
Planar Trinet Dynamics with Two
Rewrite Rules

Tommaso Bolognesi

CNR/ISTI,
Institute of Information Science and Technologies “A. Faedo”
Pisa, Italy
tommaso.bolognesi@isti.cnr.it

A deterministic network mobile automaton is proposed for the creation
of planar trivalent networks (trinets) based on the application of only
two simple rewrite rules. The possible Brownian dynamics of the
control point are enumerated and explored. A useful behavioral
complexity indicator is introduced, called the revisit indicator, exposing
a variety of emergent features, involving periodic, nested, and random-
like dynamics. Regular structures obtained include one-dimensional
graphs, oscillating rings, and the two-dimensional hexagonal grid. In
two cases only, out of over a thousand that were inspected, a remark-
ably fair, random-like revisit indicator is found, with trinets that
exhibit a slow, square-root growth rate. Some properties of these
surprising computations are investigated. Finally, one two-dimensional
case is found that seems to be unique in the way regularity and random-
ness are mixed.

1. Introduction

Stephen Wolfram [1] supports the “digital physics” view, according
to which the ultimate laws of physics are of a computational nature,
the entire history of our universe is the output of a small, possibly
deterministic program, and all simple and complex natural phenom-
ena correspond to emergent properties of this universal computation.
In particular, he suggests that physical space could be a giant trivalent
network that evolves according to a few simple rewrite rules. Triva-
lent networks (trinets) are finite, undirected graphs where each node
has exactly degree 3, that is, three neighboring nodes. It is easy to real-
ize that trinets are sufficient for implementing graph structures of any
complexity: given a graph with unrestricted node degrees, the basic
trick is to replace any node x of degree n by a cycle X of n nodes of
degree 3, each connected to a neighbor of x. In particular, let k be the
dimensionality of a graph G whenever the number of nodes reachable
from a generic node of G in at most r steps (edges) grows like rk.
Examples of regular trinets of dimensionality 1, 2, and 3, and of pla-
nar trinets with fractal dimensions between 1 and 2 are shown in [1,
pp. 477 and 509].

In general, graph rewriting involves nondeterminism, in the selec-
tion both of a rule and of a place to apply it. Various trinet rewrite
rules, and policies for eliminating nondeterminism, are discussed in
[1]. One solution is to restrict to causal-invariant rewrite systems,
which generate a unique partial order of rewrite events, regardless of
the order in which rules are applied. Another solution enriches the
rewrite process by state information that records the “age” of nodes,
and then always selects the rule and location that involves, say, the
youngest nodes. Causal invariance is a powerful and elegant concept,
but the search for systems of rules that guarantee this property is
hard, unless quite restrictive sufficient conditions are adopted; and the
mechanism of time stamps appears as unnatural as, say, the syn-
chrony assumption for the updating of an unbounded set of cells, as
adopted by cellular automata. (See [1] for a detailed description of
these two approaches, which we have already assessed in [2].)

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

In general, graph rewriting involves nondeterminism, in the selec-
tion both of a rule and of a place to apply it. Various trinet rewrite
rules, and policies for eliminating nondeterminism, are discussed in
[1]. One solution is to restrict to causal-invariant rewrite systems,
which generate a unique partial order of rewrite events, regardless of
the order in which rules are applied. Another solution enriches the
rewrite process by state information that records the “age” of nodes,
and then always selects the rule and location that involves, say, the
youngest nodes. Causal invariance is a powerful and elegant concept,
but the search for systems of rules that guarantee this property is
hard, unless quite restrictive sufficient conditions are adopted; and the
mechanism of time stamps appears as unnatural as, say, the syn-
chrony assumption for the updating of an unbounded set of cells, as
adopted by cellular automata. (See [1] for a detailed description of
these two approaches, which we have already assessed in [2].)

A third solution for reducing nondeterminism is to adopt what
Wolfram calls network mobile automata: these consist of setting up a
single active node, letting rules replace clusters of nodes around it,
and moving control to an adjacent node. However, despite looking at
several hundred thousand cases involving clusters with up to four
nodes and four dangling links, Wolfram reports that he has not been
able to find automata with especially complicated behavior, which
explains why this model is relegated to a small note on page 1040 in
[1]. In conclusion, none of the experiments on network evolution
described by Wolfram could fully replicate the success achieved by ele-
mentary cellular automata, with their visually appealing, rich variety
of emergent properties, and with their ability to create interacting par-
ticles, as observed in the well-known rule 110 computations.

The two related objectives of this paper are to: (i) further explore
algorithms for the evolution of trinets and (ii) visually identify effec-
tive complexity indicators and techniques that can help screen large
spaces of trinet-based computations. In pursuing the first objective,
we avoid the difficulties related with causal invariance, and refrain
from enriching the structure of trinets by state information. Rather, a
trinet growth algorithm is devised along the lines of network mobile
automata. Here is a summary of the major differences with the
approach (cursorily) mentioned by Wolfram in [1].

1. We use an extremely small set of rewrite rules, consisting of only two
elements.

2. We restrict the study to planar trinets.

3. We adopt a refined notion of control point called the focus that is
described later.

4. We attribute more importance to the dynamics of the latter, whose
steps are also dependent on the applied rewrite rule.

Furthermore, the algorithm is designed around the manipulation of tri-
net duals, a choice that has to some extent facilitated the identifica-
tion and exhaustive exploration of policies for control point
movement.

2 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

Furthermore, the algorithm is designed around the manipulation of tri-
net duals, a choice that has to some extent facilitated the identifica-
tion and exhaustive exploration of policies for control point
movement.

In Section 2 we introduce our planar trinet growth algorithm, with
its two rewrite rules, and its three parameters, one of which, the
Threshold, induces a convenient classification of our computational
space. In Section 3 we discuss a few ways in which the overall charac-
ter of a trinet computation can be visualized, and introduce a useful
revisit indicator. Based on this technique, we exhaustively explore our
computational classes in Sections 4 through 9, which correspond to
increasing values of the threshold parameter, and describe the progres-
sive appearance of various emergent features. In Section 10 we summa-
rize our results and discuss items for future work. A preliminary pre-
sentation of this work was provided in [3].

Similar to the space of (elementary) cellular automata, the space of
trinet computations, as created by our algorithm, offers such an abun-
dance of aspects to be investigated that a single paper cannot cover all
of them in depth. Thus, the purpose of this work is to provide a first
exploration of the whole computation space, identify all features that
may possibly emerge in it, and single out the most interesting cases.
We believe that these results shall trigger a number of specific ques-
tions that we look forward to investigating in forthcoming papers.

2. The Algorithm

A trinet is an undirected graph where each node has degree 3. Trinets
may include loop edges and double edges, and, if v is the number of
vertices (nodes) and e is the number of edges, then 3 v = 2 e. The
proof is simple. By definition, each node is connected to three distinct
edges, or to a loop edge and a “normal” one. By charging three edges
to each node, via the incidence relation, we count each edge exactly
twice, thus establishing the given equation. Note that a loop edge con-
tributes two units to a node degree. Two consequences of the equa-
tion 3 v = 2 e are that v is a multiple of 2 and e is a multiple of 3.

A graph is simple when it does not include loop edges or double
edges. Our algorithm shall only handle trinets without loops, but possi-
 bly with double edges, called trinets with doubles (but we shall often
omit the attribute). The inclusion of loops introduces further diffi-
culty, but appears interesting, and is left for future investigation. A
graph is planar when it can be embedded on the surface of a sphere
with no edge crossings. An embedding partitions the surface of the
sphere into regions, and induces a dual graph (also planar), in which
nodes correspond to regions and edges connect the nodes representing
adjacent regions. Note that there is an obvious one-to-one correspon-
dence between the edges of a planar graph and those of its dual.

If T is a planar trinet with doubles, and D is its dual (see Figure 1,
where the two graphs have, respectively, black and white nodes), then:

Planar Trinet Dynamics with Two Rewrite Rules 3

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

† regions in T will be delimited by at least two edges, thus nodes in D
have at least degree 2 (Figure 1(a));

† D may include both loops and doubles (Figures 1(c) and 1(d));

† all the regions of D are triangles, formed by three distinct edges, and
every edge is shared by two distinct triangles (recall that one of them
may be the external, “infinite” triangle).

The last fact is established by realizing that the dual of D is T itself,
so that nodes of T, with degree 3, represent faces of D, with three
sides; and the two triangles sharing an edge in D are distinct essen-
tially because there are no loop edges in T.

Graph D may include degenerate triangles formed by three distinct
edges but less than three nodes. For example, in Figure 1(c), the loop
edge in the dual graph delimits a finite triangle with two nodes only,
while the infinite, external region of the dual graph of Figure 1(d) is a
triangle with just one node. (The inclusion of loop edges in trinets
would lead to degenerate triangles with two vertices and two edges
only.) Note, finally, that a loop edge in D corresponds to an edge in T
whose removal disconnects the trinet (Figures 1(c) and 1(d)).

HaL

HbL

HcL

HdL

Figure 1. Four planar trinets (black nodes) and their duals (white nodes).

In our algorithm we shall handle planar graphs~trinet duals~
with a specific embedding on the sphere. For doing this, node adja-
cency information is not enough: we need to keep the list of triangles
that form the embedding, as described next.

4 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

2.1 Representation of Spherical (Planar) Graph Embedding

We take now a closer look at the representation and properties of the
spherical (planar) graph embeddings manipulated by the algorithm, as
a basis for describing the algorithm itself and proving its invariant.

2.1.1 Definitions: Oriented Edge, Oriented Triangle, Sphericity

Conditions, and Spherical Set of Oriented Edge Triples

Let GHV, EL be a connected, undirected graph, where V is the set of v
vertices and E is the set of e edges. Let exHp, qL denote an oriented
edge, where ex œ E is an edge incident to vertices p and q, and Hp, qL
is an ordered pair. A triple of oriented edges is an oriented triangle
(shortly, a triangle) when (i) it is formed by three distinct edges; that
is, ex ≠ ey ≠ ez ≠ ex, and (ii) its elements can be arranged as in
HexHp, qL, eyHq, rL, ezHr, pLL thus creating a cycle of (at most) three dif-
ferent nodes. Which oriented edge appears first in the triple is irrele-
vant. Node symbols p, q, and r are understood as formal variables,
some of which could be assigned the same actual node identifier, thus
yielding degenerate triangles. A set of t oriented edge triples, relative
to sets V and E, is called spherical when it satisfies these three spheric-
ity conditions.

1. Every triple is an oriented triangle.

2. Every edge is shared by two distinct triangles, with associated node
pairs appearing in opposite order; that is, exHp, qL and exHq, pL.

3. v - e + t = 2 (Euler’s formula).

Based on graph theoretic arguments, the following fact can be eas-
ily established.
Proposition 1. If GHV, EL is a connected, undirected graph, for which a
spherical set of triples can be built, then G is planar, and every node
has at least degree 2. The triples then describe the counterclockwise
(by arbitrary convention) traversal of the border of the triangular
regions of the spherical embedding of G.

In particular, the minimum degree 2 is a direct consequence of sphe-
ricity condition 1. And, based on conditions 1 and 2, it is readily estab-
lished that 3 t = 2 e, which, combined with Euler’s formula, yields

(1)
e = 3 v - 6
t = 2 v - 4.

(If condition 3 is replaced by the more general Euler|Poincaré formula
v - e + t = 2 - 2 g, we have sufficient conditions for embedding
graphs on two-manifolds of genus g. For example, when v - e + t = 0
the graph can be embedded, without edge crossings, on the torus,
whose genus is 1.)

Planar Trinet Dynamics with Two Rewrite Rules 5

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

2.2 Initial Configuration, Rewrite Rules, and Computation Step

2.2.1 Initial Configuration

The most elementary trinet with doubles is the 2-node, 3-edge graph
shown in Figure 1(a); thus, all our computations shall start from the
corresponding triangular dual graph shown at its right, whose triangu-
lar, spherical embedding is

(2)
triangles = 8He1H1, 2L, e2H2, 3L, e3H3, 1LL,

He1H2, 1L, e3H1, 3L, e2H3, 2LL<.
One can indeed check that the given data structure satisfies the

three sphericity conditions.

2.2.2 Rewrite Rules

The two rewrite rules used by our algorithm are illustrated in
Figure 2, where the transformation of dual graphs is emphasized.

Figure 2. Planar trinet rewrite rules: Refin (upper), Diags (lower).

In the context of our algorithm, these rules are called, respectively,
Refin and Diags, since the former refines a triangle by partitioning it
into three new triangles, and the latter flips the diagonal of a rhom-
bus. These are among the simplest rules considered in [1] (p. 509),
where their completeness is pointed out: they are sufficient for trans-
forming any planar trinet into any other (with Refin used both ways).

6 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

Our implementation of these rules operates on sets of oriented trian-
gles. The rule Refin removes a triangle and creates three new triples,
by introducing a new node HsL and three new edges He4, e5, e6L:

(3)

removed triangle : He1Hq, rL, e2Hr, pL, e3Hp, qLL
created triples : He1Hq, rL, e4Hr, sL, e6Hs, qLL,

He2Hr, pL, e5Hp, sL, e4Hs, rLL,
He3Hp, qL, e6Hq, sL, e5Hs, pLL.

The rule Diags removes two triangles sharing an edge He3L, and
introduces two new triples:

(4)

removed triangles : He1Hq, rL, e2Hr, pL, e3Hp, qLL,
He3Hq, pL, e4Hp, sL, e5Hs, qLL.

created triples : He5Hs, qL, e1Hq, rL, e3Hr, sLL,
He3Hs, rL, e2Hr, pL, e4Hp, sLL.

Again, p, q, r, and s are understood as formal variables, which may
refer to the same actual node.

2.2.3 Computation Step

The algorithm endlessly iterates an elementary computation step, start-
ing from the initial condition described earlier. The step is illustrated
in Figure 3 and accepts the tuple (trinetDual, focus, Threshold, Refin-
Code, DiagsCode) and returns the tuple (trinetDual£, focus£, Thresh-
old, RefinCode, DiagsCode), where:

† trinetDual is the current graph, the dual of a trinet, represented as a set
of triangles.

† focus is an angle of a specified triangle in trinetDual, and represents the
current location for control.

† Threshold is a constant natural number in the interval @3, ¶D. The
choice between rules Refin and Diags depends on the degrees of nodes
p and q on the edge facing the focus: when the degree of p or q is lower
than the Threshold, then rule Refin is applied, which increments by one
the degree of both nodes; otherwise rule Diags is applied, which
decrements their degrees by one.

† RefinCode and DiagsCode are constant parameters, ranging, respec-
tively, in intervals @1, 18D and @1, 9D; they are used for choosing focus£,
the next focus, as shown in the lower part of Figure 3. In light of the
symmetry of the initial graph, we can optimize the parameter space by
dropping half of the 18 potential choices of the new focus, after rule
Diags has been applied: we shall therefore consider only 18 *9 = 162
pairs of values for these two parameters.

† trinetDual£ and focus£ are the updated values of these variables, used
for iterating the computation step. Threshold, RefinCode, and Diags-
Code are constants; thus, they are unchanged by the step.

Planar Trinet Dynamics with Two Rewrite Rules 7

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

Figure 3. The step of the algorithm.

2.3 Algorithm Invariant

We now want to prove that the rewrite rules, as implemented, pre-
serve the sphericity, as defined previously, of the data structure they
manipulate. For doing this we need to introduce a method for comput-
ing the degree of a node in a triangular, spherical embedding. If n is
the number of occurrences of node p in a set of oriented triangles,
then degreeHpL = n ê2, since each edge occurs twice in the structure
(recall that a loop edge eHp, pL contributes two units to degreeHpL). As
an alternative, we may traverse all edges incident to p while rotating
clockwise around p, as follows: pick from the set of triples an ori-
ented edge eHn1, pL in which p appears as the second node, and com-
pute what we call the cyclic star path:

(5)eHn1, pL, f Hp, n2L, f Hn2, pL, gHp, n3L, …, eHp, n1L
in which two adjacent elements with different edge identifiers, for
example, eHn1, pL and f Hp, n2L, represent edges that share node p and
appear in (cyclic) sequence in some triangle, while adjacent elements
with the same edge identifier, for example, repre-
sent two opposite traversals of the same edge, as found in two distinct
triangles. It is easy to check that is half the length of the star
path around .

8 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

in which two adjacent elements with different edge identifiers, for
example, eHn1, pL and f Hp, n2L, represent edges that share node p and
appear in (cyclic) sequence in some triangle, while adjacent elements
with the same edge identifier, for example, f Hp, n2L, f Hn2, pL repre-
sent two opposite traversals of the same edge, as found in two distinct
triangles. It is easy to check that degreeHpL is half the length of the star
path around p.

As an example, consider the list of two oriented triangles represent-
ing the initial configuration of equation (2). The cyclic star path for,
say, node 1 is: e3H3, 1L, e1H1, 2L, e1H2, 1L, e3H1, 3L. This yields
degreeH1L = 2. The advantage of this technique is that it allows us to
possibly discover the degree of a node without scanning the whole list
of triangles. We are now ready to prove an important invariant of the
algorithm.
Proposition 2 (Algorithm invariant). When applied to a spherical set of
triangles, and when Threshold ¥ 3, the step of our algorithm pro-
duces another spherical set of triangles.

Proof. We must prove that when a set of triples satisfies sphericity
conditions 1 through 3, then the set of triples obtained from it after
one step also satisfies the conditions. We shall refer to the edge and
node identifiers appearing in the rule implementations described in
equations (3) and (4). We distinguish two cases.

Case 1: Rule Refin is applied. Each of the three triples created by
this rule is an oriented triangle by construction, so condition 1 is pre-
served. Furthermore, these triangles: (i) reintroduce the instances
e1Hq, rL, e2Hr, pL, e3Hp, qL that were removed, so that each of these
“old” edges is shared precisely by a new and an old triangle, and (ii)
collectively introduce two oriented edge occurrences, with opposite
node orderings, of each new edge He4, e5, e6L, so that each new edge
is shared by two of the new triangles; thus, condition 2 is also pre-
served. Finally, v, e, t are incremented, respectively, by 1, 3, 2, so that
the value of v - e + t is unaffected and condition 3 is preserved. The
effect of Refin on a triangle involving one, two, or three distinct verti-
ces is illustrated in Figure 4.

Figure 4. Applying the rule Refin to triangles with three vertices, two vertices,
or one vertex.

Planar Trinet Dynamics with Two Rewrite Rules 9

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

Case 2: Rule Diags is applied. Consider the two removed triangles.
They share at least edge e3, but may share more; again, symbols e1,
e2, e4, and e5 are understood as formal variables, some of which may
assume the same actual value. Thus, we distinguish three cases,
depending on the number of actual edges shared. In all these cases con-
dition 3 is trivially guaranteed, since the counts of vertices, edges, and
triples is left unchanged.

Case 2.1: The two removed triangles share one edge. Since e1, e2,
e4, and e5 are all different, each of the two created triples is a triangle
by construction; hence, condition 1 is guaranteed. Condition 2 is guar-
anteed by the fact that oriented edge occurrences for e1, e2, e4, e5 are
only moved around by the rule, while occurrences e3Hp, qL and
e3Hq, pL are replaced by occurrences e3Hr, sL and e3Hs, rL that still
appear in different triangles.

Case 2.2: The two removed triangles share two edges. We distin-
guish two subcases.

Case 2.2.1: The two shared edges (one is e3) appear in the same
order in the two removed triangles. Let us then assume, without loss
of generality, that e1 = e4 (the case e2 = e5 is symmetric), so that the
two removed triangles can be written:

(6)
He1Hq, rL, e2Hr, pL, e3Hp, qLL
He3Hq, pL, e1Hr, qL, e5Hq, qLL,

where the second triple is obtained by reversing the order of nodes for
e1 and e3, and by letting the nodes for e5 complete the triangulation.
But for the second triple to be a correct triangle, it must also have
p = r, so that the triangles can be rewritten as:

(7)
He1Hq, pL, e2Hp, pL, e3Hp, qLL
He3Hq, pL, e1Hp, qL, e5Hq, qLL.

These triangles are depicted in Figure 5(a). By applying the rule Diags
to these two oriented triangles, we obtain the two triples:

(8)
He5Hq, qL, e1Hq, pL, e3Hp, qLL
He3Hq, pL, e2Hp, pL, e1Hp, qLL.

We have obtained two oriented triangles (condition 1), and it is trivial
to verify that, after the replacement, condition 2 holds.

Case 2.2.2: The two shared edges (one is e3) appear in opposite
order in the two removed triangles. Let us then assume, without loss
of generality, that e1 = e5 (the case e2 = e4 is symmetric). The two tri-
angles to be removed are:

(9)
He1Hq, rL, e2Hr, pL, e3Hp, qLL
He3Hq, pL, e4Hp, rL, e1Hr, qLL,

where the second triple is obtained by reversing the order of nodes for
e1 and e3, and by letting the nodes for e4 complete the triangulation.
Consider node q, which is shared by the two edges e1 and e3, in turn
shared by the two triangles: its cyclic star path is He3Hp, qL,
e1Hq, rL, e1Hr, qL, e3Hq, pLL and its length is 4, thus degreeHqL = 2. This
is in conflict with the assumption Threshold ¥ 3: the rule Diags could
not be applied to edge e3 since one of its nodes has a lower degree
than the threshold. The two triangles are depicted in Figure 5(b).

10 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

where the second triple is obtained by reversing the order of nodes for
 and , and by letting the nodes for complete the triangulation.

Consider node q, which is shared by the two edges and , in turn
shared by the two triangles: its cyclic star path is He3Hp, qL,
e1Hq, rL, e1Hr, qL, e3Hq, pLL and its length is 4, thus degreeHqL = 2. This
is in conflict with the assumption Threshold ¥ 3: the rule Diags could
not be applied to edge e3 since one of its nodes has a lower degree
than the threshold. The two triangles are depicted in Figure 5(b).

HaL HbL
Figure 5. Pairs of triangles for (a) case 2.2.1 and (b) case 2.2.2.

Case 2.3: The two removed triangles share three edges. The first
removed triangle is He1Hq, rL, e2Hr, pL, e3Hp, qLL, thus the second
removed triangle must be composed of the three oriented edges
e1Hr, qL, e2Hp, rL, and e3Hq, pL; thus, it can only be
He1Hr, qL, e3Hq, pL, e2Hp, rLL. In this case, the star path of any of the
nodes has length 4; hence, all nodes have degree 2. This is, again, in
conflict with the assumption Threshold ¥ 3. ‡

We verified earlier that the set of triples in the initial configuration
is spherical. In light of the given invariant, we now conclude, induc-
tively, that all sets of triples produced by the algorithm are spherical;
that is, they represent spherical embeddings of planar, triangular
graphs.

2.4 Computation Classes

We let c@T, 8RC, DC<, LD denote the HL - 1L-step computation of our
algorithm, starting from the initial condition of equation (2), with
Threshold = T, RefinCode = RC, and DiagsCode = DC. (A pedantic
but necessary clarification: usually a step is understood as a pair of
consecutive states; hence, a 1-step computation is two states long: the
“L” in c@T, 8RC, DC<, LD refers to the Length of the computation,
intended as the number of states it includes.) We shall also use a conve-
nient notation for representing subsets of the computation space. For
example, C@Threshold = 3D denotes the set 8c@3, 8RC, DC<, SD »
RC œ @1, 18D, DC œ @1, 9D, S ¥ 1<, that is, the family of all computa-
tions with Threshold = 3, of any length. Since we impose
Threshold ¥ 3, the first computation step inevitably applies the rule
Refin and produces the tetrahedron graph shown in Figure 1(b). Then
computations start to differentiate depending on the parameter set-
tings.

Planar Trinet Dynamics with Two Rewrite Rules 11

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

We let c@T, 8RC, DC<, LD denote the HL - 1L-step computation of our
algorithm, starting from the initial condition of equation (2), with
Threshold = T, RefinCode = RC, and DiagsCode = DC. (A pedantic
but necessary clarification: usually a step is understood as a pair of
consecutive states; hence, a 1-step computation is two states long: the
“L” in c@T, 8RC, DC<, LD refers to the Length of the computation,
intended as the number of states it includes.) We shall also use a conve-
nient notation for representing subsets of the computation space. For
example, C@Threshold = 3D denotes the set 8c@3, 8RC, DC<, SD »
RC œ @1, 18D, DC œ @1, 9D, S ¥ 1<, that is, the family of all computa-
tions with Threshold = 3, of any length. Since we impose
Threshold ¥ 3, the first computation step inevitably applies the rule
Refin and produces the tetrahedron graph shown in Figure 1(b). Then
computations start to differentiate depending on the parameter set-
tings.

3. Visual Indicators for Planar Trinet Computations

A computation can be defined as a sequence of states. The state of
our algorithm is essentially formed by the pair of variables
HtrinetDual, focusL that represent a planar graph and the location of
control in it. We are interested in the emergent properties of planar tri-
nets, with the idea that they might eventually capture properties of
physical space. However, it may be hard to visually detect emergent
properties when directly using graphs for the following reasons: (i) a
trinet or trinet dual may soon become a complex structure, and a
sequence of thousands of them can hardly be inspected at a glance, as
opposed to what happens, for example, with the computations of ele-
mentary cellular automata; (ii) there exist many alternative methods
to draw graphs on the plane, such as using a predefined arrangement
of the nodes (e.g., circular) or applying attractive or repulsive forces
to nodes, and the emergence and detectability of patterns is largely
dependent on the method.

One can of course look just at the final graph, either in dual or in
primal form, as we do later. However, emergent properties are better
detected when looking at the whole computation. Thus, in our investi-
gation we are interested in the fluctuations of the other state variable:
the focus. This variable captures only a tiny fraction of state informa-
tion, but this is indeed an advantage, since we can easily plot a whole
computation as a compact, readily inspected diagram. We have
defined the focus as the angle 8e1, e2< between two edges of triangle
8e1, e2, e3<. For further simplification, we simply monitor the edge
opposite to this angle, namely, e3. Note that this is the edge whose ver-
tices p and q are tested at every step: we call it the current edge. Look-
ing at e3 rather than at the pair 8e1, e2< introduces further ambiguity,
or abstraction, since e3 identifies two possible foci. And yet, the
sequence of current edge identifiers turns out to be a useful indicator.
New edges are created in the trinet dual, three at a time, only by the
Refin rule, and are assigned progressive natural numbers; plotting the
sequence of current edge numbers reveals the extent to which the con-
trol point can revisit and update old parts of the graph and whether
some regions are definitively abandoned. For this reason we call these
numeric sequences, and their plots, revisit indicators.

For illustrating the idea, and for comparison with some of the
revisit indicators discussed later, consider the two plots in Figure 6.
These depict the revisit indicators for two extremely simple and regu-
lar graph growth patterns; the relevant revisited elements are now the
nodes, which are numbered sequentially as they are created. In the
first case the algorithm maintains a linear topology, and creates a new
node only after having sequentially scanned the current list
81, 2, …, n< of nodes, in both directions, up and down. The second
case is similar, except that nodes are arranged in a growing circle, and
a new node is added after a circular, single-scan visit of the graph.

12 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

For illustrating the idea, and for comparison with some of the
revisit indicators discussed later, consider the two plots in Figure 6.
These depict the revisit indicators for two extremely simple and regu-
lar the relevant revisited elements are now the
nodes, which are numbered sequentially as they are created. In the
first case the algorithm maintains a linear topology, and creates a new
node only after having sequentially scanned the current list
81, 2, …, n< of nodes, in both directions, up and down. The second
case is similar, except that nodes are arranged in a growing circle, and
a new node is added after a circular, single-scan visit of the graph.

0 100 200 300 400 500
steps

5

10

15

20

nodes

0 100 200 300 400 500
steps

5

10

15

20

25

30

nodes

HaL HbL
Figure 6. Revisit indicators for graphs with (a) linear and (b) circular topology.

An easy calculation shows that the node-growth functions, also plot-

ted in the diagrams, are n = s for the linear graph, and n = 2 s

for the circular graph. More generally, a growth rate n = 2 s êk cor-
responds to a “grow-and-revisit” algorithm that, in the interval
between the creation of nodes n - 1 and n, takes k * n revisit steps.

A rather obvious visual complexity indicator, even simpler than the
revisit indicator, consists of plotting the number of nodes in the trinet
dual as a function of the algorithm steps. We call this the dual node
count indicator, with the attribute “dual” often omitted. Recall that
these nodes represent trinet faces. This indicator is a monotonic, non-
decreasing function, since the rule Refin adds one node to the trinet
dual (two nodes to the original trinet), and the rule Diags leaves the
node count unaffected. In Sections 4 through 9 we mainly refer to the
revisit indicator, since it confirms but also refines in interesting ways
the classification induced by pure node counting.

4. Threshold 3: One-Dimensional Trinets, Simple Oscillators,
and Trees

Figure 7 shows the revisit indicator for all the computations of
Length = 500, with Threshold = 3~a set of 18 * 9 = 162 elements
that we denote C@Threshold = 3, Length = 500D. Figure 8 shows the
corresponding final trinets. The numbers appearing at the left of each
small diagram represent the highest current edge identifier used in the
computation: this number cannot exceed 3 * Length, since the initial
trinet dual has three edges, and each step can at most contribute three
new edges.

Planar Trinet Dynamics with Two Rewrite Rules 13

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

Figure 7 shows the revisit indicator for all the computations of
Length = 500, with Threshold = 3~a set of 18 * 9 = 162 elements
that we denote C@Threshold = 3, Length = 500D. Figure 8 shows the
corresponding final trinets. The numbers appearing at the left of each
small diagram represent the highest current edge identifier used in the
computation: this number cannot exceed 3 * Length, since the initial
trinet dual has three edges, and each step can at most contribute three
new edges.

5
81, 1<

752
81, 2<

752
81, 3<

752
81, 4<

752
81, 5<

6
81, 6<

752
81, 7<

5
81, 8<

752
81, 9<

4
82, 1<

751
82, 2<

7
82, 3<

751
82, 4<

421
82, 5<

5
82, 6<

7
82, 7<

6
82, 8<

751
82, 9<

2
83, 1<

66
83, 2<

8
83, 3<

15
83, 4<

501
83, 5<

6
83, 6<

7
83, 7<

6
83, 8<

242
83, 9<

6
84, 1<

753
84, 2<

753
84, 3<

753
84, 4<

753
84, 5<

6
84, 6<

753
84, 7<

6
84, 8<

753
84, 9<

5
85, 1<

15
85, 2<

8
85, 3<

68
85, 4<

380
85, 5<

6
85, 6<

8
85, 7<

5
85, 8<

197
85, 9<

3
86, 1<

373
86, 2<

750
86, 3<

102
86, 4<

750
86, 5<

5
86, 6<

750
86, 7<

6
86, 8<

321
86, 9<

4
87, 1<

751
87, 2<

751
87, 3<

751
87, 4<

751
87, 5<

5
87, 6<

751
87, 7<

6
87, 8<

751
87, 9<

6
88, 1<

69
88, 2<

753
88, 3<

15
88, 4<

753
88, 5<

6
88, 6<

753
88, 7<

6
88, 8<

315
88, 9<

1
89, 1<

745
89, 2<

7
89, 3<

748
89, 4<

599
89, 5<

6
89, 6<

2
89, 7<

5
89, 8<

748
89, 9<

2
810, 1<

748
810, 2<

7
810, 3<

748
810, 4<

390
810, 5<

6
810, 6<

7
810, 7<

6
810, 8<

748
810, 9<

1
811, 1<

15
811, 2<

5
811, 3<

62
811, 4<

267
811, 5<

6
811, 6<

12
811, 7<

5
811, 8<

174
811, 9<

3
812, 1<

65
812, 2<

7
812, 3<

29
812, 4<

504
812, 5<

5
812, 6<

7
812, 7<

6
812, 8<

255
812, 9<

3
813, 1<

74
813, 2<

5
813, 3<

66
813, 4<

360
813, 5<

5
813, 6<

8
813, 7<

6
813, 8<

204
813, 9<

2
814, 1<

107
814, 2<

6
814, 3<

98
814, 4<

502
814, 5<

6
814, 6<

5
814, 7<

6
814, 8<

181
814, 9<

1
815, 1<

381
815, 2<

747
815, 3<

381
815, 4<

750
815, 5<

6
815, 6<

750
815, 7<

5
815, 8<

330
815, 9<

1
816, 1<

15
816, 2<

747
816, 3<

62
816, 4<

750
816, 5<

6
816, 6<

750
816, 7<

5
816, 8<

264
816, 9<

3
817, 1<

65
817, 2<

5
817, 3<

29
817, 4<

378
817, 5<

5
817, 6<

8
817, 7<

6
817, 8<

209
817, 9<

2
818, 1<

748
818, 2<

6
818, 3<

748
818, 4<

502
818, 5<

6
818, 6<

5
818, 7<

6
818, 8<

748
818, 9<

Figure 7. Revisit indicators for all threshold-3, length-500 computations.

14 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

81, 1< 81, 2< 81, 3< 81, 4< 81, 5< 81, 6< 81, 7< 81, 8< 81, 9<

82, 1< 82, 2< 82, 3< 82, 4< 82, 5< 82, 6< 82, 7< 82, 8< 82, 9<

83, 1< 83, 2< 83, 3< 83, 4< 83, 5< 83, 6< 83, 7< 83, 8< 83, 9<

84, 1< 84, 2< 84, 3< 84, 4< 84, 5< 84, 6< 84, 7< 84, 8< 84, 9<

85, 1< 85, 2< 85, 3< 85, 4< 85, 5< 85, 6< 85, 7< 85, 8< 85, 9<

86, 1< 86, 2< 86, 3< 86, 4< 86, 5< 86, 6< 86, 7< 86, 8< 86, 9<

87, 1< 87, 2< 87, 3< 87, 4< 87, 5< 87, 6< 87, 7< 87, 8< 87, 9<

88, 1< 88, 2< 88, 3< 88, 4< 88, 5< 88, 6< 88, 7< 88, 8< 88, 9<

89, 1< 89, 2< 89, 3< 89, 4< 89, 5< 89, 6< 89, 7< 89, 8< 89, 9<

810, 1< 810, 2< 810, 3< 810, 4< 810, 5< 810, 6< 810, 7< 810, 8< 810, 9<

811, 1< 811, 2< 811, 3< 811, 4< 811, 5< 811, 6< 811, 7< 811, 8< 811, 9<

812, 1< 812, 2< 812, 3< 812, 4< 812, 5< 812, 6< 812, 7< 812, 8< 812, 9<

813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

814, 1< 814, 2< 814, 3< 814, 4< 814, 5< 814, 6< 814, 7< 814, 8< 814, 9<

815, 1< 815, 2< 815, 3< 815, 4< 815, 5< 815, 6< 815, 7< 815, 8< 815, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 8. Final trinets for all threshold-3, length-500 computations.

Planar Trinet Dynamics with Two Rewrite Rules 15

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

4.1 Constant Revisit Indicator: Periodic Trinet Sequences

The simplest type of computation corresponds to a constant revisit
indicator. An example is the computation c@3, 81, 1<, _D (of unspeci-
fied length), in which, after one step, edge 5 becomes the current edge
forever, and Diags is the only rule applied. In this case, the sequence
of trinets has period 2 and oscillates between the tetrahedron and a
square-like graph with two double edges; the tetrahedron happens to
be the final trinet of the length-500 computation, as shown in the cor-
responding entry of Figure 8. Many similar cases of constant plots,
involving a finite number of distinct current edge identifiers, occur in
this computation class, as well as in subsequent ones; they all corre-
spond to periodic sequences of bounded-size trinets and to graphs
with very few nodes and edges in Figure 8. For example, in the compu-
tation c@3, 82, 3<, _D, the current edge oscillates between 7 and 4, and
the sequence of trinets has period 10 (or period 5, if node identities
are ignored). Note that in this class the node count indicator must
also be a constant function.

4.2 Linear Revisit Indicator: Regular, One-Dimensional, Growing
Trinets

The next simple case, quite common too, is that of revisit indicators
with linear growth. An example is the computation c@3, 81, 2<, _D, in
which the sequence of current edge identifiers gives a regular numeric
sequence where every third natural number is skipped. The correspond-
ing graph is the simplest one-dimensional, ladder-shaped trinet. Four
consecutive trinets from this computation are shown in Figure 9.
Node numbers are shown to help in understanding the growth
mechanism.

Other simple one-dimensional patterns are observed. For example,
the computations c@3, 812, 5<, 60D and c@3, 813, 5<, 130D yield the tri-
nets shown in Figure 10, which grow linearly and regularly: the
details of these structures are lost in the linear thumbnail diagrams of
Figure 8.

In all linear cases shown so far, the growth takes place at one
extreme of the graph. A slightly different growth pattern is achieved
by the computation c@3, 85, 9<, _D, whose revisit indicator is illus-
trated in more detail, with the corresponding one-dimensional trinet,
in Figure 11. In this case the growth takes place in the central part of
the trinet.

The second one-dimensional pattern found in this family of compu-
tations is the circle: four examples are shown in Figure 12. In the last
case, the circle is formed after a relatively large initial transient phase;
the portion of the trinet created in this phase is then permanently aban-
doned, and growth takes place at the extreme of the circle opposite to
it, as suggested by the picture.

16 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

12

35

4

7

6

9

8
11

12
10

12

35

4

7

6

9

8

12

10

11

12

35

4

76

9

8

11

10
13

14
12

12

35

4

7

6

9

8

11

10

14

12

13

Figure 9. Four consecutive trinets from the computation c@3, 81, 2<, _D.
83, 812, 5<, 60<

83, 813, 5<, 130<

Figure 10. One-dimensional final trinets of c@3, 812, 5<, 60D and c@3,
813, 5<, 130D.

50 100 150 200

20

40

60

80

83, 85, 9<, 200<

83, 85, 9<, 200<

HaL HbL
Figure 11. (a) Revisit indicator and (b) final one-dimensional trinet growing
from its center.

Planar Trinet Dynamics with Two Rewrite Rules 17

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

2 4 6 8 10 12

5

10

15

83, 82, 2<, 12< 83, 82, 2<, 12<

10 20 30 40 50 60

10

20

30

40

50

60
83, 83, 5<, 60< 83, 83, 5<, 60<

50 100 150 200 250 300

50

100

150

200
83, 86, 9<, 300< 83, 86, 9<, 300<

50 100 150 200 250 300 350

50

100

150

200

83, 815, 9<, 360<
83, 815, 9<, 360<

HaL HbL
Figure 12. (a) Revisit indicator and (b) final, circular one-dimensional trinet
for four computations.

The simple linear and circular one-dimensional structures appear
combined in c@3, 813, 9<, _D (Figure 13); in this case the active region
is at their junction, and they grow at the same speed, providing a sta-
ble overall shape.

All the revisit diagrams of this group eventually exhibit the same lin-
ear growth; the node count grows linearly with the computation
steps, all parts of the growing trinet are eventually abandoned,
except, possibly, for a finite part, and the trinet is one-dimensional.

18 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

50 100 150 200 250 300

20

40

60

80

100

120

83, 813, 9<, 300<

83, 813, 9<, 300<

HaL HbL
Figure 13. (a) Revisit indicator and (b) final one-dimensional trinet for c@3,
813, 9<, 300D.

4.3 Nested Revisit Indicator: Oscillating, Segment-Circle, and Circle-
Circle One-Dimensional Trinets

Twelve examples of nested revisit indicators are found in Figure 7: six
are in column two and have (RefinCode, DiagsCode) pairs (3, 2),
(8, 2), (12, 2), (13, 2), (14, 2), (17, 2), and six are in column four
with codes (5, 4), (6, 4), (11, 4), (13, 4), (14, 4), (16, 4). The final tri-
nets in Figure 8 fail to reveal the substantial difference between these
computations and those in the previous group, but the revisit indica-
tors are more informative. In particular, these diagrams indicate that
the trinet growth process sweeps an increasingly larger portion of the
net, by actually sampling all parts of it, except for case (3, 2), in
which a slowly growing region is permanently abandoned. Two dis-
tinct types of dynamics emerge from these 12 computations that are
described next.

Segment-circle. The first growth pattern is exhibited by five compu-
tations, with codes (12, 2), (13, 2), (17, 2), (13, 4), (14, 4). We call
this pattern “segment-circle” because the trinet is formed by connect-
ing a linear segment and a circle; this is similar to the trinet shown in
Figure 13, except that both parts now grow and shrink, with opposite
phase, so that the trinet oscillates smoothly between a purely circular
and a purely linear form. Activity always takes place at the junction
between the two structures. As observed in the previous cases, the
microstructure of the segment and the circle is based on a variety of
different, simple building blocks. As an example, Figure 14 illustrates
computation c@3, 814, 4<, 2300D.

Note the similarity between the revisit diagram of Figure 14 and Fig-
ure 6(a). For a better illustration of the dynamics of these trinets, a sub-
sequence of several steps from the computation c@3, H13, 2L, _D is
shown in Figure 15.

Planar Trinet Dynamics with Two Rewrite Rules 19

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

500 1000 1500 2000

50

100

150

200

83, 814, 4<, 2300<

83, 814, 4<, 2300<

Figure 14. Nested computation c@3, 814, 4<, 2300D.

Figure 15. Steps of the computation c@3, 813, 2<, _D, showing circular and
linear components that grow and shrink.

Circle-circle. The second growth pattern is exhibited by seven com-
putations, with codes (3, 2), (8, 2), (14, 2), (5, 4), (6, 4), (11, 4),
(16, 4). We call the pattern “circle-circle” because the trinet is formed
by connecting two circles, that grow and shrink with opposite phase.
Again, the growth always takes place at the junction between the two
structures, and various types of simple building blocks are observed.
Several steps of the computation c@3, H6, 4L, _D are shown in
Figure 16, where the microstructure is the same as in Figure 15.

20 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

Figure 16. A few steps of the computation c@3, 86, 4<, _D showing a growing
and a shrinking circle.

The 12 computations with nested revisit indicators discussed are
also directly identified by inspecting their node count indicators: out
of the 162 threshold-3 elements they are precisely those that exhibit a
regular staircase shape with a sublinear growth. A closer investigation
of these data has revealed the following facts.

The eight computations with RefinCode, DiagsCode pairs (3, 2),
(8, 2), (12, 2), (17, 2), (5, 4), (11, 4), (13, 4), (16, 4) exhibit identical
node growth functions, although they yield trinets of different types:
codes (3, 2), (8, 2), (5, 4), (11, 4), (16, 4) yield the same circle-circle tri-
net, and codes (12, 2), (17, 2), (13, 4) yield the same segment-circle tri-
net. Their node growth function is matched with excellent precision
by the function f HxL = 3 + x , as shown in Figure 17. Recall that the
initial trinet dual indeed has three nodes.

200 400 600 800 1000
Steps

5

10

15

20

25

30

35

Node count

Figure 17. Node growth for eight threshold-3 nested computations and the
function 3 + x .

Of the four remaining nested cases, those with code pairs (13, 2)
and (14, 4) are of the segment-circle type, while (14, 2) and (6, 4) are
of the circle-circle type. All four node growth functions are different,
but they all approximate quite closely the OIn1ë2M growth of the previ-
ous group. Indeed, by using the Mathematica function FindFit over
computations of length 10 000, and by using the parametric function
f HxL = a + b * xc, in all four cases a c exponent in the close proximity
of 1/2 was found.

Planar Trinet Dynamics with Two Rewrite Rules 21

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

Of the four remaining nested cases, those with code pairs (13, 2)
and (14, 4) are of the segment-circle type, while (14, 2) and (6, 4) are
of the circle-circle type. All four node growth functions are different,
but they all approximate quite closely the OIn1ë2M growth of the previ-
ous group. Indeed, by using the Mathematica function FindFit over
computations of length 10 000, and by using the parametric function
f HxL = a + b * xc, in all four cases a c exponent in the close proximity
of 1/2 was found.

4.4 Radial Revisit Indicator: Tree-Like Irregular Trinets

Two computations in class C@Threshold = 3D exhibit revisit indicators
that are slightly perturbed versions of a very regular pattern consist-
ing of potentially infinite straight lines (“rays”) emanating from the
origin: these have code pairs (2, 5) and (11, 5). Their corresponding tri-
nets are tree-like irregular graphs, and the active point on them also
moves quite irregularly, visiting every part infinitely often. The revisit
indicator and final trinet for computation c@3, H2, 5L, 2000D are
shown in Figure 18. We had found a cleaner (i.e., not perturbed) ver-
sion of this radial revisit indicator by using another trinet algorithm,
as described in [2], and find it later in this paper with the present
algorithm.

0 500 1000 1500 2000

500

1000

1500

83, 82, 5<, 2000<
83, 82, 5<, 2000<

Figure 18. An infinite rays revisit indicator and the corresponding tree-like
trinet.

These two cases also illustrate the usefulness of our revisit indica-
tor: the pure node count indicator for them is basically linear, and
would not be as effective as the infinite-radii pattern in discriminating
them from the many other computations with a linear node count.

4.5 Revisit Indicators with Long Random Transients: Complex
Trinets with Highways

By inspecting Figure 7, six computations in class C@Threshold = 3D
exhibit a high degree of apparent randomness in their revisit indica-
tor. They are all in column nine, and have code pairs (3, 9), (8, 9),
(11, 9), (14, 9), (16, 9), (17, 9). In fact, by looking at longer computa-
tions, all of them eventually stabilize to a regular growth pattern,
called a “highway” in analogy with the phenomenon observed in
some two-dimensional Turing machines. (The node count indicators
in all these cases appear as roughly linear, even in the transient phase
preceding the highway.)

22 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

By inspecting Figure 7, six computations in class C@Threshold = 3D
exhibit a high degree of apparent randomness in their revisit indica-

(11, 9), (14, 9), (16, 9), (17, 9). In fact, by looking at longer computa-
tions, all of them eventually stabilize to a regular growth pattern,
called a “highway” in analogy with the phenomenon observed in
some two-dimensional Turing machines. (The node count indicators
in all these cases appear as roughly linear, even in the transient phase
preceding the highway.)

For example, Figure 19 shows the periodic revisit indicator and peri-
odic trinet for the computation c@3, 83, 9<, 2000D.

500 1000 1500 2000

200

400

600

800

83, 83, 9<, 2000<

83, 83, 9<, 2000<

Figure 19. A periodic computation with short transient and long period.

As another example, Figure 20 illustrates the computation
c@3, 811, 9<, 12 000D. More than 8000 steps are necessary for stabiliz-
ing the growth, which settles into what we have called a segment-cir-
cle pattern, with the active part at the junction of the two compo-
nents. In fact, in spite of the possibly very long initial transient and
period, these computations are not qualitatively different from those
with linear revisit indicators discussed at the beginning of this section.

2000 4000 6000 8000 10000 12000

1000

2000

3000

83, 811, 9<, 12000<

83, 811, 9<, 12000<

Figure 20. A computation yielding a trinet which eventually settles to a
segment-circle pattern with linear growth.

Finally, we investigated the computation c@3, 814, 9<, _D. Running
it for 160 000 steps allowed us to detect the periodicity of its revisit
indicator, with a period of over 11 000 steps.

Planar Trinet Dynamics with Two Rewrite Rules 23

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

5. Threshold 4: Nested Trinets and Uniform Randomness

Similar to Section 4, Figure 21 shows the revisit indicator for all 162
computations in class C@Threshold = 4, Length = 500D, and Figure 22
shows the corresponding final trinets.

1499
81, 1<

1499
81, 2<

1499
81, 3<

1499
81, 4<

1499
81, 5<

1499
81, 6<

1499
81, 7<

1499
81, 8<

1499
81, 9<

1498
82, 1<

1498
82, 2<

1498
82, 3<

1498
82, 4<

1498
82, 5<

1498
82, 6<

1498
82, 7<

1498
82, 8<

1498
82, 9<

5
83, 1<

96
83, 2<

503
83, 3<

26
83, 4<

502
83, 5<

9
83, 6<

10
83, 7<

7
83, 8<

560
83, 9<

1500
84, 1<

1500
84, 2<

1500
84, 3<

1500
84, 4<

1500
84, 5<

1500
84, 6<

1500
84, 7<

1500
84, 8<

1500
84, 9<

1499
85, 1<

1499
85, 2<

1499
85, 3<

1499
85, 4<

1499
85, 5<

1499
85, 6<

1499
85, 7<

1499
85, 8<

1499
85, 9<

5
86, 1<

373
86, 2<

753
86, 3<

63
86, 4<

750
86, 5<

8
86, 6<

750
86, 7<

8
86, 8<

504
86, 9<

1498
87, 1<

1498
87, 2<

1498
87, 3<

1498
87, 4<

1498
87, 5<

1498
87, 6<

1498
87, 7<

1498
87, 8<

1498
87, 9<

1500
88, 1<

1500
88, 2<

1500
88, 3<

1500
88, 4<

1500
88, 5<

1500
88, 6<

1500
88, 7<

1500
88, 8<

1500
88, 9<

1
89, 1<

745
89, 2<

502
89, 3<

751
89, 4<

600
89, 5<

9
89, 6<

2
89, 7<

9
89, 8<

745
89, 9<

2
810, 1<

751
810, 2<

13
810, 3<

748
810, 4<

401
810, 5<

7
810, 6<

502
810, 7<

9
810, 8<

748
810, 9<

6
811, 1<

26
811, 2<

11
811, 3<

30
811, 4<

485
811, 5<

14
811, 6<

18
811, 7<

898
811, 8<

329
811, 9<

1495
812, 1<

1495
812, 2<

1495
812, 3<

1495
812, 4<

1495
812, 5<

1495
812, 6<

1495
812, 7<

1495
812, 8<

1495
812, 9<

3
813, 1<

29
813, 2<

8
813, 3<

500
813, 4<

342
813, 5<

8
813, 6<

602
813, 7<

8
813, 8<

360
813, 9<

1497
814, 1<

1497
814, 2<

1497
814, 3<

1497
814, 4<

1497
814, 5<

1497
814, 6<

1497
814, 7<

1497
814, 8<

1497
814, 9<

6
815, 1<

454
815, 2<

996
815, 3<

381
815, 4<

753
815, 5<

752
815, 6<

750
815, 7<

97
815, 8<

753
815, 9<

1
816, 1<

111
816, 2<

747
816, 3<

162
816, 4<

747
816, 5<

9
816, 6<

753
816, 7<

9
816, 8<

375
816, 9<

6
817, 1<

95
817, 2<

6
817, 3<

21
817, 4<

506
817, 5<

10
817, 6<

8
817, 7<

75
817, 8<

351
817, 9<

4
818, 1<

748
818, 2<

4
818, 3<

745
818, 4<

752
818, 5<

753
818, 6<

7
818, 7<

9
818, 8<

751
818, 9<

Figure 21. Revisit indicators for all threshold-4, length-500 computations.

24 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

81, 1< 81, 2< 81, 3< 81, 4< 81, 5< 81, 6< 81, 7< 81, 8< 81, 9<

82, 1< 82, 2< 82, 3< 82, 4< 82, 5< 82, 6< 82, 7< 82, 8< 82, 9<

83, 1< 83, 2< 83, 3< 83, 4< 83, 5< 83, 6< 83, 7< 83, 8< 83, 9<

84, 1< 84, 2< 84, 3< 84, 4< 84, 5< 84, 6< 84, 7< 84, 8< 84, 9<

85, 1< 85, 2< 85, 3< 85, 4< 85, 5< 85, 6< 85, 7< 85, 8< 85, 9<

86, 1< 86, 2< 86, 3< 86, 4< 86, 5< 86, 6< 86, 7< 86, 8< 86, 9<

87, 1< 87, 2< 87, 3< 87, 4< 87, 5< 87, 6< 87, 7< 87, 8< 87, 9<

88, 1< 88, 2< 88, 3< 88, 4< 88, 5< 88, 6< 88, 7< 88, 8< 88, 9<

89, 1< 89, 2< 89, 3< 89, 4< 89, 5< 89, 6< 89, 7< 89, 8< 89, 9<

810, 1< 810, 2< 810, 3< 810, 4< 810, 5< 810, 6< 810, 7< 810, 8< 810, 9<

811, 1< 811, 2< 811, 3< 811, 4< 811, 5< 811, 6< 811, 7< 811, 8< 811, 9<

812, 1< 812, 2< 812, 3< 812, 4< 812, 5< 812, 6< 812, 7< 812, 8< 812, 9<

813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

814, 1< 814, 2< 814, 3< 814, 4< 814, 5< 814, 6< 814, 7< 814, 8< 814, 9<

815, 1< 815, 2< 815, 3< 815, 4< 815, 5< 815, 6< 815, 7< 815, 8< 815, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 22. Final trinets for all threshold-4, length-500 computations.

By inspecting the two figures, it is immediately clear that the large
majority of these computations exhibit emergent features that are qual-
itatively the same as those observed in the previous class. After a brief
overview of these cases, we can move on to the novel, most interest-
ing ones.

Planar Trinet Dynamics with Two Rewrite Rules 25

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

By inspecting the two figures, it is immediately clear that the large
majority of these computations exhibit emergent features that are qual-
itatively the same as those observed in the previous class. After a brief
overview of these cases, we can move on to the novel, most interest-
ing ones.

We still have periodic sequences of bounded trinets, and one-dimen-
sional trinets that grow linearly and without bound, as segments or cir-
cles. Interestingly, among the latter, the computation c@4, 817, 5<, _D
provides a trinet whose uniformly growing structure appears similar
to a circle with its diameter, so that its macrostructure reproduces the
initial trinet: a two-node graph with three double edges. We also find
two computations, namely c@4, 816, 2<, _D and c@4, 817, 2<, _D, with
nested revisit indicators and corresponding trinets that oscillate while
growing, according to the already observed circle-circle pattern. As
observed with Threshold = 3, we find one computation with a noisy,
radial revisit indicator, namely c@4, 811, 5<, _D, which yields an irregu-
lar tree-like trinet, similar to that obtained with the computation
c@3, 811, 5<, _D. Finally, the computations c@4, 811, 9<, 500D,
c@4, 813, 5<, 500D, and c@4, 817, 9<, 500D, whose revisit indicators do
not manifest any regularity in 500 steps, all eventually settle to a one-
dimensional, periodic, unbounded trinet. We are left with three novel
and quite interesting cases that are discussed next.

5.1 c@4, 816, 4, _D: Nested Binary Tree Trinet with a Circular
Boundary

This computation exhibits a cleaner version of the radial revisit indica-
tor, and the trinet now has a regular and nested structure, as shown
in Figure 23. It is formed by a binary tree with a trivalent root, with
the addition of edges interconnecting adjacent leaves in a circle. The
same trinet was also obtained by the algorithm introduced in [2].

50 100 150 200

10

20

30

40

50

60

70
84, 816, 4<, 199<

84, 816, 4<, 199<

Figure 23. Revisit indicator and final trinet of the computation c@4, {16, 4}, 199D.

26 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

5.2 c@4, 83, 2<, _D: Nested Binary Tree with an Oscillating, Circle-
Circle Pattern

The thumbnail for the trinet of this computation, shown in Figure 22,
misleadingly suggests a similarity with the previous computation
c@4, 816, 4<, _D. However, the nested revisit indicator (Figure 21)
reveals rather different dynamics. In fact, the trinet oscillates while
growing and resembles the already discussed circle-circle pattern (see
Figure 16), except that now a nested structure is involved, rather than
a simple circle.

5.3 c@4, 817, 8<, _D: Randomized Square Root Growth

This computation is perhaps the most surprising we have found; the
only similar case is c@5, 89, 8<, _D, to be discussed later. Figure 24
shows the revisit indicator, the final trinet, and the node count as a
function of the algorithm steps for c@4, 817, 8<, 6000D. Recall that we
count the number of nodes in the trinet dual, corresponding to the
number of faces in the original trinet. This function is then matched

against the function f HstepsL = 3 + 2 * steps , which also exactly char-
acterizes the regular, circular grow-and-revisit algorithm introduced
in Section 3. Statistically, the growth process is such that, between
two new trinet face creations, a number of revisits is performed that
equals the current number of faces. Figure 25 shows similar data for a
computation of length 100 000.

The ability of this computation to revisit its past uniformly,
densely, and indefinitely, while exhibiting random-like dynamics, is
indeed quite remarkable.

Planar Trinet Dynamics with Two Rewrite Rules 27

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

1000 2000 3000 4000 5000 6000

50

100

150

200

250

300

84, 817, 8<, 6000<
84, 817, 8<, 6000<

HaL HbL

1000 2000 3000 4000 5000 6000

20

40

60

80

100

node count HdualL vs.

3 + Sqrt@2*stepsD

HcL
Figure 24. (a) Revisit indicator, (b) final trinet, and (c) node growth for
c@4, 817, 8<, 6000D.

20000 40000 60000 80000 100000

200

400

600

800

1000

1200

1400
84, 817, 8<, 100000<

84, 817, 8<, 100000<

HaL HbL

20000 40000 60000 80000 100000

100

200

300

400

node count HdualL vs.

3 + Sqrt@2*stepsD

HcL
Figure 25. (a) Revisit indicator, (b) final trinet, and (c) node growth for
c@4, 817, 8<, 100 000D.

28 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

6. Threshold 5: Second Case of Uniform Randomness

Most of what emerges in this class has been observed before. For any
value of RefinCode in the range @1, 8D, and for values 12 and 14, the
computation is independent from the value of DiagsCode and yields a
linear or circular, one-dimensional trinet. All other cases are illus-
trated in Figures 26 and 27.

1
89, 1<

742
89, 2<

751
89, 3<

751
89, 4<

602
89, 5<

752
89, 6<

2
89, 7<

121
89, 8<

748
89, 9<

751
810, 1<

754
810, 2<

505
810, 3<

748
810, 4<

602
810, 5<

568
810, 6<

754
810, 7<

756
810, 8<

751
810, 9<

750
811, 1<

750
811, 2<

750
811, 3<

750
811, 4<

750
811, 5<

750
811, 6<

750
811, 7<

750
811, 8<

750
811, 9<

743
813, 1<

755
813, 2<

752
813, 3<

500
813, 4<

393
813, 5<

751
813, 6<

755
813, 7<

754
813, 8<

752
813, 9<

750
815, 1<

750
815, 2<

750
815, 3<

750
815, 4<

750
815, 5<

750
815, 6<

750
815, 7<

750
815, 8<

750
815, 9<

1
816, 1<

753
816, 2<

744
816, 3<

223
816, 4<

750
816, 5<

507
816, 6<

753
816, 7<

752
816, 8<

379
816, 9<

9
817, 1<

230
817, 2<

741
817, 3<

235
817, 4<

524
817, 5<

384
817, 6<

12
817, 7<

242
817, 8<

508
817, 9<

12
818, 1<

748
818, 2<

494
818, 3<

748
818, 4<

1001
818, 5<

756
818, 6<

27
818, 7<

435
818, 8<

751
818, 9<

Figure 26. Revisit indicators for all threshold-5, length-500 computations.

89, 1< 89, 2< 89, 3< 89, 4< 89, 5< 89, 6< 89, 7< 89, 8< 89, 9<

810, 1< 810, 2< 810, 3< 810, 4< 810, 5< 810, 6< 810, 7< 810, 8< 810, 9<

811, 1< 811, 2< 811, 3< 811, 4< 811, 5< 811, 6< 811, 7< 811, 8< 811, 9<

813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

815, 1< 815, 2< 815, 3< 815, 4< 815, 5< 815, 6< 815, 7< 815, 8< 815, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 27. Final trinets for all threshold-5, length-500 computations.

RefinCodes 11 and 15, again regardless of the DiagsCode, yield
plain, linear revisit indicators, but the corresponding trinets are now
nested, a combination that was not observed in previous classes. The
same trinet structure can therefore be obtained by different revisit poli-
cies, and, correspondingly, in a different number of steps. Figure 28
shows three different computations with different revisit indicators
that produce the same trinet in, respectively, 22, 22, and 85 steps.
Nodes have been labeled to show the different orders in which the
graphs were created.

Planar Trinet Dynamics with Two Rewrite Rules 29

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

RefinCodes 11 and 15, again regardless of the DiagsCode, yield
plain, linear revisit indicators, but the corresponding trinets are now
nested, a combination that was not observed in previous classes. The
same trinet structure can therefore be obtained by different revisit poli-
cies, and, correspondingly, in a different number of steps. Figure 28
shows three different computations with different revisit indicators
that produce the same trinet in, respectively, 22, 22, and 85 steps.
Nodes have been labeled to show the different orders in which the
graphs were created.

5 10 15 20

5

10

15

20

25

30

35

85, 811, 1<, 23<

1

2

13

45

21

25

4

33 37

3

6

1519

5

8
27

31

7 10

39

43
9

14
12

16

1120

18
22

17

26

24

28

23

3230
34

29 38

36
4035

44

42

46

41

85, 811, 1<, 23<

5 10 15 20

5

10

15

20

25

30

35
85, 815, 1<, 23<

1

2

22

24

1246

3

34

36

4

5
16

18

6

7

2830

8

9

40

42
10

11
13

15
14

1719

2120

23
25

27
2629

31
33
32

3537

3938

41
43

45
44

85, 815, 1<, 23<

20 40 60 80

5

10

15

20

25

30

35
84, 816, 4<, 86<

33

41

11 13

1

43

17

26

28

32

46

4

6

9

16

19

21
24

31

3537

4045

2

3 5

8

7

10
12

15
14 18

20
23

22

2527

30

29

34
36

39
3842

44

84, 816, 4<, 86<

Figure 28. Three computations that yield the same trinet.

No nested revisit indicator of the types seen before (e.g., that of
computation c@3, 83, 2<, _D or c@3, 85, 4<, _D) is found in this class.
But we do find an unperturbed radial revisit indicator for
c@5, 816, 4<, _D which corresponds to a nested trinet.

A peculiar tree-like trinet is obtained for c@5, 817, 2<, _D; the
revisit indicator and the trinet are shown in Figure 29. (In this case
the sublinear, node growth function for the dual graph is approxi-
mated by f HstepsL = 5.31 + 1.57 * steps0.65.)

30 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

A peculiar tree-like trinet is obtained for c@5, 817, 2<, _D; the
revisit indicator and the trinet are shown in Figure 29. (In this case
the sublinear, node growth function for the dual graph is approxi-
mated by f HstepsL = 5.31 + 1.57 * steps0.65.)

500 1000 1500 2000

100

200

300

400

500

600
85, 817, 2<, 2000< 85, 817, 2<, 2000<

HaL HbL
Figure 29. (a) Revisit indicator and (b) final trinet of c@5, 817, 2<, 2000D.

As observed for Threshold = 4 computations, all six revisit indica-
tor thumbnails that appear as random in Figure 26, corresponding to
code pairs (13, 5), (17, 4), (17, 6), (17, 8), (17, 9), (18, 8), end up set-
tling into a regular behavior. But case (17, 8) is the only one for
which the revisit indicator stabilizes to a square root growth pattern.
The last, most interesting case, is discussed next.

6.1 c@5, 89, 8<, _D: Second Case of Randomized Square Root Growth

This is the only other example, similar to case c@4, 817, 8<, _D, of a
computation which exhibits a dense, random but uniform revisit indi-
cator, with node growth well approximated by a square root func-
tion. Figures 30 and 31 show the revisit indicator, the final trinet, and
the node growth function, with approximating functions for computa-
tions of lengths 6000 and 100 000, respectively.

Planar Trinet Dynamics with Two Rewrite Rules 31

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

1000 2000 3000 4000 5000 6000

100

200

300

400
85, 89, 8<, 6000<

85, 89, 8<, 6000<

HaL HbL

1000 2000 3000 4000 5000 6000

20

40

60

80

100

120

140

node count HdualL vs.

3 + 1.75*Sqrt@stepsD

HcL
Figure 30. (a) Revisit indicator, (b) final trinet, and (c) node growth for
c@5, 89, 8<, 6000D.

20000 40000 60000 80000 100000

200

400

600

800

1000

1200

1400

85, 89, 8<, 100000<
85, 89, 8<, 100000<

HaL HbL

20000 40000 60000 80000 100000

100

200

300

400

500

node count HdualL vs.

17 + 1.5*Sqrt@stepsD

HcL
Figure 31. (a) Revisit indicator, (b) final trinet, and (c) node growth for
c@5, 89, 8<, 100 000D.

32 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

7. Threshold 6: Regular and Irregular Two-Dimensional Grids

For Threshold = 6 and higher, the computations for RefinCode values
in range @1, 8D, and values 11, 12, 14, and 15, appear exactly the
same as those obtained for Threshold = 5, and are (individually) inde-
pendent from DiagsCode values. The six interesting values left for
RefinCode are illustrated in Figures 32 and 33.

1
89, 1<

742
89, 2<

997
89, 3<

997
89, 4<

994
89, 5<

998
89, 6<

2
89, 7<

643
89, 8<

745
89, 9<

999
810, 1<

808
810, 2<

753
810, 3<

748
810, 4<

672
810, 5<

758
810, 6<

1003
810, 7<

759
810, 8<

751
810, 9<

749
813, 1<

1004
813, 2<

464
813, 3<

521
813, 4<

752
813, 5<

743
813, 6<

758
813, 7<

1001
813, 8<

526
813, 9<

1
816, 1<

999
816, 2<

994
816, 3<

994
816, 4<

744
816, 5<

995
816, 6<

999
816, 7<

998
816, 8<

752
816, 9<

991
817, 1<

865
817, 2<

46
817, 3<

650
817, 4<

683
817, 5<

1001
817, 6<

17
817, 7<

918
817, 8<

728
817, 9<

33
818, 1<

748
818, 2<

1002
818, 3<

766
818, 4<

1195
818, 5<

762
818, 6<

508
818, 7<

792
818, 8<

763
818, 9<

Figure 32. Revisit indicators for all threshold-6, length-500 computations with
RefinCodes 9 through 18.

89, 1< 89, 2< 89, 3< 89, 4< 89, 5< 89, 6< 89, 7< 89, 8< 89, 9<

810, 1< 810, 2< 810, 3< 810, 4< 810, 5< 810, 6< 810, 7< 810, 8< 810, 9<

813, 1< 813, 2< 813, 3< 813, 4< 813, 5< 813, 6< 813, 7< 813, 8< 813, 9<

816, 1< 816, 2< 816, 3< 816, 4< 816, 5< 816, 6< 816, 7< 816, 8< 816, 9<

817, 1< 817, 2< 817, 3< 817, 4< 817, 5< 817, 6< 817, 7< 817, 8< 817, 9<

818, 1< 818, 2< 818, 3< 818, 4< 818, 5< 818, 6< 818, 7< 818, 8< 818, 9<

Figure 33. Final trinets for all threshold-6, length-500 computations with
RefinCodes 9 through 18.

Most of the computations in C@Threshold = 6D exhibit the already
discussed emergent features. For example, computations
c@6, 89, 8<, _D, c@6, 810, 5<, _D, c@6, 813, 4<, _D, c@6, 817, 2<, _D, and
c@6, 818, 8<, _D, with irregular thumbnails, all end up settling into reg-
ular behavior, possibly with long initial transients. For example,
c@6, 89, 8<, _D takes about 35 000 steps to stabilize.

Planar Trinet Dynamics with Two Rewrite Rules 33

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

Most of the computations in C@Threshold = 6D exhibit the already
discussed emergent features. For example, computations
c@6, 89, 8<, _D, c@6, 810, 5<, _D, c@6, 813, 4<, _D, c@6, 817, 2<, _D, and
c@6, 818, 8<, _D, with irregular thumbnails, all end up settling into reg-
ular behavior, possibly with long initial transients. For example,
c@6, 89, 8<, _D takes about 35 000 steps to stabilize.

However, three novel cases are observed that produce, for the first
time in our investigation, two-dimensional trinets. They deserve spe-
cial attention.

7.1 c@6, 810, 2<, _D: Hexagonal Grid with Three Central Pentagons

The trinet produced by this computation is a two-dimensional, hexago-
nal grid that develops around a nucleus of three pentagons, as shown
in Figure 34. The active point is always at the border of the graph.
The fact that this border grows with the graph itself explains the pecu-
liar shape of the revisit indicator, with three slightly divergent radii,
and a growing part of the net being eventually abandoned.

50 100 150 200

50

100

150

200

250

300

86, 810, 2<, 200< 86, 810, 2<, 200<

HaL HbL

50 100 150 200

20

40

60

80

100

120
node count HdualL

HcL
Figure 34. (a) Revisit indicator, (b) hexagonal grid, and (c) dual node count
for c@6, H10, 2L, 200D.

For comparison with the two other two-dimensional trinet computa-
tions, it is useful to analyze the distribution of polygon sizes. For the
computation c@6, H10, 2L, 3000D, the following distribution is
observed in the final trinet:

(10)883, 3<, 84, 1<, 85, 93<, 86, 1453<, 898, 1<<,
where 8x, y< indicates that there are y faces with x edges. Note the pres-
ence of a large external face with 98 sides.

34 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

7.2 c@6, 813, 3<, _D: Irregular Trinet Based on a Hexagonal Grid

Unlike the case in Section 7.1, the trinet produced by this computa-
tion exhibits an intrinsically asymmetric structure, as shown in
Figure 35. The distribution of face sizes for a computation of length
3000 is:

(11)
883, 6<, 84, 1<, 85, 24<,

86, 979<, 87, 7<, 88, 7<, 89, 2<, 811, 1<<.
It is clear that the largest part of the graph is a hexagonal grid,

with 979 hexagons, but some larger faces are also present. Interest-
ingly, a large external face is now missing, and this is not surprising if
we consider the complex revisit indicator, which reveals randomness
and fairness in revisiting all parts of the growing net, although traces
of regularity and symmetry are also visible. Note that the trinet is
drawn as two superimposed layers of roughly the same number of
faces.

500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

86, 813, 3<, 3000<
86, 813, 3<, 3000<

HaL HbL

500 1000 1500 2000 2500 3000

200

400

600

800

1000

node count HdualL

HcL
Figure 35. (a) Revisit indicator, (b) hexagonal grid, and (c) dual node count
for c@6, H13, 3L, 3000D.

7.3 c@6, 818, 9<, _D: Hexagonal Grid with One Central Pentagon

The trinet produced by this computation is a two-dimensional hexago-
nal grid that develops around one pentagon (Figure 36). The distribu-
tion of face sizes for a 3000 step computation is:

(12)883, 73<, 85, 51<, 86, 1404<, 87, 70<, 8194, 1<<.

Planar Trinet Dynamics with Two Rewrite Rules 35

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

A large, external face is again present. The active point is always at
the border of the graph, and the growth process is similar to that of
the earlier computation c@6, H10, 2L, _D.

50 100 150 200

50

100

150

200

250

300

86, 818, 9<, 200< 86, 818, 9<, 200<

HaL HbL

50 100 150 200

20

40

60

80

100

120

node count HdualL

HcL
Figure 36. (a) Revisit indicator, (b) hexagonal grid, and (c) dual node count
for c@6, H18, 9L, 200D.

8. Thresholds 7, 8, and 9: Further Regular Two-Dimensional Grids

Class C@Threshold = 7D presents further types of nested trinets, both
with linear (e.g., c@7, H9, 9L, _D) and with radial (e.g.,
c@7, H10, 2L, _D) revisit indicators, and two more cases of two-dimen-
sional regular grids: c@7, 89, 2<, _D, which gives a pure hexagonal
grid, and c@7, 818, 9<, _D, which gives a hexagonal grid with one cen-
tral septagon. Both are illustrated in Figure 37.

No other two-dimensional regular trinet is found for Threshold val-
ues 8 and 9, while nested trinets are still present.

36 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

50 100 150 200

50

100

150

200

250
87, 89, 2<, 200< 87, 89, 2<, 200<

50 100 150 200

50

100

150

200

250

300

87, 818, 9<, 200< 87, 818, 9<, 200<

HaL HbL
Figure 37. (a) Revisit indicators and (b) hexagonal grids produced by
c@7, H9, 2L, 200D and c@7, H18, 9L, 200D.

9. Infinite Threshold

The case Threshold = ¶ is interesting because the algorithm is forced
to always apply the Refin rule. The resulting computations are illus-
trated in Figures 38 and 39, where “*” stands for any value of Diags-
Code~a value that the algorithm never uses.

1499
81, *<

1498
82, *<

1496
83, *<

1500
84, *<

1499
85, *<

1496
86, *<

1498
87, *<

1500
88, *<

1
89, *<

748
810, *<

750
811, *<

1495
812, *<

750
813, *<

1497
814, *<

750
815, *<

1
816, *<

750
817, *<

748
818, *<

Figure 38. Revisit indicators for all computations with Threshold = ¶ and
RefinCodes 1 through 18, of length 500.

Planar Trinet Dynamics with Two Rewrite Rules 37

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

81, *< 82, *< 83, *< 84, *< 85, *< 86, *<

87, *< 88, *< 89, *< 810, *< 811, *< 812, *<

813, *< 814, *< 815, *< 816, *< 817, *< 818, *<

Figure 39. Final trinets for all computations of length 64, with Threshold = ¶
and RefinCodes 1 through 18.

Note that the trinets refer, in Figure 39, to computations of length
64 only; they evenly split into six linear, six circular, and six nested
graphs. The regular, radial revisit indicator of c@¶, 810, 1<, _D is such
that each edge (with identifier) in the set

(13)81, 2< ‹ 83 k + 1 » k = 1, 2, …<
appears infinitely often in the diagram, although at an exponentially
decreasing rate. More precisely, denoting by s@e, nD the step (number)
at which edge e is the current edge for the nth time, the following
holds for all visited edges as identified earlier:

(14)s@e, nD = 2 s@e, n - 1D + 1 Hn > 1L
where s@1, 1D = 1, s@2, 1D = 2, and s@3 k + 1, 1D = 2 Hk + 1L,
k = 1, 2, …. The arithmetic progression of initial edge occurrences,
combined with the geometric progression of subsequent appearances
of individual edges, determines the characteristic pattern of virtually
infinite radii emanating from the origin.

10. Conclusions

In this paper we introduced an original algorithm for the creation of
dynamic planar trivalent networks (trinets), and have exhaustively
explored all the classes of its computations corresponding to values in
the range 3 through 9, and to infinity, of a Threshold parameter. A
number of quite interesting phenomena have emerged, although it is
still unclear whether considering finite values beyond Threshold = 9
could yield qualitatively new features. Among the expected results we
found plenty of computations that yield periodic sequences of
bounded trinets, as well as sequences of one-dimensional trinets that
grow without bound, where stabilization to regular, linear growth
may occur after very long transient phases characterized by pseudoran-
dom dynamics.

38 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

In this paper we introduced an original algorithm for the creation of
dynamic planar trivalent networks (trinets), and have exhaustively
explored all the classes of its computations corresponding to values in
the range 3 through 9, and to infinity, of a Threshold parameter. A
number of quite interesting phenomena have emerged, although it is
still unclear whether considering finite values beyond Threshold = 9
could yield qualitatively new features. Among the expected results we
found plenty of computations that yield periodic sequences of
bounded trinets, as well as sequences of one-dimensional trinets that

 without bound, where stabilization to
may occur after very long transient phases characterized by pseudoran-
dom dynamics.

More interestingly, we have found complex but still regular
(nested) computations, with trinets that grow while oscillating
between linear and ring structures based on simple building blocks,
and computations that produce two-dimensional trinets based on the
hexagonal grid. All of the latter exhibit a rather regular, roughly circu-
lar shape, and a regular growth pattern; but the computation
c@6, 813, 3<, _D is an exception and yields a smoothly growing trinet
with an irregular shape, no especially large “external” face, and irregu-
lar motion of the control point.

But in our opinion the most interesting computations are
c@4, 817, 8<, _D and c@5, 89, 8<, _D. Their revisit indicators reveal a
surprising ability to densely and fairly revisit the past, while exhibit-
ing pseudorandom dynamics. Graph size, as a function of the number

of algorithmic steps, grows as OJ steps N. It is likely that this combi-

nation of randomness and fairness, guaranteed by an extremely sim-
ple algorithm that operates on a purely local basis, could find some
useful application, still to be investigated.

In the introduction we listed the differences between our algorithm
and the techniques proposed in [1] for animating trivalent networks.
Our previous proposal for trinet computation [2] was different from
the one presented here in the following aspects.

† We used only the Refin rule (this can now be obtained as a special case
by setting Threshold = ¶).

† We used a rather different rule for driving the control point, based on
rotations by a constant number of steps around the current node of the
dual graph.

† We did not convert duals into primal form. In spite of the conceptual
equivalence between the two forms, looking at the original trinet has
been practically more helpful for spotting patterns such as oscillating
rings.

A Demonstration of the algorithm described in this paper is avail-
able at the Wolfram Demonstrations Project site [4].

Much more remains to be done.

† Loop edges. Ways for handling trinets with loop edges should be
investigated. This may lead to considering new forms of degenerate
triangles, and perhaps even to difficulties in keeping simple geometric
interpretations of the manipulated data structures. In fact, interesting
developments might derive from relaxing or abandoning those interpre-
tations, and concentrating just on abstract data structures and opera-
tions. This may also help expose possible bridges with other simple
computational systems.

† Dimensionality. We have found many trinets for which the attribution
of dimensionality 1 or 2 is obvious, but what about all of the other
graphs? In the rather uninteresting cases of tree-like trinets, nodes grow
exponentially with the distance from a given reference node. The
identification of a dimensionality for the finite, irregular subtrinets
corresponding to the initial phase of eventually periodic computations
is not of much interest. But what about the irregular trinets of the two
computations c@4, 817, 8<, _D and c@5, 89, 8<, _D with random revisit
indicators? A difficulty here derives from their slow, square-root node
growth: in both cases, 100 000 step computations yield trinets with less
than 1000 nodes, and, due to this limitation, the analysis of internode
distances has not led to clear results. Finally, one might perhaps
associate different dimensionalities to the same trinet, depending on the
observation scale, since some trinets may exhibit different structures at
different levels. This would perhaps offer some bridge toward physical
theories that envisage a multidimensional space~notably string
theory~with a distinction between extended and compacted dimen-
sions. More generally, it seems desirable to investigate possible connec-
tions between trinet mobile automata computations and some of the
quantum gravity theories proposed by physicists in the past few
decades. A wide-spanning bibliographical review of theories concerned
with the small scale structure of spacetime is found in [5].

Planar Trinet Dynamics with Two Rewrite Rules 39

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

†

Dimensionality. We have found many trinets for which the attribution
of dimensionality 1 or 2 is obvious, but what about all of the other
graphs? In the rather uninteresting cases of tree-like trinets, nodes grow
exponentially with the distance from a given reference node. The
identification of a dimensionality for the finite, irregular subtrinets
corresponding to the initial phase of eventually periodic computations
is not of much interest. But what about the irregular trinets of the two
computations c@4, 817, 8<, _D and c@5, 89, 8<, _D with random revisit
indicators? A difficulty here derives from their slow, square-root node
growth: in both cases, 100 000 step computations yield trinets with less
than 1000 nodes, and, due to this limitation, the analysis of internode
distances has not led to clear results. Finally, one might perhaps
associate different dimensionalities to the same trinet, depending on the
observation scale, since some trinets may exhibit different structures at
different levels. This would perhaps offer some bridge toward physical
theories that envisage a multidimensional space~notably string
theory~with a distinction between extended and compacted dimen-
sions. More generally, it seems desirable to investigate possible connec-
tions between trinet mobile automata computations and some of the
quantum gravity theories proposed by physicists in the past few
decades. A wide-spanning bibliographical review of theories concerned
with the small scale structure of spacetime is found in [5].

† Relativistic, subjective views. A research track that we consider of
highest priority is concerned with the introduction of a relativistic view
of trinet computations, based on suitable notions of a spacetime/causal
network. The trinet diagrams we have shown in this paper, if at all
relevant to the understanding of real physical phenomena, would only
represent an external view of a dynamic physical space (a sort of
“God’s eye” view), while the spatial evolution perceived by an internal
observer, one who is himself part of the universe, would be mediated by
the causal relations between observation events. It is quite straightfor-
ward to define a causal network for the rewrite events of our algorithm,
along the lines discussed in [1], chapter 9. Then, taking the point of
view of a trinet face f , we could define discrete time, relative to f , in
terms of the sequence of updatings of f , based on the assumption that a
face, regarded as the smallest perceptive unit, does not experience
anything, thus no progress of time, between two consecutive updates of
f . Based on this notion of time, and taking into account the complete
causal network of updating events, the idea would be to create a
sequence of suitably defined “pictures” of the universe as perceived by
f at successive instants of its time. This sequence would represent the
correct, internal view of the produced dynamic space, and the one to be
appropriately compared with physical reality as we perceive it. We are
particularly interested in applying this analysis to the computations
c@4, 817, 8<, _D and c@5, 89, 8<, _D, whose randomness and fairness
might prove essential for guaranteeing the equivalence of all possible
observers.

Acknowledgment

We express our gratitude to Marco Tarini, at the Institute of Informa-
tion Science and Technologies “A. Faedo”, for several discussions on
trivalent network representation.

40 T. Bolognesi

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

References

[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[2] T. Bolognesi, “Planar Trivalent Network Computation,” in Proceedings
of Machines, Computations and Universality (MCU'07), Orléans,
France (J. O. Durand-Lose and M. Margenstern, eds.), Lecture Notes in
Computer Science, 4664, Berlin/Heidelberg: Springer, 2007 pp. 146|157.
www.informatik.uni-trier.de/~ley/db/conf/mcu/mcu2007.html.

[3] T. Bolognesi, “Planar Trinet Dynamics with Two Rewrite Rules,”
Technical Report ISTI-015/2007, Pisa, Italy: Consiglio Nazionale delle
Richerche (CNR), Instituto ISTI, 2007.
www.cnr.it/istituti/Istituto_Rapporti.html?cds=074&id=7263.

[4] T. Bolognesi. “Planar Trivalent Network Growth Using Two Rewrite
Rules” from The Wolfram Demonstrations Project.
demonstrations.wolfram.com/
PlanarTrivalentNetworkGrowthUsingTwoRewriteRules.

[5] P. E. Gibbs. “The Small Scale Structure of Space-Time: A Bibliographi-
cal Review.” (Jan 26, 1996) arxiv.org/abs/hep-th/9506171v2.

Planar Trinet Dynamics with Two Rewrite Rules 41

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.1

