
From Meander Designs to a Routing
Application Using a Shape Grammar to
Cellular Automata Methodology

Thomas H. Speller, Jr.

Systems Engineering and Operations Research Department
Volgenau School of Engineering
George Mason University
Fairfax, VA 22030

The usefulness of a methodology that integrates shape grammar for cap-
turing design information with cellular automata for computational out-
put of a design solution space is demonstrated in this paper. The appli-
cation domain is the ornamental artwork known as Chinese lattices or
meanders, a subject of earlier interest in shape grammar studies. In this
study, a specification for a Chinese lattice is used for creating a shape
grammar to capture the model’s rules of self-organization, which are
then transcribed into cellular automata to physically generate a catalog
of designs that meet the requirements of this particular meander style.
Then, the study compares the use of a probabilistic (evolutionary com-
putation) technique against complete enumeration for managing the
search for unique designs. In consideration of the finding of a very large
number of rule solutions for a design specification which produced only
a very small number of graphically unique architectures, the question is
raised as to whether a more efficient search process other than brute
force enumeration can be used. Finally, the meander study is extended
to a real engineering system, demonstrating the applicability of the
shape grammar to cellular automata (SG Ø CA) methodology for find-
ing the most efficient system architecture solutions for a comparable
routing/circuit problem. System architectures addressing an under-
ground heating specification are automatically generated and evaluated,
resulting in a group of design alternatives displaying the best piping lay-
outs for the given requirements.

1. Introduction

Meanders (see Figure 1) are decorative rectilinear or curvilinear pat-
terns that were devised in antiquity for adornment of utilitarian ob-
jects [1–5]. The word is derived from the Meander River in ancient
Greece (now Turkey) noted for its winding bends [1]. As with the
original use of meanders, aesthetics is still an important feature of
system architectures in today’s world.

Intrigued by the meander style, Dye [6] was inspired to compose a
two-volume collection on Chinese lattices entitled A Grammar of
Chinese Lattice. Knight later studied meanders in depth as an architec-

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

tural design domain [7, 8]. Knight’s insight that there is a grammar
capable of generating each lattice style led to the present study’s adop-
tion of meanders by which to demonstrate the application of shape
grammar to cellular automata (SG Ø CA) [9] for an ornamental art-
work, enabling computational generation of a catalog of designs in
this style.

Figure 1. Example of a decorative meander from antiquity.

1.1 Shape Grammar
Since the design function is critical in system architecting, the ability
to visually represent design forms and their physical rules of self-
organization in a rigorous and also understandable manner is a neces-
sity. A simple and versatile approach for achieving such computing
with shapes is shape grammar, developed by Stiny and Gips [10] and
based on formal languages as defined by the work of Chomsky [11].
A shape grammar is intended to express a formal system of rules for
characterizing the structure of a design in a spatial language.
“[D]esign is execution of a computation in a shape algebra to produce
required shape information, and the rules of shape grammar specify
how to carry out that computation. These rules encode knowledge of
form, function, and the relationship of the two.” [12, p. 238] In fact,
while the past practice of shape grammar has focused on form, func-
tions and properties of shapes can be included in the grammar
[13,!14].

Shape grammar is thus an intuitive but also technically precise
methodology that generates languages of design to allow visualization
of the possible form and function outputs of the given rule inputs. A
shape grammar consists of a vocabulary of shapes as well as markers
(spatial variables) that control the positioning of shapes in the vocabu-
lary. Shape rules created by an “architect” are applied recursively
starting with the initial shape, generating designs that compose a

376 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

grammatically correct language. The shape grammar utilizes such op-
erators as shape addition, subtraction, and deletion. Furthermore, for-
mally defined operations called transformations change the current
state of the design through the operators of translation, rotation, re-
flection, and scaling. A production set of rules incorporating a defined
sequence of operators and transformations evolves the initial condi-
tion shape step by step to a final state. Operators and transformations
and their combinatoric compositions can yield tremendous diversity
and also lead to changes in styles.

To date, there have been a few demonstrations of shape grammars
in product design [15–17], but the hand application of shape gram-
mars has proved a limitation to their use. Stiny has pointed out (via
personal communication) that the practical use of shape grammar has
been limited because of the current lack of a “robust” compiler or in-
terpreter, leaving laborious hand manipulation or the development of
custom software that may have narrow generalizability (recent at-
tempts at shape grammar programs include [18–22]). Therefore, com-
putational machinery that would facilitate the use of shape grammar
across a variety of architectural applications would be of great value.

1.2 Cellular Automata
One promising approach for addressing the aforementioned shape
grammar deficiency is through the use of cellular automata. Cellular
automata, which act on sets of rules for defined neighborhood condi-
tions, developed with the origins of computers and from the desire to
model nature’s self-generative capabilities, which are mainly at-
tributable to von Neumann [23, 24, pp. 79–82], Ulam and Zuse [25],
and Wiener and Rosenblueth [26]. Noting that simple rules and pro-
grams can create complex systems [27, 28], Wolfram began to use cel-
lular automata as a model to study complexity and better understand
nature. Capable of simulating complex system dynamics, a cellular au-
tomaton is described as a parallel processing computation machine
with a neighborhood of finite state conditional rules that can model
physics in time and space. The state of a discrete static or dynamical
system at the next step function is determined by the collective action
of these rules, which recursively evolve the system’s state.

The cellular automaton neighborhood appears as a lattice of cells,
and every rule is represented by a pattern of cells containing certain if–
then conditional values (i.e., if a particular configuration of values is
present in the lattice at a given step in time, then a certain value is en-
tered in a specified cell for the next step). A cellular automaton is
highly restricted; every possible local neighborhood configuration
must have a rule that determines its reaction, and the range of this re-
action is always the same. Consisting of a logical computation or pat-
tern match (as to a list structure, see [29, 30]), a rule is thus applied
to each empty cell based on the values in the surrounding cells of its
defined neighborhood to determine the given cell’s value at the next

From Meander Designs to a Routing Application 377

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

step. Because the cellular automata are expressed as a deterministic fi-
nite state system, it is possible to perform computations on a PC with
single or multicore processors. Therefore, simulations can be run on a
PC essentially without losing any emulation power to represent real
systems operating as parallel processing systems.

The practical utilization of cellular automata has been hindered
due to the difficulty of finding the proper rules to exhibit a target be-
havior and by the level of abstraction required to conceptualize the
functioning of the cellular automata. Practitioners have expressed un-
certainty as to how to apply cellular automata to modeling because
they have confronted the immense difficulty of trying to find a set of
rules from an astronomically large rule space [10, 31] that would gen-
erate a legitimate desired system architecture. The search for cellular
automata rules has also been addressed by trial and error, genetic al-
gorithms [32, 33], and genetic programming [34] with varying success.

Clearly, a cellular automata methodology for complex system mod-
eling carries the advantage of parallel processing for large datasets
with minimal overhead [33] and using local neighborhood interac-
tions. Additionally, this algebraic, combinatoric, and logical approach
permits the use of symbolic variables and functional operations ac-
cording to specified rules. Cellular automata can be programmed
(such as by means of the general programming language Mathe-
matica® [30]) for generating output from an initial condition once
the desired rules are defined.

1.3 Shape Grammar and Cellular Automata
Both shape grammar and cellular automata serve as clear models for
bottom-up system architecting since they utilize basic elements and
rules to transform and assemble them based on current state patterns
in a given space (neighborhood). The opportunity thus exists for map-
ping a visually depicted form-function (system architecture) directly
into the cellular automata, which then can generate the output in a
visual-spatial format as a designer would produce. As the input
methodology, the shape grammar expresses the forms and their rela-
tionships as well as any physical properties or physical laws of the
form-function. The shape grammar production set of sequenced rules
is then transcribed into cellular automata rules with the appropriate
conditional neighborhoods defined, and the cellular automata compu-
tational machinery outputs the design space.

2. Developing a Design-Generating System to Describe a
Meander Style

2.1 The Specification
The particular design specification (set of requirements) for the mean-
der in this study (referring to Figure 2) entailed an initial condition

378 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

that consisted of a {5 rows, 4 columns} matrix dimension, with the re-
quirement that the meander enter only at the upper right matrix cell
at {row 1, column 4}, traverse through every cell of the grid without
reentering any cell, and exit only at the bottom left matrix cell at
{5,1}. The meander could either traverse continuously through every
cell in the grid, or meander “islands” would form to assure every cell
had been contacted (discontinuities of the meander path were al-
lowed). Then, symmetry reflection rules were applied to flip this {5,4}
grid (which constitutes the upper left-hand quadrant of the lattice) to
create the remaining three quadrants of the complete lattice {10 rows,
8 columns}.

Figure 2. The specification indicating the input and output cell positions.

2.2 The Meander Shape Grammar
To derive the set of shape variables, meanders were hand-drawn
against a grid background for decomposition into primitive line forms
that would permit line connections from cell to cell, either straight or
a 90° turn. Then, taking into account the direction of the cellular au-
tomaton processing, the local neighborhood conditions were defined.
Each cell output could be determined in this case by two neighboring
input cells, immediately above and immediately to the left of the cell
to be computed (see Figure 3). Shape rules to generate outputs for ev-
ery combination of neighborhood input shapes were enumerated.
This step necessitated consideration of what boundary conditions
were required per the specification and, consequently, what addi-
tional rules for the constrained outputs were needed. Marker vari-
ables were designed to serve as switches for turning on other rules in
order to change or limit the functioning of the meander at the sites of
the imposed boundary conditions (such as to prevent any outer cell
from containing a shape that would exit the lattice). The markers also

From Meander Designs to a Routing Application 379

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

served to provide a perimeter line construction surrounding the com-
plete lattice. Of note, the addition of these marker constraints tech-
nically expanded the {5,4} matrix in Figure 2 to {6,5} (shown in Fig-
ure 4).

Figure 3. The meander shape grammar neighborhood.

s3m s2m s2m s2m s2b

s1m s0 s0 s0 s0

s1m s0 s0 s0 s0

s1m s0 s0 s0 s0

s1m s0 s0 s0 s0

s1b s0 s0 s0 s0

Graphic Symbolic

Figure 4. The initial condition in graphic and symbolic form.

The shape grammar was developed to express a meander system in
a format that directly lent itself to a cellular automaton derivation.
Transcribed simple rules and markers were carried over in the cellular
automaton steps to route the meander primitives (the shape variables)
in only physically legitimate directions within boundary constraints.
However, certain situations called for a rule to impose a restriction on
the meander to indicate that a neighborhood was illegitimate because
it would not satisfy the specification. Neighborhoods that deviated
from the specification were explicitly assigned a “halt” rule, which
was intended to stop the execution of the cellular automaton from fur-
ther generation. Finally, a group of rules was developed to rewrite the
marker variables as a constant into their cell of origin during every ap-
plication of the cellular automaton step function. Such rules served as
an identity function when it was desired that certain cell values (the
boundary delimiters) not be changed by the main rule set.

380 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

The shape variables required for the meander shape grammar in-
clude the following.

† 1 empty shape (i.e., blank cell in lattice not yet computed), symbolical-
ly!{s0}

† 6 predetermined shape variables, symbolically {s1, s2, s3, s4, s5, s6}

† 11 shape markers, symbolically {s1m, s1b, s1r, s2m, s2b, s2r, s3m, s3r,
s4r, s5r, s6r}

(The __m designates a marker that constrains the top row and left-
hand boundaries. The __b represents a blue marker to bound the
upper right or lower left corners of the quadrant. The __m and __b
markers are used in the initial condition. The __r or red markers are
rule generated, serving as boundaries for the bottom row and the
right-hand side of the quadrant.)

s0 s1 s1m s1b s1r s2 s2m s2b s2r s3 s3m s3r s4 s4r s5 s5r s6 s6r

Shape and marker variables with their symbolic equivalents.

A rule set for a particular solution attempt is composed of 128
rules (if–then conditions) drawn from the two groups of meander
rules. The formal simple relationships of form-function are symboli-
cally expressed according to local neighborhood conditions, classified
as Group I rules when the condition is invariant or as Group II rules
when options exist for the condition (see Appendix A for listing).
Group I contains 106 rules, each of which invariably results in just
one possible cell output, so all of these rules are always in effect.
Group II includes 22 rules also always in effect, but each has two al-
ternative outcomes (note Figure 6(b) and (c)). A combinatoric table
was constructed for the Group II rules to produce each possible listing
of outcomes to be in effect {1 or 2} across all 22 rules. Each row in
this combinatoric table would therefore consist of the same 22 rules
with either the first or the second output option, and all the rows to-
gether would present every possible combination of outcomes across
the 22 rule sequence. Each of the possible rule sets was then selected
one at a time from the Group II rule combinatoric table and ap-
pended to the 106 Group I rules to generate another meander by the
cellular automaton. The combinatoric variety of Group II rule alterna-
tives resulted in a creative space of 4 194 304 possible meanders using
222 = 4 194 304 rule sets; each rule set thus generates a possible, al-
though not necessarily unique, meander.

The initial condition configuration is shown in Figure 4 with the
meander line shapes transcribed into letter-number symbols for use
with the two-dimensional cellular automaton generating machine de-
scribed in the following section. This initial condition is composed of
the 6 row by 5 column lattice with boundary defining markers
(marker shapes) and empty lattice cells (empty shapes). The post-

From Meander Designs to a Routing Application 381

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

generation condition (shown in Figure 5) will still contain the original
boundary markers, the generated meander line shapes, and additional
marker shapes generated for the last row and last column. These gen-
erated markers act to further constrain the meander from traversing
outside of the right-hand side and bottom of the matrix except at the
specified input/output cells.

HaL HbL
Figure 5. Lattice at (a) the initial condition and (b) after meander generation.

2.3 Applying the Cellular Automata Computational System to
Generate a Set of Meanders

To enable the meander shape grammar rule format, a Moore two-
dimensional neighborhood template was used [35, 36], with cells of
the neighborhood made active by assigning 1 to the controlling cells
and 0 to the inactive (non-influential) cells (see Figure 6(a)). Every cell
in the step (s + 1) lattice has a conditional neighborhood from step (s)
that determines the value of the center cell for step (s + 1). With re-
spect to the meander construction, generation of each next step’s me-
ander shapes (at the central cell of the Moore neighborhood matrix)
would be determined according to what meander shapes were already
just above it as well as to its left (these are the two active or influenc-
ing neighbors). Figures 6(b) and (c) illustrate how Group I and
Group!II rules differ within this neighborhood.

HaL HbL HcL
Figure 6. The Moore neighborhood rules: (a) Moore active neighborhood,
(b) Group I rule resulting in a single output, and (c) Group II rule resulting in
two possible outputs.

382 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

The {5,4} meander of this study was generated in eight steps, where
each step applied the neighborhood rules to every cell in the lattice as
a parallel processing finite state machine (Figure 7(a)). Since the cellu-
lar automata computation may not be intuitively obvious, Figure 7(b)
shows the state of the matrix after step 1 using the selected rule set 3
for this example (from the initial condition shown in Figure 4). Step 1
seems to indicate that only cell {2,2} changed to s3. Actually, all cells
were replaced according to their previous (s) state neighborhood con-
ditions and with corresponding rules applied.

HaL

HbL HcL
Figure 7. (a) Cellular automata as a parallel processing finite state machine,
(b) step 1, and (c) step 2 and the cellular automata build direction.

Step 2 in Figure 7(c) shows that two s0 have been replaced by s6
and s2 in the matrix. Also shown is the direction of the build process
by the cellular automaton function, starting at the upper left corner
and progressing diagonally down the matrix in the eight successive
steps. The next six steps are illustrated in Figure 8.

From Meander Designs to a Routing Application 383

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s0

s1m s6 s2 s0 s0

s1m s3 s0 s0 s0

s1m s0 s0 s0 s0

s1b s0 s0 s0 s0

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s0

s1m s3 s2 s0 s0

s1m s6 s0 s0 s0

s1b s0 s0 s0 s0

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s1r

s1m s3 s2 s2 s0

s1m s6 s2 s0 s0

s1b s3r s0 s0 s0

Step 3 Step 4 Step 5

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s1r

s1m s3 s2 s2 s5r

s1m s6 s2 s2 s0

s1b s3r s2r s0 s0

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s1r

s1m s3 s2 s2 s5r

s1m s6 s2 s2 s4r

s1b s3r s2r s2r s0

s3m s2m s2m s2m s2b

s1m s3 s2 s4 s3r

s1m s6 s2 s5 s1r

s1m s3 s2 s2 s5r

s1m s6 s2 s2 s4r

s1b s3r s2r s2r s5r

Step 6 Step 7 Step 8

HaL

HbL
Figure 8. (a) Steps 3–8 symbolically and (b) step 8 graphically.

Once each {5,4} matrix was generated, any meander with a halt
condition was programmatically removed, while a successful meander
was compared to the file of saved meanders and added if unique. Fi-
nally, all markers were erased, the {5,4} grid of each complete unique
solution (the upper left-hand quadrant of the lattice) was quadrupled
by applying symmetry reflection rules, and the shape symbols were
translated back to the actual meander line shapes to provide graphical
output (see Figure 9).

2.4 The Solution Space of Meander System Architectures
As indicated in Figure 10, there were 841 693 rule sets that generated
meander solutions satisfying the entrance/exit requirements and the re-
quirement that a line pass through every cell. These meander designs
accounted for only 20% of the total enumerated creative space of

384 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

both successful and faulty meanders generated by the combinatoric
table of rule sets (determined by the two possible outcomes of the 22
rules in the Group II rule set, 222). Furthermore and more startling,
out of the large solution set, only 20 unique meander designs were
found (shown in Figure 11). In genomic terms, a very large number of
surviving genotypes expressed themselves through a very small num-
ber of phenotypes. Thus, an extremely large number of rule sets pro-
vided the same solution.

s3m s2m s2m s2m s2b s2 s2 s2 s2 s4

s1m s3 s2 s4 s3r s4 s3 s2 s4 s1

s1m s6 s2 s5 s1r s1 s6 s2 s5 s1

s1m s3 s2 s2 s5r s6 s2 s2 s4 s1

s1m s6 s2 s2 s4r s3 s2 s2 s5 s1

s1b s3r s2r s2r s5r s6 s2 s2 s4 s1

s1 s6 s2 s2 s4 s3 s2 s2 s5 s1

s1 s3 s2 s2 s5 s6 s2 s2 s4 s1

s1 s6 s2 s2 s4 s3 s2 s2 s5 s1

s1 s3 s2 s4 s1 s1 s3 s2 s4 s1

s1 s6 s2 s5 s6 s5 s6 s2 s5 s1

s6 s2 s2 s2 s2 s2 s2 s2 s2 s5HaL HbL
Figure 9. Step 8 example: final matrix for rule set 3 (a) after reflection and
(b)!graphically.

Figure 10. Generation of a meander system architecture using the SG Ø CA ap-
proach to satisfy a specification.

From Meander Designs to a Routing Application 385

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

Figure 11. The 20 unique solutions satisfying the specification (depicted in lat-
tice form).

One might conclude that taking a sampling approach to finding the
meander solutions from such an enormous creative space could poten-
tially miss finding a significant percentage of the unique solutions,
thus demanding a complete enumeration of design possibilities. The
question arises, however, as to how a probabilistic approach might
compare to the enumerative approach just employed in more effi-
ciently finding all the unique solutions within the meander creative
space. Would an evolutionary computation technique, for example,

386 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

take less time to find the unique solutions than the brute force enu-
meration used here?

3. Comparing Enumerative versus Probabilistic Methods for Finding
All Unique Solutions in a Large Design Space of Architectures

It was observed that unique solutions numbered 1 through 12 were al-
most uniformly distributed throughout the creative space (see
Table!1) while the remaining eight solutions were located in narrow
zones. If there are only 20 unique graphic solutions, might there be a
more efficient and still effective method to locate these 20 out of an
enormous possibility space? Enumeration, obviously, guarantees find-
ing all unique solutions but at a significant cost in computing power
and time.

In view of the distribution of unique solutions detailed in Table 1,
drawing samples of solutions from the total creative space of rule set
generations to search for the unique designs calls for an approach that
will either look in the “right” bin segments of the distribution or will
cast widely enough to counter blindness to the actual asymmetrical
frequency topology.

3.1 Probabilistic Approaches for Searching the Creative Space
To address the question about the search approach, three probabilis-
tic trials were designed employing evolutionary computation tech-
niques: random sampling of the creative space to search for solutions
(comparable to 100% mutation), a genetic algorithm using the selec-
tion and recombination (crossover) operators only, and a genetic algo-
rithm varying in sample size using selection, recombination
(crossover), and mutation operators.

One rule set drawn from the total group of possible rule sets gener-
ating a meander solution (222 combinatoric rule set versions) served
as the original genome for the evolutionary computation, with ge-
nomic variation occurring due to Group II rules having variable out-
comes. The halt condition that was intended to stop the execution of
the cellular automaton from further generation served as the analogy
for a genetic flaw in the resultant phenotype. A fitness function to-
taled the number of halts or genetic flaws in the complete phenotypes
generated. The objective was to reduce the number of genetic flaws to
zero by applying the operators of a random sample population: selec-
tion, pairing, crossover, and mutation [37, 38]. The advance knowl-
edge that there were 20 unique solutions was used to bring the evolu-
tionary computation to a halt once the 20 unique solutions were
found. For each probabilistic trial described below, the total number
of samples and the time required for the computation were collected
for 10 independent runs of each algorithm. The comparative data and
summaries are contained in Table 2.

From Meander Designs to a Routing Application 387

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

Table 1. Frequency distribution for valid meander solutions and the unique
graphic solutions across the creative space.

388 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

Table 2. Search enumeration and evolutionary computation techniques—com-
parison data and statistical summaries.

From Meander Designs to a Routing Application 389

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

The first trial employed purely random sampling of the creative
space. In each run, meanders were generated one at a time from the
sampled rule sets and examined automatically to see if each one was a
solution (no halts existed). If valid, then each solution was match
tested against a building file of unique solutions to determine if it was
a duplicate, and if not, it was added to the unique solution file. The al-
gorithm generates up to 1000 samples within a run randomly selected
from the total rule set (size 222) or stops upon finding the 20 unique
architectural solutions, whichever occurs first. In 20 independent runs
(only 10 runs are shown in Table 2), the algorithm found the 20
unique solutions each time before reaching 1000 rule set samples.
This first trial is considered a baseline for comparison.

A second trial was conducted using 50% selection and 50%
crossover operators with no mutation operator. An initial run sam-
pled 10 genomes or rule sets selected randomly, and the resulting me-
anders were all generated and examined to record any unique solu-
tions. Then, the meanders were rank sorted by halt (genetic flaw)
count from low to high. The 50% of the initial population sample,
five in this case, with the fewest halts or genetic flaws was selected for
random pairing with another five randomly selected rule sets. For
each pair, the genomes were crossed at the halfway point, and the phe-
notypes of this new sample of meanders were generated and tested for
the presence of unique solutions. The top 50% (five) of this new gen-
eration group with the fewest halts were selected and paired with an-
other five randomly selected genomes. This process continued for up
to 20 generations or until 20 unique solutions were discovered,
whichever occurred first. As in the case of the random sampling, each
run of this evolutionary computation algorithm found all 20 unique
solutions without reaching the stopping point.

The third trial also began with an initial sample size of 10 genomes
(rule sets) and followed the process just described in the second study
except for the inclusion of a mutation factor (50% selection, 50%
crossover, 4.5% mutation operators). For each crossed genome pair,
one of the positions in their rule sequences was randomly mutated
(the rule’s right-hand option was switched to the alternative). The al-
gorithm was similarly set to run up to 20 iterations or find the 20
unique solutions, whichever occurred first. Once again, all unique so-
lutions were identified in each run before the program’s limit. (It
should be noted that in addition to this study of sample size 10, identi-
cal solution searches were conducted with sample sizes of six and 100
with similar results to the 10.)

3.2 Comparison of the Enumerative and Evolutionary Computation
Approaches for Managing the Creative Space

All of the sampling techniques were particularly useful with regard to
the topology of the solution space in this study. While the output con-
tained a very small number of unique solutions, each of these solu-

390 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

tions could be derived from a much larger range and number of dif-
ferent rule sets within the solution space, thus affording a reasonable
target for sampling. The evolutionary computation techniques are
astonishingly quick compared to enumeration. The time to find all 20
unique solutions in a creative space of approximately 4.2 million
ranged from approximately 25 to 55 seconds depending on the opera-
tor settings for the evolutionary computations. In comparison, the
fully enumerative approach required approximately 41 hours of CPU
time. Clearly the probabilistic approach was far more efficient in find-
ing the unique, successful meander designs from a total creative space
that produced 20.07% successful but at the same time 99.99% dupli-
cated solutions. However, this economy comes at the cost of informa-
tion, namely that of the exact number of unique solutions (which enu-
meration does provide) and therefore a lack of assurance regarding
when to stop searching for solutions.

4. An Application of the Meander Style to an Engineering Problem

By applying various constraints to a lattice, the meanders generated in
this study could be interpreted as routing or circuitry scenarios and ex-
tended to a real-life application, in this case efficiently routing an
underfloor heating system for different sized and shaped rooms. The
algorithm development for designing efficient piping systems is a diffi-
cult problem due to the wide variation of possible designs. A simple
pattern similar to one used by a manufacturer of underfloor heating
systems [39] is shown in Figure 12. Interestingly, the pattern of pipes
bears a resemblance to the Chinese lattices.

Underfloor heating systems are radiant heating systems using con-
duction, unlike radiators, forced air, and fireplace heating systems,
which are convection heating systems. The underfloor heating is gen-
erated by hot water circulating in pipes routed beneath the floor sur-
face. The heat uniformly emanates from the bottom upward, and the
physical system is “invisible,” providing an aesthetic appeal. This type
of heating system has become more popular in recent years, especially
in Europe. Hot water furnaces fueled by gas, oil, or electricity heat
the water that is pumped through manifold systems to different zones
in a dwelling.

The pipe routing problem becomes one of system architecting.
Even though the example in Figure 12 looks quite simple, the actual
patterns of routings can be varied and complex. The location of the
pump and manifold, the input/output positions interfacing with each
room or heating zone, and the routing or meander pattern within
each zone become a combinatoric routing or continuous circuit layout
problem. There are many possible combinations of where to locate
the inputs and outputs of the piping for each zone and where to place

From Meander Designs to a Routing Application 391

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

the manifold/pump. For purposes of this study, arbitrary specifica-
tions were defined with respect to these factors, in addition to the size
and configuration of the spaces to be heated. Each zone can then be
thought of as a subsystem within the total underfloor heating super-
system.

Figure 12. Example of a typical pipe layout.

The following specifications are proposed for an underfloor heat-
ing system design.

1. There are three zones as shown in Figure 13.

2. The manifold/pump may be located anywhere at the bottom of Zone 3.

3. From Zone 3, the input/output piping may connect anywhere to
Zone!1, but may not connect to Zone 2 because there is a solid founda-
tion wall between Zone 2 and Zone 3.

4. Zone 1 and Zone 2 interconnect.

5. The system architecture(s) generated must be efficient for providing uni-
form heat and be the lowest cost to manufacture and install.

392 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

Figure 13. The room layout.

4.1 Developing the Design System to Describe the System
Architecture

A shape grammar was developed to express an underfloor piping sys-
tem in a format that directly lent itself to a cellular automaton deriva-
tion. Shape rules to generate outputs (the next pipe form to be used)
for every combination of neighborhood input shapes (the current
stage of piping configuration) were enumerated. To assure that the
piping conformed to the specification, marker variables served as
switches for turning on other rules in order to change or limit the
choice of pipe forms at the sites of imposed boundaries. Transcribed
simple rules and markers were then carried over in the cellular au-
tomaton steps to route the pipe elements in only physically legitimate
directions within boundary constraints. A halt rule to stop the execu-
tion of the cellular automaton from further generation was assigned
to prevent illegitimate piping configurations.

The shape grammar for the underfloor heating system was based
on the meander shape grammar of the earlier study but required more
marker variables for managing the zone barriers and interfaces, as
well as more rules associated with these markers. A grid was superim-
posed over the entire floor area, which was partitioned into three
room heating zones. The size of the grid cell controls the density of
the pipe routing and thus the positioning of pipes to provide the most
uniform heating. In addition, the pipe was required to traverse contin-
uously through each cell in the grid, while meander “islands” that did

From Meander Designs to a Routing Application 393

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

not result in total grid connectivity would be rejected. Zone partitions
were identified by marker shapes, which were later erased. As with
the meander grammar, the same six basic pipe shapes were employed,
but 37 shape markers and 432 rules were required for the more com-
plex boundaries involved (see Appendix C).

Figure 14. The local neighborhood definition.

4.2 Developing the Computational System for Generating the
System Architecture

The underfloor piping Moore neighborhood as indicated in Figure 14
has three active conditional neighbors, now including the center cell
that would be filled by one of the two possible initial condition empty
shape variables, {s0} or {s0r}, to distinguish which shape rule output
option to use. A particular solution attempt could draw from one of
the same two groups of piping rules (Group I invariant rules and
Group II rules having two right-hand options). Certain cells in each
zone were restricted to a single rule output (Group I rules) for the ini-
tial condition because of boundary constraints. Initial condition con-
figurations for the heating zones therefore were based on whether
each cell was free or not to utilize rule set output options (whether ei-
ther a Group I or Group II rule could be employed, or only a Group I
rule could be used). Since Group II rules had two possible outputs, ini-
tial conditions could be varied according to a combinatoric enumera-
tion of option choices for unrestricted cells. If a Group II rule was
called for, that cell’s initial condition value determined whether to use
the first option {s0} or the second {s0r}. If a Group I rule was evoked
in this same cell, then only its single output could be dictated. Thus,
certain identical neighborhood configurations could result in either
one of two possible outcomes, yielding a great combinatoric space,
lattice-wide, of different configurations for possible local actions.

Zone 1 required a {6,6} dimension matrix and had an initial condi-
tion with 19 cells possessing two possible values, as shown in Fig-
ure!15. The 19 cell options led to a combinatoric space of size 219, or
524 288 different initial conditions. Both the first row and column
contain marker variables and are not part of the heating zone itself.

394 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

s0m s2m s2m s2m s2m s2b

s1m s0 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s5m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

Figure 15. Initial condition options for Zone 1.

The 18th applied initial condition from all combinatoric initial con-
ditions that could possibly be composed from Figure 15 did yield a so-
lution, as shown in Figure 16.

s0m s2m s2m s2m s2m s2b

s1m s0 s0 s0 s0 s0

s1m s0 s0 s0 s0 s0

s1m s0 s0 s0 s0 s0

s1m s0 s0 s0 s0r s0

s5m s0 s0 s0 s0r s0

initial condition
s0m s2m s2m s2m s2m s2b

s1m s3 s2 s2 s2 s4r

s1m s1 s3 s2 s2 s5r

s1m s1 s1 s3 s2 s4r

s1m s1 s1 s1 s3 s5r

s5m s1n s1p s1 s6 s4r

solution generated HsymbolicL

solution generated HgraphicL
Figure 16. The Zone 1 solution generated from the 18th initial condition possi-
bility (with markers shown).

Zone 2 was a {5,7} dimension matrix, also with an initial condition
of 19 cells possessing two possible values, as shown in Figure 17. The

From Meander Designs to a Routing Application 395

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

combinatoric size is the same as Zone 1, or 219. The graphical output
of one possible solution for Zone 2 is depicted in Figure 18. Again,
the first row and column serve as markers, including carrying over
two cells {1,6} and {1,7} from a Zone 1 solution to show the presence
of inputs/outputs.

s0m s2m s2m s2m s2m s1n s1p

s1m s0 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< 8s0, s0r< s0

Figure 17. Initial condition options for Zone 2.

Figure 18. One of 37 solutions for Zone 2 (with markers shown).

Zone 3 was a {5,4} dimension matrix having an initial condition
where eight cells possessed two possible values, shown in Figure 19.
The cellular automaton generates 28 = 256 matrices in six steps. The
four possible solutions that resulted are shown in Figure 20. Marker
variables for the first row boundary identified the input/output loca-
tions from Zone 1.

s0m s3 s5 s1r

s1m 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< s0

s1m 8s0, s0r< 8s0, s0r< s0

Figure 19. Initial condition options for Zone 3.

Figure 20. Zone 3 unique solutions (with markers shown).

396 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

4.3 Selecting the Most Efficient System Architectures from the
Solution Space

The room heating zones were considered as subsystems or modules of
the whole system to afford a divide-and-conquer strategy for comput-
ing the meanders for each zone [40]. The only interdependence of the
zones is at their possible points of interconnection with the location
of input/output pipes. After each zone solution was generated, a pat-
tern-matching filter (comparable to a “fitness test”) was applied to
screen out solutions that would not meet the specification (i.e., would
not interconnect with each other). Only unique, good solutions were
stored. In a final operation, the three zones were combined so that the
supersystem configuration catalog could be enumerated.

Once all the solutions for the complete underfloor heating system
had been output, their individual efficiency, fitness, or measures of
merit could be calculated and compared. For this study, the least ac-
tion principle was invoked. Least action was interpreted as being rep-
resented by those solutions having the highest count of vertical and
horizontal lines (straight pipe sections rather than bent pipe sections).
The justification for this prescription is derived from three points.

† Straight pipes are easier and less costly to manufacture and install.

† Less pumping power (less energy) is required for straight sections.

† The circulation area for water and its radiant heat is considered more
consistent for straight pipe configurations.

Zone 1 produced 34 solutions, Zone 2 had 37 solutions, and
Zone!3 yielded four solutions. Combined, they produced a catalog of
5032 solutions. Nine randomly selected examples are shown in Fig-
ure!21. The count of straight lines as a fitness measure provided a
least action group of 60 solutions (shown in Figure 22), giving stake-
holders a more manageable group from which to choose a design.
Computation time on a single processor PC for generating all solu-
tions was extremely fast.

5. Discussion

This study was based on an analysis of the Chinese lattices presented
in Dye’s work [6]. A review of these artwork patterns raised the ques-
tion as to whether the SG Ø CA approach could be applied to model
the style of any particular Chinese lattice. It was relatively simple to
visually analyze Chinese lattices to develop the vocabulary of shapes
and then to construct a grammar of rules that assemble these shapes
according to a meander specification. Programming the cellular au-
tomata to capture these shapes and rules to output a design catalog is
not difficult with the appropriate training. While neither the use of a
shape grammar or of cellular automata alone would have solved this
study’s presented problem, the combined SG Ø CA methodology was
successful in this goal.

From Meander Designs to a Routing Application 397

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

Figure 21. Nine samples taken from the 5032 piping solutions (markers
erased).

: , , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , >

Figure 22. Least action group (grid and markers erased).

398 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

In demonstrating the problem-solving scenario with the meander
design, the following observations were made. Combinatoric tech-
niques greatly expanded the creative and solution spaces, and the use
of simple or very basic primitives allowed a greater number of combi-
natoric opportunities to arise. Boundary constraints were critical
within the rules set for ensuring the requirements for viable solutions;
architectures are also very sensitive to the initial condition, which is it-
self a type of constraint.

Enumerative generation with the SG Ø CA meander design ap-
proach was able to catalog and account for all possible solutions.
However, the enumerative search was relatively very slow and re-
sulted in an overwhelming amount of useless information. On the
other hand, the evolutionary computational search turned out to be
quite useful with the large creative space, even with its lumpy distribu-
tion. The evolutionary computation search was extremely fast and re-
quired fewer samples than a purely random search. The most efficient
search process combined the evolutionary computation features of
both crossover and mutation, the latter of which introduces some ran-
domness into the operation, thereby facilitating a wider search range.

However, there are no standard operator value settings (or best
system architecture) for the different evolutionary computation meth-
ods, so a large variety of evolutionary computation designs could be
applied. The evolutionary computation design and operator value set-
tings are up to the experiential judgment and tinkering of the mod-
eler. Furthermore, evolutionary computation is probabilistic—there is
no guarantee of finding all the solutions or knowing exactly how
many solutions are contained in the system architecture solution
space. Therefore, there is no definitive way to determine when to halt
the evolutionary computation algorithm.

The trade-off between computational efficiency (evolutionary com-
putation) versus comprehensiveness of search results (enumerative
generation) brings to mind the principle of satisfying the specification
[41]. The system architect must decide if it is appropriate to use an
enumerative approach such as to catalog multiple solutions, to iden-
tify all of the possible solutions (find all the needles in a haystack), or
to obtain an understanding of the topology of the solution space
within its rule set domain, as opposed to utilizing the very efficient
sampling approaches provided by evolutionary computation methods
when completeness or in-depth understanding is not of primary
concern.

Finally, noticing the comparability of the meander design results to
the requirements of an underground heating system, the meander
SG!Ø!CA algorithm was extended to generate piping solutions for a
given specification. Systems originally possessing sole aesthetic appeal
were extended to the generation of systems with functional purpose in
the satisfaction of a specification to solve a real-life problem. The ba-
sic form and rules of the aesthetic subject thus were generalized for ap-

From Meander Designs to a Routing Application 399

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

! !

plication in a functional setting where flow was the design foundation
in both.

In addition to the adaptation of aesthetics to function, this portion
of the study demonstrated the rapid solution execution of a practical
problem with a potentially large combinatoric space using the
SG!Ø!CA methodology. To allow for manageable computation, the
problem scenario was decomposed into separate but interfacing local
zones (neighborhoods, modules), which then allowed for efficient so-
lution development when the subsystem architectures were configured
together by fit (intraconnectivity) into the complete system. Rules gen-
erated constraints that served as boundaries for channeling the cre-
ative process toward the intended purpose. For the underfloor circuit
problem, the SG Ø CA approach highlighted the usefulness of bottom-
up design analysis and synthesis for solving a problem that might
have a solution space too large for human ease of management. An ex-
tension of this routing architecture methodology conceivably could be
applied to other systems involving flow of information, energy, or
things, such as for a factory layout with materials flow, power grid ar-
chitecting, information networks, and circuit layouts.

6. Conclusion

The generation by hand of a complete catalog of all possible meander
solutions to a given problem is extremely difficult in terms of time
consumption and task management. Currently, no programs exist to
undertake this graphic and combinatoric activity. The purpose of this
paper was to show how the shapes and their rules for organization or
assembly could be captured by a shape grammar, which in turn could
be transcribed into symbols that would interact within cellular au-
tomata neighborhoods according to the rules. This interaction occurs
across time steps, allowing neighborhood state changes to ultimately
generate a complete design bottom-up. The general approach used for
creating meander designs was applied to a similarly based circuit rout-
ing problem. Regardless of the search approach employed to find dif-
ferent legitimate meander designs, the shape grammar to cellular au-
tomata (SG Ø CA) methodology was able to undertake this design
problem effectively and efficiently.

Using the methodology as exemplified herein, one can computa-
tionally explore a variety of design scenarios requiring bottom-up as-
sembly of primitive elements according to a set of identifiable rules
[42]. This approach has application potential for developing and test-
ing theories, for creating a multitude of new designs for real-life situa-
tions, and for solving certain practical problems. The use of shape
grammar thus can provide the system architect the assurance that de-
sign proceeds by rules embodying the relevant laws of nature or prin-
ciples of physics. Harnessing cellular automata, the architect then

400 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

may be able to generate a very large creative space of design candi-
dates, selecting those that satisfy specific requirements (stability,
robustness, aesthetics, cost, etc.) and thereby managing a possibly ex-
plosive design space.

Appendix

A. Meander Rule Set

This appendix lists the 128 rules: the formal simple relationships of
form-function symbolically expressed according to local neighbor-
hood conditions, composed of Group I and Group II combinations.
GroupI = 88s3m< Ø s3m, 8s1m< Ø s1m, 8s2m< Ø s2m,8s1b< Ø s1b, 8s2b< Ø s2b, 8s0, s0, 0< Ø s0, 8s0, s2b, 0< Ø s0,8s0, s2m, 0< Ø s0, 8s1, s1r, 0< Ø s1r, 8s1, s2, 0< Ø s3,8s1, s2r, 0< Ø halt, 8s1, s3r, 0< Ø s1r, 8s1, s4r, 0< Ø s1r,8s1, s5, 0< Ø s3, 8s1, s5r, 0< Ø halt, 8s1, s6, 0< Ø s3,8s1b, s0, 0< Ø s0, 8s1b, s6, 0< Ø s3r, 8s1m, s0, 0< Ø s0,8s1m, s2m, 0< Ø s3, 8s1m, s6, 0< Ø s3, 8s1r, s1, 0< Ø s6r,8s1r, s2, 0< Ø halt, 8s1r, s3, 0< Ø s6r, 8s1r, s4, 0< Ø s6r,8s1r, s5, 0< Ø halt, 8s1r, s6, 0< Ø halt, 8s2, s1, 0< Ø s5,8s2, s1r, 0< Ø s5r, 8s2, s2b, 0< Ø s2r, 8s2, s2r, 0< Ø s4r,8s2, s3, 0< Ø s5, 8s2, s3r, 0< Ø s5r, 8s2, s4, 0< Ø s5,8s2, s4r, 0< Ø s5r, 8s2, s5r, 0< Ø s4r, 8s2r, s1, 0< Ø s5r,8s2r, s1r, 0< Ø s5r, 8s2r, s2, 0< Ø s2r, 8s2r, s3, 0< Ø s5r,8s2r, s4, 0< Ø s5r, 8s2r, s4r, 0< Ø s5r, 8s2r, s5, 0< Ø s2r,8s2r, s5r, 0< Ø halt, 8s2r, s6, 0< Ø s2r, 8s3, s1, 0< Ø s5,8s3, s1r, 0< Ø s5r, 8s3, s2b, 0< Ø s2r, 8s3, s2r, 0< Ø s4r,8s3, s3, 0< Ø s5, 8s3, s3r, 0< Ø s5r, 8s3, s4, 0< Ø s5,8s3, s4r, 0< Ø s5r, 8s3, s5r, 0< Ø s4r, 8s3r, s1, 0< Ø s5r,8s3r, s2, 0< Ø s2r, 8s3r, s3, 0< Ø s5r, 8s3r, s4, 0< Ø s5r,8s3r, s5, 0< Ø s2r, 8s3r, s6, 0< Ø s2r, 8s4, s1r, 0< Ø s1r,8s4, s2, 0< Ø s3, 8s4, s2b, 0< Ø s3r, 8s4, s2m, 0< Ø s3,8s4, s2r, 0< Ø halt, 8s4, s3r, 0< Ø s1r, 8s4, s4r, 0< Ø s1r,8s4, s5, 0< Ø s3, 8s4, s5r, 0< Ø halt, 8s4, s6, 0< Ø s3,8s5, s1r, 0< Ø s1r, 8s5, s2, 0< Ø s3, 8s5, s2r, 0< Ø halt,8s5, s3r, 0< Ø s1r, 8s5, s4r, 0< Ø s1r, 8s5, s5, 0< Ø s3,8s5, s5r, 0< Ø halt, 8s5, s6, 0< Ø s3, 8s5r, s1, 0< Ø s6r,8s5r, s1r, 0< Ø halt, 8s5r, s2, 0< Ø halt, 8s5r, s3, 0< Ø s6r,8s5r, s4, 0< Ø s6r, 8s5r, s4r, 0< Ø halt, 8s5r, s5, 0< Ø halt,8s5r, s5r, 0< Ø halt, 8s5r, s6, 0< Ø halt, 8s6, s1, 0< Ø s5,8s6, s1r, 0< Ø s5r, 8s6, s2r, 0< Ø s4r, 8s6, s3, 0< Ø s5,8s6, s3r, 0< Ø s5r, 8s6, s4, 0< Ø halt, 8s6, s4r, 0< Ø halt,8s6, s5r, 0< Ø s4r, 8s6r, s1, 0< Ø s5r, 8s6r, s1r, 0< Ø s5r,8s6r, s2, 0< Ø s2r, 8s6r, s3, 0< Ø s5r, 8s6r, s4, 0< Ø halt,8s6r, s4r, 0< Ø halt, 8s6r, s5, 0< Ø s2r, 8s6r, s5r, 0< Ø halt,8s6r, s6, 0< Ø s2r, 8s1b, s1, 0< Ø s1r, 8s1b, s3, 0< Ø s1r<;

From Meander Designs to a Routing Application 401

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

Length@GroupID
106

GroupII =88s1, s1, 0< Ø 8s1, s6<, 8s1, s3, 0< Ø 8s1, s6<, 8s1, s4, 0< Ø 8s1, s6<,8s2, s2, 0< Ø 8s2, s4<, 8s2, s5, 0< Ø 8s2, s4<, 8s2, s6, 0< Ø 8s2, s4<,8s3, s2, 0< Ø 8s2, s4<, 8s3, s5, 0< Ø 8s2, s4<, 8s3, s6, 0< Ø 8s2, s4<,8s4, s1, 0< Ø 8s1, s6<, 8s4, s3, 0< Ø 8s1, s6<, 8s4, s4, 0< Ø 8s1, s6<,8s5, s1, 0< Ø 8s1, s6<, 8s5, s3, 0< Ø 8s1, s6<, 8s5, s4, 0< Ø 8s1, s6<,8s6, s2, 0< Ø 8s2, s4<, 8s6, s5, 0< Ø 8s2, s4<, 8s6, s6, 0< Ø 8s2, s4<,8s1m, s3, 0< Ø 8s6, s1<, 8s1m, s1, 0< Ø 8s6, s1<,8s3, s2m, 0< Ø 8s4, s2<, 8s2, s2m, 0< Ø 8s4, s2<<;
Length@GroupIID
22

B. Symmetry Rules

rulesquad2 = 8s1 Ø s1, s1m Ø s1, s1b Ø s1, s1r Ø s1, s2 Ø s2,
s2m Ø s2, s2b Ø s2, s2r Ø s2, s3 Ø s4, s3m Ø s4, s3r Ø s4,
s4 Ø s3, s4r Ø s3, s5 Ø s6, s5r Ø s6, s6 Ø s5, s6r Ø s5<;

rulesquad3quad4 = 8s1 Ø s1, s1m Ø s1, s1b Ø s1, s1r Ø s1, s2 Ø s2,
s2m Ø s2, s2b Ø s2, s2r Ø s2, s3 Ø s6, s3m Ø s6, s3r Ø s6,
s4 Ø s5, s4r Ø s5, s5 Ø s4, s5r Ø s4, s6 Ø s3, s6r Ø s3<;

C. Pipe Routing Rule Set

This appendix lists the 432 rules: the formal simple relationships of
form-function symbolically expressed according to local neighbor-
hood conditions.
ruleSet = 88s1m< Ø s1m, 8s2m< Ø s2m, 8s5m< Ø s5m, 8s2b< Ø s2b, 8s0m< Ø s0m,8s1m, s2m, s0< Ø s3, 8s3, s2m, s0< Ø s2, 8s3, s2m, s0r< Ø s4,8s2, s2m, s0< Ø s2, 8s2, s2m, s0r< Ø s4, 8s4, s2m, s0< Ø s3,8s4, s2m, s0r< Ø s3, 8s1m, s3, s0< Ø s1, 8s1m, s3, s0r< Ø s6,8s1m, s4, s0< Ø s1, 8s1m, s4, s0r< Ø s6, 8s3, s2b, s0< Ø s4r,8s2, s2b, s0< Ø s4r, 8s4, s2b, s0< Ø halt, 8s1m, s1, s0< Ø s1,8s1m, s1, s0r< Ø s6, 8s1m, s6, s0< Ø s3, 8s1m, s6, s0r< Ø s3,8s5m, s1, s0< Ø s1n, 8s5m, s1, s0r< Ø s6n, 8s5m, s3, s0< Ø s1n,8s5m, s3, s0r< Ø s6n, 8s5m, s6, s0< Ø s3n, 8s5m, s6, s0r< Ø s3n,8s2, s5m, s0< Ø s2, 8s2, s5m, s0r< Ø s4, 8s3, s5m, s0< Ø s2,8s3, s5m, s0r< Ø s4, 8s4, s5m, s0< Ø s3, 8s4, s5m, s0r< Ø s3,8s1, s4r, s0< Ø s1r, 8s2, s4r, s0< Ø s5r, 8s3, s4r, s0< Ø s5r,8s4, s4r, s0< Ø s1r, 8s5, s4r, s0< Ø s1r, 8s6, s4r, s0< Ø halt,8s1, s1r, s0< Ø s1r, 8s2, s1r, s0< Ø s5r, 8s3, s1r, s0< Ø s5r,8s4, s1r, s0< Ø s1r, 8s5, s1r, s0< Ø s1r, 8s6, s1r, s0< Ø s5r,8s1, s5r, s0< Ø halt, 8s2, s5r, s0< Ø s4r, 8s3, s5r, s0< Ø s4r,

402 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

8s4, s5r, s0< Ø halt, 8s5, s5r, s0< Ø halt, 8s6, s5r, s0< Ø s4r,8s1, s1, s0r< Ø s6, 8s1, s1, s0< Ø s1, 8s1, s2, s0< Ø s3,8s1, s2, s0r< Ø s3, 8s1, s3, s0r< Ø s6, 8s1, s3, s0< Ø s1,8s1, s4, s0r< Ø s6, 8s1, s4, s0< Ø s1, 8s1, s5, s0< Ø s3,8s1, s5, s0r< Ø s3, 8s1, s6, s0< Ø s3, 8s1, s6, s0r< Ø s3,8s2, s1, s0< Ø s5, 8s2, s1, s0r< Ø s5, 8s2, s2, s0r< Ø s4,8s2, s2, s0< Ø s2, 8s2, s3, s0< Ø s5, 8s2, s3, s0r< Ø s5,8s2, s4, s0< Ø s5, 8s2, s4, s0r< Ø s5, 8s2, s5, s0r< Ø s4,8s2, s5, s0< Ø s2, 8s2, s6, s0r< Ø s4, 8s2, s6, s0< Ø s2,8s4, s1, s0r< Ø s6, 8s4, s1, s0< Ø s1, 8s4, s2, s0< Ø s3,8s4, s2, s0r< Ø s3, 8s4, s3, s0r< Ø s6, 8s4, s3, s0< Ø s1,8s4, s4, s0r< Ø s6, 8s4, s4, s0< Ø s1, 8s4, s5, s0< Ø s3,8s4, s5, s0r< Ø s3, 8s4, s6, s0< Ø s3, 8s4, s6, s0r< Ø s3,8s6, s1, s0< Ø s5, 8s6, s1, s0r< Ø s5, 8s6, s2, s0r< Ø s4,8s6, s2, s0< Ø s2, 8s6, s3, s0< Ø s5, 8s6, s3, s0r< Ø s5,8s6, s4, s0< Ø halt, 8s6, s4, s0r< Ø halt, 8s6, s5, s0r< Ø s4,8s6, s5, s0< Ø s2, 8s6, s6, s0r< Ø s4, 8s6, s6, s0< Ø s2,8s5, s1, s0r< Ø s6, 8s5, s1, s0< Ø s1, 8s5, s2, s0< Ø s3,8s5, s2, s0r< Ø s3, 8s5, s3, s0r< Ø s6, 8s5, s3, s0< Ø s1,8s5, s4, s0r< Ø s6, 8s5, s4, s0< Ø s1, 8s5, s5, s0< Ø s3,8s5, s5, s0r< Ø s3, 8s5, s6, s0< Ø s3, 8s5, s6, s0r< Ø s3,8s3, s1, s0< Ø s5, 8s3, s1, s0r< Ø s5, 8s3, s2, s0r< Ø s4,8s3, s2, s0< Ø s2, 8s3, s3, s0< Ø s5, 8s3, s3, s0r< Ø s5,8s3, s4, s0< Ø s5, 8s3, s4, s0r< Ø s5, 8s3, s5, s0r< Ø s4,8s3, s5, s0< Ø s2, 8s3, s6, s0r< Ø s4, 8s3, s6, s0< Ø s2,8s1, s4p, s0< Ø s1r, 8s2, s4p, s0< Ø s5r, 8s3, s4p, s0< Ø s5r,8s4, s4p, s0< Ø s1r, 8s5, s4p, s0< Ø s1r, 8s6, s4p, s0< Ø halt,8s1, s1p, s0< Ø s1r, 8s2, s1p, s0< Ø s5r, 8s3, s1p, s0< Ø s5r,8s4, s1p, s0< Ø s1r, 8s5, s1p, s0< Ø s1r, 8s6, s1p, s0< Ø halt,8s1, s5p, s0< Ø halt, 8s2, s5p, s0< Ø s4r, 8s3, s5p, s0< Ø halt,8s4, s5p, s0< Ø halt, 8s5, s5p, s0< Ø halt, 8s6, s5p, s0< Ø s4r,8s1, s3p, s0< Ø s1r, 8s2, s3p, s0< Ø s5r, 8s3, s3p, s0< Ø s5r,8s4, s3p, s0< Ø s1r, 8s5, s3p, s0< Ø s1r, 8s6, s3p, s0< Ø halt,8s1, s2p, s0< Ø halt, 8s2, s2p, s0< Ø s4r, 8s3, s2p, s0< Ø halt,8s4, s2p, s0< Ø halt, 8s5, s2p, s0< Ø halt, 8s6, s2p, s0< Ø s4r,8s1, s6p, s0< Ø halt, 8s2, s6p, s0< Ø s4r, 8s3, s6p, s0< Ø halt,8s4, s6p, s0< Ø halt, 8s5, s6p, s0< Ø halt, 8s6, s6p, s0< Ø s4r,8s2, s1n, s0< Ø s5, 8s2, s1n, s0r< Ø s5, 8s3, s1n, s0< Ø s5,8s3, s1n, s0r< Ø s5, 8s4, s1n, s0< Ø s1, 8s4, s1n, s0r< Ø s6,8s2, s3n, s0< Ø s5, 8s2, s3n, s0r< Ø s5, 8s3, s3n, s0< Ø s5,8s3, s3n, s0r< Ø s5, 8s4, s3n, s0< Ø s1, 8s4, s3n, s0r< Ø s6,8s2, s6n, s0< Ø s2, 8s2, s6n, s0r< Ø s4, 8s3, s6n, s0< Ø s2,8s3, s6n, s0r< Ø s4, 8s4, s6n, s0< Ø s3, 8s4, s6n, s0r< Ø s3,8s1n, s1, s0< Ø s1p, 8s1n, s1, s0r< Ø s6p, 8s3n, s1, s0< Ø s5p,8s3n, s1, s0r< Ø s5p, 8s6n, s1, s0< Ø halt, 8s6n, s1, s0r< Ø halt,8s1n, s2, s0< Ø s3p, 8s1n, s2, s0r< Ø s3p, 8s3n, s2, s0< Ø s2p,8s3n, s2, s0r< Ø s2p, 8s6n, s2, s0< Ø s4p, 8s6n, s2, s0r< Ø s4p,8s1n, s3, s0< Ø s1p, 8s1n, s3, s0r< Ø s6p, 8s3n, s3, s0< Ø s5p,8s3n, s3, s0r< Ø s5p, 8s6n, s3, s0< Ø halt, 8s6n, s3, s0r< Ø halt,8s1n, s4, s0< Ø s1p, 8s1n, s4, s0r< Ø s6p, 8s3n, s4, s0< Ø s5p,8s3n, s4, s0r< Ø s5p, 8s6n, s4, s0< Ø halt, 8s6n, s4, s0r< Ø halt,8s1n, s5, s0< Ø s3p, 8s1n, s5, s0r< Ø s3p, 8s3n, s5, s0< Ø s2p,8s3n, s5, s0r< Ø s2p, 8s6n, s5, s0< Ø s4p, 8s6n, s5, s0r< Ø s4p,8s1n, s6, s0< Ø s3p, 8s1n, s6, s0r< Ø s3p, 8s3n, s6, s0< Ø s2p,

From Meander Designs to a Routing Application 403

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

8s3n, s6, s0r< Ø s2p, 8s6n, s6, s0< Ø s4p, 8s6n, s6, s0r< Ø s4p,8s1r, s1, s0< Ø s1, 8s1r, s1, s0r< Ø s6, 8s4r, s1, s0< Ø s1,8s4r, s1, s0r< Ø s6, 8s5r, s1, s0< Ø s1, 8s5r, s1, s0r< Ø s6,8s1r, s2, s0< Ø s3, 8s1r, s2, s0r< Ø s3, 8s4r, s2, s0< Ø s3,8s4r, s2, s0r< Ø s3, 8s5r, s2, s0< Ø s3, 8s5r, s2, s0r< Ø s3,8s1r, s3, s0< Ø s1, 8s1r, s3, s0r< Ø s6, 8s4r, s3, s0< Ø s1,8s4r, s3, s0r< Ø s6, 8s5r, s3, s0< Ø s1, 8s5r, s3, s0r< Ø s6,8s1r, s4, s0< Ø s1, 8s1r, s4, s0r< Ø s6, 8s4r, s4, s0< Ø s1,8s4r, s4, s0r< Ø s6, 8s5r, s4, s0< Ø s1, 8s5r, s4, s0r< Ø s6,8s1r, s5, s0< Ø s3, 8s1r, s5, s0r< Ø s3, 8s4r, s5, s0< Ø s3,8s4r, s5, s0r< Ø s3, 8s5r, s5, s0< Ø s3, 8s5r, s5, s0r< Ø s3,8s1r, s6, s0< Ø s3, 8s1r, s6, s0r< Ø s3, 8s4r, s6, s0< Ø s3,8s4r, s6, s0r< Ø s3, 8s5r, s6, s0< Ø s3, 8s5r, s6, s0r< Ø s3,8s1p, s1, s0< Ø s1, 8s1p, s1, s0r< Ø s6, 8s2p, s1, s0< Ø s5,8s2p, s1, s0r< Ø s5, 8s3p, s1, s0< Ø s5, 8s3p, s1, s0r< Ø s5,8s4p, s1, s0< Ø s1, 8s4p, s1, s0r< Ø s6, 8s5p, s1, s0< Ø s1,8s5p, s1, s0r< Ø s6, 8s6p, s1, s0< Ø s5, 8s6p, s1, s0r< Ø s5,8s1p, s2, s0< Ø s3, 8s1p, s2, s0r< Ø s3, 8s2p, s2, s0< Ø s2,8s2p, s2, s0r< Ø s4, 8s3p, s2, s0< Ø s2, 8s3p, s2, s0r< Ø s4,8s4p, s2, s0< Ø s3, 8s4p, s2, s0r< Ø s3, 8s5p, s2, s0< Ø s3,8s5p, s2, s0r< Ø s3, 8s6p, s2, s0< Ø s2, 8s6p, s2, s0r< Ø s4,8s1p, s3, s0< Ø s1, 8s1p, s3, s0r< Ø s6, 8s2p, s3, s0< Ø s5,8s2p, s3, s0r< Ø s5, 8s3p, s3, s0< Ø s5, 8s3p, s3, s0r< Ø s5,8s4p, s3, s0< Ø s1, 8s4p, s3, s0r< Ø s6, 8s5p, s3, s0< Ø s1,8s5p, s3, s0r< Ø s6, 8s6p, s3, s0< Ø s5, 8s6p, s3, s0r< Ø s5,8s1p, s4, s0< Ø s1, 8s1p, s4, s0r< Ø s6, 8s2p, s4, s0< Ø s5,8s2p, s4, s0r< Ø s5, 8s3p, s4, s0< Ø s5, 8s3p, s4, s0r< Ø s5,8s4p, s4, s0< Ø s1, 8s4p, s4, s0r< Ø s6, 8s5p, s4, s0< Ø s1,8s5p, s4, s0r< Ø s6, 8s6p, s4, s0< Ø s5, 8s6p, s4, s0r< Ø s5,8s1p, s5, s0< Ø s3, 8s1p, s5, s0r< Ø s3, 8s2p, s5, s0< Ø s2,8s2p, s5, s0r< Ø s4, 8s3p, s5, s0< Ø s2, 8s3p, s5, s0r< Ø s4,8s4p, s5, s0< Ø s3, 8s4p, s5, s0r< Ø s3, 8s5p, s5, s0< Ø s3,8s5p, s5, s0r< Ø s3, 8s6p, s5, s0< Ø s2, 8s6p, s5, s0r< Ø s4,8s1p, s6, s0< Ø s3, 8s1p, s6, s0r< Ø s3, 8s2p, s6, s0< Ø s2,8s2p, s6, s0r< Ø s4, 8s3p, s6, s0< Ø s2, 8s3p, s6, s0r< Ø s4,8s4p, s6, s0< Ø s3, 8s4p, s6, s0r< Ø s3, 8s5p, s6, s0< Ø s3,8s5p, s6, s0r< Ø s3, 8s6p, s6, s0< Ø s2, 8s6p, s6, s0r< Ø s4,8s1< Ø s1, 8s2< Ø s2, 8s3< Ø s3, 8s4< Ø s4, 8s5< Ø s5, 8s6< Ø s6,8s1r< Ø s1r, 8s2r< Ø s2r, 8s3r< Ø s3r, 8s4r< Ø s4r, 8s5r< Ø s5r,8s6r< Ø s6r, 8s1p< Ø s1p, 8s2p< Ø s2p, 8s3p< Ø s3p, 8s4p< Ø s4p,8s5p< Ø s5p, 8s6p< Ø s6p, 8s1n< Ø s1n, 8s2n< Ø s2n, 8s3n< Ø s3n,8s4n< Ø s4n, 8s5n< Ø s5n, 8s6n< Ø s6n, 8s0, s0, s0< Ø s0,8s0, s0r, s0< Ø s0, 8s0r, s0, s0< Ø s0, 8s0, s0, s0r< Ø s0r,8s0, s0r, s0r< Ø s0r, 8s0r, s0r, s0< Ø s0, 8s0r, s0, s0r< Ø s0r,8s0r, s0r, s0r< Ø s0r, 8s0, s2m, s0< Ø s0, 8s0, s2m, s0r< Ø s0r,8s0r, s2m, s0< Ø s0, 8s0r, s2m, s0r< Ø s0r, 8s0, s2b, s0< Ø s0,8s0r, s2b, s0< Ø s0, 8s1m, s0, s0< Ø s0, 8s1m, s0, s0r< Ø s0r,8s1m, s0r, s0< Ø s0, 8s1m, s0r, s0r< Ø s0r, 8s5m, s0, s0< Ø s0,8s5m, s0, s0r< Ø s0r, 8s5m, s0r, s0< Ø s0, 8s5m, s0r, s0r< Ø s0r,8s0, s5m, s0< Ø s0, 8s0, s5m, s0r< Ø s0r, 8s0r, s5m, s0< Ø s0,8s0r, s5m, s0r< Ø s0r, 8s0, s1n, s0< Ø s0, 8s0, s1n, s0r< Ø s0r,8s0r, s1n, s0< Ø s0, 8s0r, s1n, s0r< Ø s0r, 8s0, s3n, s0< Ø s0,8s0, s3n, s0r< Ø s0r, 8s0r, s3n, s0< Ø s0, 8s0r, s3n, s0r< Ø s0r,8s1r, s0, s0< Ø s0, 8s1r, s0, s0r< Ø s0r, 8s1r, s0r, s0< Ø s0,

404 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

8s1r, s0r, s0r< Ø s0r, 8s4r, s0, s0r< Ø s0r, 8s4r, s0r, s0< Ø s0,8s4r, s0r, s0r< Ø s0r, 8s5r, s0, s0< Ø s0, 8s5r, s0, s0r< Ø s0r,8s5r, s0r, s0< Ø s0, 8s5r, s0r, s0r< Ø s0r, 8s0, s1, s0< Ø s0,8s0, s2, s0< Ø s0, 8s0, s3, s0< Ø s0, 8s0, s4, s0< Ø s0,8s0, s5, s0< Ø s0, 8s0, s6, s0< Ø s0, 8s0, s1, s0r< Ø s0r,8s0, s2, s0r< Ø s0r, 8s0, s3, s0r< Ø s0r, 8s0, s4, s0r< Ø s0r,8s0, s5, s0r< Ø s0r, 8s0, s6, s0r< Ø s0r, 8s0r, s1, s0< Ø s0,8s0r, s2, s0< Ø s0, 8s0r, s3, s0< Ø s0, 8s0r, s4, s0< Ø s0,8s0r, s5, s0< Ø s0, 8s0r, s6, s0< Ø s0, 8s0r, s1, s0r< Ø s0r,8s0r, s2, s0r< Ø s0r, 8s0r, s3, s0r< Ø s0r, 8s0r, s4, s0r< Ø s0r,8s0r, s5, s0r< Ø s0r, 8s0r, s6, s0r< Ø s0r, 8s0, s1p, s0< Ø s0,8s0r, s1p, s0< Ø s0, 8s0, s2p, s0< Ø s0, 8s0r, s2p, s0< Ø s0,8s0, s3p, s0< Ø s0, 8s0r, s3p, s0< Ø s0, 8s0, s4p, s0< Ø s0,8s0r, s4p, s0< Ø s0, 8s0, s5p, s0< Ø s0, 8s0r, s5p, s0< Ø s0,8s0, s6p, s0< Ø s0, 8s0r, s6p, s0< Ø s0, 8s0, s1r, s0< Ø s0,8s0r, s1r, s0< Ø s0, 8s0, s4r, s0< Ø s0, 8s0r, s4r, s0< Ø s0<;

References

[1] Xenophon, Xenophon: Anabasis Books I-VII (trans. C. L. Brownson),
Cambridge, MA: Harvard University Press, 1980.

[2] O. Jones, The Grammar of Ornament, London: Studio Editions, 1986.

[3] W. H. Goodyear, The Grammar of the Lotus, New York: Sampson Low
and Co., 1891.

[4] C. J. Herringham, “The Snake Pattern in Ireland, the Mediterranean
and China,” The Burlington Magazine for Connoisseurs, 13(63), 1908
pp. 132–137.

[5] C. J. Herringham, “Notes on Oriental Carpet Patterns-VI. Meander and
Key Patterns,” The Burlington Magazine for Connoisseurs, 15(74),
1909 pp. 98–104.

[6] D. S. Dye, A Grammar of Chinese Lattice, Vol. 2, Cambridge, MA: Har-
vard University Press, 1937.

[7] T. W. Knight, “Transformations of the Meander Motif on Greek Geo-
metric Pottery,” Design Computing, 1, 1986, pp. 29–67.

[8] T. W. Knight, Transformations in Design: A Formal Approach to Stylis-
tic Change and Innovation in the Visual Arts, Cambridge: Cambridge
University Press, 1994.

[9] T. H. Speller, Jr., “An Algorithmic Approach to System Architecting
Using Shape Grammar-Cellular Automata,” Ph.D. thesis, Engineering
Systems Division, School of Engineering, Massachusetts Institute of
Technology, Cambridge, MA, 2008.

[10] G. Stiny and J. Gips, “Shape Grammars and the Generative Specifica-
tion of Painting and Sculpture,” in Information Processing (IFIP71),
Ljubljana, Yugoslavia (C. V. Freiman, ed.), Amsterdam: North Holland,
1972 pp. 1460–1465.

[11] N. Chomsky, Syntactic Structures, The Hague: Mouton & Co., 1957.

From Meander Designs to a Routing Application 405

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

[12] W. J. Mitchell, The Logic of Architecture: Design, Computation, and
Cognition, Cambridge, MA: MIT Press, 1990.

[13] G. Stiny, “Weights,” Environment and Planning B: Planning and De-
sign, 19(4), 1992 pp. 413–430. doi:10.1068/b190413.

[14] G. Stiny, Shape: Talking about Seeing and Doing, Cambridge, MA: MIT
Press, 2006.

[15] M. Agarwal, J. Cagan, and G. Stiny, “A Micro Language: Generating
MEMS Resonators by Using a Coupled Form-Function Shape Gram-
mar,” Environment and Planning B: Planning and Design, 27(4), 1999
pp. 615–626. doi:10.1068/b2619.

[16] M. Agarwal and J. Cagan, “A Blend of Different Tastes: The Language
of Coffeemakers,” Environment and Planning B: Planning and Design,
25(2), 1998 pp. 205–226. doi:10.1068/b250205.

[17] K. Shea and J. Cagan, “The Design of Novel Roof Trusses with Shape
Annealing: Assessing the Ability of a Computational Method in Aiding
Structural Designers with Varying Design Intent,” Design Studies, 20(1),
1999 pp. 3–23. doi:10.1016/S0142-694X(98)00019-2.

[18] Y. Wang, “3D Architecture Form Synthesizer,” M.S. thesis, Department
of Architecture, Massachusetts Institute of Technology, Cambridge,
MA, 1999. http://dspace.mit.edu/handle/1721.1/51561.

[19] M. Tapia, “From Shape to Style. Shape Grammars: Issues in Representa-
tion and Computation,” Ph.D. thesis, Department of Computer Science,
University of Toronto, Toronto, Canada, 1996.

[20] M. Tapia, “A Visual Implementation of a Shape Grammar System,” En-
vironment and Planning B: Planning and Design, 26(1), 1999
pp. 59–73. doi:10.1068/b260059.

[21] P. Testa, U.-M. O’Reilly, M. Kangas, and A. Kilian, “MoSS: Morpho-
genetic Surface Structure: A Software Tool for Design Exploration,” in
Proceedings of Greenwich 2000 Digital Creativity Symposium, Green-
wich, England: University of Greenwich, 2000.
http://designexplorer.net/newscreens/moss/moss.pdf.

[22] M. McGill, “A Visual Approach for Exploring Computational Design,”
S.M. thesis, Department of Architecture, Massachusetts Institute of
Technology, Cambridge, MA, 2001.
http://dspace.mit.edu/handle/1721.1/68806.

[23] J. von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966.

[24] J. von Neumann, The Computer and the Brain, New Haven, CT: Yale
University Press, 1958.

[25] A. Ilachinski, Cellular Automata: A Discrete Universe, River Edge, NJ:
World Scientific, 2001.

[26] N. Wiener and A. Rosenblueth, “The Mathematical Formulation of the
Problem of Conduction of Impulses in a Network of Connected Ex-
citable Elements, Specifically in Cardiac Muscle,” Archivos del Instituto
Cardioligia de Mexico, 16(3), 1946 pp. 205–265.

[27] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[28] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of
Modern Physics, 55(3), 1983 pp. 601–644.
http://www.stephenwolfram.com/publications/articles/ca/83-statistical.

406 T. H. Speller, Jr.

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

[29] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation
of Computer Programs, 2nd ed., Cambridge, MA: MIT Press, 1996.

[30] Mathematica, Release Version 8.0, Champaign, IL: Wolfram Research,
Inc., 2011.

[31] N. Ganguly et al., A Survey on Cellular Automata, technical report
GSD+03, Centre for High Performance Computing, Dresden University
of Technology, Dresden, Germany, 2003.
http://www.cs.unibo.it/bison/publications/CAsurvey.pdf.

[32] P. Hajela and B. Kim, “GA Based Learning in Cellular Automata Mod-
els for Structural Analysis,” in Proceedings of the 3rd World Congress
on Structural and Multidisciplinary Optimization (WCSMO99), Buf-
falo, NY, 1999.

[33] P. Hajela and B. Kim, “On the Use of Energy Minimization for CA
Based Analysis in Elasticity,” Structural and Multidisciplinary Optimiza-
tion, 23(1), 2000 pp. 24–33. doi:10.1007/s00158-001-0162-2.

[34] J. R. Koza et al., Genetic Programming III: Darwinian Invention and
Problem Solving, San Francisco, CA: Morgan Kaufmann Publishers,
1999.

[35] E. F. Moore, “Machine Models of Self-Reproduction,” Proceedings of
the 14th Symposium in Applied Mathematics (R. E. Bellman, ed.), 14,
New York: American Mathematical Society, 1962 pp. 17–33.

[36] E. F. Moore, “Machine Models of Self-Reproduction,” Proceedings of
the Symposium on Mathematical Problems in the Biological Sciences,
New York: American Mathematical Society, 1961.

[37] J. Holland, “Genetic Algorithms and the Optimal Allocations of Trial,”
SIAM Journal of Computing, 2(2), 1973 pp. 88–105.

[38] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Reading, MA: Addison-Wesley, 1989.

[39] Underfloor Heating Systems. “Underfloor Heating Pipe Layout.”
(Apr!4, 2012) http://www.underfloorheatingsystems.co.uk/
underfloor-heating-design/pipe-layout.

[40] G. Schlosser and G. P. Wagner, eds., Modularity in Development and
Evolution, Chicago: University of Chicago Press, 2004.

[41] H. A. Simon, The Sciences of the Artificial, Cambridge, MA: MIT Press,
1996.

[42] T. H. Speller, Jr., “The Use of Shape Grammar-Cellular Automata for
Modeling Molecular Dynamics,” Journal of Computational and Theoret-
ical Nanoscience, 6(10), 2009 pp. 2179–2193(15).
doi:10.1166/jctn.2009.1271.

From Meander Designs to a Routing Application 407

Complex Systems, 20 © 2012 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.20.4.375

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages false

 /AutoFilterColorImages true

 /AutoFilterGrayImages true

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /LeaveColorUnchanged

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1.50000

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 300

 /ColorSettingsFile ()

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /Default

 /Description <<

 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>

 >>

 /DetectBlends true

 /DetectCurves 0

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1.50000

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 300

 /ImageMemory 1048576

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams false

 /MaxSubsetPct 100

 /MonoImageDepth -1

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1.50000

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 1200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 1

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /NoConversion

 /DestinationProfileName ()

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile ()

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

