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The usefulness of a methodology that integrates shape grammar for cap-
turing design information with cellular automata for computational out-
put of a design solution space is demonstrated in this paper. The appli-
cation domain is the ornamental artwork known as Chinese lattices or
meanders, a subject of earlier interest in shape grammar studies. In this
study,  a  specification  for  a  Chinese  lattice  is  used  for  creating  a  shape
grammar  to  capture  the  model’s  rules  of  self-organization,  which  are
then transcribed into cellular automata to physically generate a catalog
of  designs  that  meet  the  requirements  of  this  particular  meander  style.
Then, the study compares the use of a probabilistic (evolutionary com-
putation)  technique  against  complete  enumeration  for  managing  the
search for unique designs. In consideration of the finding of a very large
number of rule solutions for a design specification which produced only
a very small number of graphically unique architectures, the question is
raised  as  to  whether  a  more  efficient  search  process  other  than  brute
force enumeration can be used.  Finally,  the meander study is  extended
to  a  real  engineering  system,  demonstrating  the  applicability  of  the
shape grammar to cellular automata (SG Ø CA) methodology for find-
ing  the  most  efficient  system  architecture  solutions  for  a  comparable
routing/circuit  problem.  System  architectures  addressing  an  under-
ground heating specification are automatically generated and evaluated,
resulting in a group of design alternatives displaying the best piping lay-
outs for the given requirements.

1. Introduction

Meanders  (see  Figure  1)  are  decorative  rectilinear  or  curvilinear  pat-
terns  that  were  devised  in  antiquity  for  adornment  of  utilitarian  ob-
jects  [1–5].  The  word  is  derived  from  the  Meander  River  in  ancient
Greece  (now  Turkey)  noted  for  its  winding  bends  [1].  As  with  the
original  use  of  meanders,  aesthetics  is  still  an  important  feature  of
system architectures in today’s world.

Intrigued by the meander style, Dye [6] was inspired to compose a
two-volume  collection  on  Chinese  lattices  entitled  A  Grammar  of
Chinese Lattice. Knight later studied meanders in depth as an architec-
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tural  design  domain  [7,  8].  Knight’s  insight  that  there  is  a  grammar
capable of generating each lattice style led to the present study’s adop-
tion  of  meanders  by  which  to  demonstrate  the  application  of  shape
grammar to cellular  automata (SG Ø  CA) [9]  for  an ornamental  art-
work,  enabling  computational  generation  of  a  catalog  of  designs  in
this style. 

Figure 1. Example of a decorative meander from antiquity.

1.1 Shape Grammar
Since  the  design  function  is  critical  in  system architecting,  the  ability
to  visually  represent  design  forms  and  their  physical  rules  of  self-
organization in a rigorous and also understandable manner is a neces-
sity.  A  simple  and  versatile  approach  for  achieving  such  computing
with shapes is shape grammar, developed by Stiny and Gips [10] and
based on formal languages as defined by the work of Chomsky [11].
A shape grammar is  intended to express a formal system of rules for
characterizing  the  structure  of  a  design  in  a  spatial  language.
“[D]esign is execution of a computation in a shape algebra to produce
required  shape  information,  and  the  rules  of  shape  grammar  specify
how to carry out that computation. These rules encode knowledge of
form, function, and the relationship of the two.” [12, p. 238] In fact,
while the past practice of shape grammar has focused on form, func-
tions  and  properties  of  shapes  can  be  included  in  the  grammar
[13,!14].

Shape  grammar  is  thus  an  intuitive  but  also  technically  precise
methodology that generates languages of design to allow visualization
of the possible form and function outputs of the given rule inputs.  A
shape grammar consists of a vocabulary of shapes as well as markers
(spatial variables) that control the positioning of shapes in the vocabu-
lary.  Shape  rules  created  by  an  “architect”  are  applied  recursively
starting  with  the  initial  shape, generating  designs  that  compose  a

        
        

       
          

          
        

           
       
       

376 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.4.375



         
        

            
           

          
         

        
grammatically correct language. The shape grammar utilizes such op-
erators as shape addition, subtraction, and deletion. Furthermore, for-
mally  defined  operations  called  transformations  change  the  current
state  of  the  design  through the  operators  of  translation,  rotation,  re-
flection, and scaling. A production set of rules incorporating a defined
sequence  of  operators  and  transformations  evolves  the  initial  condi-
tion shape step by step to a final state. Operators and transformations
and  their  combinatoric  compositions  can  yield  tremendous  diversity
and also lead to changes in styles. 

To date, there have been a few demonstrations of shape grammars
in  product  design  [15–17],  but  the  hand  application  of  shape  gram-
mars  has  proved  a  limitation  to  their  use.  Stiny  has  pointed  out  (via
personal communication) that the practical use of shape grammar has
been limited because of the current lack of a “robust” compiler or in-
terpreter, leaving laborious hand manipulation or the development of
custom  software  that  may  have  narrow  generalizability  (recent  at-
tempts at shape grammar programs include [18–22]). Therefore, com-
putational  machinery that  would facilitate  the  use  of  shape grammar
across a variety of architectural applications would be of great value. 

1.2 Cellular Automata
One  promising  approach  for  addressing  the  aforementioned  shape
grammar  deficiency  is  through  the  use  of  cellular  automata.  Cellular
automata, which act on sets of rules for defined neighborhood condi-
tions, developed with the origins of computers and from the desire to
model  nature’s  self-generative  capabilities,  which  are  mainly  at-
tributable to von Neumann [23, 24, pp. 79–82], Ulam and Zuse [25],
and Wiener and Rosenblueth [26].  Noting that simple rules and pro-
grams can create complex systems [27, 28], Wolfram began to use cel-
lular automata as a model to study complexity and better understand
nature. Capable of simulating complex system dynamics, a cellular au-
tomaton  is  described  as  a  parallel  processing  computation  machine
with  a  neighborhood  of  finite  state  conditional  rules  that  can  model
physics in time and space.  The state of  a discrete static  or dynamical
system at the next step function is determined by the collective action
of these rules, which recursively evolve the system’s state. 

The cellular  automaton neighborhood appears  as  a  lattice  of  cells,
and every rule is represented by a pattern of cells containing certain if–
then conditional  values  (i.e.,  if  a  particular  configuration of  values  is
present in the lattice at a given step in time, then a certain value is en-
tered  in  a  specified  cell  for  the  next  step).  A  cellular  automaton  is
highly  restricted;  every  possible  local  neighborhood  configuration
must have a rule that determines its reaction, and the range of this re-
action is always the same. Consisting of a logical computation or pat-
tern match (as to a list  structure,  see [29,  30]),  a  rule is  thus applied
to each empty cell  based on the values in the surrounding cells  of  its
defined  neighborhood  to  determine  the given  cell’s  value  at  the  next
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step. Because the cellular automata are expressed as a deterministic fi-
nite state system, it is possible to perform computations on a PC with
single or multicore processors. Therefore, simulations can be run on a
PC  essentially  without  losing  any  emulation  power  to  represent  real
systems operating as parallel processing systems.

The  practical  utilization  of  cellular  automata  has  been  hindered
due to the difficulty of finding the proper rules to exhibit a target be-
havior  and  by  the  level  of  abstraction  required  to  conceptualize  the
functioning of the cellular automata. Practitioners have expressed un-
certainty  as  to  how  to  apply  cellular  automata  to  modeling  because
they have confronted the immense difficulty of trying to find a set of
rules from an astronomically large rule space [10, 31] that would gen-
erate  a  legitimate  desired  system architecture.  The  search  for  cellular
automata rules has also been addressed by trial and error, genetic al-
gorithms [32, 33], and genetic programming [34] with varying success.

Clearly, a cellular automata methodology for complex system mod-
eling  carries  the  advantage  of  parallel  processing  for  large  datasets
with  minimal  overhead  [33]  and  using  local  neighborhood  interac-
tions. Additionally, this algebraic, combinatoric, and logical approach
permits  the  use  of  symbolic  variables  and  functional  operations  ac-
cording  to  specified  rules.  Cellular  automata  can  be  programmed
(such  as  by  means  of  the  general  programming  language  Mathe-
matica®  [30])  for  generating  output  from  an  initial  condition  once
the desired rules are defined.

1.3 Shape Grammar and Cellular Automata
Both shape grammar and cellular  automata serve as  clear  models  for
bottom-up  system  architecting  since  they  utilize  basic  elements  and
rules to transform and assemble them based on current state patterns
in a given space (neighborhood). The opportunity thus exists for map-
ping  a  visually  depicted  form-function  (system  architecture)  directly
into  the  cellular  automata,  which  then  can  generate  the  output  in  a
visual-spatial  format  as  a  designer  would  produce.  As  the  input
methodology,  the  shape  grammar expresses  the  forms and their  rela-
tionships  as  well  as  any  physical  properties  or  physical  laws  of  the
form-function. The shape grammar production set of sequenced rules
is  then  transcribed  into  cellular  automata  rules  with  the  appropriate
conditional neighborhoods defined, and the cellular automata compu-
tational machinery outputs the design space.

2. Developing a Design-Generating System to Describe a 
Meander Style

2.1 The Specification
The particular design specification (set of requirements) for the mean-
der  in  this  study  (referring  to  Figure  2) entailed  an  initial  condition
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that consisted of a {5 rows, 4 columns} matrix dimension, with the re-
quirement  that  the  meander  enter  only  at  the  upper  right  matrix  cell
at  {row 1,  column 4},  traverse through every cell  of  the grid without
reentering  any  cell,  and  exit  only  at  the  bottom  left  matrix  cell  at
{5,1}.  The  meander  could  either  traverse  continuously  through  every
cell in the grid, or meander “islands” would form to assure every cell
had  been  contacted  (discontinuities  of  the  meander  path  were  al-
lowed). Then, symmetry reflection rules were applied to flip this {5,4}
grid (which constitutes the upper left-hand quadrant of the lattice) to
create the remaining three quadrants of the complete lattice {10 rows,
8 columns}. 

Figure 2. The specification indicating the input and output cell positions.

2.2 The Meander Shape Grammar
To  derive  the  set  of  shape  variables,  meanders  were  hand-drawn
against a grid background for decomposition into primitive line forms
that would permit line connections from cell to cell, either straight or
a 90° turn. Then, taking into account the direction of the cellular au-
tomaton processing,  the local  neighborhood conditions were defined.
Each cell output could be determined in this case by two neighboring
input cells,  immediately above and immediately to the left  of  the cell
to be computed (see Figure 3). Shape rules to generate outputs for ev-
ery  combination  of  neighborhood  input  shapes  were  enumerated.
This  step  necessitated  consideration  of  what  boundary  conditions
were  required  per  the  specification  and,  consequently,  what  addi-
tional  rules  for  the  constrained  outputs  were  needed.  Marker  vari-
ables were designed to serve as switches for turning on other rules in
order to change or limit the functioning of the meander at the sites of
the  imposed  boundary  conditions  (such  as  to  prevent  any  outer  cell
from containing a shape that would exit the lattice). The markers also

         
         

            
 

From Meander Designs to a Routing Application 379

Complex Systems, 20 © 2012 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.20.4.375



         
         

           
            

       
           
           

            
       
       
        
         

            
             

          
          

served to provide a perimeter line construction surrounding the com-
plete  lattice.  Of  note, the  addition  of  these  marker  constraints  tech-
nically  expanded the {5,4}  matrix in Figure 2 to {6,5}  (shown in Fig-
ure 4).

Figure 3. The meander shape grammar neighborhood.

s3m s2m s2m s2m s2b

s1m s0 s0 s0 s0

s1m s0 s0 s0 s0

s1m s0 s0 s0 s0

s1m s0 s0 s0 s0

s1b s0 s0 s0 s0

Graphic Symbolic

Figure 4. The initial condition in graphic and symbolic form.

The shape grammar was developed to express a meander system in
a  format  that  directly  lent  itself  to  a  cellular  automaton  derivation.
Transcribed simple rules and markers were carried over in the cellular
automaton steps to route the meander primitives (the shape variables)
in  only  physically  legitimate  directions  within  boundary  constraints.
However, certain situations called for a rule to impose a restriction on
the meander to indicate that a neighborhood was illegitimate because
it  would  not  satisfy  the  specification.  Neighborhoods  that  deviated
from  the  specification  were  explicitly  assigned  a  “halt”  rule,  which
was intended to stop the execution of the cellular automaton from fur-
ther generation. Finally, a group of rules was developed to rewrite the
marker variables as a constant into their cell of origin during every ap-
plication of the cellular automaton step function. Such rules served as
an  identity  function  when  it  was  desired  that  certain  cell  values  (the
boundary delimiters) not be changed by the main rule set.
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The  shape  variables  required  for  the  meander  shape  grammar  in-
clude the following.

† 1 empty shape (i.e., blank cell in lattice not yet computed), symbolical-
ly!{s0}

† 6 predetermined shape variables, symbolically {s1, s2, s3, s4, s5, s6}

† 11 shape markers, symbolically {s1m, s1b, s1r, s2m, s2b, s2r, s3m, s3r,
s4r, s5r, s6r} 

(The  __m  designates  a  marker  that  constrains  the  top  row  and  left-
hand  boundaries.  The  __b  represents  a  blue  marker  to  bound  the
upper  right  or  lower  left  corners  of  the  quadrant.  The  __m and  __b
markers are used in the initial  condition.  The __r or red markers are
rule  generated,  serving  as  boundaries  for  the  bottom  row  and  the
right-hand side of the quadrant.)

s0 s1 s1m s1b s1r s2 s2m s2b s2r s3 s3m s3r s4 s4r s5 s5r s6 s6r

Shape and marker variables with their symbolic equivalents.

A  rule  set  for  a  particular  solution  attempt  is  composed  of  128
rules  (if–then  conditions)  drawn  from  the  two  groups  of  meander
rules.  The  formal  simple  relationships  of  form-function  are  symboli-
cally expressed according to local neighborhood conditions, classified
as Group I rules when the condition is invariant or as Group II rules
when  options  exist  for  the  condition  (see  Appendix  A  for  listing).
Group  I  contains  106  rules,  each  of  which  invariably  results  in  just
one  possible  cell  output,  so  all  of  these  rules  are  always  in  effect.
Group II includes 22 rules also always in effect, but each has two al-
ternative  outcomes  (note  Figure  6(b)  and  (c)).  A  combinatoric  table
was constructed for the Group II rules to produce each possible listing
of  outcomes  to  be  in  effect  {1  or  2}  across  all  22  rules.  Each  row in
this  combinatoric  table  would  therefore  consist  of  the  same  22  rules
with either the first or the second output option, and all the rows to-
gether  would  present  every  possible  combination  of  outcomes  across
the 22 rule sequence. Each of the possible rule sets was then selected
one  at  a  time  from  the  Group  II  rule  combinatoric  table  and  ap-
pended to the 106 Group I rules to generate another meander by the
cellular automaton. The combinatoric variety of Group II rule alterna-
tives resulted in a creative space of 4 194 304 possible meanders using
222 = 4 194 304  rule  sets;  each  rule  set  thus  generates  a  possible,  al-
though not necessarily unique, meander.

The  initial  condition  configuration  is  shown  in  Figure  4  with  the
meander  line  shapes  transcribed  into  letter-number  symbols  for  use
with  the  two-dimensional  cellular  automaton generating  machine  de-
scribed in the following section. This initial condition is composed of
the  6  row  by  5  column  lattice  with  boundary  defining  markers
(marker  shapes)  and  empty  lattice  cells  (empty  shapes). The  post-
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generation condition (shown in Figure 5) will still contain the original
boundary markers, the generated meander line shapes, and additional
marker shapes generated for the last row and last column. These gen-
erated  markers  act  to  further  constrain  the  meander  from  traversing
outside of the right-hand side and bottom of the matrix except at the
specified input/output cells.

HaL HbL
Figure 5. Lattice at (a) the initial condition and (b) after meander generation.

2.3 Applying the Cellular Automata Computational System to 
Generate a Set of Meanders

To  enable  the  meander  shape  grammar  rule  format,  a  Moore  two-
dimensional  neighborhood  template  was  used  [35,  36],  with  cells  of
the  neighborhood  made  active  by  assigning  1  to  the  controlling  cells
and 0 to the inactive (non-influential) cells (see Figure 6(a)). Every cell
in the step (s + 1) lattice has a conditional neighborhood from step (s)
that  determines  the  value  of  the  center  cell  for  step  (s + 1).  With  re-
spect to the meander construction, generation of each next step’s me-
ander  shapes  (at  the  central  cell  of  the  Moore  neighborhood matrix)
would be determined according to what meander shapes were already
just above it as well as to its left (these are the two active or influenc-
ing  neighbors).  Figures  6(b)  and  (c)  illustrate  how  Group  I  and
Group!II rules differ within this neighborhood.

HaL HbL HcL
Figure  6. The  Moore  neighborhood  rules:  (a)  Moore  active  neighborhood,
(b) Group I rule resulting in a single output, and (c) Group II rule resulting in
two possible outputs.
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The {5,4} meander of this study was generated in eight steps, where
each step applied the neighborhood rules to every cell in the lattice as
a parallel processing finite state machine (Figure 7(a)). Since the cellu-
lar automata computation may not be intuitively obvious, Figure 7(b)
shows the state of the matrix after step 1 using the selected rule set 3
for this example (from the initial condition shown in Figure 4). Step 1
seems to indicate that only cell {2,2} changed to s3. Actually, all cells
were replaced according to their previous (s) state neighborhood con-
ditions and with corresponding rules applied.

HaL

HbL HcL
Figure  7. (a)  Cellular  automata  as  a  parallel  processing  finite  state  machine,
(b) step 1, and (c) step 2 and the cellular automata build direction.

Step  2  in  Figure  7(c)  shows  that  two s0  have  been  replaced  by  s6
and s2 in the matrix. Also shown is the direction of the build process
by  the  cellular  automaton  function,  starting  at  the  upper  left  corner
and  progressing  diagonally  down  the  matrix  in  the  eight  successive
steps. The next six steps are illustrated in Figure 8.
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s3m s2m s2m s2m s2b

s1m s3 s2 s4 s0

s1m s6 s2 s0 s0

s1m s3 s0 s0 s0

s1m s0 s0 s0 s0

s1b s0 s0 s0 s0

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s0

s1m s3 s2 s0 s0

s1m s6 s0 s0 s0

s1b s0 s0 s0 s0

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s1r

s1m s3 s2 s2 s0

s1m s6 s2 s0 s0

s1b s3r s0 s0 s0

Step 3 Step 4 Step 5

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s1r

s1m s3 s2 s2 s5r

s1m s6 s2 s2 s0

s1b s3r s2r s0 s0

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s1r

s1m s3 s2 s2 s5r

s1m s6 s2 s2 s4r

s1b s3r s2r s2r s0

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s1r

s1m s3 s2 s2 s5r

s1m s6 s2 s2 s4r

s1b s3r s2r s2r s5r

Step 6 Step 7 Step 8

HaL

HbL
Figure 8. (a) Steps 3–8 symbolically and (b) step 8 graphically.

Once  each  {5,4}  matrix  was  generated,  any  meander  with  a  halt
condition was programmatically removed, while a successful meander
was compared to the file of saved meanders and added if  unique. Fi-
nally, all markers were erased, the {5,4} grid of each complete unique
solution (the upper left-hand quadrant of the lattice) was quadrupled
by  applying  symmetry  reflection  rules,  and  the  shape  symbols  were
translated back to the actual meander line shapes to provide graphical
output (see Figure 9).

2.4 The Solution Space of Meander System Architectures
As indicated in Figure 10, there were 841 693 rule sets that generated
meander solutions satisfying the entrance/exit requirements and the re-
quirement that  a line pass  through every cell.  These meander designs
accounted  for  only  20% of  the  total  enumerated  creative  space  of
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both  successful  and  faulty  meanders  generated  by  the  combinatoric
table of rule sets (determined by the two possible outcomes of the 22
rules  in  the  Group  II  rule  set,  222).  Furthermore  and  more  startling,
out  of  the  large  solution  set,  only  20  unique  meander  designs  were
found (shown in Figure 11). In genomic terms, a very large number of
surviving  genotypes  expressed  themselves  through  a  very  small  num-
ber of phenotypes. Thus, an extremely large number of rule sets pro-
vided the same solution. 

s3m s2m s2m s2m s2b s2 s2 s2 s2 s4

s1m s3 s2 s4 s3r s4 s3 s2 s4 s1

s1m s6 s2 s5 s1r s1 s6 s2 s5 s1

s1m s3 s2 s2 s5r s6 s2 s2 s4 s1

s1m s6 s2 s2 s4r s3 s2 s2 s5 s1

s1b s3r s2r s2r s5r s6 s2 s2 s4 s1

s1 s6 s2 s2 s4 s3 s2 s2 s5 s1

s1 s3 s2 s2 s5 s6 s2 s2 s4 s1

s1 s6 s2 s2 s4 s3 s2 s2 s5 s1

s1 s3 s2 s4 s1 s1 s3 s2 s4 s1

s1 s6 s2 s5 s6 s5 s6 s2 s5 s1

s6 s2 s2 s2 s2 s2 s2 s2 s2 s5HaL HbL
Figure  9. Step  8  example:  final  matrix  for  rule  set  3  (a)  after  reflection  and
(b)!graphically.

Figure 10. Generation of a meander system architecture using the SG Ø CA ap-
proach to satisfy a specification.
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Figure 11. The 20 unique solutions satisfying the specification (depicted in lat-
tice form).

One might conclude that taking a sampling approach to finding the
meander solutions from such an enormous creative space could poten-
tially  miss  finding  a  significant  percentage  of  the  unique  solutions,
thus  demanding  a  complete  enumeration  of  design  possibilities.  The
question  arises,  however,  as  to  how  a  probabilistic  approach  might
compare  to  the  enumerative  approach  just  employed  in  more  effi-
ciently  finding  all  the  unique  solutions  within  the  meander  creative
space.  Would  an  evolutionary  computation  technique, for  example,
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take  less  time  to  find  the  unique  solutions  than  the  brute  force  enu-
meration used here?

3. Comparing Enumerative versus Probabilistic Methods for Finding 
All Unique Solutions in a Large Design Space of Architectures

It was observed that unique solutions numbered 1 through 12 were al-
most  uniformly  distributed  throughout  the  creative  space  (see
Table!1)  while  the  remaining  eight  solutions  were  located  in  narrow
zones. If there are only 20 unique graphic solutions, might there be a
more  efficient  and  still  effective  method  to  locate  these  20  out  of  an
enormous possibility space? Enumeration, obviously, guarantees find-
ing all  unique solutions  but  at  a  significant  cost  in  computing power
and time. 

In view of the distribution of unique solutions detailed in Table 1,
drawing samples of solutions from the total creative space of rule set
generations to search for the unique designs calls for an approach that
will either look in the “right” bin segments of the distribution or will
cast  widely  enough  to  counter  blindness  to  the  actual  asymmetrical
frequency topology. 

3.1 Probabilistic Approaches for Searching the Creative Space 
To address  the question about the search approach,  three probabilis-
tic  trials  were  designed  employing  evolutionary  computation  tech-
niques: random sampling of the creative space to search for solutions
(comparable to 100% mutation),  a  genetic  algorithm using the selec-
tion and recombination (crossover) operators only, and a genetic algo-
rithm  varying  in  sample  size  using  selection,  recombination
(crossover), and mutation operators.

One rule set drawn from the total group of possible rule sets gener-
ating  a  meander  solution  (222  combinatoric  rule  set  versions)  served
as  the  original  genome  for  the  evolutionary  computation,  with  ge-
nomic variation occurring due to Group II  rules  having variable  out-
comes. The halt condition that was intended to stop the execution of
the cellular automaton from further generation served as the analogy
for  a  genetic  flaw  in  the  resultant  phenotype.  A  fitness  function  to-
taled the number of halts or genetic flaws in the complete phenotypes
generated. The objective was to reduce the number of genetic flaws to
zero by applying the operators of a random sample population: selec-
tion,  pairing,  crossover,  and  mutation  [37,  38].  The  advance  knowl-
edge that there were 20 unique solutions was used to bring the evolu-
tionary  computation  to  a  halt  once  the  20  unique  solutions  were
found.  For  each probabilistic  trial  described below,  the  total  number
of  samples  and the  time required  for  the  computation were  collected
for 10 independent runs of each algorithm. The comparative data and
summaries are contained in Table 2.
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Table  1. Frequency  distribution  for  valid  meander  solutions  and  the  unique
graphic solutions across the creative space.
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Table 2.  Search enumeration and evolutionary computation techniques—com-
parison data and statistical summaries.
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The  first  trial  employed  purely  random  sampling  of  the  creative
space.  In  each  run,  meanders  were  generated  one  at  a  time  from the
sampled rule sets and examined automatically to see if each one was a
solution  (no  halts  existed).  If  valid,  then  each  solution  was  match
tested against a building file of unique solutions to determine if it was
a duplicate, and if not, it was added to the unique solution file. The al-
gorithm generates up to 1000 samples within a run randomly selected
from the total rule set (size 222) or stops upon finding the 20 unique
architectural solutions, whichever occurs first. In 20 independent runs
(only  10  runs  are  shown  in  Table  2),  the  algorithm  found  the  20
unique  solutions  each  time  before  reaching  1000  rule  set  samples.
This first trial is considered a baseline for comparison.

A  second  trial  was  conducted  using  50%  selection  and  50%
crossover  operators  with  no  mutation  operator.  An  initial  run  sam-
pled 10 genomes or rule sets selected randomly, and the resulting me-
anders  were  all  generated  and  examined  to  record  any  unique  solu-
tions.  Then,  the  meanders  were  rank  sorted  by  halt  (genetic  flaw)
count  from  low  to  high.  The  50%  of  the  initial  population  sample,
five in this case, with the fewest halts or genetic flaws was selected for
random  pairing  with  another  five  randomly  selected  rule  sets.  For
each pair, the genomes were crossed at the halfway point, and the phe-
notypes of this new sample of meanders were generated and tested for
the presence of unique solutions. The top 50% (five) of this new gen-
eration group with the fewest halts were selected and paired with an-
other  five  randomly  selected  genomes.  This  process  continued for  up
to  20  generations  or  until  20  unique  solutions  were  discovered,
whichever occurred first. As in the case of the random sampling, each
run  of  this  evolutionary  computation  algorithm  found  all  20  unique
solutions without reaching the stopping point.

The third trial also began with an initial sample size of 10 genomes
(rule sets) and followed the process just described in the second study
except  for  the  inclusion  of  a  mutation  factor  (50%  selection,  50%
crossover,  4.5% mutation  operators).  For  each  crossed  genome  pair,
one  of  the  positions  in  their  rule  sequences  was  randomly  mutated
(the rule’s right-hand option was switched to the alternative). The al-
gorithm  was  similarly  set  to  run  up  to  20  iterations  or  find  the  20
unique solutions, whichever occurred first. Once again, all unique so-
lutions  were  identified  in  each  run  before  the  program’s  limit.  (It
should be noted that in addition to this study of sample size 10, identi-
cal solution searches were conducted with sample sizes of six and 100
with similar results to the 10.)

3.2 Comparison of the Enumerative and Evolutionary Computation 
Approaches for Managing the Creative Space

All of the sampling techniques were particularly useful with regard to
the topology of the solution space in this study. While the output con-
tained  a  very  small  number  of  unique  solutions, each  of  these  solu-
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tions  could  be  derived from a  much larger  range  and number  of  dif-
ferent rule sets within the solution space, thus affording a reasonable
target  for  sampling.  The  evolutionary  computation  techniques  are
astonishingly quick compared to enumeration. The time to find all 20
unique  solutions  in  a  creative  space  of  approximately  4.2  million
ranged from approximately 25 to 55 seconds depending on the opera-
tor  settings  for  the  evolutionary  computations.  In  comparison,  the
fully enumerative approach required approximately 41 hours of CPU
time. Clearly the probabilistic approach was far more efficient in find-
ing the unique, successful meander designs from a total creative space
that produced 20.07% successful but at the same time 99.99% dupli-
cated solutions. However, this economy comes at the cost of informa-
tion, namely that of the exact number of unique solutions (which enu-
meration  does  provide)  and  therefore  a  lack  of  assurance  regarding
when to stop searching for solutions.

4. An Application of the Meander Style to an Engineering Problem

By applying various constraints to a lattice, the meanders generated in
this study could be interpreted as routing or circuitry scenarios and ex-
tended  to  a  real-life  application,  in  this  case  efficiently  routing  an
underfloor  heating  system for  different  sized  and  shaped  rooms.  The
algorithm development for designing efficient piping systems is a diffi-
cult  problem due  to  the  wide  variation  of  possible  designs.  A  simple
pattern  similar  to  one  used  by  a  manufacturer  of  underfloor  heating
systems [39] is shown in Figure 12. Interestingly, the pattern of pipes
bears a resemblance to the Chinese lattices.

Underfloor  heating systems are  radiant  heating systems using con-
duction,  unlike  radiators,  forced  air,  and  fireplace  heating  systems,
which are convection heating systems. The underfloor heating is gen-
erated by hot water circulating in pipes routed beneath the floor sur-
face. The heat uniformly emanates from the bottom upward, and the
physical system is “invisible,” providing an aesthetic appeal. This type
of heating system has become more popular in recent years, especially
in  Europe.  Hot  water  furnaces  fueled  by  gas,  oil,  or  electricity  heat
the water that is pumped through manifold systems to different zones
in a dwelling. 

The  pipe  routing  problem  becomes  one  of  system  architecting.
Even though the  example  in  Figure  12 looks  quite  simple,  the  actual
patterns  of  routings  can  be  varied  and  complex.  The  location  of  the
pump and manifold,  the  input/output  positions  interfacing  with  each
room  or  heating  zone,  and  the  routing  or  meander  pattern  within
each zone become a combinatoric routing or continuous circuit layout
problem.  There  are  many  possible  combinations  of  where  to  locate
the inputs and outputs of the piping for each zone and where to place
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the  manifold/pump.  For  purposes  of  this  study,  arbitrary  specifica-
tions were defined with respect to these factors, in addition to the size
and configuration of  the  spaces  to  be  heated.  Each zone can then be
thought  of  as  a  subsystem within  the  total  underfloor  heating  super-
system. 

Figure 12. Example of a typical pipe layout.

The  following  specifications  are  proposed  for  an  underfloor  heat-
ing system design.

1. There are three zones as shown in Figure 13.

2. The manifold/pump may be located anywhere at the bottom of Zone 3.

3. From  Zone  3,  the  input/output  piping  may  connect  anywhere  to
Zone!1, but may not connect to Zone 2 because there is a solid founda-
tion wall between Zone 2 and Zone 3.

4. Zone 1 and Zone 2 interconnect.

5. The system architecture(s) generated must be efficient for providing uni-
form heat and be the lowest cost to manufacture and install.
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Figure 13. The room layout.

4.1 Developing the Design System to Describe the System 
Architecture

A shape grammar was developed to express an underfloor piping sys-
tem in a format that directly lent itself to a cellular automaton deriva-
tion.  Shape rules to generate outputs (the next pipe form to be used)
for  every  combination  of  neighborhood  input  shapes  (the  current
stage  of  piping  configuration)  were  enumerated.  To  assure  that  the
piping  conformed  to  the  specification,  marker  variables  served  as
switches  for  turning  on  other  rules  in  order  to  change  or  limit  the
choice  of  pipe  forms at  the  sites  of  imposed boundaries.  Transcribed
simple  rules  and  markers  were  then  carried  over  in  the  cellular  au-
tomaton steps to route the pipe elements in only physically legitimate
directions within boundary constraints. A halt rule to stop the execu-
tion  of  the  cellular  automaton  from  further  generation  was  assigned
to prevent illegitimate piping configurations. 

The  shape  grammar  for  the  underfloor  heating  system  was  based
on the meander shape grammar of the earlier study but required more
marker  variables  for  managing  the  zone  barriers  and  interfaces,  as
well as more rules associated with these markers. A grid was superim-
posed  over  the  entire  floor  area,  which  was  partitioned  into  three
room  heating  zones.  The  size  of  the  grid  cell  controls  the  density  of
the pipe routing and thus the positioning of pipes to provide the most
uniform heating. In addition, the pipe was required to traverse contin-
uously through each cell in the grid, while meander “islands” that did
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not result in total grid connectivity would be rejected. Zone partitions
were  identified  by  marker  shapes,  which  were  later  erased.  As  with
the meander grammar, the same six basic pipe shapes were employed,
but 37 shape markers and 432 rules were required for the more com-
plex boundaries involved (see Appendix C).

Figure 14. The local neighborhood definition.

4.2 Developing the Computational System for Generating the 
System Architecture

The underfloor piping Moore neighborhood as indicated in Figure 14
has  three  active  conditional  neighbors,  now  including  the  center  cell
that would be filled by one of the two possible initial condition empty
shape  variables,  {s0}  or  {s0r},  to  distinguish  which  shape  rule  output
option to use.  A particular  solution attempt could draw from one of
the  same  two  groups  of  piping  rules  (Group  I  invariant  rules  and
Group  II  rules  having  two  right-hand  options).  Certain  cells  in  each
zone were restricted to a single rule output (Group I rules) for the ini-
tial  condition because  of  boundary  constraints.  Initial  condition con-
figurations  for  the  heating  zones  therefore  were  based  on  whether
each cell was free or not to utilize rule set output options (whether ei-
ther a Group I or Group II rule could be employed, or only a Group I
rule could be used). Since Group II rules had two possible outputs, ini-
tial conditions could be varied according to a combinatoric enumera-
tion  of  option  choices  for  unrestricted  cells.  If  a  Group  II  rule  was
called for, that cell’s initial condition value determined whether to use
the first option {s0} or the second {s0r}. If a Group I rule was evoked
in this  same cell,  then only  its  single  output  could be dictated.  Thus,
certain  identical  neighborhood  configurations  could  result  in  either
one  of  two  possible  outcomes,  yielding  a  great  combinatoric  space,
lattice-wide, of different configurations for possible local actions.

Zone 1 required a {6,6} dimension matrix and had an initial condi-
tion  with  19  cells  possessing  two  possible  values,  as  shown  in  Fig-
ure!15. The 19 cell options led to a combinatoric space of size 219, or
524 288  different  initial  conditions.  Both  the  first  row  and  column
contain marker variables and are not part of the heating zone itself.
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s0m s2m s2m s2m s2m s2b

s1m s0 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s5m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

Figure 15. Initial condition options for Zone 1.

The 18th applied initial condition from all combinatoric initial con-
ditions that could possibly be composed from Figure 15 did yield a so-
lution, as shown in Figure 16.

s0m s2m s2m s2m s2m s2b

s1m s0 s0 s0 s0 s0

s1m s0 s0 s0 s0 s0

s1m s0 s0 s0 s0 s0

s1m s0 s0 s0 s0r s0

s5m s0 s0 s0 s0r s0

initial condition
s0m s2m s2m s2m s2m s2b

s1m s3 s2 s2 s2 s4r

s1m s1 s3 s2 s2 s5r

s1m s1 s1 s3 s2 s4r

s1m s1 s1 s1 s3 s5r

s5m s1n s1p s1 s6 s4r

solution generated HsymbolicL

solution generated HgraphicL
Figure 16. The Zone 1 solution generated from the 18th initial condition possi-
bility (with markers shown).

Zone 2 was a {5,7} dimension matrix, also with an initial condition
of 19 cells possessing two possible values, as shown in Figure 17. The
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combinatoric size is the same as Zone 1, or 219. The graphical output
of  one  possible  solution  for  Zone  2  is  depicted  in  Figure  18.  Again,
the  first  row  and  column  serve  as  markers,  including  carrying  over
two cells {1,6} and {1,7} from a Zone 1 solution to show the presence
of inputs/outputs.

s0m s2m s2m s2m s2m s1n s1p

s1m s0 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

Figure 17. Initial condition options for Zone 2.

Figure 18. One of 37 solutions for Zone 2 (with markers shown).

Zone  3  was  a  {5,4}  dimension  matrix  having  an  initial  condition
where  eight  cells  possessed  two  possible  values,  shown in  Figure  19.
The cellular automaton generates 28 = 256 matrices in six steps. The
four  possible  solutions  that  resulted  are  shown in  Figure  20.  Marker
variables  for  the  first  row boundary  identified  the  input/output  loca-
tions from Zone 1.

s0m s3 s5 s1r

s1m 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< s0

Figure 19. Initial condition options for Zone 3.

Figure 20. Zone 3 unique solutions (with markers shown).
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4.3 Selecting the Most Efficient System Architectures from the 
Solution Space

The room heating zones were considered as subsystems or modules of
the whole system to afford a divide-and-conquer strategy for comput-
ing the meanders for each zone [40]. The only interdependence of the
zones  is  at  their  possible  points  of  interconnection  with  the  location
of input/output pipes.  After each zone solution was generated, a pat-
tern-matching  filter  (comparable  to  a  “fitness  test”)  was  applied  to
screen out solutions that would not meet the specification (i.e., would
not  interconnect  with  each other).  Only  unique,  good solutions  were
stored. In a final operation, the three zones were combined so that the
supersystem configuration catalog could be enumerated.

Once  all  the  solutions  for  the  complete  underfloor  heating  system
had  been  output,  their  individual  efficiency,  fitness,  or  measures  of
merit  could be calculated and compared.  For this  study,  the least  ac-
tion principle was invoked. Least action was interpreted as being rep-
resented  by  those  solutions  having  the  highest  count  of  vertical  and
horizontal lines (straight pipe sections rather than bent pipe sections).
The justification for this prescription is derived from three points.

† Straight pipes are easier and less costly to manufacture and install.

† Less pumping power (less energy) is required for straight sections.

† The  circulation  area  for  water  and  its  radiant  heat  is  considered  more
consistent for straight pipe configurations.

Zone  1  produced  34  solutions,  Zone  2  had  37  solutions,  and
Zone!3 yielded four solutions. Combined, they produced a catalog of
5032  solutions.  Nine  randomly  selected  examples  are  shown  in  Fig-
ure!21.  The  count  of  straight  lines  as  a  fitness  measure  provided  a
least action group of 60 solutions (shown in Figure 22), giving stake-
holders  a  more  manageable  group  from  which  to  choose  a  design.
Computation  time  on  a  single  processor  PC  for  generating  all  solu-
tions was extremely fast. 

5. Discussion

This study was based on an analysis of the Chinese lattices presented
in Dye’s work [6]. A review of these artwork patterns raised the ques-
tion as to whether the SG Ø CA approach could be applied to model
the  style  of  any  particular  Chinese  lattice.  It  was  relatively  simple  to
visually  analyze  Chinese  lattices  to  develop  the  vocabulary  of  shapes
and then to construct  a  grammar of  rules  that  assemble  these  shapes
according  to  a  meander  specification.  Programming  the  cellular  au-
tomata to capture these shapes and rules to output a design catalog is
not difficult with the appropriate training. While neither the use of a
shape grammar or of cellular automata alone would have solved this
study’s presented problem, the combined SG Ø CA methodology was
successful in this goal.
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Figure  21. Nine  samples  taken  from  the  5032  piping  solutions  (markers
erased).
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Figure 22.  Least action group (grid and markers erased).
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In  demonstrating  the  problem-solving  scenario  with  the  meander
design,  the  following  observations  were  made.  Combinatoric  tech-
niques greatly expanded the creative and solution spaces, and the use
of simple or very basic primitives allowed a greater number of combi-
natoric  opportunities  to  arise.  Boundary  constraints  were  critical
within the rules set for ensuring the requirements for viable solutions;
architectures are also very sensitive to the initial condition, which is it-
self a type of constraint.  

Enumerative  generation  with  the  SG  Ø  CA  meander  design  ap-
proach  was  able  to  catalog  and  account  for  all  possible  solutions.
However,  the  enumerative  search  was  relatively  very  slow  and  re-
sulted  in  an  overwhelming  amount  of  useless  information.  On  the
other  hand,  the  evolutionary  computational  search  turned  out  to  be
quite useful with the large creative space, even with its lumpy distribu-
tion. The evolutionary computation search was extremely fast and re-
quired fewer samples than a purely random search. The most efficient
search  process  combined  the  evolutionary  computation  features  of
both crossover and mutation, the latter of which introduces some ran-
domness into the operation, thereby facilitating a wider search range. 

However,  there  are  no  standard  operator  value  settings  (or  best
system architecture) for the different evolutionary computation meth-
ods,  so  a  large  variety  of  evolutionary  computation  designs  could  be
applied. The evolutionary computation design and operator value set-
tings  are  up  to  the  experiential  judgment  and  tinkering  of  the  mod-
eler. Furthermore, evolutionary computation is probabilistic—there is
no  guarantee  of  finding  all  the  solutions  or  knowing  exactly  how
many  solutions  are  contained  in  the  system  architecture  solution
space. Therefore, there is no definitive way to determine when to halt
the evolutionary computation algorithm.

The trade-off between computational efficiency (evolutionary com-
putation)  versus  comprehensiveness  of  search  results  (enumerative
generation) brings to mind the principle of satisfying the specification
[41].  The  system  architect  must  decide  if  it  is  appropriate  to  use  an
enumerative  approach  such  as  to  catalog  multiple  solutions,  to  iden-
tify all of the possible solutions (find all the needles in a haystack), or
to  obtain  an  understanding  of  the  topology  of  the  solution  space
within  its  rule  set  domain,  as  opposed  to  utilizing  the  very  efficient
sampling approaches  provided by evolutionary computation methods
when  completeness  or  in-depth  understanding  is  not  of  primary
concern.

Finally, noticing the comparability of the meander design results to
the  requirements  of  an  underground  heating  system,  the  meander
SG!Ø!CA  algorithm  was  extended  to  generate  piping  solutions  for  a
given specification. Systems originally possessing sole aesthetic appeal
were extended to the generation of systems with functional purpose in
the satisfaction of a specification to solve a real-life problem. The ba-
sic form and rules of the aesthetic subject thus were generalized for ap-
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plication in a functional setting where flow was the design foundation
in both.

In addition to the adaptation of aesthetics to function, this portion
of the study demonstrated the rapid solution execution of a practical
problem  with  a  potentially  large  combinatoric  space  using  the
SG!Ø!CA  methodology.  To  allow  for  manageable  computation,  the
problem scenario was decomposed into separate but interfacing local
zones (neighborhoods,  modules),  which then allowed for efficient so-
lution development when the subsystem architectures were configured
together by fit (intraconnectivity) into the complete system. Rules gen-
erated  constraints  that  served  as  boundaries  for  channeling  the  cre-
ative process toward the intended purpose. For the underfloor circuit
problem, the SG Ø CA approach highlighted the usefulness of bottom-
up  design  analysis  and  synthesis  for  solving  a  problem  that  might
have a solution space too large for human ease of management. An ex-
tension of this routing architecture methodology conceivably could be
applied  to  other  systems  involving  flow  of  information,  energy,  or
things, such as for a factory layout with materials flow, power grid ar-
chitecting, information networks, and circuit layouts. 

6. Conclusion

The generation by hand of a complete catalog of all possible meander
solutions  to  a  given  problem  is  extremely  difficult  in  terms  of  time
consumption  and  task  management.  Currently,  no  programs  exist  to
undertake this graphic and combinatoric activity. The purpose of this
paper was to show how the shapes and their rules for organization or
assembly could be captured by a shape grammar, which in turn could
be  transcribed  into  symbols  that  would  interact  within  cellular  au-
tomata neighborhoods according to the rules.  This interaction occurs
across  time  steps,  allowing  neighborhood  state  changes  to  ultimately
generate a complete design bottom-up. The general approach used for
creating meander designs was applied to a similarly based circuit rout-
ing problem. Regardless of the search approach employed to find dif-
ferent  legitimate  meander  designs,  the  shape  grammar  to  cellular  au-
tomata  (SG  Ø  CA)  methodology  was  able  to  undertake  this  design
problem effectively and efficiently.

Using  the  methodology  as  exemplified  herein,  one  can  computa-
tionally explore a variety of design scenarios requiring bottom-up as-
sembly  of  primitive  elements  according  to  a  set  of  identifiable  rules
[42]. This approach has application potential for developing and test-
ing theories, for creating a multitude of new designs for real-life situa-
tions,  and  for  solving  certain  practical  problems.  The  use  of  shape
grammar thus can provide the system architect the assurance that de-
sign proceeds by rules embodying the relevant laws of nature or prin-
ciples  of  physics.  Harnessing  cellular  automata, the  architect  then
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may  be  able  to  generate  a  very  large  creative  space  of  design  candi-
dates,  selecting  those  that  satisfy  specific  requirements  (stability,
robustness, aesthetics, cost, etc.) and thereby managing a possibly ex-
plosive design space.

Appendix

A. Meander Rule Set

This  appendix  lists  the  128  rules:  the  formal  simple  relationships  of
form-function  symbolically  expressed  according  to  local  neighbor-
hood conditions, composed of Group I and Group II combinations.
GroupI = 88s3m< Ø s3m, 8s1m< Ø s1m, 8s2m< Ø s2m,8s1b< Ø s1b, 8s2b< Ø s2b, 8s0, s0, 0< Ø s0, 8s0, s2b, 0< Ø s0,8s0, s2m, 0< Ø s0, 8s1, s1r, 0< Ø s1r, 8s1, s2, 0< Ø s3,8s1, s2r, 0< Ø halt, 8s1, s3r, 0< Ø s1r, 8s1, s4r, 0< Ø s1r,8s1, s5, 0< Ø s3, 8s1, s5r, 0< Ø halt, 8s1, s6, 0< Ø s3,8s1b, s0, 0< Ø s0, 8s1b, s6, 0< Ø s3r, 8s1m, s0, 0< Ø s0,8s1m, s2m, 0< Ø s3, 8s1m, s6, 0< Ø s3, 8s1r, s1, 0< Ø s6r,8s1r, s2, 0< Ø halt, 8s1r, s3, 0< Ø s6r, 8s1r, s4, 0< Ø s6r,8s1r, s5, 0< Ø halt, 8s1r, s6, 0< Ø halt, 8s2, s1, 0< Ø s5,8s2, s1r, 0< Ø s5r, 8s2, s2b, 0< Ø s2r, 8s2, s2r, 0< Ø s4r,8s2, s3, 0< Ø s5, 8s2, s3r, 0< Ø s5r, 8s2, s4, 0< Ø s5,8s2, s4r, 0< Ø s5r, 8s2, s5r, 0< Ø s4r, 8s2r, s1, 0< Ø s5r,8s2r, s1r, 0< Ø s5r, 8s2r, s2, 0< Ø s2r, 8s2r, s3, 0< Ø s5r,8s2r, s4, 0< Ø s5r, 8s2r, s4r, 0< Ø s5r, 8s2r, s5, 0< Ø s2r,8s2r, s5r, 0< Ø halt, 8s2r, s6, 0< Ø s2r, 8s3, s1, 0< Ø s5,8s3, s1r, 0< Ø s5r, 8s3, s2b, 0< Ø s2r, 8s3, s2r, 0< Ø s4r,8s3, s3, 0< Ø s5, 8s3, s3r, 0< Ø s5r, 8s3, s4, 0< Ø s5,8s3, s4r, 0< Ø s5r, 8s3, s5r, 0< Ø s4r, 8s3r, s1, 0< Ø s5r,8s3r, s2, 0< Ø s2r, 8s3r, s3, 0< Ø s5r, 8s3r, s4, 0< Ø s5r,8s3r, s5, 0< Ø s2r, 8s3r, s6, 0< Ø s2r, 8s4, s1r, 0< Ø s1r,8s4, s2, 0< Ø s3, 8s4, s2b, 0< Ø s3r, 8s4, s2m, 0< Ø s3,8s4, s2r, 0< Ø halt, 8s4, s3r, 0< Ø s1r, 8s4, s4r, 0< Ø s1r,8s4, s5, 0< Ø s3, 8s4, s5r, 0< Ø halt, 8s4, s6, 0< Ø s3,8s5, s1r, 0< Ø s1r, 8s5, s2, 0< Ø s3, 8s5, s2r, 0< Ø halt,8s5, s3r, 0< Ø s1r, 8s5, s4r, 0< Ø s1r, 8s5, s5, 0< Ø s3,8s5, s5r, 0< Ø halt, 8s5, s6, 0< Ø s3, 8s5r, s1, 0< Ø s6r,8s5r, s1r, 0< Ø halt, 8s5r, s2, 0< Ø halt, 8s5r, s3, 0< Ø s6r,8s5r, s4, 0< Ø s6r, 8s5r, s4r, 0< Ø halt, 8s5r, s5, 0< Ø halt,8s5r, s5r, 0< Ø halt, 8s5r, s6, 0< Ø halt, 8s6, s1, 0< Ø s5,8s6, s1r, 0< Ø s5r, 8s6, s2r, 0< Ø s4r, 8s6, s3, 0< Ø s5,8s6, s3r, 0< Ø s5r, 8s6, s4, 0< Ø halt, 8s6, s4r, 0< Ø halt,8s6, s5r, 0< Ø s4r, 8s6r, s1, 0< Ø s5r, 8s6r, s1r, 0< Ø s5r,8s6r, s2, 0< Ø s2r, 8s6r, s3, 0< Ø s5r, 8s6r, s4, 0< Ø halt,8s6r, s4r, 0< Ø halt, 8s6r, s5, 0< Ø s2r, 8s6r, s5r, 0< Ø halt,8s6r, s6, 0< Ø s2r, 8s1b, s1, 0< Ø s1r, 8s1b, s3, 0< Ø s1r<;
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Length@GroupID
106

GroupII =88s1, s1, 0< Ø 8s1, s6<, 8s1, s3, 0< Ø 8s1, s6<, 8s1, s4, 0< Ø 8s1, s6<,8s2, s2, 0< Ø 8s2, s4<, 8s2, s5, 0< Ø 8s2, s4<, 8s2, s6, 0< Ø 8s2, s4<,8s3, s2, 0< Ø 8s2, s4<, 8s3, s5, 0< Ø 8s2, s4<, 8s3, s6, 0< Ø 8s2, s4<,8s4, s1, 0< Ø 8s1, s6<, 8s4, s3, 0< Ø 8s1, s6<, 8s4, s4, 0< Ø 8s1, s6<,8s5, s1, 0< Ø 8s1, s6<, 8s5, s3, 0< Ø 8s1, s6<, 8s5, s4, 0< Ø 8s1, s6<,8s6, s2, 0< Ø 8s2, s4<, 8s6, s5, 0< Ø 8s2, s4<, 8s6, s6, 0< Ø 8s2, s4<,8s1m, s3, 0< Ø 8s6, s1<, 8s1m, s1, 0< Ø 8s6, s1<,8s3, s2m, 0< Ø 8s4, s2<, 8s2, s2m, 0< Ø 8s4, s2<<;
Length@GroupIID
22

B. Symmetry Rules

rulesquad2 = 8s1 Ø s1, s1m Ø s1, s1b Ø s1, s1r Ø s1, s2 Ø s2,
s2m Ø s2, s2b Ø s2, s2r Ø s2, s3 Ø s4, s3m Ø s4, s3r Ø s4,
s4 Ø s3, s4r Ø s3, s5 Ø s6, s5r Ø s6, s6 Ø s5, s6r Ø s5<;

rulesquad3quad4 = 8s1 Ø s1, s1m Ø s1, s1b Ø s1, s1r Ø s1, s2 Ø s2,
s2m Ø s2, s2b Ø s2, s2r Ø s2, s3 Ø s6, s3m Ø s6, s3r Ø s6,
s4 Ø s5, s4r Ø s5, s5 Ø s4, s5r Ø s4, s6 Ø s3, s6r Ø s3<;

C. Pipe Routing Rule Set

This  appendix  lists  the  432  rules:  the  formal  simple  relationships  of
form-function  symbolically  expressed  according  to  local  neighbor-
hood conditions.
ruleSet = 88s1m< Ø s1m, 8s2m< Ø s2m, 8s5m< Ø s5m, 8s2b< Ø s2b, 8s0m< Ø s0m,8s1m, s2m, s0< Ø s3, 8s3, s2m, s0< Ø s2, 8s3, s2m, s0r< Ø s4,8s2, s2m, s0< Ø s2, 8s2, s2m, s0r< Ø s4, 8s4, s2m, s0< Ø s3,8s4, s2m, s0r< Ø s3, 8s1m, s3, s0< Ø s1, 8s1m, s3, s0r< Ø s6,8s1m, s4, s0< Ø s1, 8s1m, s4, s0r< Ø s6, 8s3, s2b, s0< Ø s4r,8s2, s2b, s0< Ø s4r, 8s4, s2b, s0< Ø halt, 8s1m, s1, s0< Ø s1,8s1m, s1, s0r< Ø s6, 8s1m, s6, s0< Ø s3, 8s1m, s6, s0r< Ø s3,8s5m, s1, s0< Ø s1n, 8s5m, s1, s0r< Ø s6n, 8s5m, s3, s0< Ø s1n,8s5m, s3, s0r< Ø s6n, 8s5m, s6, s0< Ø s3n, 8s5m, s6, s0r< Ø s3n,8s2, s5m, s0< Ø s2, 8s2, s5m, s0r< Ø s4, 8s3, s5m, s0< Ø s2,8s3, s5m, s0r< Ø s4, 8s4, s5m, s0< Ø s3, 8s4, s5m, s0r< Ø s3,8s1, s4r, s0< Ø s1r, 8s2, s4r, s0< Ø s5r, 8s3, s4r, s0< Ø s5r,8s4, s4r, s0< Ø s1r, 8s5, s4r, s0< Ø s1r, 8s6, s4r, s0< Ø halt,8s1, s1r, s0< Ø s1r, 8s2, s1r, s0< Ø s5r, 8s3, s1r, s0< Ø s5r,8s4, s1r, s0< Ø s1r, 8s5, s1r, s0< Ø s1r, 8s6, s1r, s0< Ø s5r,8s1, s5r, s0< Ø halt, 8s2, s5r, s0< Ø s4r, 8s3, s5r, s0< Ø s4r,
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8s4, s5r, s0< Ø halt, 8s5, s5r, s0< Ø halt, 8s6, s5r, s0< Ø s4r,8s1, s1, s0r< Ø s6, 8s1, s1, s0< Ø s1, 8s1, s2, s0< Ø s3,8s1, s2, s0r< Ø s3, 8s1, s3, s0r< Ø s6, 8s1, s3, s0< Ø s1,8s1, s4, s0r< Ø s6, 8s1, s4, s0< Ø s1, 8s1, s5, s0< Ø s3,8s1, s5, s0r< Ø s3, 8s1, s6, s0< Ø s3, 8s1, s6, s0r< Ø s3,8s2, s1, s0< Ø s5, 8s2, s1, s0r< Ø s5, 8s2, s2, s0r< Ø s4,8s2, s2, s0< Ø s2, 8s2, s3, s0< Ø s5, 8s2, s3, s0r< Ø s5,8s2, s4, s0< Ø s5, 8s2, s4, s0r< Ø s5, 8s2, s5, s0r< Ø s4,8s2, s5, s0< Ø s2, 8s2, s6, s0r< Ø s4, 8s2, s6, s0< Ø s2,8s4, s1, s0r< Ø s6, 8s4, s1, s0< Ø s1, 8s4, s2, s0< Ø s3,8s4, s2, s0r< Ø s3, 8s4, s3, s0r< Ø s6, 8s4, s3, s0< Ø s1,8s4, s4, s0r< Ø s6, 8s4, s4, s0< Ø s1, 8s4, s5, s0< Ø s3,8s4, s5, s0r< Ø s3, 8s4, s6, s0< Ø s3, 8s4, s6, s0r< Ø s3,8s6, s1, s0< Ø s5, 8s6, s1, s0r< Ø s5, 8s6, s2, s0r< Ø s4,8s6, s2, s0< Ø s2, 8s6, s3, s0< Ø s5, 8s6, s3, s0r< Ø s5,8s6, s4, s0< Ø halt, 8s6, s4, s0r< Ø halt, 8s6, s5, s0r< Ø s4,8s6, s5, s0< Ø s2, 8s6, s6, s0r< Ø s4, 8s6, s6, s0< Ø s2,8s5, s1, s0r< Ø s6, 8s5, s1, s0< Ø s1, 8s5, s2, s0< Ø s3,8s5, s2, s0r< Ø s3, 8s5, s3, s0r< Ø s6, 8s5, s3, s0< Ø s1,8s5, s4, s0r< Ø s6, 8s5, s4, s0< Ø s1, 8s5, s5, s0< Ø s3,8s5, s5, s0r< Ø s3, 8s5, s6, s0< Ø s3, 8s5, s6, s0r< Ø s3,8s3, s1, s0< Ø s5, 8s3, s1, s0r< Ø s5, 8s3, s2, s0r< Ø s4,8s3, s2, s0< Ø s2, 8s3, s3, s0< Ø s5, 8s3, s3, s0r< Ø s5,8s3, s4, s0< Ø s5, 8s3, s4, s0r< Ø s5, 8s3, s5, s0r< Ø s4,8s3, s5, s0< Ø s2, 8s3, s6, s0r< Ø s4, 8s3, s6, s0< Ø s2,8s1, s4p, s0< Ø s1r, 8s2, s4p, s0< Ø s5r, 8s3, s4p, s0< Ø s5r,8s4, s4p, s0< Ø s1r, 8s5, s4p, s0< Ø s1r, 8s6, s4p, s0< Ø halt,8s1, s1p, s0< Ø s1r, 8s2, s1p, s0< Ø s5r, 8s3, s1p, s0< Ø s5r,8s4, s1p, s0< Ø s1r, 8s5, s1p, s0< Ø s1r, 8s6, s1p, s0< Ø halt,8s1, s5p, s0< Ø halt, 8s2, s5p, s0< Ø s4r, 8s3, s5p, s0< Ø halt,8s4, s5p, s0< Ø halt, 8s5, s5p, s0< Ø halt, 8s6, s5p, s0< Ø s4r,8s1, s3p, s0< Ø s1r, 8s2, s3p, s0< Ø s5r, 8s3, s3p, s0< Ø s5r,8s4, s3p, s0< Ø s1r, 8s5, s3p, s0< Ø s1r, 8s6, s3p, s0< Ø halt,8s1, s2p, s0< Ø halt, 8s2, s2p, s0< Ø s4r, 8s3, s2p, s0< Ø halt,8s4, s2p, s0< Ø halt, 8s5, s2p, s0< Ø halt, 8s6, s2p, s0< Ø s4r,8s1, s6p, s0< Ø halt, 8s2, s6p, s0< Ø s4r, 8s3, s6p, s0< Ø halt,8s4, s6p, s0< Ø halt, 8s5, s6p, s0< Ø halt, 8s6, s6p, s0< Ø s4r,8s2, s1n, s0< Ø s5, 8s2, s1n, s0r< Ø s5, 8s3, s1n, s0< Ø s5,8s3, s1n, s0r< Ø s5, 8s4, s1n, s0< Ø s1, 8s4, s1n, s0r< Ø s6,8s2, s3n, s0< Ø s5, 8s2, s3n, s0r< Ø s5, 8s3, s3n, s0< Ø s5,8s3, s3n, s0r< Ø s5, 8s4, s3n, s0< Ø s1, 8s4, s3n, s0r< Ø s6,8s2, s6n, s0< Ø s2, 8s2, s6n, s0r< Ø s4, 8s3, s6n, s0< Ø s2,8s3, s6n, s0r< Ø s4, 8s4, s6n, s0< Ø s3, 8s4, s6n, s0r< Ø s3,8s1n, s1, s0< Ø s1p, 8s1n, s1, s0r< Ø s6p, 8s3n, s1, s0< Ø s5p,8s3n, s1, s0r< Ø s5p, 8s6n, s1, s0< Ø halt, 8s6n, s1, s0r< Ø halt,8s1n, s2, s0< Ø s3p, 8s1n, s2, s0r< Ø s3p, 8s3n, s2, s0< Ø s2p,8s3n, s2, s0r< Ø s2p, 8s6n, s2, s0< Ø s4p, 8s6n, s2, s0r< Ø s4p,8s1n, s3, s0< Ø s1p, 8s1n, s3, s0r< Ø s6p, 8s3n, s3, s0< Ø s5p,8s3n, s3, s0r< Ø s5p, 8s6n, s3, s0< Ø halt, 8s6n, s3, s0r< Ø halt,8s1n, s4, s0< Ø s1p, 8s1n, s4, s0r< Ø s6p, 8s3n, s4, s0< Ø s5p,8s3n, s4, s0r< Ø s5p, 8s6n, s4, s0< Ø halt, 8s6n, s4, s0r< Ø halt,8s1n, s5, s0< Ø s3p, 8s1n, s5, s0r< Ø s3p, 8s3n, s5, s0< Ø s2p,8s3n, s5, s0r< Ø s2p, 8s6n, s5, s0< Ø s4p, 8s6n, s5, s0r< Ø s4p,8s1n, s6, s0< Ø s3p, 8s1n, s6, s0r< Ø s3p, 8s3n, s6, s0< Ø s2p,
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8s3n, s6, s0r< Ø s2p, 8s6n, s6, s0< Ø s4p, 8s6n, s6, s0r< Ø s4p,8s1r, s1, s0< Ø s1, 8s1r, s1, s0r< Ø s6, 8s4r, s1, s0< Ø s1,8s4r, s1, s0r< Ø s6, 8s5r, s1, s0< Ø s1, 8s5r, s1, s0r< Ø s6,8s1r, s2, s0< Ø s3, 8s1r, s2, s0r< Ø s3, 8s4r, s2, s0< Ø s3,8s4r, s2, s0r< Ø s3, 8s5r, s2, s0< Ø s3, 8s5r, s2, s0r< Ø s3,8s1r, s3, s0< Ø s1, 8s1r, s3, s0r< Ø s6, 8s4r, s3, s0< Ø s1,8s4r, s3, s0r< Ø s6, 8s5r, s3, s0< Ø s1, 8s5r, s3, s0r< Ø s6,8s1r, s4, s0< Ø s1, 8s1r, s4, s0r< Ø s6, 8s4r, s4, s0< Ø s1,8s4r, s4, s0r< Ø s6, 8s5r, s4, s0< Ø s1, 8s5r, s4, s0r< Ø s6,8s1r, s5, s0< Ø s3, 8s1r, s5, s0r< Ø s3, 8s4r, s5, s0< Ø s3,8s4r, s5, s0r< Ø s3, 8s5r, s5, s0< Ø s3, 8s5r, s5, s0r< Ø s3,8s1r, s6, s0< Ø s3, 8s1r, s6, s0r< Ø s3, 8s4r, s6, s0< Ø s3,8s4r, s6, s0r< Ø s3, 8s5r, s6, s0< Ø s3, 8s5r, s6, s0r< Ø s3,8s1p, s1, s0< Ø s1, 8s1p, s1, s0r< Ø s6, 8s2p, s1, s0< Ø s5,8s2p, s1, s0r< Ø s5, 8s3p, s1, s0< Ø s5, 8s3p, s1, s0r< Ø s5,8s4p, s1, s0< Ø s1, 8s4p, s1, s0r< Ø s6, 8s5p, s1, s0< Ø s1,8s5p, s1, s0r< Ø s6, 8s6p, s1, s0< Ø s5, 8s6p, s1, s0r< Ø s5,8s1p, s2, s0< Ø s3, 8s1p, s2, s0r< Ø s3, 8s2p, s2, s0< Ø s2,8s2p, s2, s0r< Ø s4, 8s3p, s2, s0< Ø s2, 8s3p, s2, s0r< Ø s4,8s4p, s2, s0< Ø s3, 8s4p, s2, s0r< Ø s3, 8s5p, s2, s0< Ø s3,8s5p, s2, s0r< Ø s3, 8s6p, s2, s0< Ø s2, 8s6p, s2, s0r< Ø s4,8s1p, s3, s0< Ø s1, 8s1p, s3, s0r< Ø s6, 8s2p, s3, s0< Ø s5,8s2p, s3, s0r< Ø s5, 8s3p, s3, s0< Ø s5, 8s3p, s3, s0r< Ø s5,8s4p, s3, s0< Ø s1, 8s4p, s3, s0r< Ø s6, 8s5p, s3, s0< Ø s1,8s5p, s3, s0r< Ø s6, 8s6p, s3, s0< Ø s5, 8s6p, s3, s0r< Ø s5,8s1p, s4, s0< Ø s1, 8s1p, s4, s0r< Ø s6, 8s2p, s4, s0< Ø s5,8s2p, s4, s0r< Ø s5, 8s3p, s4, s0< Ø s5, 8s3p, s4, s0r< Ø s5,8s4p, s4, s0< Ø s1, 8s4p, s4, s0r< Ø s6, 8s5p, s4, s0< Ø s1,8s5p, s4, s0r< Ø s6, 8s6p, s4, s0< Ø s5, 8s6p, s4, s0r< Ø s5,8s1p, s5, s0< Ø s3, 8s1p, s5, s0r< Ø s3, 8s2p, s5, s0< Ø s2,8s2p, s5, s0r< Ø s4, 8s3p, s5, s0< Ø s2, 8s3p, s5, s0r< Ø s4,8s4p, s5, s0< Ø s3, 8s4p, s5, s0r< Ø s3, 8s5p, s5, s0< Ø s3,8s5p, s5, s0r< Ø s3, 8s6p, s5, s0< Ø s2, 8s6p, s5, s0r< Ø s4,8s1p, s6, s0< Ø s3, 8s1p, s6, s0r< Ø s3, 8s2p, s6, s0< Ø s2,8s2p, s6, s0r< Ø s4, 8s3p, s6, s0< Ø s2, 8s3p, s6, s0r< Ø s4,8s4p, s6, s0< Ø s3, 8s4p, s6, s0r< Ø s3, 8s5p, s6, s0< Ø s3,8s5p, s6, s0r< Ø s3, 8s6p, s6, s0< Ø s2, 8s6p, s6, s0r< Ø s4,8s1< Ø s1, 8s2< Ø s2, 8s3< Ø s3, 8s4< Ø s4, 8s5< Ø s5, 8s6< Ø s6,8s1r< Ø s1r, 8s2r< Ø s2r, 8s3r< Ø s3r, 8s4r< Ø s4r, 8s5r< Ø s5r,8s6r< Ø s6r, 8s1p< Ø s1p, 8s2p< Ø s2p, 8s3p< Ø s3p, 8s4p< Ø s4p,8s5p< Ø s5p, 8s6p< Ø s6p, 8s1n< Ø s1n, 8s2n< Ø s2n, 8s3n< Ø s3n,8s4n< Ø s4n, 8s5n< Ø s5n, 8s6n< Ø s6n, 8s0, s0, s0< Ø s0,8s0, s0r, s0< Ø s0, 8s0r, s0, s0< Ø s0, 8s0, s0, s0r< Ø s0r,8s0, s0r, s0r< Ø s0r, 8s0r, s0r, s0< Ø s0, 8s0r, s0, s0r< Ø s0r,8s0r, s0r, s0r< Ø s0r, 8s0, s2m, s0< Ø s0, 8s0, s2m, s0r< Ø s0r,8s0r, s2m, s0< Ø s0, 8s0r, s2m, s0r< Ø s0r, 8s0, s2b, s0< Ø s0,8s0r, s2b, s0< Ø s0, 8s1m, s0, s0< Ø s0, 8s1m, s0, s0r< Ø s0r,8s1m, s0r, s0< Ø s0, 8s1m, s0r, s0r< Ø s0r, 8s5m, s0, s0< Ø s0,8s5m, s0, s0r< Ø s0r, 8s5m, s0r, s0< Ø s0, 8s5m, s0r, s0r< Ø s0r,8s0, s5m, s0< Ø s0, 8s0, s5m, s0r< Ø s0r, 8s0r, s5m, s0< Ø s0,8s0r, s5m, s0r< Ø s0r, 8s0, s1n, s0< Ø s0, 8s0, s1n, s0r< Ø s0r,8s0r, s1n, s0< Ø s0, 8s0r, s1n, s0r< Ø s0r, 8s0, s3n, s0< Ø s0,8s0, s3n, s0r< Ø s0r, 8s0r, s3n, s0< Ø s0, 8s0r, s3n, s0r< Ø s0r,8s1r, s0, s0< Ø s0, 8s1r, s0, s0r< Ø s0r, 8s1r, s0r, s0< Ø s0,
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8s1r, s0r, s0r< Ø s0r, 8s4r, s0, s0r< Ø s0r, 8s4r, s0r, s0< Ø s0,8s4r, s0r, s0r< Ø s0r, 8s5r, s0, s0< Ø s0, 8s5r, s0, s0r< Ø s0r,8s5r, s0r, s0< Ø s0, 8s5r, s0r, s0r< Ø s0r, 8s0, s1, s0< Ø s0,8s0, s2, s0< Ø s0, 8s0, s3, s0< Ø s0, 8s0, s4, s0< Ø s0,8s0, s5, s0< Ø s0, 8s0, s6, s0< Ø s0, 8s0, s1, s0r< Ø s0r,8s0, s2, s0r< Ø s0r, 8s0, s3, s0r< Ø s0r, 8s0, s4, s0r< Ø s0r,8s0, s5, s0r< Ø s0r, 8s0, s6, s0r< Ø s0r, 8s0r, s1, s0< Ø s0,8s0r, s2, s0< Ø s0, 8s0r, s3, s0< Ø s0, 8s0r, s4, s0< Ø s0,8s0r, s5, s0< Ø s0, 8s0r, s6, s0< Ø s0, 8s0r, s1, s0r< Ø s0r,8s0r, s2, s0r< Ø s0r, 8s0r, s3, s0r< Ø s0r, 8s0r, s4, s0r< Ø s0r,8s0r, s5, s0r< Ø s0r, 8s0r, s6, s0r< Ø s0r, 8s0, s1p, s0< Ø s0,8s0r, s1p, s0< Ø s0, 8s0, s2p, s0< Ø s0, 8s0r, s2p, s0< Ø s0,8s0, s3p, s0< Ø s0, 8s0r, s3p, s0< Ø s0, 8s0, s4p, s0< Ø s0,8s0r, s4p, s0< Ø s0, 8s0, s5p, s0< Ø s0, 8s0r, s5p, s0< Ø s0,8s0, s6p, s0< Ø s0, 8s0r, s6p, s0< Ø s0, 8s0, s1r, s0< Ø s0,8s0r, s1r, s0< Ø s0, 8s0, s4r, s0< Ø s0, 8s0r, s4r, s0< Ø s0<;
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