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Two-dimensional  reversible  cellular  automata  constructions  may  have
utility for modeling problems that entail inherently reversible processes,
such  as  optical  propagation.  This  paper  speculates  on  the  potential  of
methods  articulated  in  A  New  Kind  of  Science  [1]  for  addressing
inverse  problems  in  optical  scatterometry,  and  then  describes  prelimi-
nary work for two-dimensional reversible cellular automaton schemes. 

1. Introduction

1.1 The Model Problem: Statement

This study was first motivated by a conversation with a consultant to
the  integrated  circuit  industry.  Integrated  circuit  wafers  are  optically
scanned at several key steps in the production line. If any light-inten-
sity inconsistencies are detected, the line is halted so that a technician
may  manually  inspect  the  wafer  under  a  scanning  tunnelling  micro-
scope  (STM).  “It  is  too  bad  you  cannot  get  more  information  from
the optical-array detectors,” he said, “because it would really be great
to  reduce  the  number,  and  frequency,  of  the  dreaded  trips  to  the
STM.”

In  this  type  of  optical  metrology  procedure  there  are  no  imaging
optics used for the measurements of scattered incident light. Pertinent
surface  information  must  be  reconstructed  solely  from  optical-inten-
sity measurements in the far-field.

This  is  an  important  practical  problem  because  technologies  such
as nanofabrication and integrated circuit manufacturing utilize optical
metrology for noninvasive surface-topography assessments. 

1.2 The Model Problem: Why It Is Interesting

The appeal of the problem presented is there are the two fundamental
basic  science  problems  conjoined  in  this  otherwise  practical  applica-
tion: 
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1. electromagnetic scatter from wavelength-scale features, and 

2. the inverse problem in optical metrology. 

Each of these basic science problems has proved largely intractable
with  conventional  mathematical  approaches  for  reasons  we will  now
consider in turn. 

Figure 1. Model problem schematic. 

1.2.1 Electromagnetic Scatter from Wavelength-Scale Features

In  nanoscale  optical  metrology,  the  corresponding  direct  problem  is
the  capability  to  predict  (far-field)  light-intensity  measurements
(obtained  with  macroscopic  instrumentation)  due  to  electromagnetic
scatter from OHlL features. The many orders of magnitude scale varia-
tions  of  this  problem  preclude  conventional  direct  numerical  simula-
tion,  even  when  using  sophisticated  techniques  such  as  telescoping
meshes.  Thus,  this  nanoscale  optical  scattering  problem  is  an  open
and quite interesting problem in engineering physics. 

1.2.2 Inverse Problem in Optical Metrology

A second computational difficulty of optical metrology is that it is fun-
damentally  an  inverse  problem.  Inverse  problems  arise  whenever  a
system’s  condition  is  to  be  inferred  from indirect  measurements,  and
the conventional  explanation for their  numerical difficulty is  that the
data is insufficient to uniquely define the state, leading to a formal mul- 
tiplicity  of  solutions  and  the  inability  to  find  any  solution.  Further-
more, lacking a formally complete set  of boundary conditions (data),
the  solution  exhibits  exaggerated  measurement-error  sensitivity  to
whatever data is available. 

In  describing  inverse  problem  difficulties,  most  authors  focus  on
the  quantification  difficulty  of  the  data  (e.g.,  inherent  error,  insuffi-
cient  data  for  a  unique  solution).  Less  frequently  discussed,  but
equally  important,  is  the  quantification  difficulty  of  the  “answer”
because, for most inverse problems, the objective is a qualitative assess-
ment.  Inverse  problem data  is  generally  taken  to  determine  the  pres-
ence  or  absence  of  a  certain  constitutive  feature,  like  “Is  there  a
crack?”  or  “Is  there  a  pressure  spike?”  The  engineer  taking  indirect 

characterize the system, and this is not the goal. For example, acous-
tic measurements on a pipe joint are taken to establish whether or not
there  is  a  crack,  not  to  determine  the  physiognomy  of  the  crack
should there be one. However, at present (using, say, a finite element
code)  one  must  obtain  the  full  unique  solution~crack  detail,  joint
geometry,  everything~to  get  any  solution.  Conventional  computa-
tional  methods  invariably  require  full-blown  quantitative  detail  to
obtain what is ultimately a qualitative (but often numerically unreach-
able) answer. 
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In  describing  inverse  problem  difficulties,  most  authors  focus  on
the  quantification  difficulty  of  the  data  (e.g.,  inherent  error,  insuffi-
cient  data  for  a  unique  solution).  Less  frequently  discussed,  but
equally  important,  is  the  quantification  difficulty  of  the  “answer”
because, for most inverse problems, the objective is a qualitative assess-
ment.  Inverse  problem data  is  generally  taken  to  determine  the  pres-
ence  or  absence  of  a  certain  constitutive  feature,  like  “Is  there  a
crack?”  or  “Is  there
measurements  knows  that  there  is  not  enough  information  to  fully
characterize the system, and this is not the goal. For example, acous-
tic measurements on a pipe joint are taken to establish whether or not
there  is  a  crack,  not  to  determine  the  physiognomy  of  the  crack
should there be one. However, at present (using, say, a finite element
code)  one  must  obtain  the  full  unique  solution~crack  detail,  joint
geometry,  everything~to  get  any  solution.  Conventional  computa-
tional  methods  invariably  require  full-blown  quantitative  detail  to
obtain what is ultimately a qualitative (but often numerically unreach-
able) answer. 

In summary, inverse problems resist numerical solution, even when
the underlying science is deterministic, because: (i) their data is quanti-
tatively incomplete, and (ii) the desired solution is usually a fundamen-
tally qualitative determination. 

1.3 The Model Problem: Why Use Two-Dimensional Reversible 
Cellular Automata?

In this optical metrology application, light is scattered (and measured)
principally in a plane. Since the optical metrology model should natu-
rally represent both two-dimensional propagation and irregular bound- 
aries,  it  seems  plausible  that  two-dimensional  cellular  automata
would  offer  this  capability.  Consequently,  two-dimensional  cellular
automata  seem  the  natural  choice  among  the  several  candidate  NKS
modeling arrangements.  Less evident, perhaps, is the author’s conjec-
ture  that  reversible  two-dimensional  cellular  automata  evolutions  are
especially suited to this problem. 

While  general  conceptual  frameworks  for  physical  science  models
in NKS do not yet exist, a possible stratagem is to regard the cellular
automata model as if it were an infinitely adjustable analog computer,
with fine-tuning imposed through rule specifications. Requiring the cel-
lular  automata  evolutions  to  be  effectively  time-reversible  may  result
in  a  more  natural  representation  of  electromagnetic  propagation.
(Were  one  modeling  two-dimensional  diffusion,  for  example,  revers-
ible cellular automata might not be indicated.) 

We  now  consider  the  author’s  preliminary  work  in  two-dimen-
sional reversible cellular automata. 

2. Two-Dimensional Reversible Cellular Automata

2.1 Introductory Comments

In cellular automaton methodology, a rule is deemed “reversible” if it
is possible to construct an “inverse rule” so that one may compute for-
ward~or backward~from one state to any other state of the system,
regardless  of  the  particular  configuration.  The  inherent  information
conservation  [2]  of  such  cellular  automaton  transformations  have
made reversible rules of particular interest in the modeling of physics
[3].  For  one-dimensional  cellular  automata  a  tiny  subset  of  nearest-
neighbor  transformation  rules  can  be  shown  to  have  inverse  rules,
and  this  “reversible-rule”  space  has  received  a  fair  amount  of  study
[4]. However, for two-dimensional  cellular automata it turns out that
the  invertibility  of  any  nearest-neighbor  transform  rule  is  formally
undecidable [5].
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In cellular automaton methodology, a rule is deemed “reversible” if it
is possible to construct an “inverse rule” so that one may compute for-
ward~or backward~from one state to any other state of the system,
regardless  of  the  particular  configuration.  The  inherent  information

 automaton  transformations  have
made reversible rules of particular interest in the modeling of physics
[3].  For  one-dimensional  cellular  automata  a  tiny  subset  of  nearest-
neighbor  transformation  rules  can  be  shown  to  have  inverse  rules,
and  this  “reversible-rule”  space  has  received  a  fair  amount  of  study
[4]. However, for two-dimensional  cellular automata it turns out that
the  invertibility  of  any  nearest-neighbor  transform  rule  is  formally
undecidable [5].

Nevertheless,  instead  of  using  a  single  rule,  there  are  alternative
composed  constructions  for  reversible  cellular  automaton  algorithms
in  two  dimensions:  the  second-order  Fredkin  method,  and  the  Mar-
golus-neighborhood block-transform method. We now consider these
formulations in turn. 

2.2 Fredkin Second-Order Method

This second-order method for constructing reversible cellular automa-
ton  algorithms  is  attributed  to  Edward  Fredkin  [3].  Say  that
A-, A, A+  denote the states of an overall cell assemblage in the prior,
current,  and  next  steps,  respectively.  The  conventional  means  to
obtain  A+  from  A  using  rule  “ruleXH L”  is:  A+  ruleXHAL.  Now,
assume  that  each  of  the  constituent  cells  in  the  overall  assemblage
may  assume  one  of  k  possible  states,  numbered  0, 1, …, k - 1.  The
Fredkin second-order method obtains the next step by

A+  modHruleXHAL - A-, kL,
where  modHL  denotes  the  modulus  function.  To  invert  the  rule,  one
need only input the states in the reverse sense, that is,

A-  modHruleXHAL - A+, kL.
The modH L function and requirement that the states be represented as
integers are the author’s clarification of the original discussion in [3].

The  method  is  second-order  because,  to  generate  a  state  at  any
given  time,  one  must  specify  the  two  preceding  states  in  sequence.
This  requirement  for  effectively  two  initial  conditions  is  typical  for
models  of  dynamical  systems  with  inertia.  Consequently,  evolutions
devised  using  this  Fredkin  approach  would  probably  be  an  excellent
choice  for,  say,  a  simulation  of  billiard-ball  collisions.  However,  for
the envisaged model of light propagation, the author suspects that the
two-dimensional  reversible  cellular  automata  method  described  next
will prove even more representational. 

2.3 Margolus Neighborhood Block-Transform Method

2.3.1 Basic Idea

Block-partitioned  strategies  [6]  (also  called  the  “Margolus  neighbor-
hood” in some discussions, e.g., [7]) are not intrinsically invertible per
se,  but  can  be  structured  to  generate  reversible  algorithms,  as  will
now  be  shown.  In  this  method,  a  block  of  (say,  four)  cells  is  trans-
formed  as  a  block  to  a  new  state,  again  following  a  lookup  table
(ruleset) as illustrated in Figure 2.

46 V. J. Peridier

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.
 
https://doi.org/10.25088/ComplexSystems.18.1.43



Block-partitioned  strategies  [6]  (also  called  the  “Margolus  neighbor-
hood” in some discussions, e.g., [7]) are not intrinsically invertible per
se,  but  can  be  structured  to  generate  reversible  algorithms,  as  will
now  be  shown.  In  this  method,  a  block  of  (say,  four)  cells  is  trans-
formed  as  a  block  to  a  new  state,  again  following  a  lookup  table
(ruleset) as illustrated in Figure 2.

Figure 2. A two-color, reversible, block-transformation ruleset. 

The  Margolus  neighborhood  concept  works  as  follows.  Contigu-
ous  four-cell  blocks  are  defined  over  the  entire  two-dimensional  cell
array. For information to propagate throughout the cell array, the rule-
set in each step is applied in two passes. In the first pass, the ruleset is
applied on each of the originally-designated four-cell block groupings;
in the second pass, the ruleset is applied again on a second set of con-
tiguous four-cell groupings obtained by shifting the original block des-
ignations by one cell in each coordinate direction (see Figure 3).

Figure  3.  Schematic  for  block  definitions  in  one  (two-pass)  step.  (a)  Cells  1
through  4  identified  in  a  two-dimensional  region.  (b)  Pass  1:  transformation
ruleset is applied to all 2 µ 2 blocks unshifted; cells 1 through 4 are defined in,
and  transform  within,  the  same  block.  (c)  Pass  2:  transformation  ruleset  is
applied  to  all  2 µ 2  blocks,  shifted;  cells  1  through  4  are  now  each  trans-
formed within a different block.

2.3.2 Reversible Block-Transform Rulesets

The  specific  block-transformation  ruleset  illustrated  in  Figure  2  hap-
pens  also  to  be  invertible,  and  to  obtain  the  inverse  rule  one  merely
reverses  the sense of the arrows and resequences the images to facili-
tate the table-lookup procedure. The ruleset in Figure 2 has two prop-
erties which render it reversible.
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1. State (or “color”) is  conserved: the number of black and/or white cells
on either side of each arrow is the same.

2. Every  possible  configuration  (of  two-state  four-cell  blocks)  occurs
exactly once on the left, and once on the right, side of the arrows. 

It  turns  out  that  there  are  414 720  possible  invertible  rules  for  this
two-state, four-cell, block-transformation situation.

Figure 4 illustrates a block-transform cellular-array evolution using
the invertible  ruleset  shown in Figure 2.  In  the first  row of Figure 4,
the rule is applied for six steps to a 12µ12 array of cells (recall  that
each step involves two applications of the rule); in the second row six
steps of Figure 2’s inverse rule are applied, starting with the last frame
of the first row.

Figure  4.  Example  of  a  block-partition  reversible-rule  evolution.  Row 1:  The
block transformation rule (Figure 2) for six steps. Row 2: The inverse rule for
six steps, starting with the last result of Row 1.

The author has devised the capability of enumerating all reversible
block-transform  rulesets,  with  the  two  listed  invertibility  properties,
for an arbitrary number of colors and block sizes. Of course, an inevi-
table  difficulty  of  cellular  automata  is  that  the  use  of  more  states
(colors) or larger neighborhoods (here,  block sizes) leads to an expo-
nential expansion of the rule-space size, as shown in Table 1. 

Ò of cells
in block Ò of colors

Ò of block - transform
reversible rulesets

4 2 414 720

4 3 7.8393 µ 1042

6 2 2.1567 µ 1048

6 3 9.2328 µ 10871

Table 1. Reversible block-transform rule-space sizes.

2.3.3 Generalized Boundaries using Identity Cell States

The  objective  of  optical  metrology  is  to  characterize  physical  surface
(boundary)  irregularities.  If  a  cell  represents  a  specific  two-dimen-
sional location, then a cell state designated as “boundary” is a logical
mechanism  for  defining  physical  boundaries.  Since  boundaries  are
static,  a  boundary-cell  state  corresponds  to  an  “identity  state”;  for
example, if the boundary state is red, any cell that is red at the start of
the evolution would remain red in every subsequent step. The author
accordingly  devised  the  capability  of  enumerating  reversible  block-
transform rules  for  arbitrary  block  sizes,  arbitrary  number  of  colors,
and  for  an  arbitrary  subset  of  those  colors  designated  as  “identity
states”.  For  example,  there  are  4 458 052 241 280  block-transforma-
tion  rulesets  possible  for  the  four-cell  three-state  case,  where  one  of
the  states  is  an  identity  state.  (It  is  still  an  impossibly  large  ruleset
space, although less than 7.8µ1042.) 
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The  objective  of  optical  metrology  is  to  characterize  physical  surface
(boundary)  irregularities.  If  a  cell  represents  a  specific  two-dimen-
sional location, then a cell state  as  is a
mechanism  for  defining  physical  boundaries.  Since  boundaries  are
static,  a  boundary-cell  state  corresponds  to  an  “identity  state”;  for
example, if the boundary state is red, any cell that is red at the start of
the evolution would remain red in every subsequent step. The author
accordingly  devised  the  capability  of  enumerating  reversible  block-
transform rules  for  arbitrary  block  sizes,  arbitrary  number  of  colors,
and  for  an  arbitrary  subset  of  those  colors  designated  as  “identity
states”.  For  example,  there  are  4 458 052 241 280  block-transforma-
tion  rulesets  possible  for  the  four-cell  three-state  case,  where  one  of
the  states  is  an  identity  state.  (It  is  still  an  impossibly  large  ruleset
space, although less than 7.8µ1042.) 

2.3.4 Isotropic Rules

For modeling optical scatter, a further desirable refinement is a require- 
ment  that  the  propagation  phenomena  (and,  hence,  the  underlying
transformation rules) be independent of the choice of coordinate sys-
tem, that is, independent of the orientation of the cellular-array defini-
tion  within  the  two-dimensional  space.  The  author  characterizes  this
as  the  “isotropic”  requirement  on  the  transformation  rulesets.  An
example  of  a  block-transformation  ruleset  definition  that  approxi-
mates  this  behavior,  for  a  four-cell  two-state  block,  is  shown  in
Figure 5.

Figure 5. An isotropic block-transform ruleset definition. 

The author describes a block-transformation ruleset as “isotropic”
if it satisfies the following conditions. Say a and b are two possible con-
figurations for a block of cells,  with configuration b  some rearrange-
ment of configuration a. For a block-transformation ruleset to be iso-
tropic, both a Ø b and b Ø a must be among the ruleset’s replacement
rules.  Restricting  the  possible  transformation  rulesets  to  only  those
which are isotropic substantially diminishes the rule space. For exam-
ple,  again  for  the  four-cell  block  situation:  with  two  states  modeled
there  are  7600  isotropic  transformation  rulesets;  with  three  states,
one of these being an identity state, there are 31 876 710 400 isotropic
transformation rulesets. 

With  fewer  transformation  rules,  one  might  think  that  isotropic
block-transformation rulesets  (with possible identity states)  would be
easier to enumerate than the nonisotropic case. Surprisingly, enumerat-
ing block-transform rules that are specifically isotropic is a somewhat
involved  and  computationally  intensive  task  that  merits  a  dedicated
discussion. So, in lieu of waiting minutes (or longer) for a ruleset list
to  be  generated  from  a  specific  rule  number,  the  author  has  devised
schemes  that  utilize  precalculated  intermediate  results  stored  on  disk
to enumerate the rules. About a megabyte of disk space is needed for
models  utilizing  four-cell  blocks  with  three  mobile  (i.e.,  nonidentity)
states. 
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With  fewer  transformation  rules,  one  might  think  that  isotropic
block-transformation rulesets  states)  would be
easier to enumerate than the nonisotropic case. Surprisingly, enumerat-
ing block-transform rules that are specifically isotropic is a somewhat
involved  and  computationally  intensive  task  that  merits  a  dedicated
discussion. So, in lieu of waiting minutes (or longer) for a ruleset list
to  be  generated  from  a  specific  rule  number,  the  author  has  devised
schemes  that  utilize  precalculated  intermediate  results  stored  on  disk
to enumerate the rules. About a megabyte of disk space is needed for
models  utilizing  four-cell  blocks  with  three  mobile  (i.e.,  nonidentity)
states. 

In a recent talk [8] the author speculated that (for the purposes of
optical metrology) a possibly useful elaboration of the basic Margolus
neighborhood scheme may be to discretize the two-dimensional plane
into  hexagonal  assemblages  of  six  triangle  cells,  rather  than  the
square  assemblages  of  four  rectangular  cells  illustrated  in  Figure  3.
The  benefit  would  be  that  the  fundamentally  triangular  arrangement
might more naturally represent a greater variety of surface topologies,
and the hexagonal approach provides two additional natural propaga-
tion  directions  for  the  scattered  quantities.  However,  the  computa-
tional requirements of enumerating isotropic rules limits the practical
block size to four cells, at least for the preliminary studies. 

3. Conclusions

This  paper  provides  some  motivation  and  philosophical  background
for a recent talk [8] where reversible cellular automata in one and two
dimensions  were  discussed.  Two-dimensional  demonstrations  of  the
Fredkin  approach,  of  the  Margolus  neighborhood,  and  for  Fredkin-
built-on-top-of-Margolus (block-transform) rulesets, were provided in
this  talk.  The examples  collectively illustrated the use of identity col-
ors  in  reversible  algorithms  for  both  conservative  and  nonconserva-
tive evolutions. 

This paper has enlarged on the following points relative to this talk.

1. Differential/integral  descriptions  (and  their  consequent  computational
methods)  have  proved  extraordinarily  successful  for  phenomena  that
can be (meaningfully) quantified. 

2. However,  many phenomena may resist  quantification,  and the  reasons
include:  complexity  in  time  and/or  space;  and/or  because  their  salient
descriptive features may be genuinely qualitative. 

3. The  methodology  described  in  A  New  Kind  of  Science  (NKS)  [1]  is
computationally  rich,  but  also  may  be  a  most  natural  strategy  for
considering phenomena which resist quantification. This is  because the
(state) models, data structures, and algorithms of NKS methodology are
abstracted idealisms and thus fundamentally qualitative. 

4. Optical  metrology  embodies  two  fundamental  problems,  each  with
quantification  ambiguity:  (i)  inverse  problems,  and  (ii)  the  far-field
measurement  of  OHlL  optical  scatter.  Consequently,  optical  metrology
might be productively considered using NKS methods. 
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4.

Optical  metrology  embodies  two  fundamental  problems,  each  with
quantification  ambiguity:  (i)  inverse  problems,  and  (ii)  the  far-field
measurement  of  OHlL  optical  scatter.  Consequently,  optical  metrology
might be productively considered using NKS methods. 

5. The  objective  then  is  to  identify  candidate  NKS algorithms  that  might
naturally  represent  the  physics  of  two-dimensional  optical  scatter.
Consequently,  two-dimensional  cellular  automaton  schemes  with
properties of: 

† reversibility in time, 

† ability to specify boundaries of arbitrary complexity, and 

† isotropic with regard to the orientation of the cell assemblage, 

have been devised in anticipation of carrying out this research. 
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