
xai H1 + giHdLL xai H2 + giHdLL xai H3 + giHdLL

… xai Hk + giHdLL; d + 1 § i § -1 + rHmL
where

(43)
L1HdL
rHmL ª giHdL Hmod piL; d + 1 § i § -1 + rHmL.

The other terms of the sequence 8wHn, dL : n ¥ 0< are generated by the
following neuronal recurrence equation:   

(44)wHn, dL ! 1 B‚
f !1

h

bf wHn - f , dL - q1F; n ¥ h.

The next lemma gives the period of the sequence 8wHn, dL : n ¥ 0<.  
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Lemma 13.  The  sequence  8wHn, dL : n ¥ 0<  generates  a  transient  of
length HrHmLä Hk - pd - 1LL + d + 1 and a cycle of length L0HdL. 
Notation 3. Let us define S2 HnL, S3 Hn, dL as

S2 HnL ! ‚
f !1

h

bf yHn - f L,

S3 Hn, dL ! ‚
f !1

h

bf wHn - f , dL.

Remark 3. On the basis of the composition of automata [9] and the def-
inition of l, we can conclude that: 

† max 8S2 HnL - q1 : S2 HnL < q1 and n ¥ h< ! max 9S1 Hr, nL - q :

S1 Hr, nL < q and n ¥ k= § l, and 

† max 8S3 Hn, dL - q1 : S3 Hn, dL < q1 and n ¥ h< ! max 9S1 Hr, nL - q :

S1 Hr, nL < q and n ¥ k= § l. 

3.1 Results on the Dynamics of Sequences y  and w   

In  this  subsection,  we  recall  and  give  some  interesting  results  on  the
dynamics of the sequences 8yHnL : n ¥ 0< and 8wHn, dL : n ¥ 0<. 

The  following  lemma  characterizes  the  sequence  8yHnL : n ¥ 0<  and8wHn, dL : n ¥ 0< in terms of the sum of h consecutive terms. 

Lemma 14. " n, d œ ", such that n ¥ h and 0 § d § rHmL - 1:

† ⁄i!0
-1+rHmL

mHm, aiL § ⁄f !1
h yHn - f L § rHmL +⁄i!0

-1+rHmL
mHm, aiL, 

† ⁄i!d+1
-1+rHmL

mHm, aiL § ⁄f !1
h wHn - f , dL § -d - 1 + rHmL +

⁄i!0
-1+rHmL

mHm, aiL. 
Definition 1.  Let  us  define  the  terms  of  the  sequence8timHi, l, qL : l, q œ " and 0 § i § -1 + rHmL< as

timHi, l, qL ! Hlä rHmLL + i + q : l,

q œ " and 0 § i § -1 + rHmL.
From Lemma 11, it can easily be deduced that 

(45)
yHtimHi, l, 0LL yHtimHi, l + 1, 0LL… yHtimHi, l + k - 1, 0LL !

xai H1 + lL… xai Hl + kL; 0 § i § -1 + rHmL.
From Lemma 11 or equation (45), we can also easily deduce that the
terms of the sequence 8yHnL : n ¥ 0< verify the following relation:  
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46(a)

yHtimHi, 0, -rHmL + L1HdLLL yHtimHi, 1, -rHmL + L1HdLLL
… yHtimHi, k - 1, -rHmL + L1HdLLL !

00 … 0
bHm,aiL

10 … 0
pi

… 10 … 00
pi

mHm,aiLäpi

; 0 § i § d

46(b)

yHtimHi, 0, -rHmL + L1HdLLL yHtimHi, 1, -rHmL + L1HdLLL
… yHtimHi, k - 1, -rHmL + L1HdLLL !

xai HgiHdLL xai H1 + giHdLL… xai Hk - 2 + giHdLL
xai Hk - 1 + giHdLL; d + 1 § i § -1 + rHmL.

For all d œ " such that 0 § d § -1 + rHmL, B0HdL is the set of inte-
gers f  that verify equations (47) and (48): 

(47)1 § f § h - d

(48)yH- f - rHmL + h + L1HdLL ! 1.

Comment: By considering the following terms, it is possible by easy
computation  to  build  the  set  B0HdL:  yH-r HmL + L1HdLL
yH1 - rHmL + L1HdLL… yH-rHmL + L1HdL + h - 1L. In a bid to give the al-
gebraic expression of the set B0HdL, let us define the set C0 Hi, piL as fol-
lows: 

(49)

C0 Hi, piL !
8- i + rHmL + HrHmLäpiä jL : j ! 0, 1, … , mHm, aiL <,

0 § i § rHmL - 1.

From  the  definition  of  the  terms  yH0L yH1L… yHh - 1L  (see  equa-

tion!(35)), it  is easy to see that ‹i!0
rHmL-1 C0 Hi, piL  represents the set of

indices j such that yHh - jL ! 1.  
Let us define the set C1 Hn, yL as follows: 

(50)C1 Hn, yL ! 8j : yHh + n - jL ! 1<.
It is easy to see that

# œ Ê
i!0
rHmL-1

C0 Hi, piLó y Hh - #L ! 1 and 1 § # § h,

ó y Hh + n - H# + nLL ! 1 and 1 § # § h,

ó # + n œ C1 Hn, yL and 1 § # § h.
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Consequently,

(51)
# œ Ê

i!0
rHmL-1

C0 Hi, piLó# + n œ

C1 Hn, yL and 1 § # § h.

Based on the period of the subsequence 8xai HnL : n ¥ 0< and on the fact
that  y  is  a  shuffle  of  the  subsequences  xai H0 § i § rHmL - 1L,  we  de-
duce that

# + n œ C1 Hn, yL,
# œ C0 Hi, piL, ï# + n - HrHmLäpiL œ C1 Hn, yL.

Let us denote C2 Hi, dL the following set: 

(52)
C2 Hi, dL !9j : - i + rHmL + L1HdL - rHmL ª j Hmod rHmLäpiL=.

The  set  C2 Hi, dL  contains  the  only  element  j  (0 § j < r HmLäpi)  such
that  - i + r HmL + L1 HdL - r HmL ª j Hmod rHmLäpiL.  By  using  equa-
tion!(51)  and  the  fact  that  - i + rHmL œ C0 Hi, piL,  we  deduce  the  fol-
lowing implications:  

- i + rHmL œ C0 Hi, piL,
j œ C2 Hi, dL,
j ! 0,

ï j œ C1 Hn, yL

- i + rHmL œ C0 Hi, piL,
j œ C2 Hi, dL,
j ! 0,

ïrHmLäpi œ C1 Hn, yL.

We build the set C3 Hi, dL as follows: 

(53)
C3 Hi, dL !9# : # ª j Hmod rHmLäpiL, 1 § # § h, # œ C2 Hi, dL=.

It is easy to see that

B0HdL ! Ê
i!0
rHmL-1

C3 Hi, dL.
Let us denote A HdL in the following set: 

(54)AHdL = Ê
i!0
d

BiHdL
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where

Bi+1HdL ! 81 + ’ : ’ œ BiHdL<.
Based on the evolution of the neuronal recurrence equation y and the
definition of the set BiHdL, it is easy to verify that

(55)
" # œ ", 0 § # § d and " f œ B"HdL,
so yH- f - rHmL + h + # + L1HdLL ! 1.

4. Construction of the Neuronal Recurrence Equation z 

The basic idea is to construct a sequence 8zHn, dL : n ¥ 0< whose terms
are generated by the neuronal recurrence equation

(56)z Hn, dL ! 1B‚
f !1

h

cHf , dL zHn - f , dL - q2HdLF
and whose first h terms are initialized as follows:  

(57)zHf , dL ! yHf L; 0 § f § h - 1,

which exploits the instability of the sequences 8xai HnL : n ¥ 0<  to con-
verge to the sequence 8wHn, dL : n ¥ 0<.

We define the parameters cHf , dL and q2HdL as follows: 

(58)cHf , dL !
bf 1 § f § h and f – AHdL,
bf + bHdL 1 § f § h and f œ AHdL.

(59)q2HdL ! q1 + xHdL,
where

(60)bHdL !
l

TotHdL ,

(61)xHdL ! l -
b HdL

8
,

(62)TotHdL ! card B"HdL, 0 § # § d.

We  have  defined  the  parameters  cHf , dL  so  that  the  sequence8zHn, dL : n ¥ 0< converges to the sequence 8wHn, dL : n ¥ 0<.  
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Remark 4.  The  terms  of  the  sequence  8zHn, dL : n ¥ 0<  verify  the  fol-
lowing relation:  

zHtimHi, 0, 0L, dL zHtimHi, 1, 0L, dL… zHtimHi, k - 1, 0L, dL !
xai H1L xai H2L… xai Hk - 1L xai HkL; 0 § i § -1 + r HmL.

Notation 4. Let Q2 Hn, dL be defined as follows: 

Q2 Hn, dL ! bHdL ‚
fœAHdL

zHn - f , dL - xHdL.
We  now  establish  a  proposition  that  states  a  relation  between

zHn, dL, S2 HnL, and Q2 Hn, dL. 
Proposition 3. If 

zHn - i, dL ! yHn - iL for all i such that 1 §

i § h and n - i ª 0 Hmod rHmLL,
then

zHn, dL ! 1@S2 HnL + Q2 Hn, dL - q1D.
The  next  two  propositions  provide  the  link  between  the  value  of

Q2 Hn, dL and the sequence zHn, dL. 
Proposition 4. If 

‚
fœAHdL

zHn - f , dL ! TotHdL,
then 

Q2 Hn, dL !
b HdL

8
.

Proposition 5. If 

‚
fœAHdL

zHn - f , dL § Tot HdL - 1,

then  

-7 bHdL
8

§ Q2 Hn, dL § -xHdL.
In  the  next  two  lemmas,  we  show  the  relations  between  B0HdL,

AHdL, and TotHdL. 
Lemma 15. " d, n œ " such that 0 § d § rHmL - 1.
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If 

n T h - rHmL + L1HdL Hmod L2L,
then 

‚
fœB0HdL

yHn - f L < TotHdL.

Lemma 16. " n œ " such that n ª # Hmod L2L.
If 

# – 8-rHmL + h + L1HdL,
1 - rHmL + h + L1HdL, … , d - rHmL + h + L1HdL<,

then 

‚
fœAHdL

yHn - f L < TotHdL.
We want to exploit the following facts: 

† ⁄fœAHdL zHn - f , dL ! TotHdL implies that Q2 Hn, dL ! bHdL
8

< 0. 

† ⁄fœAHdL zHn - f , dL § TotHdL - 1 implies that 
-7 bHdL

8
§ Q2 Hn, dL §-xHdL. 

† " t, 0 § t § r HmL - 1, so ⁄f !1
h bf yHh - rHmL + t - f + L1H-1 + rHmLLL ! q. 

† The sequence 8xai HnL : n ¥ 0< is unstable.

This  proves  that  the  sequence  8zHn, dL : n ¥ 0<  converges  to  the  se-
quence  8wHn, dL : n ¥ 0<.  We  intend  to  divide  the  dynamic  of  the  se-
quence 8zHn, dL : n ¥ 0< into five phases.  

5. Dynamical Behavior of the Neuronal Recurrence Equation z  

This  study is  done in  two steps:  first,  we analyze  the  transient  phase
and next the cyclic phase. Subsequently, we suppose that d verifies the
following equation:

d œ " and 0 § d § rHmL - 1.

5.1 Transient Phase 
The  transient  phase  of  the  sequence  8zHn, dL : n ¥ 0<  unfolds  during
four phases. 
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Phase 1.  We want the dynamics of the sequence 8zHn, dL : n ¥ 0<  to
verify  the  relation  " t œ "  such  that  0 § t § L1HdL + h - 1 - rHmL.  We
find

z Ht, dL ! yHtL.
Phase 1 starts at time 0 and finishes at time L1HdL + h - 1 - rHmL.  

In  Lemma  17,  we  prove  that  the  sequence  8zHn, dL : n ¥ 0<  verifies
the properties of phase 1.  

Lemma 17.  In  the  evolution  of  the  neuronal  recurrence  equation8zHn, dL : n ¥ 0<,  " t œ "  such  that  0 § t § L1HdL + h - 1 - rHmL.  We
find

z Ht, dL ! y HtL.
Phase 2. We want " t œ "  such that L1HdL + h - rHmL § t § L1HdL +

h - rHmL + d. We find

zHt, dL ! 0 even when yHtL ! 1.

Phase  2  occurs  from  time  h - rHmL + L1HdL  to  time
L1HdL + h - rHmL + d.  In  Lemma  18,  we  prove  that  the  sequence8zHn, dL : n ¥ 0< verifies the properties of phase 2.  

Lemma 18.  " t œ "  such  that  L1HdL + h - rHmL § t § L1HdL + h -
rHmL + d. We find

zHt, dL ! 0 even when yHtL ! 1.

After  phase  2,  the  behavior  of  the  sequence  8zHn, dL : n ¥ 0<  begins
to be  different  from the behavior  of  the  sequence 8yHnL : n ¥ 0<.  After
phase 2, the sequence 8zHn, dL : n ¥ 0< begins its convergence to the se-
quence 8wHn, dL : n ¥ 0<. 

Phase 3.  This phase starts at time L1HdL + h - rHmL + d + 1 and fin-
ishes at time L1HdL + h - 1. 

Lemma 19.  In  the  evolution  of  the  neuronal  recurrence  equation8zHn, dL : n ¥ 0<,  " t œ "  such  that  L1HdL + h - rHmL + d + 1 § t §
L1HdL + h - 1. We find

zHt, dL ! yHtL.
Remark 5. Based on Lemmas 11, 17, 18, and 19, we easily deduce that
the  terms  of  the  sequence  8zHn, dL : n ¥ 0<  verify  the  following  rela-
tions:  

zHtimHi, 0, L1HdLL, dL zHtimHi, 1, L1 HdLL, dL
… zHtim Hi, k - 1, L1HdLL, dL !

vai H0L vai H1L… vai Hk - 1L, 0 § i § d
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zHtimHi, 0, L1HdLL, dL zHtimHi, 1, L1HdLL, dL
… zHtimHi, k - 1, L1HdLL, dL !

xai H1 + giHdLL xai H2 + gi HdLL… xai Hk + giHdLL,
d + 1 § i § -1 + rHmL

where giHdL is defined in equation (43). 

Remark 6. If 

d ! rHmL - 1,

then it is clear that phase 3 does not exist. 

Phase  4.  This  phase  starts  at  time  L1HdL + h  and  finishes  at  time
L1HdL + h + d + HrHmLä Hk - 1 - pdLL.  This  phase  corresponds  to  the
transient phase of the neuronal recurrence equation 8wHn, dL : n ¥ 0<. 
Lemma 20.  In  the  evolution  of  the  neuronal  recurrence  equation8zHn, dL : n ¥ 0<,  " t œ "  such  that  0 § t § HrHmLä Hk - 1 - pdL L+d;  we
find

zHL1HdL + h + t, dL ! wHh + t, dL.
Notation 5.  We  set  L3HdL ! L1HdL + 2 h + d - HrHmLä H1 + pdLL,  which
represents  the  end  of  the  fourth  phase,  and  we  set  L4HdL !
L3HdL - h + 1, which represents the beginning of the cyclic phase. 

Remark 7. Based on Lemmas 17, 18, 19, and 20, we easily deduce that
the  terms  of  the  sequence  8zHn, dL : n ¥ 0<  verify  the  following  rela-
tions:  

zHtimHi, 0, L4HdLL, dL zHtim Hi, 1, L4HdLL, dL
… zHtim Hi, k - 1, L4HdLL, dL !

xai+d+1 Hgi+d+1HdL + k - pdL xai+d+1 H1 + gi+d+1HdL + k - pdL…

xai+d+1 H2 k - 1 + gi+d+1HdL - pdL; 0 § i § rHmL - d - 2

(63)

zHtim Hi, 0, L4HdLL, dL zHtimHi, 1, L4HdLL, dL
… zHtim Hi, k - 1, L4HdLL, dL ! 000 … 000

k

;

rHmL - d - 1 § i § rHmL - 1.

The sequence 8zHn, dL : n ¥ 0<  describes a cycle during its fifth step.
Section 5.2 is devoted to this study. 

5.2 Cyclic Phase  
Phase  5.  This  phase  starts  at  time  L4HdL  and  describes  a  cycle  of
length L0HdL. 
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Lemma 21. 
zHt + L4HdL, dL ! wHt + h + d + 1 + HrHmLä H-1 - pdLL, dL; " t œ N.

We have shown the following.

Lemma 22. The sequence 8zHn, dL : n ¥ 0< describes a transient of length
L4HdL and a cycle of length L0HdL. 

It  is  easy  to  see  that  by  perturbation,  we  can  build  the  neuronal
recurrence  equations  8zHn, 0L : n ¥ 0<  from  8yHnL : n ¥ 0<  and8zHn, d + 1L : n ¥ 0< from 8zHn, dL : n ¥ 0<.
This second item is obtained by the following transformations:  

(64)

c Hf , 1 + dL !

cHf , dL, if f – AHdL ‹ AH1 + dL
cHf , dL - b HdL + b H1 + dL, if f œ A HdL › AH1 + dL
cHf , dL - bHdL, if f œ A HdL › AH1 + dL
cHf , dL + bH1 + dL, if f œ AHdL › AH1 + dL

(65)q2Hd + 1L ! q2HdL - xHdL + xHd + 1L.
The main result of the paper is Theorem 1.

Theorem 1.  " m, d œ "  such that rHmL ¥ 2 and 0 § d § -1 + rHmL.  We
construct  a  set  of  rHmL + 1  neuronal  recurrence  equations  that  verify
the following: 

† The  neuronal  recurrence  equation  8yHnL : n ¥ 0<  describes  a  cycle  of
length L1H-1 + rHmLL.

† By  perturbation,  we  can  build  the  neuronal  recurrence  equation8zHn, 0L : n ¥ 0<  from  the  neuronal  recurrence  equation  8yHnL : n ¥ 0<.
The period of the neuronal recurrence equation 8zHn, 0L : n ¥ 0< is a divi-
sor of the period of the neuronal recurrence equation 8yHnL : n ¥ 0<.

† By  perturbation,  we  can  build  the  neuronal  recurrence  equation8zHn, d + 1L : n ¥ 0<  from  the  neuronal  recurrence  equation  8zHn, dL :
n ¥ 0<.  The  period  of  the  neuronal  recurrence  equation  8zHn, d + 1L :
n ¥ 0<  is  a  divisor  of  the  period  of  the  neuronal  recurrence  equation8zHn, dL : n ¥ 0<.

† The  period  of  the  neuronal  recurrence  equation  8zHn, -1 + rHmLL :
n ¥ 0< is 1 (i.e., a fixed point). 

Remark 8. The new contributions in this paper with respect to the pre-
vious work [17] are as follows: 

† In  [17],  the  sequence  8zHnL : n ¥ 0<  is  a  composition  of  the  s + 1 subse-
quences  of  periods  p0, p1, … , ps  and  3 m - 1.  In  the  evolution  of  the
sequence 8zHnL : n ¥ 0<,  the subsequence of period 3 m - 1 vanishes and
converges  to  the  null  sequence  000 … 000 ….  This  fact  appears  in  the
formula of transient length and in the formula of the cycle length of the
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sequence  8zHnL : n ¥ 0<,  which  are  respectively  Hs + 1L H3 m + 1 +
lcmHp0, p1, … , ps-1, 3 m - 1LL  and  Hs + 1L lcmHp0, p1, … , ps-1,
3 m - 1L. It is clear that in this case, the periods p0, p1, … , ps-1  of the
subsequences  intervene  in  the  transient  formula  and  in  the  period  for-
mula. 

† In this paper, the sequence 8zHn, dL : n ¥ 0< is a composition of the rHmL
subsequences  of  periods  p0, p1, … , p-1+rHmL  and  in  the  evolution  of
the sequence 8zHn, dL : n ¥ 0<, the subsequences of period p0, p1, … , pd
vanish  and  converge  to  the  null  sequence  000 … 000 ….  This  fact  ap-
pears in the formula of transient length and on the cycle length of the se-
quence  8zHn, dL : n ¥ 0<,  which  are  respectively  rHmLä
lcmHp0, p1, … , pdL + h + d + 1 - HrHmLä H1 + pdLL,  0 § d § -1 + rHmL
and rHmLä lcmIpd+1, pd+2, … , p-1+rHmLM  if  0 § d § -2 + rHmL  and 1 if
d ! rHmL - 1. It  is  clear that  in this  case,  there does not exist  a period
pi  of  a subsequence that intervenes in the transient formula and in the
period formula. 

† The  difference  mentioned  in  the  expressions  of  the  transient  formula
and in the period formula in this paper and in [17] imply that the con-
cept used in the construction of the set A (see page 520 of [17]) is funda-
mentally  different  from the  concept  used in  the  construction of  the  set
AHdL (see equation (54)). 

† In  [17],  we  build  only  one  neuronal  recurrence  equation  8zHnL : n ¥ 0<,
whereas  in  this  paper  we  build  rHmL  neuronal  recurrence  equation8zHn, dL : n ¥ 0<, 0 § d § rHmL - 1. 

Let us note e an integer such that

" i œ ", 0 § i § rHmL - 1; we find bHm, aeL § bHm, aiL.
Subsequently, we suppose that

d < bHm, aeL.
Let us note zèH0, dL zèH1, dL… zèHh - 1, dL for the following h terms:  

(66)zèHi, dL ! yHiL for i such that bHm, aeL - d § i § h - 1

(67)zèHi, dL œ 80, 1< for i such that 0 § i § bHm, aeL - d - 1.

The  following  lemma characterizes  the  basin  of  attraction  of  the  se-
quence 8zHn, dL : n ¥ 0<. 
Lemma 23.  If  d < bHm, aeL,  then  from  the  following  initial
configurations

yH0L yH1L… yHh - 1L,
zèH0, dL zèH1, dL… zèHh - 1, dL;

the  neuronal  recurrence  equation  8zHn, dL : n ¥ 0<  converges  to  the
same basin of attraction. 
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6. Conclusion  

We  improve  the  fundamental  lemma  of  composition  of  neuronal  re-
currence  equations.  From  a  neuronal  recurrence  equation  that
describes a cycle of length L2, we construct a set of rHmL neuronal re-
currence equations 8zHn, dL : n ¥ 0<, the dynamics of which describe re-
spectively the cycle of length L0HdL where L0HdL are the divisors of L2.
The  neuronal  recurrence  equation  8zHn, -1 + rHmLL : n ¥ 0<  describes
an exponential  transient  and a fixed point.  By perturbation,  we have
built  the  neuronal  recurrence  equation  8zHn, d + 1L : n ¥ 0<  from  the
neuronal  recurrence  equation  8zHn, dL : n ¥ 0<  such  that  the  period  of
the  neuronal  recurrence  equation  8zHn, d + 1L : n ¥ 0<  is  a  divisor  of
the period of the neuronal recurrence equation 8zHn, dL : n ¥ 0<.  Thus,
we  have  built  a  period-halving  bifurcation  of  a  neuronal  recurrence
equation.  This  result  is  inscribed  in  the  framework  of  results  on  the
convergence time of neural networks [18–20]. The exponential conver-
gence  time  of  neuronal  recurrence  equations  can  be  useful  when  we
want to use it in a cryptographic toolbox (e.g., remote authentication,
generation of pseudo-random numbers, etc.). 

Note: The extended version of the paper with proofs can be found
at arXiv:1110.3586.
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