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A deterministic network mobile automaton is proposed for the creation
of  planar  trivalent  networks  (trinets)  based  on  the  application  of  only
two  simple  rewrite  rules.  The  possible  Brownian  dynamics  of  the
control  point  are  enumerated  and  explored.  A  useful  behavioral
complexity indicator is introduced, called the revisit indicator, exposing
a variety of emergent features, involving periodic, nested, and random-
like  dynamics.  Regular  structures  obtained  include  one-dimensional
graphs,  oscillating  rings,  and  the  two-dimensional  hexagonal  grid.  In
two cases  only,  out  of  over a thousand that were inspected,  a remark-
ably  fair,  random-like  revisit  indicator  is  found,  with  trinets  that
exhibit  a  slow,  square-root  growth  rate.  Some  properties  of  these
surprising  computations  are  investigated.  Finally,  one  two-dimensional
case is found that seems to be unique in the way regularity and random-
ness are mixed.

1. Introduction

Stephen  Wolfram  [1]  supports  the  “digital  physics”  view,  according
to which the ultimate laws of physics  are of  a computational nature,
the  entire  history  of  our  universe  is  the  output  of  a  small,  possibly
deterministic  program,  and  all  simple  and  complex  natural  phenom-
ena correspond to emergent properties of this universal computation.
In particular, he suggests that physical space could be a giant trivalent
network  that  evolves  according  to  a  few  simple  rewrite  rules.  Triva-
lent  networks  (trinets)  are  finite,  undirected  graphs  where  each  node
has exactly degree 3, that is, three neighboring nodes. It is easy to real-
ize that trinets are sufficient for implementing graph structures of any
complexity:  given  a  graph  with  unrestricted  node  degrees,  the  basic
trick is to replace any node x  of degree n  by a cycle X  of n  nodes of
degree 3, each connected to a neighbor of x. In particular, let k be the
dimensionality  of a graph G whenever the number of nodes reachable
from  a  generic  node  of  G  in  at  most  r  steps  (edges)  grows  like  rk.
Examples of regular trinets of dimensionality 1, 2, and 3, and of pla-
nar trinets with fractal dimensions between 1 and 2 are shown in [1,
pp. 477 and 509].

In  general,  graph  rewriting  involves  nondeterminism,  in  the  selec-
tion  both  of  a  rule  and  of  a  place  to  apply  it.  Various  trinet  rewrite
rules,  and  policies  for  eliminating  nondeterminism,  are  discussed  in
[1].  One  solution  is  to  restrict  to  causal-invariant  rewrite  systems,
which generate a unique partial order of rewrite events, regardless of
the  order  in  which  rules  are  applied.  Another  solution  enriches  the
rewrite process by state information that records the “age” of nodes,
and  then  always  selects  the  rule  and  location  that  involves,  say,  the
youngest nodes. Causal invariance is a powerful and elegant concept,
but  the  search  for  systems  of  rules  that  guarantee  this  property  is
hard, unless quite restrictive sufficient conditions are adopted; and the
mechanism  of  time  stamps  appears  as  unnatural  as,  say,  the  syn-
chrony assumption for  the  updating of  an unbounded set  of  cells,  as
adopted  by  cellular  automata.  (See  [1]  for  a  detailed  description  of
these two approaches, which we have already assessed in [2].)
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In  general,  graph  rewriting  involves  nondeterminism,  in  the  selec-
tion  both  of  a  rule  and  of  a  place  to  apply  it.  Various  trinet  rewrite
rules,  and  policies  for  eliminating  nondeterminism,  are  discussed  in
[1].  One  solution  is  to  restrict  to  causal-invariant  rewrite  systems,
which generate a unique partial order of rewrite events, regardless of
the  order  in  which  rules  are  applied.  Another  solution  enriches  the
rewrite process by state information that records the “age” of nodes,
and  then  always  selects  the  rule  and  location  that  involves,  say,  the
youngest nodes. Causal invariance is a powerful and elegant concept,
but  the  search  for  systems  of  rules  that  guarantee  this  property  is
hard, unless quite restrictive sufficient conditions are adopted; and the
mechanism  of  time  stamps  appears  as  unnatural  as,  say,  the  syn-
chrony assumption for  the  updating of  an unbounded set  of  cells,  as
adopted  by  cellular  automata.  (See  [1]  for  a  detailed  description  of
these two approaches, which we have already assessed in [2].)

A  third  solution  for  reducing  nondeterminism  is  to  adopt  what
Wolfram calls network mobile automata: these consist of setting up a
single  active  node,  letting  rules  replace  clusters  of  nodes  around  it,
and moving control to an adjacent node. However, despite looking at
several  hundred  thousand  cases  involving  clusters  with  up  to  four
nodes and four dangling links, Wolfram reports that he has not been
able  to  find  automata  with  especially  complicated  behavior,  which
explains why this model is relegated to a small note on page 1040 in
[1].  In  conclusion,  none  of  the  experiments  on  network  evolution
described by Wolfram could fully replicate the success achieved by ele-
mentary  cellular  automata,  with  their  visually  appealing,  rich  variety
of emergent properties, and with their ability to create interacting par-
ticles, as observed in the well-known rule 110 computations. 

The  two related  objectives  of  this  paper  are  to:  (i)  further  explore
algorithms  for  the  evolution  of  trinets  and (ii)  visually  identify  effec-
tive  complexity  indicators  and  techniques  that  can  help  screen  large
spaces  of  trinet-based  computations.  In  pursuing  the  first  objective,
we  avoid  the  difficulties  related  with  causal  invariance,  and  refrain
from enriching the structure of trinets by state information. Rather, a
trinet  growth  algorithm is  devised  along the  lines  of  network mobile
automata.  Here  is  a  summary  of  the  major  differences  with  the
approach (cursorily) mentioned by Wolfram in [1].

1. We use  an  extremely  small  set  of  rewrite  rules,  consisting  of  only  two
elements.

2. We restrict the study to planar trinets.

3. We  adopt  a  refined  notion  of  control  point  called  the  focus  that  is
described later.

4. We  attribute  more  importance  to  the  dynamics  of  the  latter,  whose
steps are also dependent on the applied rewrite rule. 

Furthermore, the algorithm is designed around the manipulation of tri-
net  duals,  a  choice  that  has  to  some  extent  facilitated  the  identifica-
tion  and  exhaustive  exploration  of  policies  for  control  point
movement.
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Furthermore, the algorithm is designed around the manipulation of tri-
net  duals,  a  choice  that  has  to  some  extent  facilitated  the  identifica-
tion  and  exhaustive  exploration  of  policies  for  control  point
movement.

In Section 2 we introduce our planar trinet growth algorithm, with
its  two  rewrite  rules,  and  its  three  parameters,  one  of  which,  the
Threshold,  induces  a  convenient  classification  of  our  computational
space. In Section 3 we discuss a few ways in which the overall charac-
ter  of  a  trinet  computation  can  be  visualized,  and  introduce  a  useful
revisit indicator. Based on this technique, we exhaustively explore our
computational  classes  in  Sections  4  through  9,  which  correspond  to
increasing values of the threshold parameter, and describe the progres-
sive appearance of various emergent features. In Section 10 we summa-
rize our results and discuss items for future work.  A preliminary pre-
sentation of this work was provided in [3].

Similar to the space of (elementary) cellular automata, the space of
trinet computations, as created by our algorithm, offers such an abun-
dance of aspects to be investigated that a single paper cannot cover all
of them in depth. Thus, the purpose of this work is to provide a first
exploration of the whole computation space, identify all features that
may  possibly  emerge  in  it,  and  single  out  the  most  interesting  cases.
We  believe  that  these  results  shall  trigger  a  number  of  specific  ques-
tions that we look forward to investigating in forthcoming papers. 

2. The Algorithm

A trinet is an undirected graph where each node has degree 3. Trinets
may include loop edges and double edges,  and, if  v  is  the number of
vertices  (nodes)  and  e  is  the  number  of  edges,  then  3 v = 2 e.  The
proof is simple. By definition, each node is connected to three distinct
edges, or to a loop edge and a “normal” one. By charging three edges
to  each  node,  via  the  incidence  relation,  we  count  each  edge  exactly
twice, thus establishing the given equation. Note that a loop edge con-
tributes  two  units  to  a  node  degree.  Two  consequences  of  the  equa-
tion 3 v = 2 e are that v is a multiple of 2 and e is a multiple of 3.

A  graph  is  simple  when  it  does  not  include  loop  edges  or  double
edges. Our algorithm shall only handle trinets without loops, but possi-
 bly with double edges, called trinets with doubles (but we shall often
omit  the  attribute).  The  inclusion  of  loops  introduces  further  diffi-
culty,  but  appears  interesting,  and  is  left  for  future  investigation.  A
graph is  planar  when it  can be  embedded on the  surface  of  a  sphere
with  no  edge  crossings.  An  embedding  partitions  the  surface  of  the
sphere into regions,  and induces a dual  graph (also planar), in which
nodes correspond to regions and edges connect the nodes representing
adjacent regions. Note that there is an obvious one-to-one correspon-
dence between the edges of a planar graph and those of its dual.

If T  is a planar trinet with doubles, and D is its dual (see Figure 1,
where the two graphs have, respectively, black and white nodes), then:
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† regions  in  T  will  be  delimited  by  at  least  two  edges,  thus  nodes  in  D
have at least degree 2 (Figure 1(a)); 

† D may include both loops and doubles (Figures 1(c) and 1(d)); 

† all  the  regions  of  D  are  triangles,  formed  by  three  distinct  edges,  and
every  edge  is  shared  by  two  distinct  triangles  (recall  that  one  of  them
may be the external, “infinite” triangle).

The last  fact  is  established by realizing that the dual of D  is  T  itself,
so  that  nodes  of  T,  with  degree  3,  represent  faces  of  D,  with  three
sides;  and  the  two  triangles  sharing  an  edge  in  D  are  distinct  essen-
tially because there are no loop edges in T. 

Graph D may include degenerate triangles formed by three distinct
edges but less than three nodes. For example, in Figure 1(c), the loop
edge in the dual graph delimits a finite triangle with two nodes only,
while the infinite, external region of the dual graph of Figure 1(d) is a
triangle  with  just  one  node.  (The  inclusion  of  loop  edges  in  trinets
would  lead  to  degenerate  triangles  with  two  vertices  and  two  edges
only.) Note, finally, that a loop edge in D corresponds to an edge in T
whose removal disconnects the trinet (Figures 1(c) and 1(d)).

HaL

HbL

HcL

HdL

Figure 1. Four planar trinets (black nodes) and their duals (white nodes).

In  our  algorithm  we  shall  handle  planar  graphs~trinet  duals~
with  a  specific  embedding  on  the  sphere.  For  doing  this,  node  adja-
cency information is not enough: we need to keep the list of triangles
that form the embedding, as described next.
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2.1 Representation of Spherical (Planar) Graph Embedding

We take now a closer look at the representation and properties of the
spherical (planar) graph embeddings manipulated by the algorithm, as
a basis for describing the algorithm itself and proving its invariant.

2.1.1 Definitions: Oriented Edge, Oriented Triangle, Sphericity 

Conditions, and Spherical Set of Oriented Edge Triples

Let GHV, EL be a connected, undirected graph, where V  is the set of v
vertices  and  E  is  the  set  of  e  edges.  Let  exHp, qL  denote  an  oriented
edge,  where ex œ E is an edge incident to vertices p and q,  and Hp, qL
is  an  ordered  pair.  A  triple  of  oriented  edges  is  an  oriented  triangle
(shortly,  a triangle) when (i)  it  is  formed by three distinct edges; that
is,  ex ≠ ey ≠ ez ≠ ex,  and  (ii)  its  elements  can  be  arranged  as  in
HexHp, qL, eyHq, rL, ezHr, pLL thus creating a cycle of (at most) three dif-
ferent  nodes.  Which oriented edge appears  first  in the triple is  irrele-
vant.  Node  symbols  p,  q,  and  r  are  understood  as  formal  variables,
some of which could be assigned the same actual node identifier, thus
yielding  degenerate  triangles.  A set  of  t  oriented edge triples,  relative
to sets V and E, is called spherical when it satisfies these three spheric-
ity conditions.

1. Every triple is an oriented triangle.

2. Every  edge  is  shared  by  two  distinct  triangles,  with  associated  node
pairs appearing in opposite order; that is, exHp, qL and exHq, pL.

3. v - e + t = 2 (Euler’s formula).

Based on graph theoretic arguments, the following fact can be eas-
ily established.
Proposition 1. If GHV, EL  is a connected, undirected graph, for which a
spherical set of triples can be built,  then G  is  planar, and every node
has  at  least  degree  2.  The  triples  then  describe  the  counterclockwise
(by  arbitrary  convention)  traversal  of  the  border  of  the  triangular
regions of the spherical embedding of G.

In particular, the minimum degree 2 is a direct consequence of sphe-
ricity condition 1. And, based on conditions 1 and 2, it is readily estab-
lished that 3 t = 2 e, which, combined with Euler’s formula, yields

(1)
e = 3 v - 6
t = 2 v - 4.

(If condition 3 is replaced by the more general Euler|Poincaré formula
v - e + t = 2 - 2 g,  we  have  sufficient  conditions  for  embedding
graphs on two-manifolds of genus g.  For example, when v - e + t = 0
the  graph  can  be  embedded,  without  edge  crossings,  on  the  torus,
whose genus is 1.)
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2.2 Initial Configuration, Rewrite Rules, and Computation Step 

2.2.1 Initial Configuration

The most  elementary trinet  with doubles  is  the 2-node,  3-edge graph
shown in Figure 1(a);  thus,  all  our  computations shall  start  from the
corresponding triangular dual graph shown at its right, whose triangu-
lar, spherical embedding is

(2)
triangles = 8He1H1, 2L, e2H2, 3L, e3H3, 1LL,

He1H2, 1L, e3H1, 3L, e2H3, 2LL<.
One  can  indeed  check  that  the  given  data  structure  satisfies  the

three sphericity conditions. 

2.2.2 Rewrite Rules

The  two  rewrite  rules  used  by  our  algorithm  are  illustrated  in
Figure 2, where the transformation of dual graphs is emphasized.

Figure 2. Planar trinet rewrite rules: Refin (upper), Diags (lower).

In the context of our algorithm, these rules are called, respectively,
Refin  and Diags,  since the former refines a triangle by partitioning it
into  three  new triangles,  and  the  latter  flips  the  diagonal  of  a  rhom-
bus.  These  are  among  the  simplest  rules  considered  in  [1]  (p.  509),
where their completeness is  pointed out:  they are sufficient for trans-
forming any planar trinet into any other (with Refin used both ways). 
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Our implementation of these rules operates on sets of oriented trian-
gles.  The rule  Refin  removes  a  triangle  and creates  three new triples,
by introducing a new node HsL and three new edges He4, e5, e6L:

(3)

removed triangle : He1Hq, rL, e2Hr, pL, e3Hp, qLL
created triples : He1Hq, rL, e4Hr, sL, e6Hs, qLL,

He2Hr, pL, e5Hp, sL, e4Hs, rLL,
He3Hp, qL, e6Hq, sL, e5Hs, pLL.

The  rule  Diags  removes  two  triangles  sharing  an  edge  He3L,  and
introduces two new triples:

(4)

removed triangles : He1Hq, rL, e2Hr, pL, e3Hp, qLL,
He3Hq, pL, e4Hp, sL, e5Hs, qLL.

created triples : He5Hs, qL, e1Hq, rL, e3Hr, sLL,
He3Hs, rL, e2Hr, pL, e4Hp, sLL.

Again, p, q, r, and s are understood as formal variables, which may
refer to the same actual node.

2.2.3 Computation Step

The algorithm endlessly iterates an elementary computation step, start-
ing from the initial  condition described earlier.  The step is illustrated
in Figure 3 and accepts the tuple (trinetDual, focus, Threshold, Refin-
Code,  DiagsCode)  and  returns  the  tuple  (trinetDual£,  focus£,  Thresh-
old, RefinCode, DiagsCode), where:

† trinetDual is the current graph, the dual of a trinet, represented as a set
of triangles. 

† focus is an angle of a specified triangle in trinetDual, and represents the
current location for control.

† Threshold  is  a  constant  natural  number  in  the  interval  @3, ¶D.  The
choice between rules Refin  and Diags  depends on the degrees of nodes
p and q on the edge facing the focus: when the degree of p or q is lower
than the Threshold, then rule Refin is applied, which increments by one
the  degree  of  both  nodes;  otherwise  rule  Diags  is  applied,  which
decrements their degrees by one.

† RefinCode  and  DiagsCode  are  constant  parameters,  ranging,  respec-
tively, in intervals @1, 18D and @1, 9D; they are used for choosing focus£,
the  next  focus,  as  shown in  the  lower  part  of  Figure  3.  In  light  of  the
symmetry of the initial graph, we can optimize the parameter space by
dropping  half  of  the  18  potential  choices  of  the  new  focus,  after  rule
Diags  has  been  applied:  we  shall  therefore  consider  only  18 *9 = 162
pairs of values for these two parameters.

† trinetDual£  and  focus£  are  the  updated  values  of  these  variables,  used
for  iterating  the  computation  step.  Threshold,  RefinCode,  and  Diags-
Code are constants; thus, they are unchanged by the step.
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Figure 3. The step of the algorithm.

2.3 Algorithm Invariant

We  now  want  to  prove  that  the  rewrite  rules,  as  implemented,  pre-
serve  the  sphericity,  as  defined  previously,  of  the  data  structure  they
manipulate. For doing this we need to introduce a method for comput-
ing the degree of  a  node in a  triangular,  spherical  embedding.  If  n  is
the  number  of  occurrences  of  node  p  in  a  set  of  oriented  triangles,
then  degreeHpL = n ê2,  since  each  edge  occurs  twice  in  the  structure
(recall that a loop edge eHp, pL contributes two units to degreeHpL). As
an alternative,  we may traverse all  edges incident to p  while rotating
clockwise  around  p,  as  follows:  pick  from  the  set  of  triples  an  ori-
ented edge eHn1, pL in which p appears as the second node, and com-
pute what we call the cyclic star path:

(5)eHn1, pL, f Hp, n2L, f Hn2, pL, gHp, n3L, …, eHp, n1L
in  which  two  adjacent  elements  with  different  edge  identifiers,  for
example, eHn1, pL and f Hp, n2L, represent edges that share node p and
appear  in  (cyclic)  sequence  in  some triangle,  while  adjacent  elements
with  the  same  edge  identifier,  for  example,   repre-
sent two opposite traversals of the same edge, as found in two distinct
triangles. It is easy to check that  is half the length of the star
path around . 
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in  which  two  adjacent  elements  with  different  edge  identifiers,  for
example, eHn1, pL and f Hp, n2L, represent edges that share node p and
appear  in  (cyclic)  sequence  in  some triangle,  while  adjacent  elements
with  the  same  edge  identifier,  for  example,  f Hp, n2L, f Hn2, pL  repre-
sent two opposite traversals of the same edge, as found in two distinct
triangles. It is easy to check that degreeHpL is half the length of the star
path around p. 

As an example, consider the list of two oriented triangles represent-
ing the initial  configuration of equation (2).  The cyclic  star  path for,
say,  node  1  is:  e3H3, 1L, e1H1, 2L, e1H2, 1L, e3H1, 3L.  This  yields
degreeH1L = 2.  The  advantage  of  this  technique  is  that  it  allows us  to
possibly discover the degree of a node without scanning the whole list
of triangles. We are now ready to prove an important invariant of the
algorithm.
Proposition 2  (Algorithm  invariant).  When  applied  to  a  spherical  set  of
triangles,  and  when  Threshold ¥ 3,  the  step  of  our  algorithm  pro-
duces another spherical set of triangles.

Proof. We must prove that when a set of triples satisfies sphericity
conditions  1  through 3,  then  the  set  of  triples  obtained  from it  after
one  step  also  satisfies  the  conditions.  We  shall  refer  to  the  edge  and
node  identifiers  appearing  in  the  rule  implementations  described  in
equations (3) and (4). We distinguish two cases.

Case 1:  Rule  Refin  is  applied.  Each of  the  three  triples  created by
this rule is an oriented triangle by construction, so condition 1 is pre-
served.  Furthermore,  these  triangles:  (i)  reintroduce  the  instances
e1Hq, rL, e2Hr, pL, e3Hp, qL  that  were  removed,  so  that  each  of  these
“old” edges is shared precisely by a new and an old triangle, and (ii)
collectively  introduce  two  oriented  edge  occurrences,  with  opposite
node orderings, of each new edge He4, e5, e6L, so that each new edge
is  shared  by  two  of  the  new  triangles;  thus,  condition  2  is  also  pre-
served. Finally, v, e, t are incremented, respectively, by 1, 3, 2, so that
the  value  of  v - e + t  is  unaffected  and  condition  3  is  preserved.  The
effect of Refin on a triangle involving one, two, or three distinct verti-
ces is illustrated in Figure 4.

Figure 4. Applying the rule Refin to triangles with three vertices, two vertices,
or one vertex.
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Case 2: Rule Diags is applied. Consider the two removed triangles.
They share at  least  edge e3,  but  may share  more;  again,  symbols  e1,
e2, e4, and e5 are understood as formal variables, some of which may
assume  the  same  actual  value.  Thus,  we  distinguish  three  cases,
depending on the number of actual edges shared. In all these cases con-
dition 3 is trivially guaranteed, since the counts of vertices, edges, and
triples is left unchanged.

Case 2.1:  The two removed triangles share one edge.  Since e1,  e2,
e4, and e5 are all different, each of the two created triples is a triangle
by construction; hence, condition 1 is guaranteed. Condition 2 is guar-
anteed by the fact that oriented edge occurrences for e1, e2, e4, e5 are
only  moved  around  by  the  rule,  while  occurrences  e3Hp, qL  and
e3Hq, pL  are  replaced  by  occurrences  e3Hr, sL  and  e3Hs, rL  that  still
appear in different triangles.

Case  2.2:  The  two  removed  triangles  share  two  edges.  We  distin-
guish two subcases. 

Case  2.2.1:  The  two  shared  edges  (one  is  e3)  appear  in  the  same
order in the two removed triangles.  Let us then assume, without loss
of generality, that e1 = e4 (the case e2 = e5 is symmetric), so that the
two removed triangles can be written: 

(6)
He1Hq, rL, e2Hr, pL, e3Hp, qLL
He3Hq, pL, e1Hr, qL, e5Hq, qLL,

where the second triple is obtained by reversing the order of nodes for
e1 and e3, and by letting the nodes for e5 complete the triangulation.
But  for  the  second  triple  to  be  a  correct  triangle,  it  must  also  have
p = r, so that the triangles can be rewritten as:

(7)
He1Hq, pL, e2Hp, pL, e3Hp, qLL
He3Hq, pL, e1Hp, qL, e5Hq, qLL.

These triangles are depicted in Figure 5(a). By applying the rule Diags
to these two oriented triangles, we obtain the two triples: 

(8)
He5Hq, qL, e1Hq, pL, e3Hp, qLL
He3Hq, pL, e2Hp, pL, e1Hp, qLL.

We have obtained two oriented triangles (condition 1), and it is trivial
to verify that, after the replacement, condition 2 holds. 

Case  2.2.2:  The  two  shared  edges  (one  is  e3)  appear  in  opposite
order in the two removed triangles.  Let us then assume, without loss
of generality, that e1 = e5 (the case e2 = e4 is symmetric). The two tri-
angles to be removed are: 

(9)
He1Hq, rL, e2Hr, pL, e3Hp, qLL
He3Hq, pL, e4Hp, rL, e1Hr, qLL,

where the second triple is obtained by reversing the order of nodes for
e1 and e3, and by letting the nodes for e4 complete the triangulation.
Consider node q, which is shared by the two edges e1 and e3, in turn
shared  by  the  two  triangles:  its  cyclic  star  path  is  He3Hp, qL,
e1Hq, rL, e1Hr, qL, e3Hq, pLL and its length is 4, thus degreeHqL = 2. This
is in conflict with the assumption Threshold ¥ 3: the rule Diags could
not  be  applied  to  edge  e3  since  one  of  its  nodes  has  a  lower  degree
than the threshold. The two triangles are depicted in Figure 5(b). 
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Figure 5. Pairs of triangles for (a) case 2.2.1 and (b) case 2.2.2.

Case  2.3:  The  two  removed  triangles  share  three  edges.  The  first
removed  triangle  is  He1Hq, rL, e2Hr, pL, e3Hp, qLL,  thus  the  second
removed  triangle  must  be  composed  of  the  three  oriented  edges
e1Hr, qL,  e2Hp, rL,  and  e3Hq, pL;  thus,  it  can  only  be
He1Hr, qL, e3Hq, pL, e2Hp, rLL.  In  this  case,  the  star  path  of  any  of  the
nodes has length 4;  hence,  all  nodes have degree 2.  This  is,  again, in
conflict with the assumption Threshold ¥ 3. ‡

We verified earlier that the set of triples in the initial configuration
is  spherical.  In  light  of  the  given invariant,  we now conclude,  induc-
tively, that all sets of triples produced by the algorithm are spherical;
that  is,  they  represent  spherical  embeddings  of  planar,  triangular
graphs.

2.4 Computation Classes

We let c@T, 8RC, DC<, LD denote the HL - 1L-step computation of our
algorithm,  starting  from  the  initial  condition  of  equation  (2),  with
Threshold = T,  RefinCode = RC,  and  DiagsCode = DC.  (A  pedantic
but  necessary  clarification:  usually  a  step  is  understood  as  a  pair  of
consecutive states; hence, a 1-step computation is two states long: the
“L”  in  c@T, 8RC, DC<, LD  refers  to  the  Length  of  the  computation,
intended as the number of states it includes.) We shall also use a conve-
nient notation for representing subsets of the computation space. For
example,  C@Threshold = 3D  denotes  the  set  8c@3, 8RC, DC<, SD »
RC œ @1, 18D, DC œ @1, 9D, S ¥ 1<,  that is,  the family of  all  computa-
tions  with  Threshold = 3,  of  any  length.  Since  we  impose
Threshold ¥ 3,  the  first  computation  step  inevitably  applies  the  rule
Refin and produces the tetrahedron graph shown in Figure 1(b). Then
computations  start  to  differentiate  depending  on  the  parameter  set-
tings. 
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Threshold ¥ 3,  the  first  computation  step  inevitably  applies  the  rule
Refin and produces the tetrahedron graph shown in Figure 1(b). Then
computations  start  to  differentiate  depending  on  the  parameter  set-
tings. 

3. Visual Indicators for Planar Trinet Computations

A  computation  can  be  defined  as  a  sequence  of  states.  The  state  of
our  algorithm  is  essentially  formed  by  the  pair  of  variables
HtrinetDual, focusL  that  represent  a  planar  graph  and  the  location  of
control in it. We are interested in the emergent properties of planar tri-
nets,  with  the  idea  that  they  might  eventually  capture  properties  of
physical  space.  However,  it  may  be  hard  to  visually  detect  emergent
properties  when directly  using graphs for the following reasons:  (i)  a
trinet  or  trinet  dual  may  soon  become  a  complex  structure,  and  a
sequence of thousands of them can hardly be inspected at a glance, as
opposed to what happens, for example, with the computations of ele-
mentary  cellular  automata;  (ii)  there  exist  many  alternative  methods
to draw graphs on the plane, such as using a predefined arrangement
of  the  nodes  (e.g.,  circular)  or  applying  attractive  or  repulsive  forces
to  nodes,  and  the  emergence  and  detectability  of  patterns  is  largely
dependent on the method.

One can of course look just at the final graph, either in dual or in
primal form, as we do later. However, emergent properties are better
detected when looking at the whole computation. Thus, in our investi-
gation we are interested in the fluctuations of the other state variable:
the focus. This variable captures only a tiny fraction of state informa-
tion, but this is indeed an advantage, since we can easily plot a whole
computation  as  a  compact,  readily  inspected  diagram.  We  have
defined the  focus  as  the  angle  8e1, e2<  between two edges  of  triangle
8e1, e2, e3<.  For  further  simplification,  we  simply  monitor  the  edge
opposite to this angle, namely, e3. Note that this is the edge whose ver-
tices p and q are tested at every step: we call it the current edge. Look-
ing at e3 rather than at the pair 8e1, e2< introduces further ambiguity,
or  abstraction,  since  e3  identifies  two  possible  foci.  And  yet,  the
sequence of current edge identifiers turns out to be a useful indicator.
New edges are created in the trinet dual, three at a time, only by the
Refin rule, and are assigned progressive natural numbers; plotting the
sequence of current edge numbers reveals the extent to which the con-
trol  point  can revisit  and update  old parts  of  the graph and whether
some regions are definitively abandoned. For this reason we call these
numeric sequences, and their plots, revisit indicators.

For  illustrating  the  idea,  and  for  comparison  with  some  of  the
revisit  indicators  discussed  later,  consider  the  two  plots  in  Figure  6.
These depict the revisit indicators for two extremely simple and regu-
lar graph growth patterns; the relevant revisited elements are now the
nodes,  which  are  numbered  sequentially  as  they  are  created.  In  the
first case the algorithm maintains a linear topology, and creates a new
node  only  after  having  sequentially  scanned  the  current  list
81, 2, …, n<  of  nodes,  in  both  directions,  up  and  down.  The  second
case is similar, except that nodes are arranged in a growing circle, and
a new node is added after a circular, single-scan visit of the graph. 
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Figure 6. Revisit indicators for graphs with (a) linear and (b) circular topology.

An easy calculation shows that the node-growth functions, also plot- 

ted  in  the  diagrams,  are  n = s  for  the  linear  graph,  and  n = 2 s

for the circular graph. More generally, a growth rate n = 2 s êk  cor-
responds  to  a  “grow-and-revisit”  algorithm  that,  in  the  interval
between the creation of nodes n - 1 and n, takes k * n revisit steps.

A rather obvious visual complexity indicator, even simpler than the
revisit indicator, consists of plotting the number of nodes in the trinet
dual  as  a  function of  the algorithm steps.  We call  this  the  dual  node
count  indicator,  with  the  attribute  “dual”  often  omitted.  Recall  that
these nodes represent trinet faces. This indicator is a monotonic, non-
decreasing  function,  since  the  rule  Refin  adds  one  node  to  the  trinet
dual  (two nodes  to  the original  trinet),  and the rule  Diags  leaves  the
node count unaffected. In Sections 4 through 9 we mainly refer to the
revisit  indicator,  since it  confirms but also refines in interesting ways
the classification induced by pure node counting. 

4. Threshold 3: One-Dimensional Trinets, Simple Oscillators,
and Trees

Figure  7  shows  the  revisit  indicator  for  all  the  computations  of
Length = 500,  with  Threshold = 3~a  set  of  18 * 9 = 162  elements
that  we  denote  C@Threshold = 3, Length = 500D.  Figure  8  shows  the
corresponding final trinets. The numbers appearing at the left of each
small diagram represent the highest current edge identifier used in the
computation:  this  number  cannot  exceed  3 * Length,  since  the  initial
trinet dual has three edges, and each step can at most contribute three
new edges. 

Planar Trinet Dynamics with Two Rewrite Rules 13

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.
 

https://doi.org/10.25088/ComplexSystems.18.1.1



Figure  7  shows  the  revisit  indicator  for  all  the  computations  of
Length = 500,  with  Threshold = 3~a  set  of  18 * 9 = 162  elements
that  we  denote  C@Threshold = 3, Length = 500D.  Figure  8  shows  the
corresponding final trinets. The numbers appearing at the left of each
small diagram represent the highest current edge identifier used in the
computation:  this  number  cannot  exceed  3 * Length,  since  the  initial
trinet dual has three edges, and each step can at most contribute three
new edges. 

5
81, 1<

752
81, 2<

752
81, 3<

752
81, 4<

752
81, 5<

6
81, 6<

752
81, 7<

5
81, 8<

752
81, 9<

4
82, 1<

751
82, 2<

7
82, 3<

751
82, 4<

421
82, 5<

5
82, 6<

7
82, 7<

6
82, 8<

751
82, 9<

2
83, 1<

66
83, 2<

8
83, 3<

15
83, 4<

501
83, 5<

6
83, 6<

7
83, 7<

6
83, 8<

242
83, 9<

6
84, 1<

753
84, 2<

753
84, 3<

753
84, 4<

753
84, 5<

6
84, 6<

753
84, 7<

6
84, 8<

753
84, 9<

5
85, 1<

15
85, 2<

8
85, 3<

68
85, 4<

380
85, 5<

6
85, 6<

8
85, 7<

5
85, 8<

197
85, 9<

3
86, 1<

373
86, 2<

750
86, 3<

102
86, 4<

750
86, 5<

5
86, 6<

750
86, 7<

6
86, 8<

321
86, 9<

4
87, 1<

751
87, 2<

751
87, 3<

751
87, 4<

751
87, 5<

5
87, 6<

751
87, 7<

6
87, 8<

751
87, 9<

6
88, 1<

69
88, 2<

753
88, 3<

15
88, 4<

753
88, 5<

6
88, 6<

753
88, 7<

6
88, 8<

315
88, 9<

1
89, 1<

745
89, 2<

7
89, 3<

748
89, 4<

599
89, 5<

6
89, 6<

2
89, 7<

5
89, 8<

748
89, 9<

2
810, 1<

748
810, 2<

7
810, 3<

748
810, 4<

390
810, 5<

6
810, 6<

7
810, 7<

6
810, 8<

748
810, 9<

1
811, 1<

15
811, 2<

5
811, 3<

62
811, 4<

267
811, 5<

6
811, 6<

12
811, 7<

5
811, 8<

174
811, 9<

3
812, 1<

65
812, 2<

7
812, 3<

29
812, 4<

504
812, 5<

5
812, 6<

7
812, 7<

6
812, 8<

255
812, 9<

3
813, 1<

74
813, 2<

5
813, 3<

66
813, 4<

360
813, 5<

5
813, 6<

8
813, 7<

6
813, 8<

204
813, 9<

2
814, 1<

107
814, 2<

6
814, 3<

98
814, 4<

502
814, 5<

6
814, 6<

5
814, 7<

6
814, 8<

181
814, 9<

1
815, 1<

381
815, 2<

747
815, 3<

381
815, 4<

750
815, 5<

6
815, 6<

750
815, 7<

5
815, 8<

330
815, 9<

1
816, 1<

15
816, 2<

747
816, 3<

62
816, 4<

750
816, 5<

6
816, 6<

750
816, 7<

5
816, 8<

264
816, 9<

3
817, 1<

65
817, 2<

5
817, 3<

29
817, 4<

378
817, 5<

5
817, 6<

8
817, 7<

6
817, 8<

209
817, 9<

2
818, 1<

748
818, 2<

6
818, 3<

748
818, 4<

502
818, 5<

6
818, 6<

5
818, 7<

6
818, 8<

748
818, 9<

Figure 7. Revisit indicators for all threshold-3, length-500 computations.
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4.1 Constant Revisit Indicator: Periodic Trinet Sequences

The  simplest  type  of  computation  corresponds  to  a  constant  revisit
indicator.  An example  is  the computation c@3, 81, 1<, _D  (of  unspeci-
fied length), in which, after one step, edge 5 becomes the current edge
forever,  and Diags  is  the only rule applied. In this case, the sequence
of  trinets  has  period  2  and  oscillates  between  the  tetrahedron  and  a
square-like graph with two double edges; the tetrahedron happens to
be the final trinet of the length-500 computation, as shown in the cor-
responding  entry  of  Figure  8.  Many  similar  cases  of  constant  plots,
involving a finite number of distinct current edge identifiers, occur in
this  computation  class,  as  well  as  in  subsequent  ones;  they  all  corre-
spond  to  periodic  sequences  of  bounded-size  trinets  and  to  graphs
with very few nodes and edges in Figure 8. For example, in the compu-
tation c@3, 82, 3<, _D, the current edge oscillates between 7 and 4, and
the  sequence  of  trinets  has  period  10  (or  period  5,  if  node  identities
are  ignored).  Note  that  in  this  class  the  node  count  indicator  must
also be a constant function.

4.2 Linear Revisit Indicator: Regular, One-Dimensional, Growing 
Trinets

The  next  simple  case,  quite  common too,  is  that  of  revisit  indicators
with linear growth. An example is the computation c@3, 81, 2<, _D, in
which the sequence of current edge identifiers gives a regular numeric
sequence where every third natural number is skipped. The correspond- 
ing  graph is  the  simplest  one-dimensional,  ladder-shaped trinet.  Four
consecutive  trinets  from  this  computation  are  shown  in  Figure  9.
Node  numbers  are  shown  to  help  in  understanding  the  growth
mechanism.

Other simple one-dimensional patterns are observed.  For example,
the computations c@3, 812, 5<, 60D and c@3, 813, 5<, 130D yield the tri-
nets  shown  in  Figure  10,  which  grow  linearly  and  regularly:  the
details of these structures are lost in the linear thumbnail diagrams of
Figure 8.

In  all  linear  cases  shown  so  far,  the  growth  takes  place  at  one
extreme  of  the  graph.  A  slightly  different  growth  pattern  is  achieved
by  the  computation  c@3, 85, 9<, _D,  whose  revisit  indicator  is  illus-
trated in  more  detail,  with  the corresponding one-dimensional  trinet,
in Figure 11. In this case the growth takes place in the central part of
the trinet.

The second one-dimensional pattern found in this family of compu-
tations is the circle: four examples are shown in Figure 12. In the last
case, the circle is formed after a relatively large initial transient phase;
the portion of the trinet created in this phase is then permanently aban-
doned, and growth takes place at the extreme of the circle opposite to
it, as suggested by the picture.
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Figure 9. Four consecutive trinets from the computation c@3, 81, 2<, _D.
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Figure  10.  One-dimensional  final  trinets  of  c@3, 812, 5<, 60D  and  c@3,
813, 5<, 130D.

50 100 150 200

20

40

60

80

83, 85, 9<, 200<

83, 85, 9<, 200<

HaL HbL
Figure  11.  (a)  Revisit  indicator  and  (b)  final  one-dimensional  trinet  growing
from its center.
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Figure  12.  (a)  Revisit  indicator  and  (b)  final,  circular  one-dimensional  trinet
for four computations.

The  simple  linear  and  circular  one-dimensional  structures  appear
combined in c@3, 813, 9<, _D (Figure 13); in this case the active region
is at their junction, and they grow at the same speed, providing a sta-
ble overall shape. 

All the revisit diagrams of this group eventually exhibit the same lin- 
ear  growth;  the  node  count  grows  linearly  with  the  computation
steps,  all  parts  of  the  growing  trinet  are  eventually  abandoned,
except, possibly, for a finite part, and the trinet is one-dimensional.

18 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.
 
https://doi.org/10.25088/ComplexSystems.18.1.1



50 100 150 200 250 300

20

40

60

80

100

120

83, 813, 9<, 300<

83, 813, 9<, 300<

HaL HbL
Figure  13.  (a)  Revisit  indicator  and  (b)  final  one-dimensional  trinet  for  c@3,
813, 9<, 300D.

4.3 Nested Revisit Indicator: Oscillating, Segment-Circle, and Circle-
Circle One-Dimensional Trinets

Twelve examples of nested revisit indicators are found in Figure 7: six
are  in  column  two  and  have  (RefinCode,  DiagsCode)  pairs  (3,  2),
(8,  2),  (12,  2),  (13,  2),  (14,  2),  (17,  2),  and  six  are  in  column  four
with codes (5, 4), (6, 4), (11, 4), (13, 4), (14, 4), (16, 4). The final tri-
nets in Figure 8 fail to reveal the substantial difference between these
computations and those in the previous group,  but the revisit  indica-
tors  are  more informative.  In  particular,  these diagrams indicate that
the trinet growth process sweeps an increasingly larger portion of the
net,  by  actually  sampling  all  parts  of  it,  except  for  case  (3,  2),  in
which  a  slowly  growing  region  is  permanently  abandoned.  Two  dis-
tinct  types  of  dynamics  emerge  from these  12  computations  that  are
described next. 

Segment-circle. The first growth pattern is exhibited by five compu-
tations,  with  codes  (12,  2),  (13,  2),  (17,  2),  (13,  4),  (14,  4).  We call
this pattern “segment-circle” because the trinet is formed by connect-
ing a linear segment and a circle; this is similar to the trinet shown in
Figure 13, except that both parts now grow and shrink, with opposite
phase, so that the trinet oscillates smoothly between a purely circular
and a  purely  linear  form.  Activity  always  takes  place  at  the  junction
between  the  two  structures.  As  observed  in  the  previous  cases,  the
microstructure  of  the  segment  and the  circle  is  based on a  variety  of
different, simple building blocks. As an example, Figure 14 illustrates
computation c@3, 814, 4<, 2300D. 

Note the similarity between the revisit diagram of Figure 14 and Fig-
ure 6(a). For a better illustration of the dynamics of these trinets, a sub-
sequence  of  several  steps  from  the  computation  c@3, H13, 2L, _D  is
shown in Figure 15. 
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Figure 14. Nested computation c@3, 814, 4<, 2300D.

Figure  15.  Steps  of  the  computation  c@3, 813, 2<, _D,  showing  circular  and
linear components that grow and shrink.

Circle-circle. The second growth pattern is exhibited by seven com-
putations,  with  codes  (3,  2),  (8,  2),  (14,  2),  (5,  4),  (6,  4),  (11,  4),
(16, 4). We call the pattern “circle-circle” because the trinet is formed
by connecting two circles, that grow and shrink with opposite phase.
Again, the growth always takes place at the junction between the two
structures,  and  various  types  of  simple  building  blocks  are  observed.
Several  steps  of  the  computation  c@3, H6, 4L, _D  are  shown  in
Figure 16, where the microstructure is the same as in Figure 15.
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Figure 16.  A few steps of  the computation c@3, 86, 4<, _D  showing a growing
and a shrinking circle.

The  12  computations  with  nested  revisit  indicators  discussed  are
also  directly  identified  by  inspecting  their  node  count  indicators:  out
of the 162 threshold-3 elements they are precisely those that exhibit a
regular staircase shape with a sublinear growth. A closer investigation
of these data has revealed the following facts.

The  eight  computations  with  RefinCode,  DiagsCode  pairs  (3,  2),
(8, 2), (12, 2), (17, 2), (5, 4), (11, 4), (13, 4), (16, 4) exhibit identical
node  growth  functions,  although  they  yield  trinets  of  different  types:
codes (3, 2), (8, 2), (5, 4), (11, 4), (16, 4) yield the same circle-circle tri- 
net, and codes (12, 2), (17, 2), (13, 4) yield the same segment-circle tri-
net.  Their  node  growth  function  is  matched  with  excellent  precision
by the function f HxL = 3 + x , as shown in Figure 17. Recall that the
initial trinet dual indeed has three nodes.

200 400 600 800 1000
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35
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Figure  17.  Node  growth  for  eight  threshold-3  nested  computations  and  the
function 3 + x .

Of  the  four  remaining  nested  cases,  those  with  code  pairs  (13,  2)
and (14, 4) are of the segment-circle type, while (14, 2) and (6, 4) are
of the circle-circle type.  All  four node growth functions are different,
but they all approximate quite closely the OIn1ë2M growth of the previ-
ous  group.  Indeed,  by  using  the  Mathematica  function FindFit  over
computations of length 10 000, and by using the parametric function
f HxL = a + b * xc,  in all  four cases  a c  exponent in the close proximity
of 1/2 was found.
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Of  the  four  remaining  nested  cases,  those  with  code  pairs  (13,  2)
and (14, 4) are of the segment-circle type, while (14, 2) and (6, 4) are
of the circle-circle type.  All  four node growth functions are different,
but they all approximate quite closely the OIn1ë2M growth of the previ-
ous  group.  Indeed,  by  using  the  Mathematica  function FindFit  over
computations of length 10 000, and by using the parametric function
f HxL = a + b * xc,  in all  four cases  a c  exponent in the close proximity
of 1/2 was found.

4.4 Radial Revisit Indicator: Tree-Like Irregular Trinets 

Two computations in class C@Threshold = 3D exhibit revisit indicators
that  are  slightly  perturbed  versions  of  a  very  regular  pattern  consist-
ing  of  potentially  infinite  straight  lines  (“rays”)  emanating  from  the
origin: these have code pairs (2, 5) and (11, 5). Their corresponding tri- 
nets  are  tree-like  irregular  graphs,  and  the  active  point  on  them also
moves quite irregularly, visiting every part infinitely often. The revisit
indicator  and  final  trinet  for  computation  c@3, H2, 5L, 2000D  are
shown in Figure 18. We had found a cleaner (i.e., not perturbed) ver-
sion of  this  radial  revisit  indicator by using another trinet  algorithm,
as  described  in  [2],  and  find  it  later  in  this  paper  with  the  present
algorithm.
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1000

1500

83, 82, 5<, 2000<
83, 82, 5<, 2000<

Figure  18.  An  infinite  rays  revisit  indicator  and  the  corresponding  tree-like
trinet.

These  two cases  also  illustrate  the  usefulness  of  our  revisit  indica-
tor:  the  pure  node  count  indicator  for  them  is  basically  linear,  and
would not be as effective as the infinite-radii pattern in discriminating
them from the many other computations with a linear node count.

4.5 Revisit Indicators with Long Random Transients: Complex 
Trinets with Highways

By  inspecting  Figure  7,  six  computations  in  class  C@Threshold = 3D
exhibit  a  high  degree  of  apparent  randomness  in  their  revisit  indica-
tor.  They  are  all  in  column  nine,  and  have  code  pairs  (3,  9),  (8,  9),
(11, 9), (14, 9), (16, 9), (17, 9). In fact, by looking at longer computa-
tions,  all  of  them  eventually  stabilize  to  a  regular  growth  pattern,
called  a  “highway”  in  analogy  with  the  phenomenon  observed  in
some  two-dimensional  Turing  machines.  (The  node  count  indicators
in all these cases appear as roughly linear, even in the transient phase
preceding the highway.)
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By  inspecting  Figure  7,  six  computations  in  class  C@Threshold = 3D
exhibit  a  high  degree  of  apparent  randomness  in  their  revisit  indica-

(11, 9), (14, 9), (16, 9), (17, 9). In fact, by looking at longer computa-
tions,  all  of  them  eventually  stabilize  to  a  regular  growth  pattern,
called  a  “highway”  in  analogy  with  the  phenomenon  observed  in
some  two-dimensional  Turing  machines.  (The  node  count  indicators
in all these cases appear as roughly linear, even in the transient phase
preceding the highway.)

For example, Figure 19 shows the periodic revisit indicator and peri- 
odic trinet for the computation c@3, 83, 9<, 2000D.
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Figure 19. A periodic computation with short transient and long period.

As  another  example,  Figure  20  illustrates  the  computation
c@3, 811, 9<, 12 000D. More than 8000 steps are necessary for stabiliz-
ing the growth, which settles into what we have called a segment-cir-
cle  pattern,  with  the  active  part  at  the  junction  of  the  two  compo-
nents.  In  fact,  in  spite  of  the  possibly  very  long  initial  transient  and
period,  these  computations  are  not  qualitatively  different  from those
with linear revisit indicators discussed at the beginning of this section. 

2000 4000 6000 8000 10000 12000
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83, 811, 9<, 12000<

83, 811, 9<, 12000<

Figure  20.  A  computation  yielding  a  trinet  which  eventually  settles  to  a
segment-circle pattern with linear growth.

Finally,  we investigated the computation c@3, 814, 9<, _D.  Running
it  for  160 000 steps  allowed  us  to  detect  the  periodicity  of  its  revisit
indicator, with a period of over 11 000 steps.
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5. Threshold 4: Nested Trinets and Uniform Randomness

Similar to Section 4, Figure 21 shows the revisit indicator for all 162
computations in class C@Threshold = 4, Length = 500D, and Figure 22
shows the corresponding final trinets.
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Figure 21. Revisit indicators for all threshold-4, length-500 computations.
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Figure 22. Final trinets for all threshold-4, length-500 computations.

By inspecting the two figures, it is immediately clear that the large
majority of these computations exhibit emergent features that are qual-
itatively the same as those observed in the previous class. After a brief
overview of these cases,  we can move on to the novel,  most  interest-
ing ones.
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By inspecting the two figures, it is immediately clear that the large
majority of these computations exhibit emergent features that are qual-
itatively the same as those observed in the previous class. After a brief
overview of these cases,  we can move on to the novel,  most  interest-
ing ones.

We still have periodic sequences of bounded trinets, and one-dimen-
sional trinets that grow linearly and without bound, as segments or cir- 
cles.  Interestingly,  among the  latter,  the  computation c@4, 817, 5<, _D
provides  a  trinet  whose  uniformly  growing  structure  appears  similar
to a circle with its diameter, so that its macrostructure reproduces the
initial trinet: a two-node graph with three double edges. We also find
two computations,  namely  c@4, 816, 2<, _D  and c@4, 817, 2<, _D,  with
nested revisit indicators and corresponding trinets that oscillate while
growing,  according  to  the  already  observed  circle-circle  pattern.  As
observed with Threshold = 3, we find one computation with a noisy,
radial revisit indicator, namely c@4, 811, 5<, _D, which yields an irregu-
lar  tree-like  trinet,  similar  to  that  obtained  with  the  computation
c@3, 811, 5<, _D.  Finally,  the  computations  c@4, 811, 9<, 500D,
c@4, 813, 5<, 500D, and c@4, 817, 9<, 500D, whose revisit indicators do
not manifest any regularity in 500 steps, all eventually settle to a one-
dimensional, periodic, unbounded trinet. We are left with three novel
and quite interesting cases that are discussed next.

5.1 c@4, 816, 4, _D: Nested Binary Tree Trinet with a Circular 
Boundary

This computation exhibits a cleaner version of the radial revisit indica-
tor,  and the  trinet  now has a  regular  and nested structure,  as  shown
in Figure 23. It is formed by a binary tree with a trivalent root, with
the  addition  of  edges  interconnecting  adjacent  leaves  in  a  circle.  The
same trinet was also obtained by the algorithm introduced in [2].

50 100 150 200

10

20

30

40

50

60

70
84, 816, 4<, 199<

84, 816, 4<, 199<

Figure 23. Revisit indicator and final trinet of the computation c@4, {16, 4}, 199D.
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5.2 c@4, 83, 2<, _D: Nested Binary Tree with an Oscillating, Circle-
Circle Pattern

The thumbnail for the trinet of this computation, shown in Figure 22,
misleadingly  suggests  a  similarity  with  the  previous  computation
c@4, 816, 4<, _D.  However,  the  nested  revisit  indicator  (Figure  21)
reveals  rather  different  dynamics.  In  fact,  the  trinet  oscillates  while
growing  and resembles  the  already  discussed circle-circle  pattern (see
Figure 16), except that now a nested structure is involved, rather than
a simple circle.

5.3 c@4, 817, 8<, _D: Randomized Square Root Growth

This  computation  is  perhaps  the  most  surprising  we  have  found;  the
only  similar  case  is  c@5, 89, 8<, _D,  to  be  discussed  later.  Figure  24
shows  the  revisit  indicator,  the  final  trinet,  and  the  node  count  as  a
function of the algorithm steps for c@4, 817, 8<, 6000D. Recall that we
count  the  number  of  nodes  in  the  trinet  dual,  corresponding  to  the
number  of  faces  in  the  original  trinet.  This  function  is  then  matched

against the function f HstepsL = 3 + 2 * steps , which also exactly char-
acterizes  the  regular,  circular  grow-and-revisit  algorithm  introduced
in  Section  3.  Statistically,  the  growth  process  is  such  that,  between
two new trinet  face  creations,  a  number of  revisits  is  performed that
equals the current number of faces. Figure 25 shows similar data for a
computation of length 100 000.

The  ability  of  this  computation  to  revisit  its  past  uniformly,
densely,  and  indefinitely,  while  exhibiting  random-like  dynamics,  is
indeed quite remarkable.
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Figure  24.  (a)  Revisit  indicator,  (b)  final  trinet,  and  (c)  node  growth  for
c@4, 817, 8<, 6000D.
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Figure  25.  (a)  Revisit  indicator,  (b)  final  trinet,  and  (c)  node  growth  for
c@4, 817, 8<, 100 000D.
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6. Threshold 5: Second Case of Uniform Randomness

Most of what emerges in this class has been observed before. For any
value of RefinCode  in the range @1, 8D, and for values 12 and 14, the
computation is independent from the value of DiagsCode and yields a
linear  or  circular,  one-dimensional  trinet.  All  other  cases  are  illus-
trated in Figures 26 and 27.
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Figure 26. Revisit indicators for all threshold-5, length-500 computations.
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Figure 27. Final trinets for all threshold-5, length-500 computations.

RefinCodes  11  and  15,  again  regardless  of  the  DiagsCode,  yield
plain,  linear  revisit  indicators,  but  the  corresponding  trinets  are  now
nested, a combination that was not observed in previous classes. The
same trinet structure can therefore be obtained by different revisit poli-
cies,  and,  correspondingly,  in  a  different  number  of  steps.  Figure  28
shows  three  different  computations  with  different  revisit  indicators
that  produce  the  same  trinet  in,  respectively,  22,  22,  and  85  steps.
Nodes  have  been  labeled  to  show  the  different  orders  in  which  the
graphs were created. 
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Figure 28. Three computations that yield the same trinet.

No  nested  revisit  indicator  of  the  types  seen  before  (e.g.,  that  of
computation  c@3, 83, 2<, _D  or  c@3, 85, 4<, _D)  is  found  in  this  class.
But  we  do  find  an  unperturbed  radial  revisit  indicator  for
c@5, 816, 4<, _D which corresponds to a nested trinet.

A  peculiar  tree-like  trinet  is  obtained  for  c@5, 817, 2<, _D;  the
revisit  indicator  and  the  trinet  are  shown  in  Figure  29.  (In  this  case
the  sublinear,  node  growth  function  for  the  dual  graph  is  approxi-
mated by f HstepsL = 5.31 + 1.57 * steps0.65.)
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Figure 29. (a) Revisit indicator and (b) final trinet of c@5, 817, 2<, 2000D.

As observed for Threshold = 4 computations,  all  six revisit  indica-
tor thumbnails that appear as random in Figure 26, corresponding to
code pairs (13, 5), (17, 4), (17, 6), (17, 8), (17, 9), (18, 8), end up set-
tling  into  a  regular  behavior.  But  case  (17,  8)  is  the  only  one  for
which the revisit  indicator stabilizes to a square root growth pattern.
The last, most interesting case, is discussed next.

6.1 c@5, 89, 8<, _D: Second Case of Randomized Square Root Growth

This  is  the  only  other  example,  similar  to  case  c@4, 817, 8<, _D,  of  a
computation which exhibits a dense, random but uniform revisit indi-
cator,  with  node  growth  well  approximated  by  a  square  root  func-
tion. Figures 30 and 31 show the revisit indicator, the final trinet, and
the node growth function, with approximating functions for computa-
tions of lengths 6000 and 100 000, respectively.
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Figure  30.  (a)  Revisit  indicator,  (b)  final  trinet,  and  (c)  node  growth  for
c@5, 89, 8<, 6000D.
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Figure  31.  (a)  Revisit  indicator,  (b)  final  trinet,  and  (c)  node  growth  for
c@5, 89, 8<, 100 000D.
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7. Threshold 6: Regular and Irregular Two-Dimensional Grids

For Threshold = 6 and higher, the computations for RefinCode values
in  range  @1, 8D,  and  values  11,  12,  14,  and  15,  appear  exactly  the
same as those obtained for Threshold = 5, and are (individually) inde-
pendent  from  DiagsCode  values.  The  six  interesting  values  left  for
RefinCode are illustrated in Figures 32 and 33. 
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Figure 32. Revisit indicators for all threshold-6, length-500 computations with
RefinCodes 9 through 18.
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813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure  33.  Final  trinets  for  all  threshold-6,  length-500  computations  with
RefinCodes 9 through 18.

Most  of  the  computations  in  C@Threshold = 6D  exhibit  the  already
discussed  emergent  features.  For  example,  computations
c@6, 89, 8<, _D,  c@6, 810, 5<, _D,  c@6, 813, 4<, _D,  c@6, 817, 2<, _D,  and
c@6, 818, 8<, _D, with irregular thumbnails, all end up settling into reg-
ular  behavior,  possibly  with  long  initial  transients.  For  example,
c@6, 89, 8<, _D takes about 35 000 steps to stabilize.
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However, three novel cases are observed that produce, for the first
time  in  our  investigation,  two-dimensional  trinets.  They  deserve  spe-
cial attention.

7.1 c@6, 810, 2<, _D: Hexagonal Grid with Three Central Pentagons

The trinet produced by this computation is a two-dimensional, hexago-
nal grid that develops around a nucleus of three pentagons, as shown
in  Figure  34.  The  active  point  is  always  at  the  border  of  the  graph.
The fact that this border grows with the graph itself explains the pecu-
liar  shape  of  the  revisit  indicator,  with  three  slightly  divergent  radii,
and a growing part of the net being eventually abandoned. 
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Figure  34.  (a)  Revisit  indicator,  (b)  hexagonal  grid,  and  (c)  dual  node  count
for c@6, H10, 2L, 200D.

For comparison with the two other two-dimensional trinet computa-
tions, it  is  useful to analyze the distribution of polygon sizes. For the
computation  c@6, H10, 2L, 3000D,  the  following  distribution  is
observed in the final trinet:

(10)883, 3<, 84, 1<, 85, 93<, 86, 1453<, 898, 1<<,
where 8x, y< indicates that there are y faces with x edges. Note the pres-
ence of a large external face with 98 sides. 
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7.2 c@6, 813, 3<, _D: Irregular Trinet Based on a Hexagonal Grid

Unlike  the  case  in  Section  7.1,  the  trinet  produced  by  this  computa-
tion  exhibits  an  intrinsically  asymmetric  structure,  as  shown  in
Figure 35.  The  distribution  of  face  sizes  for  a  computation  of  length
3000 is:

(11)
883, 6<, 84, 1<, 85, 24<,

86, 979<, 87, 7<, 88, 7<, 89, 2<, 811, 1<<.
It  is  clear  that  the  largest  part  of  the  graph  is  a  hexagonal  grid,

with  979  hexagons,  but  some  larger  faces  are  also  present.  Interest-
ingly, a large external face is now missing, and this is not surprising if
we  consider  the  complex  revisit  indicator,  which  reveals  randomness
and fairness in revisiting all parts of the growing net, although traces
of  regularity  and  symmetry  are  also  visible.  Note  that  the  trinet  is
drawn  as  two  superimposed  layers  of  roughly  the  same  number  of
faces.
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Figure  35.  (a)  Revisit  indicator,  (b)  hexagonal  grid,  and  (c)  dual  node  count
for c@6, H13, 3L, 3000D.

7.3 c@6, 818, 9<, _D: Hexagonal Grid with One Central Pentagon

The trinet produced by this computation is a two-dimensional hexago-
nal grid that develops around one pentagon (Figure 36). The distribu-
tion of face sizes for a 3000 step computation is:

(12)883, 73<, 85, 51<, 86, 1404<, 87, 70<, 8194, 1<<.
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A large, external face is again present. The active point is always at
the  border  of  the graph,  and the growth process  is  similar  to that of
the earlier computation c@6, H10, 2L, _D.
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Figure  36.  (a)  Revisit  indicator,  (b)  hexagonal  grid,  and  (c)  dual  node  count
for c@6, H18, 9L, 200D.

8. Thresholds 7, 8, and 9: Further Regular Two-Dimensional Grids

Class  C@Threshold = 7D  presents  further  types  of  nested  trinets,  both
with  linear  (e.g.,  c@7, H9, 9L, _D)  and  with  radial  (e.g.,
c@7, H10, 2L, _D) revisit indicators, and two more cases of two-dimen-
sional  regular  grids:  c@7, 89, 2<, _D,  which  gives  a  pure  hexagonal
grid, and c@7, 818, 9<, _D, which gives a hexagonal grid with one cen-
tral septagon. Both are illustrated in Figure 37.

No other two-dimensional regular trinet is found for Threshold val-
ues 8 and 9, while nested trinets are still present.
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Figure  37.  (a)  Revisit  indicators  and  (b)  hexagonal  grids  produced  by
c@7, H9, 2L, 200D and c@7, H18, 9L, 200D.

9. Infinite Threshold 

The case Threshold = ¶  is  interesting because the algorithm is forced
to  always  apply  the  Refin  rule.  The  resulting  computations  are  illus-
trated in Figures 38 and 39, where “*” stands for any value of Diags-
Code~a value that the algorithm never uses.
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Figure  38.  Revisit  indicators  for  all  computations  with  Threshold = ¶  and
RefinCodes 1 through 18, of length 500.
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81, *< 82, *< 83, *< 84, *< 85, *< 86, *<

87, *< 88, *< 89, *< 810, *< 811, *< 812, *<

813, *< 814, *< 815, *< 816, *< 817, *< 818, *<

Figure 39. Final trinets for all computations of length 64, with Threshold = ¶
and RefinCodes 1 through 18.

Note that the trinets refer, in Figure 39, to computations of length
64  only;  they  evenly  split  into  six  linear,  six  circular,  and  six  nested
graphs. The regular, radial revisit indicator of c@¶, 810, 1<, _D is such
that each edge (with identifier) in the set 

(13)81, 2< ‹ 83 k + 1 » k = 1, 2, …<
appears  infinitely  often  in  the  diagram,  although  at  an  exponentially
decreasing rate. More precisely, denoting by s@e, nD the step (number)
at  which  edge  e  is  the  current  edge  for  the  nth  time,  the  following
holds for all visited edges as identified earlier:

(14)s@e, nD = 2 s@e, n - 1D + 1 Hn > 1L
where  s@1, 1D = 1,  s@2, 1D = 2,  and  s@3 k + 1, 1D = 2 Hk + 1L,
k = 1, 2, ….  The  arithmetic  progression  of  initial  edge  occurrences,
combined  with  the  geometric  progression  of  subsequent  appearances
of  individual  edges,  determines  the  characteristic  pattern  of  virtually
infinite radii emanating from the origin. 

10. Conclusions

In this  paper we introduced an original  algorithm for the creation of
dynamic  planar  trivalent  networks  (trinets),  and  have  exhaustively
explored all the classes of its computations corresponding to values in
the  range  3  through  9,  and  to  infinity,  of  a  Threshold  parameter.  A
number  of  quite  interesting  phenomena  have  emerged,  although  it  is
still  unclear  whether  considering  finite  values  beyond  Threshold = 9
could yield qualitatively new features. Among the expected results we
found  plenty  of  computations  that  yield  periodic  sequences  of
bounded trinets,  as  well  as  sequences  of  one-dimensional  trinets  that
grow  without  bound,  where  stabilization  to  regular,  linear  growth
may occur after very long transient phases characterized by pseudoran-
dom dynamics. 
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 without  bound,  where  stabilization  to
may occur after very long transient phases characterized by pseudoran-
dom dynamics. 

More  interestingly,  we  have  found  complex  but  still  regular
(nested)  computations,  with  trinets  that  grow  while  oscillating
between  linear  and  ring  structures  based  on  simple  building  blocks,
and computations that produce two-dimensional trinets based on the
hexagonal grid. All of the latter exhibit a rather regular, roughly circu-
lar  shape,  and  a  regular  growth  pattern;  but  the  computation
c@6, 813, 3<, _D  is  an  exception  and yields  a  smoothly  growing trinet
with an irregular shape, no especially large “external” face, and irregu-
lar motion of the control point.

But  in  our  opinion  the  most  interesting  computations  are
c@4, 817, 8<, _D  and  c@5, 89, 8<, _D.  Their  revisit  indicators  reveal  a
surprising  ability  to  densely  and fairly  revisit  the  past,  while  exhibit-
ing pseudorandom dynamics. Graph size, as a function of the number

of algorithmic steps, grows as OJ steps N. It is likely that this combi-

nation  of  randomness  and  fairness,  guaranteed  by  an  extremely  sim-
ple  algorithm  that  operates  on  a  purely  local  basis,  could  find  some
useful application, still to be investigated. 

In the introduction we listed the differences between our algorithm
and the  techniques  proposed in [1]  for  animating trivalent  networks.
Our  previous  proposal  for  trinet  computation [2]  was  different  from
the one presented here in the following aspects.

† We used only the Refin rule (this can now be obtained as a special case
by setting Threshold = ¶).

† We used a  rather different rule  for driving the control  point,  based on
rotations by a constant number of steps around the current node of the
dual graph.

† We did  not  convert  duals  into  primal  form.  In  spite  of  the  conceptual
equivalence  between  the  two  forms,  looking  at  the  original  trinet  has
been  practically  more  helpful  for  spotting  patterns  such  as  oscillating
rings. 

A Demonstration of the algorithm described in this paper is  avail-
able at the Wolfram Demonstrations Project site [4].

Much more remains to be done. 

† Loop  edges.  Ways  for  handling  trinets  with  loop  edges  should  be
investigated.  This  may  lead  to  considering  new  forms  of  degenerate
triangles,  and  perhaps  even  to  difficulties  in  keeping  simple  geometric
interpretations  of  the  manipulated  data  structures.  In  fact,  interesting
developments might derive from relaxing or abandoning those interpre-
tations,  and  concentrating  just  on  abstract  data  structures  and  opera-
tions.  This  may  also  help  expose  possible  bridges  with  other  simple
computational systems.

† Dimensionality.  We have found many trinets for which the attribution
of  dimensionality  1  or  2  is  obvious,  but  what  about  all  of  the  other
graphs? In the rather uninteresting cases of tree-like trinets, nodes grow
exponentially  with  the  distance  from  a  given  reference  node.  The
identification  of  a  dimensionality  for  the  finite,  irregular  subtrinets
corresponding  to  the  initial  phase  of  eventually  periodic  computations
is not of much interest. But what about the irregular trinets of the two
computations  c@4, 817, 8<, _D  and  c@5, 89, 8<, _D  with  random  revisit
indicators?  A  difficulty  here  derives  from their  slow,  square-root  node
growth: in both cases, 100 000 step computations yield trinets with less
than 1000 nodes,  and,  due to  this  limitation,  the analysis  of  internode
distances  has  not  led  to  clear  results.  Finally,  one  might  perhaps
associate different dimensionalities to the same trinet, depending on the
observation scale, since some trinets may exhibit different structures at
different  levels.  This  would perhaps offer some bridge toward physical
theories  that  envisage  a  multidimensional  space~notably  string
theory~with  a  distinction  between  extended  and  compacted  dimen-
sions. More generally, it seems desirable to investigate possible connec-
tions  between  trinet  mobile  automata  computations  and  some  of  the
quantum  gravity  theories  proposed  by  physicists  in  the  past  few
decades.  A wide-spanning bibliographical  review of  theories  concerned
with the small scale structure of spacetime is found in [5].
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growth: in both cases, 100 000 step computations yield trinets with less
than 1000 nodes,  and,  due to  this  limitation,  the analysis  of  internode
distances  has  not  led  to  clear  results.  Finally,  one  might  perhaps
associate different dimensionalities to the same trinet, depending on the
observation scale, since some trinets may exhibit different structures at
different  levels.  This  would perhaps offer some bridge toward physical
theories  that  envisage  a  multidimensional  space~notably  string
theory~with  a  distinction  between  extended  and  compacted  dimen-
sions. More generally, it seems desirable to investigate possible connec-
tions  between  trinet  mobile  automata  computations  and  some  of  the
quantum  gravity  theories  proposed  by  physicists  in  the  past  few
decades.  A wide-spanning bibliographical  review of  theories  concerned
with the small scale structure of spacetime is found in [5].

† Relativistic,  subjective  views.  A  research  track  that  we  consider  of
highest priority is concerned with the introduction of a relativistic view
of trinet computations, based on suitable notions of a spacetime/causal
network.  The  trinet  diagrams  we  have  shown  in  this  paper,  if  at  all
relevant  to  the  understanding  of  real  physical  phenomena,  would  only
represent  an  external  view  of  a  dynamic  physical  space  (a  sort  of
“God’s eye” view), while the spatial evolution perceived by an internal
observer, one who is himself part of the universe, would be mediated by
the  causal  relations  between  observation  events.  It  is  quite  straightfor-
ward to define a causal network for the rewrite events of our algorithm,
along  the  lines  discussed  in  [1],  chapter  9.  Then,  taking  the  point  of
view  of  a  trinet  face  f ,  we  could  define  discrete  time,  relative  to  f ,  in
terms of the sequence of updatings of f , based on the assumption that a
face,  regarded  as  the  smallest  perceptive  unit,  does  not  experience
anything, thus no progress of time, between two consecutive updates of
f .  Based  on  this  notion  of  time,  and  taking  into  account  the  complete
causal  network  of  updating  events,  the  idea  would  be  to  create  a
sequence of  suitably defined “pictures” of the universe as perceived by
f  at  successive  instants  of  its  time.  This  sequence  would  represent  the
correct, internal view of the produced dynamic space, and the one to be
appropriately compared with physical  reality as we perceive it.  We are
particularly  interested  in  applying  this  analysis  to  the  computations
c@4, 817, 8<, _D  and  c@5, 89, 8<, _D,  whose  randomness  and  fairness
might  prove  essential  for  guaranteeing  the  equivalence  of  all  possible
observers.
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