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Continuing  arguments  presented  [1]  or  announced  [2,  3]  here,  zero-
divisor (ZD) foundations for scale-free networks (evinced, in particular,
in the “fractality” of the Internet) are decentralized. Spandrels, quartets
of  ZD-free  or  “hidden”  box-kite-like  structures  (HBKs)  in  the  2N+1-
ions, are “exploded” from (and uniquely linked to) each standard box-
kite  in  the  2N-ions,  N ¥ 4.  Any  HBK  houses,  in  a  cowbird’s  nest,
exactly  one copy of  the (ZD-free)  octonions,  the recursive basis  for all
ZD  ensembles.  Each  is  a  potential  way-station  for  alien-ensemble
infiltration in the large, or metaphor-like jumps, in the small. Cowbird-
ing models what evolutionary biologists [4], and structural mythologist
Claude  Lévi-Strauss  before  them [5],  term  bricolage:  the  opportunistic
co-opting of objects designed for one purpose to serve others unrelated
to it. Such arguments entail a switch of focus, from the octahedral box-
kite’s  four  triangular  sails,  to  its  trio  of  square  catamarans  and  their
box-kite-switching twist products. 

1. From Box-Kites to Brocades via Catamaran Twists

This  work  had  its  beginnings  in  [6],  where  an  abstract  result  of
Guillermo Moreno [7]  was  employed to explicitly  delineate the zero-
divisor  (ZD)  structure  of  the  16-dimensional  (16D)  sedenions.  These
hypercomplex  numbers  are  reached  via  the  Cayley|Dickson  process
(CDP),  a  dimension-doubling  algorithm which  begins  with  the  linear
real numbers, moves to the complex plane, generates the quaternions’
noncommutative four-space, then the eight-dimensional (8D) non-asso- 
ciative  octonions:  all  so  many  way-stations  en  route  to  the
“pathology” of ZDs, found in all 2N-ions, N ¥ 4. 

The  key  to  the  early  results  was  found  in  simplifying  CDP  itself,
reducing it to a set of two bit-twiddling rules, exploiting one conven-
tion. The quaternions’ imaginary units can be represented in two differ-
ent  ways with the subscripts  1,  2,  3.  (The way chosen depends upon
which  order  of  multiplying  two  of  them  yields  a  positively  signed
instance  of  the  third.)  The  octonions’  seven imaginary  units,  though,
can be indexed in 480 distinct ways, perhaps a dozen of which are in 

number in the billions. Yet only one scheme can work for all 2N-ions:
first, index their units with the integers 1 through 2N - 1, with 0 denot-
ing  the  real  unit;  then,  assume  that  the  index  of  a  unit  produced  by
multiplying two others is the XOR of their indices. 
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actual use among various specialists. The sedenions’ indexing schemes
number in the billions. Yet only one scheme can work for all 2N-ions:
first, index their units with the integers 1 through 2N - 1, with 0 denot-
ing  the  real  unit;  then,  assume  that  the  index  of  a  unit  produced  by
multiplying two others is the XOR of their indices.  

Note down only the indices, suppressing the writing of a lowercase
i with a hard-to-read subscript, and list XOR sets in parenthesized trip-
lets, with the first two units ordered so that their product, in the third
slot, has a positive sign. By such cyclical positive ordering (CPO), the
two possible  quaternion multiplication rules  are written H1, 2, 3L  and
H1, 3, 2L,  with  the  former  taken  here  as  the  basis  for  all  CDP  recur-
sion. The 480 octonion rulesets collapse to one set of seven CPO trip-
lets, trips for short, corresponding precisely and only to the seven asso-
ciative triplets in this otherwise non-associative number space: 

H1, 2, 3L; H1, 4, 5L; H1, 7, 6L;
H2, 4, 6L; H2, 5, 7L; H3, 4, 7L; H3, 6, 5L.

All of these remain associative triplets in all higher 2N-ions, a fact we
call  Rule  0.  Additionally,  with the index-0  real  unit  appended to the
set, each also provides a true copy of the quaternions. 

The  next  crucial  step  is  to  understand  how  and  why  some  trips
thus  derived  are  not  in  counting  order.  Assume,  as  standard  CDP
does, that the 2N - 1 units of a given set of 2N-ions can be multiplied
on the right by a new unit whose index exceeds all of theirs, called the
generator  G  of  the  2N+1-ions,  to  yield  resultant  units  with  new  and
higher  indices,  all  with  a  positive  sign.  G  is  just  the  unique  unit  of
index  2N,  and  for  each  unit  with  index  L < G,  the  CPO trip  can  be
written as HL, G, G + LL. (Note that the product’s index is identical to
the XOR  G  L,  since G,  by definition, can be represented by a bit to
the left  of  any L’s  bitstring expression.)  This  is  Rule 1.  It  completely
explains  the  indexing  of  the  quaternions:  if  the  usual  imaginary  unit
has index 1, then G  2 and Rule 1 yields H1, 2, 3L. For the octonions,
we  inherit  the  quaternion’s  singleton  trip,  and  generate  three  more
with Rule 1: H1, 4, 5L; H2, 4, 6L; H3, 4, 7L. But how do we get the three
that remain? We get them by invoking Rule 2. 

The quaternions do not need Rule 2, so start an induction by assum-
ing  that  it  works  only  on  Rule  0  trips  from  prior  CDP  generations.
For  any  such  trip,  hold  one  index  fixed,  then  add  G  to  each  of  the
other  two  and  switch  their  positions.  Since  the  octonions  have  only
one Rule 0 trip to manipulate, we get the three Rule 2 trips needed by
this  tactic:  fixing  1, 2,  and  3  in  that  order,  we  get  H1, 3 + 4, 2 + 4L;
H3 + 4, 2, 1 + 4L;  H2 + 4, 1 + 4, 3L.  Using  cyclical  rotation  brings  the
smallest  index  to  the  left  and  yields  the  three  extra  trips:  H1, 7, 6L;
H2, 5, 7L;  H3, 6, 5L.  All  applications  of  CDP  to  the  standard  real  and
imaginary units,  for N  as large as desired, are completely covered by
these rules.  Also, the total  number of trips,  which simple combinato-
rics  tell  us  we  can  generate  in  a  given  set  of  2N-ions,  is  just
I2N - 1M I2N - 2M ë3 !~hence,  1  for  the  quaternions  (where  N  2);  7
for the N  3 octonions; 35 for the sedenions where ZDs are first in
evidence;  and 155 for  the  32-dimensional  (32D)  pathions,  where  the
signature  of  scale-free  behavior,  as  evidenced  in  the  World  Wide
Web’s  implicit  “fractality”  (Sir  Tim  Berners-Lee’s  term  for  it  [8]),  is
first revealed. 
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The quaternions do not need Rule 2, so start an induction by assum-
ing  that  it  works  only  on  Rule  0  trips  from  prior  CDP  generations.
For  any  such  trip,  hold  one  index  fixed,  then  add  G  to  each  of  the
other  two  and  switch  their  positions.  Since  the  octonions  have  only
one Rule 0 trip to manipulate, we get the three Rule 2 trips needed by
this  tactic:  fixing  1, 2,  and  3  in  that  order,  we  get  H1, 3 + 4, 2 + 4L;
H3 + 4, 2, 1 + 4L;  H2 + 4, 1 + 4, 3L.  Using  cyclical  rotation  brings  the
smallest  index  to  the  left  and  yields  the  three  extra  trips:  H1, 7, 6L;
H2, 5, 7L;  H3, 6, 5L.  All  applications  of  CDP  to  the  standard  real  and
imaginary units,  for N  as large as desired, are completely covered by
these rules.  Also, the total  number of trips,  which simple combinato-

N

I2N - 1M I2N - 2M ë3 !~hence,  1  for  the  quaternions  (where  N  2);  7
for the N  3 octonions; 35 for the sedenions where ZDs are first in
evidence;  and 155 for  the  32-dimensional  (32D)  pathions,  where  the
signature  of  scale-free  behavior,  as  evidenced  in  the  World  Wide
Web’s  implicit  “fractality”  (Sir  Tim  Berners-Lee’s  term  for  it  [8]),  is
first revealed.  

A  fine  point  is  that  fractality  has  two  related  but  distinct  senses.
The sense of ZD structures concerns the one-to-one mapping that can
be made between points in a classic two-dimensional (2D) fractal and
the  empty  cells  in  our  emanation  tables  (ETs).  As  derived  in  [2]  and
illustrated  in  [9],  ETs  are  spreadsheet-like  multiplication  tables  of
ZDs whose unfilled cells indicate row and column ZD entries that do
not mutually zero-divide each other. The Web’s fractality, though, con-
cerns statistical distributions~of links, say, between web pages or rout-
ers~which  have  much  higher  densities  at  some  nodes  than  others.
The  density  distributions  are  far  less  Gaussian and normal  than they
tend  toward  being  Mandelbrot-set  self-similar.  Our  ET  cell  entries
(pairs  of  which  sharing  symmetric  row  and  column  labels  map
directly  to pairs  of  ZD-saturated diagonals,  in some plane associated
with  some  one  of  some  box-kite’s  six  vertices)  do  not  remain  pure
number  theory  entities.  They  become  heuristically  placed  statistical
markers  when  dynamic  models  of  actual  networks  are  simulated
and/or searched by means of ZD ensembles. As constructing the meth-
odology  for  such  model  building  is  our  ultimate  aim  (only  partially
realized in these pages), we feel justified in assuming the applicability
of fractality,  in both of its senses, to the agenda being sketched here.
Further elaboration on this point must be deferred to future studies. 

Now,  to  understand  what  happens  in  32D,  we  first  explain  the
workings  of  ZDs  in  the  sedenions.  Moreno’s  abstract  treatment  of
their  interrelationship was framed in the physicist’s  favored language
of  semi-simple  Lie  groups:  the  largest  exceptional  group  E8  has  240
roots that form a loop (the non-associative equivalent of a group) iso-
morphic to the unit octonions. The automorphism group of E8, which
is the smallest  exceptional group G2,  is  homomorphic to the symme-
try  patterns  displayed by  ZDs in the sedenions.  And,  since  this  same
G2  is  also  the  basis  of  the  derivation  algebra  that  recursively  creates
(via  CDP)  the  2N+1-ions  from  the  2N-ions,  for  all  N > 4,  he  would
argue this same homomorphism obtains for all such N. But homo- (as
opposed to iso-) morphism is a rather imprecise tool for obtaining any-
thing  like  concrete  results.  The  approach taken in  [6]  is  to  use  mini-
mal assumptions and bit-twiddling rules. 

Since  in ≠ 0  for  any  imaginary  unit  i  of  any  index,  raised  to  any
finite power n, the simplest ZD must entail the sum or difference of a
pair  of  imaginaries,  and  zero  will  only  result  from the  product  of  at
least  two  such  pairings.  Rather  simple  by-hand  calculations  quickly
showed  that  one  such  unit  must  have  index  L < G,  and  its  partner
have index U > G, not the XOR of L with G. This meant that any octo-

six  suitable  sedenions  with  index  greater  than  eight,  making  for  42
planes  or  assessors  whose  diagonal  line-pairs  contain  only  (and  all
the) ZDs. But these 84 lines do not all mutually zero-divide with each
other; those that do have their behavior summarized in seven geometri-
cally identical  diagrams, the octahedral wireframe figures called box-
kites. Their manner of assembly was determined by three simple pro-
duction rules. 
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Since  in ≠ 0  for  any  imaginary  unit  i  of  any  index,  raised  to  any
finite power n, the simplest ZD must entail the sum or difference of a
pair  of  imaginaries,  and  zero  will  only  result  from the  product  of  at
least  two  such  pairings.  Rather  simple  by-hand  calculations  quickly
showed  that  one  such  unit  must  have  index  L < G,  and  its  partner

nion (of seven choices) could be picked and matched with any of the
six  suitable  sedenions  with  index  greater  than  eight,  making  for  42
planes  or  assessors  whose  diagonal  line-pairs  contain  only  (and  all
the) ZDs. But these 84 lines do not all mutually zero-divide with each
other; those that do have their behavior summarized in seven geometri-
cally identical  diagrams, the octahedral wireframe figures called box-
kites. Their manner of assembly was determined by three simple pro-
duction rules. 

Label  the  three  vertices  of  some  triangle  among  the  octahedral
grid’s eight with the letters A, B, C, and those of the opposite face F,
E, D, so that these are at opposite ends of lines through the center S~
AF,  BE,  CD~which  we  call  struts.  Assume  each  vertex  represents  a
plane  whose  two units  are  indicated by the same letter,  in  uppercase
or  lowercase,  depending on whether  the index is  greater  or  less  than
G - U  and  L  indices  respectively.  Call  S,  the  seventh  octonion  index
not found on a vertex, the strut constant, and use it to distinguish the
seven  box-kites,  each  of  which  contains  but  six  of  the  42  sedenion
assessors. For any chosen S, there will be three pairs of octonions form- 
ing  trips  with  it,  and  the  indices  forming  such  pairs  are  placed  on
strut-opposite vertices (i.e., at ends of the same strut, not an edge). Nei-
ther  diagonal  at  one  end  of  a  strut  will  mutually  zero-divide  with
either at the other: some k ÿ HA ± aL will not yield zero when multiplied
by any q ÿ HF ± f L, k and q arbitrary real scalars. But either diagonal, at
any  assessor,  produces  zero  when  multiplied  by  exactly  one  of  the
assessor  diagonals  at  the  other  end  of  a  shared  edge.  Half  the  edges
have  “@+D” edge-currents  (the  diagonals  slope  the  same way,  as  with
HA + aL ÿ HD + dL  HA - aL ÿ HD - dL  0), while the other six have edges
marked  “@-D”  (e.g.,  HA + aL ÿ HB - bL  HA - aL ÿ HB + bL  0).  With
these conventions, we can assert the production rules. 

First,  if  diagonals  at A and B mutually zero-divide,  each also does
so with a diagonal of C (oppositely signed copies of whose unit pair-
ings embody the zero produced when A and B diagonal unit-pairings
are multiplied): A and B emanate C, from whence the ETs we will see
presently (where A and B display as row and column labels, designat-
ing  a  spreadsheet  cell  with  content  C).  Corollarily,  their  L-indices
Ha, b, cL  form  a  trip  only  if  their  assessors’  diagonals  each  mutually
zero-divide one of those at each of the other two. A sail is such a triad
of assessors, representable by a triangle on the box-kite. As shown in
[1], there is exactly one sail per box-kite with all three edges marked
“@-D”: the zigzag, so called because its six-cycle of zero-divisions, deter-
mined by tracing its edges twice, shows an alternation of / and \ slop-
ings among the diagonals sequentially engaged in product forming. By
convention, its assessors are A, B, and C, with Ha, b, cL in CPO order,
rotated to make a the smallest integer. 

Third, any assessor belongs to two sails, implying four in all, touch-
ing only at vertices, like same-color checkerboard squares. The pair of
imaginary  units  forming  any  assessor  always  split  so  that  one  has

index greater than G  (the U-unit, U  for upper).  An assessor’s L-unit
is written with the same letter as the assessor proper, but in lowercase
italics,  while  the  U-unit  is  written  in  uppercase  italics:   the  pair  of
units  designated  “assessor  A”  is  thus  equivalent  to  Ha, AL.   The  L-
units of each sail form associative triplets, hence L-trips. The trefoil L-
trips are Ha, d, eL; Hd, b, f L; He, f , cL~with leftmost terms not necessar-
ily the smallest in their trios, and each derived from the zigzag L-trip
(Z-trip) by flipping L-indices along two struts with a Rule 2 position-
swap, holding a,  b,  c  each fixed in turn. (We will  also have occasion
to speak of U-trips:  for any sail,  any of its  L-units  forms an associa-
tive triplet with the other two U-units, making for three such U-trips
for each L-trip.) The remaining four triangles are vents, with the face
opposite  the  zigzag,  DEF,  understood  as  meant  when  written  with  a
capital  “V”. The alternation of sails  (made of colored paper,  maybe)
with empty spaces where the wind blows, and the kite-like structural
stability  implied  by  the  three  ZD-free,  orthogonal  struts  (made  of
wooden or plastic doweling, perhaps) motivates the conceit of calling
these “box-kites” in the first place.  As vent and zigzag use up all  six
negative  edge-currents,  the  edge-currents  joining  trefoil-based  asses-
sors D, E, F to the zigzag’s A, B, C are positive. 
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Third, any assessor belongs to two sails, implying four in all, touch-
ing only at vertices, like same-color checkerboard squares. The pair of

 that  one  has
index less than the generator G (the L-unit, L for lower), and one has
index greater than G  (the U-unit, U  for upper).  An assessor’s L-unit
is written with the same letter as the assessor proper, but in lowercase
italics,  while  the  U-unit  is  written  in  uppercase  italics:   the  pair  of
units  designated  “assessor  A”  is  thus  equivalent  to  Ha, AL.   The  L-
units of each sail form associative triplets, hence L-trips. The trefoil L-
trips are Ha, d, eL; Hd, b, f L; He, f , cL~with leftmost terms not necessar-
ily the smallest in their trios, and each derived from the zigzag L-trip
(Z-trip) by flipping L-indices along two struts with a Rule 2 position-
swap, holding a,  b,  c  each fixed in turn. (We will  also have occasion
to speak of U-trips:  for any sail,  any of its  L-units  forms an associa-
tive triplet with the other two U-units, making for three such U-trips
for each L-trip.) The remaining four triangles are vents, with the face
opposite  the  zigzag,  DEF,  understood  as  meant  when  written  with  a
capital  “V”. The alternation of sails  (made of colored paper,  maybe)
with empty spaces where the wind blows, and the kite-like structural
stability  implied  by  the  three  ZD-free,  orthogonal  struts  (made  of
wooden or plastic doweling, perhaps) motivates the conceit of calling
these “box-kites” in the first place.  As vent and zigzag use up all  six
negative  edge-currents,  the  edge-currents  joining  trefoil-based  asses-
sors D, E, F to the zigzag’s A, B, C are positive. 

Previous work focused on sails, whose algebraic closure and capac-
ity  for  recursive  construction for  growing N,  make them exceedingly
rich sources of structural information. But the second production rule
is  where  our  interest  will  focus  here:  L-  (or  U-)  indices  can  be
swapped (with a sign flip) between assessors sharing an edge, yielding
assessor  pairs  in  other  box-kites  with  different  S.  Hence,  since
HA + aL ÿ HB - bL  0,  then  so  will  HA + bL ÿ HB + aL~with  caveats  for
N > 4 if the box-kite is Type II, which we will soon get to. Opposite
edges  of  the  same  square  (one  of  three  mutually  orthogonal  ones)
twist to the same box-kite and have the same edge-sign. Quandrangu-
lar catamarans, like triangular sails, have a richness all their own (Fig-
ure 1). 

In the sedenions, all box-kites are Type I: for any zigzag assessor Z
and  its  vent  strut-opposite  V,  Hz, S, vL  and  HZ, S, VL  are  CPO.  (For
Type  II,  two  of  the  strut’s  trips  have  reversed  orientations.)  For  all
Type I  of any N,  all  three catamarans share an invariant feature: the
orientation  of  L-trip  products  along  each  edge  is  counterclockwise
along three successive sides, with the fourth (with negative edge-sign)
showing a clockwise reversal.

Catamarans  orthogonal  to  struts  AF,  BE,  CD have  reversed  edges
DE, FD, EF, respectively. Rotate their frames to put the reversed edge
on  top,  and  shade  or  color  such  edges  to  specify  their  catamaran.
Then  draw  two  more  catamaran  boxes,  to  the  right  and  just  below
this.  The  top  and  bottom edges  on  the  right  display  L-  and  U-index
twists  from  the  starting  box  respectively;  the  left  and  right  edges
below show L and U twists from their vertical counterparts above. Fig-
ure 2 is an instance of such a Royal Hunt Diagram, after the fifth mov-
ing-line text of I Ching Hexagram 8, Holding Together: “In the hunt,
the king uses beaters on three sides only and foregoes game that runs
off the front.” 
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Catamarans  orthogonal  to  struts  AF,  BE,  CD have  reversed  edges
DE, FD, EF, respectively. Rotate their frames to put the reversed edge
on  top,  and  shade  or  color  such  edges  to  specify  their  catamaran.
Then  draw  two  more  catamaran  boxes,  to  the  right  and  just  below
this.  The  top  and  bottom edges  on  the  right  display  L-  and  U-index
twists  from  the  starting  box  respectively;  the  left  and  right  edges
below show L and U twists from their vertical counterparts above. Fig-
ure 2 is an instance of such a Royal Hunt Diagram, after the fifth mov-
ing-line text of I Ching Hexagram 8, Holding Together: “In the hunt,
the king uses beaters on three sides only and foregoes game that runs
off the front.”  

Figure  1.  Parallel  edges  of  catamarans  (one  perpendicular  to  each strut  in  an
octahedral  box-kite)  twist  into  assessor  pairs  with  oppositely  signed  edge-
currents, in a box-kite with different strut constant: BC and DE, both in sails
completed  by  A,  have  twist  products  with  S = f ;  for  DB  and  CE,  completed
by  F,  twistings  have  S = a.  The  fifth  and  sixth  (necessarily  strut-opposite)
assessors in each are found by twisting HA, aL and IF, f M with HX, SL~assumed
at  the  center,  where  struts  intersect~double-covering  mast  and  keel
respectively.

Beyond  the  sedenions,  twists  no  longer  always  take  ZD  edges  to
ZD edges.  Type  I  always  twist  to  Type  I;  but  Type  II,  first  found in
the  pathions,  either  twist  to  other  Type  II,  or  to  box-kite-like  struc-
tures none of whose edges act as ZD pathways. 

Per the Roundabout Theorem of [2], box-kites are “all or nothing”
structures: all edges support ZD-currents, or none do. These latter hid-
den box-kites (HBKs, or “residents of Hoboken”) were the sources of
the off-diagonal empty cells in the 2N-1 - 2 cells-per-edge square ETs
for  fixed-S  2N-ions,  studied  in  [2,  3],  and  presented  as  color-coded
spreadsheet  displays  in  our  NKS  2006  Powerpoint  slide  show  [9].
These  showed  what  [2]  and  [3]  proved:  that,  as  N  grew  indefinitely
large for fixed S, such tables’ empty space approached a fractal limit. 
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Figure  2.  Royal  Hunt  Diagram.  The  three  catamaran  Ss  form  an  associative
triple:  the  bottom-left  box,  twisted  a  second  time  along  its  other  set  of
parallels,  yields  the  same resultant  as  the  second twist  of  the  top-right.  (The
two bottom boxes differ only by a 90° rotation.) Twists involving HBKs and
Type II box-kites also show a double twist of another kind: the proper tracing
order along the perimeter of the box twisted to will be reversed  along one of
the edges being twisted.Á

For  N  4,  each  of  the  seven  ETs  is  a  6 µ 6  table,  one  label  per
each possible L-index excluding S;  for N  5, S  takes  all  integer val-
ues less than G  16, with edge-length in each ET being 14 (the num-
ber  of  indices  less  than  G,  with  S  excluded).  Consider  N  4,  and
ignore  the  2 µ 6  cells  along  long  diagonals:  these  are  tautologically
empty,  since  ZDs  in  the  same  assessor  do  not  mutually  zero-divide,
nor  do  those  of  assessors  which  are  strut-opposites.  Twenty-four
filled cells remain: two for each edge, hence one for each distinct ZD-
pairing defined on it. This shows the ET is fundamentally a multiplica-
tion table, with only L-indices indicated on the row and column head-
ers,  in  nested-parentheses  order  (i.e.,  the  leftmost  assessor  label  A  is
strut-opposite to the rightmost label F, then B to E, and so on by mir-
ror  symmetry).  This  is  because  U-indices  are  forced,  hence  can  be
ignored, for given S and N. 

For  any  assessor  HM, mL  and  its  strut  opposite  IMopp, moppM,  it  is
easy  to  see  that  m  HG + SL  G + mopp  M.  Twist  products  along
an edge are hence linked with a box-kite whose S is the L-index of the
assessor, which is the strut opposite of the third assessor in the given
edge’s  sail.  Both  HA + bL  and  HB + aL  then  have  S  d,  since  A  and  B
are in a sail with C, whose strut-opposite is D. And by the third pro-
duction  rule,  we  know  the  edge  opposite  that  joining  A  and  B  also
has its sail completed by C: that is, the square formed by HA, B, E, FL
and orthogonal to the strut HC, DL  will  have four of the six assessors
defining  the  box-kite  with  S  d  residing  along  one  set  of  parallel
sides,  while  four  of  the  six  defining  the  S  c  box-kite  will  reside
along the other parallels in the same square. (Corollary: for any box-
kite,  each L-index is  also the S  of another box-kite reached by twist-
ing.) 
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For  any  assessor  HM, mL  and  its  strut  opposite  IMopp, moppM,  it  is
easy  to  see  that  m  HG + SL  G + mopp  M.  Twist  products  along
an edge are hence linked with a box-kite whose S is the L-index of the
assessor, which is the strut opposite of the third assessor in the given
edge’s  sail.  Both  HA + bL  and  HB + aL  then  have  S  d,  since  A  and  B
are in a sail with C, whose strut-opposite is D. And by the third pro-

has its sail completed by C: that is, the square formed by HA, B, E, FL
and orthogonal to the strut HC, DL  will  have four of the six assessors
defining  the  box-kite  with  S  d  residing  along  one  set  of  parallel
sides,  while  four  of  the  six  defining  the  S  c  box-kite  will  reside
along the other parallels in the same square. (Corollary: for any box-
kite,  each L-index is  also the S  of another box-kite reached by twist-
ing.) 

With  three  such  catamarans  per  box-kite,  each  with  edges  whose
sails are completed by assessors of a different strut, all seven sedenion
box-kites can be seen as collected on the frame of just one. The miss-
ing  pairs  of  assessors  are  derived  by  twisting  the  HS, G + SL ª HS, XL
pair, imagined in the center, with each of the legitimate assessors, yield- 
ing assessor-pairs defined along each catamaran’s mast and keel (strut-
halves (a, A) to (S, X), then (S, X) to (f, F), in that order, in Figure 1.)
Such a 7-in-1 representation is called a brocade. 

In  Table  1,  the  singleton  sedenion  brocade  shows  all  possible  L-
indices as column heads, U-indices as row labels, and a long diagonal
of empty cells signifying the (S, X) non-assessor pairs. Each cell gives
S and the vertex letter for all 42 assessors specified by U- and L-indi-
ces.  The  zigzag  for  S  1,  say,  is  H3, 10L; H6, 15L; H5, 12L,  with  twists
Hb, AL  H6, 10L and Ha, BL  H3, 15L yielding assessors E and C of the
S  4 box-kite. For N > 4, seven pairs of row and column labels still
fix one brocade,  but indices will  no longer be consecutive, and cellu-
lar information will need to indicate which of the numerous box-kites
is being twisted to among those of all  types with the same S,  a num-
ber equal to the trip count in the 2N-2-ions given earlier. This surpris-
ing  result  was  derived  as  a  corollary  of  the  Roundabout  Theorem
in [2]. 

Our prior work showed that an ET’s empty cells~emerging in any
and all  ETs  for  N > 4,  and  S > 8 and  not  a  power  of  2~mapped  to
pixels in a planar fractal. Here, catamaran twisting will let us see how
these emptinesses have their own subtle structure, coming in quartets
of  two  distinct  classes,  exactly  akin  to  zigzags  and  trefoils  among
sails.  Moreover,  any  box-kite  is  uniquely  linked  to  four  HBKs,  with
each  such  quartet  or  spandrel  housing  its  own  ZD-free  copy  of  the
octonions~hence the basis for the recursive CDP spawning of indepen-
dently  generated  2N-ion  index  sets,  or  context-definition  platforms
(whose acronym’s meaning is, of course, itself context-dependent). 
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1 2 3 4 5 6 7
09 3 A 2 F 5 B 4 F 7 F 6 C
10 3 F 1 A 6 B 7 C 4 E 5 F
11 2 A 1 F 7 B 6 F 5 C 4 D
12 5 E 6 E 7 E 1 C 2 C 3 C
13 4 A 7 D 6 A 1 D 3 E 2 B
14 7 A 4 B 5 D 2 D 3 B 1 E
15 6 D 5 A 4 C 3 D 2 E 1 B

Table 1. The sedenion brocade.

2. Box-Kite Explosions in 32 Dimensions: Two Types, Triptych 
Triples, Four-Fold Spandrels

Historically,  a  famous  proof  from  the  late  1890s  by  Adolf  Hurwitz
[10] dissuaded researchers from investigating any 2N-ions beyond the
sedenions:  once Hurwitz showed that they,  and all  higher hypercom-
plex  numbers,  unavoidably  contained  ZDs,  the  entire  line  of  study
was deemed pathological~hence, our calling those in 32D (the small-
est-N 2N-ions to not have a name) the pathions. But, as with their con-
temporary “monstrosities” of analysis, whose taming by Benoit Man-
delbrot  led  to  fractals,  the  pathions  in  fact  mark  the  beginning  of  a
new agenda, at least as much as they signal the demise an older one.
The  work  just  prior  to  this  paper  shows  that  the  connection  to
Mandelbrot’s  discoveries  is  not  just  by  analogy:  as  a  side-effect  of
what we might think of as carry-bit overflow, ETs in high-N 2N-ions,
beginning  with  the  pathions,  have  surprising  patterns  of  empty  cells
when S is not a power of 2, and its binary representation contains one
or more bits to the left of the four-bit. 

In the pathions, there are 15 L-indices less than G, hence candidate
S  values,  times  seven  (the  octonion  trip  count)  per  ET,  meaning  105
box-kites.  Seven  are  the  equivalent  of  those  found  in  the  sedenions,
but  for  the  zero-padding  of  G  (via  left-shifting  its  singleton bit),  and
hence of X: all L-trips are identical, but U-indices at each assessor are
augmented  by  the  difference  of  the  old  and  new  G  values,  or  eight.
The  seven  box-kites  for  S  8 (the  sedenions’  G)  are  Type  I,  but  are
special in other regards. First, the Z-trip of each is the same as one of
the sedenions’;  hence, these seven Rule 0 trips, once S  is downshifted
to its sedenion twin’s value, can map directly to one of the zero-pad-
ded  box-kites.  Similarly,  each  strut  is  a  Rule  1  trip,  serving  as  the
Ha, d, eL L-trip of a pathion box-kite, with the same downshifted S. 

Finally, the three trefoil L-trips are just Rule 2 transforms of the Z-
trip (since this S  8 acts on it  as a minimal G).  Z-trips in their own
right  also  produce  box-kites  with  downshifted  S  values  of  the  new
Type  II.  We thus  have  at  least  7 ÿ 3  21 of  these  in  the  pathions.  In
fact, we have only these 21, derived from trefoil L-trips of S  8 box-
kites;  hence,  the  add-and-switch  logic  of  Rule  2  should  be  central  to
their new typology. As is the case: exactly two of the three struts in a
Type  II  have  their  orientations  reversed,  as  mentioned  previously.
Each  Z-trip  index  of  a  Type  I  gives  its  strut-opposite  assessor’s  L-
index when multiplied on the right by S, but two of the three Type II
zigzag’s L-units form CPO struts when multiplied by S on the left.
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Finally, the three trefoil L-trips are just Rule 2 transforms of the Z-
trip (since this S  8 acts on it  as a minimal G).  Z-trips in their own
right  also  produce  box-kites  with  downshifted  S  values  of  the  new
Type  II.  We thus  have  at  least  7 ÿ 3  21 of  these  in  the  pathions.  In
fact, we have only these 21, derived from trefoil L-trips of S  8 box-
kites;  hence,  the  add-and-switch  logic  of  Rule  2  should  be  central  to
their new typology. As is the case: exactly two of the three struts in a
Type  II  have  their  orientations  reversed,  as  mentioned  previously.
Each  Z-trip  index  of  a  Type  I  gives  its  strut-opposite  assessor’s  L-
index when multiplied on the right by S, but two of the three Type II
zigzag’s L-units form CPO struts when multiplied by S on the left.

As shown in Figures 3 and 4, we can visualize all this by adapting
the  commonplace  Fano  plane  rendering  of  our  XOR-based  octonion
labeling  scheme  to  different  ends,  a.k.a.  the  PSL(2,7)  triangle  (for
“projective  special  linear  group  of  seven  lines  in  the  plane”),  which
cross in seven places. This simplest nontrivial finite projective geome-
try  has  each  line  projectively  equivalent  to  a  circle,  which,  adapting
standard  convention,  is  how  only  the  Rule  0  Z-trip  is  drawn.  The
three lines through the central node join angles to midpoints, making
Rule  1  trips  when  the  label  in  the  center  is  a  power  of  2.  The  three
sides  then become the Rule  2 trips,  in  the manner just  discussed:  the
center is the sedenion G, converted to a pathion S. 

HaL HbL
Figure 3. (a) The seven-point, seven-line finite projective group, a.k.a the Fano
plane,  hosts  the  labels  for  octonion  units,  and  shows  their  triplets’  orienta-
tions.  (b)  The same layout  can be  used to  shorthand box-kite  structures:  the
zigzag  and  trefoil  L-trips  sit  at  Ha, b, cL,  and  Ha, d, eL;  Id, b, f M;  Ie, f , cM.  The
strut constant S, meanwhile, sits in the middle.

Figure  3(a)  can  be  read  as  displaying  the  L-trips  of  the  sedenion
box-kite with S  4: one inflates the diagram by assuming the attach-
ing  of  U-indices,  by  the  L  X  rule,  to  get  a  full  box-kite,  each  side
now  turned  into  a  bona  fide  trefoil  sail,  and  the  Rule  0  L-trip  con-
verted to a zigzag. Figure 3(b) abstracts this via assessor L-index lower- 
case coding conventions. The approach just sketched works for short-
handing box-kite structures for any 2N-ions, N ¥ 4. 

Note the CPO flow along all lines: the triangle’s perimeter is natu-
rally  traversed  clockwise,  as  is  the  central  Rule  0  circle,  while  strut-
flows move from midpoints, through S,  to the angles. In Figures 4(a)

for  one  of  the  seven  S  8  box-kites;  then,  one  of  its  Rule  2  sides  is
inflated  on  the  right,  to  yield  a  pathion  S  1  box-kite  of  Type  II.
Note its flow reversals along the Z-trip’s b- and c-based struts. 
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Note the CPO flow along all lines: the triangle’s perimeter is natu-
rally  traversed  clockwise,  as  is  the  central  Rule  0  circle,  while  strut-
flows move from  4(a)
and 4(b), the sedenion Z-trip for S  1 doubles as the pathion Z-trip
for  one  of  the  seven  S  8  box-kites;  then,  one  of  its  Rule  2  sides  is
inflated  on  the  right,  to  yield  a  pathion  S  1  box-kite  of  Type  II.
Note its flow reversals along the Z-trip’s b- and c-based struts. 

HaL HbL
Figure 4. Pathion box-kites. (a) A normal (Type I) with S  8, and Rule 0 Z-
trip H3, 6, 5L  at Ha, b, cL,  itself  the Z-trip  for the S  1  sedenion box-kite.  (b)
A Type II with S  1, with Z-trip the Rule 2 left side of the S  8 Type I.

In Theorem 7 of [1], the parallel flows around the triangle’s perime-
ter  and  central  circle  provided  the  implicit  basis  for  proving  that  the
PSL(2,7) in question was a Type I box-kite. What we now call the sede-
nion brocade compactly expresses the fact that, provided the node-to-
node connections and flow patterns are not changed, any node can be
moved into the center to act as the strut constant, with the only sub-
stantive side-effect being the broad-based swapping of U-indices associ- 
ated with each node. 

Direct  hand  calculation  makes  it  clear  that  Theorem  7  still  holds
for  a  Type  II  box-kite,  as  the  flows  remain  parallel  around  the
triangle’s  perimeter  and  inscribed  circle.  A  Type  I  twists  to  another
Type I. A Type II, though, only twists to another Type II when the sin-
gle strut with proper orientation (all of whose L-indices, in the pathi-
ons,  are octonions) has one of its  nodes swapped into the center (or,
equivalently,  provides the strut for the catamaran being twisted). For
all other twistings, S > 8, and we have HBKs, which is tantamount to
saying (albeit  not  in an obvious  way) that the perimeter and circular
flows no longer stay parallel. 

In  Theorem 15 of [3],  we proved that two L-  and U-unit  pairings
which mutually zero-divide (i.e., share an edge as assessors on a box-
kite) no longer do so once S is augmented by a new high-bit. This was
the  general  case  inspired  by  the  empirical  for-instances  provided  by
the pathions’ ETs (for 8 < S < 16). Here, only three of the seven box-
kites for any such S  prove to be Type I;  the remaining four reside in
Hoboken. 

Using the theorem just cited, each such S  is just that of a sedenion
box-kite  with  the  minimal  new  high-bit  appended  to  it.  This  makes
strut-opposite  L-indices,  whose  XOR  is  S,  have  their  difference  aug-
mented by eight, which means the larger ones are U-indices of the sede-
nion case. We can then take each assessor in a sedenion box-kite and
treat it as a pathion pair of L-index strut-opposites, effectively explod-
ing one assessor into two. 
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Using the theorem just cited, each such S  is just that of a sedenion
box-kite  with  the  minimal  new  high-bit  appended  to  it.  This  makes
strut-opposite  L-indices,  whose  XOR  is  S,  have  their  difference  aug-
mented by eight, which means the larger ones are U-indices of the sede-
nion case. We can then take each assessor in a sedenion box-kite and
treat it as a pathion pair of L-index strut-opposites, effectively explod-
ing one assessor into two. 

This implies each sail can be inflated into its own box-kite, sharing
one strut with each box-kite built, by the same logic, from each other
sedenion  sail.  And,  as  the  theorem  will  apply  similarly  to  each  and
every sedenion edge-current, and hence all four of the L-trips, we can
say each of the sedenion L-trips does service as a Z-trip for an HBK.
We  call  such  quartets  of  Hoboken  residents  spandrels,  after  a  term
made  famous  by  evolutionary  theorists  Steven  J.  Gould  and  Richard
Lewontin [11]. 

The deep appropriateness of this term will become apparent in the
final  remarks  of  this  paper,  when  we  consider  the  epistemological
issues  it  was  coined  to  address.  But  a  superficial  aptness  is  easily
grasped. Consider one of the secondary meanings of the term (which
Gould  and  Lewontin  did  not  have  in  mind):  among  philatelists,  the
four  curved  wedges  between  a  perforated  border  and  an  inner  oval
containing,  say,  a  president’s  face,  comprise  a  postage  stamp’s
“spandrel”.  Pinch  diagonally  opposite  corners  of  such  a  stamp
together,  so  that  two  meet  above,  and  two  below,  the  center  of  the
stamp proper.  The  spandrel’s  wedges  become sails  in  a  box-kite  (the
kind of corner-to-corner mapping of flows on a plane, from which the
projective plane derives). 

Each  of  the  seven  sedenion  box-kites  explodes  into  one  pathion
spandrel,  making  28  HBKs  in  all.  Simple  arithmetic  shows  how this
count  dovetails  with  what  was  said  earlier  about  Type  II:  one  can
only  twist  to  two  other  Type  IIs  from  a  given  one,  their  strut  con-
stants  forming  an  octonion  trip  that  we  are  starting  with.  All  four
other  twists  take  one  to  Hoboken,  where  each  box-kite  has  one  all-
octonion L-trip inherited from its sedenion box-kite of origin. Its own
S  being  larger  than  the  prior  G,  it  can  be  twisted  to  three  different
Type  IIs,  hence  three  other  HBKs.  Ergo,  there  will  be  three  Type  IIs
for  every  four  HBKs,  or  21  for  the  28  HBKs  in  the  pathions,  as
already calculated. 

But  there  will  also  be  three  Type  Is,  each of  whose  BE strut  com-
prises the assessors whose L-indices are the former G and S of the sede- 
nion box-kite they exploded from. Further, each former strut now has
its  vent  and  zigzag  L-  (and  U-)  indices  appearing  at  a  and  d  (and  f
and c), respectively (forming trefoil L-trips thereby with the old S and
G  at e  and b),  in one of the three new pathion box-kites. These trios
are the “sand mandalas” first reported on (and graphically rendered)
in [12],  which we generalize to the general 2N-ion case by redubbing
them the lowest-N examples of triptychs. 

In  the  general  case,  however,  while  three  box-kites  are  exploded
from  each  Type  I  we  start  with,  they  are  not  unique  in  derivation.
Each corresponds to a 2N-ion strut that has been inflated into a 2N+1-
ion box-kite.  But the 2N+1-ions have 2N - 2 distinct assessors (hence,
a  strut  count  half  that  number)  shared  among  all  same-S  box-kites
(including  Hoboken  residents).  Hence,  we  do  indeed  get  three  for
each  pathion  ET  with  S > 8.  But,  for  any  zero-padded  sedenion
(hence, pathion) box-kite (i.e., G is left-shifted to be 16 instead of 8),
although we might start with the S  1 case, it now houses seven dis-
tinct box-kites, not one, for all of which X is 17 instead of nine. The
results  of  explosion  thereby  reside  in  the  chingons,  not  pathions,
where  the  ET  for  S  17  has  15  struts  shared  among  seven  distinct
box-kites  (one  of  which  struts,  with  L-indices  b  16  and  e  1,  is
shared by all seven box-kites), not (as in the pathion case of the septet
of “sand mandalas” with 8 < S < 16) seven struts shared among three
box-kites  (with,  e.g.,  the  BE  strut  b = 8  and  e = 1  held  in  common
when  S = 9).  As  with  the  pathion  S  9  case,  though,  these  are  the
ETs  only  nonempty  box-kites:  the  remaining  4 µ 7  28  are  all  con-
tained in pathion-generated spandrels. 
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In  the  general  case,  however,  while  three  box-kites  are  exploded
from  each  Type  I  we  start  with,  they  are  not  unique  in  derivation.
Each corresponds to a 2N-ion strut that has been inflated into a 2N+1-
ion box-kite.  But the 2N+1-ions have 2N - 2 distinct assessors (hence,
a  strut  count  half  that  number)  shared  among  all  same-S  box-kites
(including  Hoboken  residents).  Hence,  we  do  indeed  get  three  for
each  pathion  ET  with  S > 8.  But,  for  any  zero-padded  sedenion
(hence, pathion) box-kite (i.e., G is left-shifted to be 16 instead of 8),
although we might start with the S  1 case, it now houses seven dis-
tinct box-kites, not one, for all of which X is 17 instead of nine. The
results  of  explosion  thereby  reside  in  the  chingons,  not  pathions,
where  the  ET  for  S  17  has  15  struts  shared  among  seven  distinct
box-kites  (one  of  which  struts,  with  L-indices  b  16  and  e  1,  is
shared by all seven box-kites), not (as in the pathion case of the septet
of “sand mandalas” with 8 < S < 16) seven struts shared among three
box-kites  (with,  e.g.,  the  BE  strut  b = 8  and  e = 1  held  in  common
when  S = 9).  As  with  the  pathion  S  9  case,  though,  these  are  the
ETs  only  nonempty  box-kites:  the  remaining  4 µ 7  28  are  all  con-
tained in pathion-generated spandrels. 

The  Greek  etymology  of  “triptych”  indicates  three  (tri-)  plates  or
panels  (ptyche).  The  “tri”  indicates  the  count  of  BE-sharing  distinct
box-kites  in  the  pathion  case  only;  more  generally,  the  “panels”  are
box-kites associated with the (pre-explosion ETs) distinct strut triplets
instead.  The  count  of  these  “trips”  in  a  triptych  is  typically  much
higher than three. In this sense, they are akin to what a Java program-
mer  might  call  “static  variables”:  unlike  the  spandrel  quartets,  their
generation is tied to the ET “class” of origin, rather than to a particu-
lar source box-kite. 

Described in this manner, triptychs may seem more concocted than
natural.  This is not so when viewed from a purely bit-twiddling van-
tage:  when,  as  shown  in  Figure  5,  their  ETs  are  examined,  the  flip-
book sequence generated by integer increments of S between 8 and 16
shows animation logic: four lines just off the picture frame, spanning
the  long  diagonals’  empty  corners,  form  the  12-cell-long  sides  of  a
square  including  the  corners,  hence  taking  up  the  maximum  14 µ 14
size  that  a  pathion  ET  allows.  (Similar  descriptions  are  obtained  for
the 30 µ 30-sized chingon flip-books for 16 < S § 24.) 

As  S  grows,  these  orthogonal  pairs  of  parallels  move  one  cell  in
from  the  perimeter  with  each  increment,  until,  when  S  15,  they
form two-ply crosshairs partitioning the ET into quarters. The remain-
ing 24 filled-in cells form six-cell-long diagonal spans, connecting the
cross’s vertical and horizontal ends. 

This  abstract  cartoon  or  flip-book  is  drawn  by  a  simple  formula,
the  gist  of  Theorem 14  in  [3],  using  the  vertical  pipe  for  logical  OR,
and shorthanding the G of the 2N-1-ions as g, 

R » C » P = g » S mod g.
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Figure 5. Eight pathion ETs with ascending S values, from the maximally full
S  8 to 15 on the second row’s far right. For all S > 8, the 24 cells filled with
the  sedenion  G  and  S  are  painted  darker  than  the  48  forming  the  parallels.
Two shades  of  gray  highlight  the  4 µ 24 long-  and off-diagonal  unfilled  cells
of the spandrel’s HBKs.

Only if row label R, column label C, or their XOR product P, equal
g  or s  (the pre-explosion S),  will  the cell  be filled (and assessors with
L-indices  R  and  C  mutually  zero-divide).  Via  the  Recipe  Theory  [3],
this  formula  can  be  generalized  by  a  simple  analysis  of  S’s  bitstring.
For any S > 8 not a power of 2, the ETs’ empty spaces for each succes-
sive N approach a fractal, overlaying each other’s values. Row and col- 
umn labels  of  the 2N-1  ET become actual  cell  values  of  the 2N,  with
the  same  values  filling  in  the  label-lines’  empty  parallels  in  reverse
(strut-opposite) order, in a never-ending balloon ride sequence (see Fig-
ure 6) of nested skyboxes. 

Figure  6.  ETs  for  S  15,  N  5, 6, 7  (nested  skyboxes  bordered  in  darker
shading) and fractal limit: the Cesàro double sweep [13, p. 65].

In  this  sense,  Recipe  Theory  is  a  pure  Wolfram-style  number  the-
ory,  focused  on  the  binary  representations  of  integers  rather  than
their  quantities,  hence  according  special  status  to  the  placeholding
power of singleton bits (G values)~as opposed to traditional number
theory,  which  concerns  itself,  above  all  else,  with  size~and  hence,
with primes.
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In  this  sense,  Recipe  Theory  is  a  pure  Wolfram-style  number  the-
ory,  focused  on  the  binary  representations  of  integers  rather  than
their  quantities,  hence  according  special  status  to  the  placeholding

 to traditional number
theory,  which  concerns  itself,  above  all  else,  with  size~and  hence,
with primes.

Complementary  to  Theorem  15  of  [3],  just  cited,  is  Theorem  16
which immediately follows: while a box-kite’s edges are turned off by
augmenting its S  with a new leftmost bit (and necessarily left-shifting
its G-bit if this new S exceeds it), performing a second such augment-
ing results in a box-kite which is once again turned on. 

In addition to the Hs, gL  modularity first  seen in our sand mandala
formula, we thus have a process of hide/fill involution: repeated, it pro-
duces spandrels from proper (Type I or Type II) box-kites; quartets of
higher-N proper box-kites from each such HBK; quartets of higher-N
spandrels from each of these; and so on, ad infinitum. This is a result
sufficiently powerful as to call for a proof. 

For  the  HBK  deriving  from  a  Type  I’s  zigzag,  the  trips  along  all
three struts are reversed: if Hz, S, vL is CPO, then Rule 2 says replacing
S with X by exploding the Type I’s assessors will reverse orientations.
Similarly, the flows along the edges will also reverse, since each edge’s
two terminal  nodes  are  reversed.  So if  an appropriate power of  2,  g,
be added to the central node, this same g  must be added to the three
nodes at the Fano plane’s angles as well,  to keep all  lines trips. Only
one  among  the  seven  Fano  lines  will  have  no,  instead  of  two,  nodes
with  g  appended  to  its  indices:  the  Z-trip  itself.  Hence,  if  the  Z-trip
flows clockwise, perimeter tracings now run counterclockwise. 

Such a fourfold g insertion is equivalent to exploding a 2N-ion box-
kite’s zigzag, since g appended to the strut-opposite v of any Z-trip L-
index z  yields  its  pre-explosion U-index partner:  for  arbitrary Type I
zigzag assessor (z,Z), z ÿ S  v, but v ÿ HS + gL  v ÿ X  Z. The resulting
Fano’s  edge  trips,  in  terms  of  pre-explosion  indices,  now read  (B,  a,
C); (C, b, A); (A, c, B), all with orientations reversed. We now recall a
crucial fact from earlier work, which we termed “trip-sync”: in the zig-
zag  only,  the  four  quaternion  copies  Ha, b, cL; Ha, B, CL; HA, b, CL;
HA, B, cL~the L-trip and its three allied U-trips~all flow similarly, so
that  one  can  effectively  allow  “slippage”  between  high-  and  low-
index units at any of the zigzag’s assessors and not notice any differ-
ence.  Repeating  this  process  with  fourfold  insertion  of  G  2 ÿ g  re-
reverses all six flipped lines, again leaves the Z-trip unchanged, again
giving a Type I box-kite. 

For the three HBKs derived from making a Z-trip out of a Type I’s
trefoil  L-trip,  the three trefoil-derived HBKs in any Type I  box-kite’s
spandrel will have just one strut-and-edge pairing reversed, and a dif-
ferent  one  in  each  case.  This  is  the  complement  to  the  zigzag
“slippage”  effect:  among  the  four  quaternion  copies  associated,  say,
with Ha, d, eL,  only Ha, D, EL  will  share its orientation. The other two
U-trips,  whose  singleton  L-index  is  not  shared  with  the  zigzag,  have
CPO  forms  HA, E, dL  and  HA, e, DL.  Each  of  the  trefoil  HBKs,  then,
has  flow structure  like  that  of  a  Type  I  save  for  a  “T”:  the  reversed
strut flows from an angle to the midpoint of the likewise flow-flipped
side-trip. Doing the fourfold g-appending to the nodes not included in
the  only  reversed  line  (containing  the  only  L-index  from  the  pre-
exploded box-kite’s zigzag) will also result, as direct symbolic calcula-
tion shows, in a Type I box-kite. 
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For the three HBKs derived from making a Z-trip out of a Type I’s
trefoil  L-trip,  the three trefoil-derived HBKs in any Type I  box-kite’s
spandrel will have just one strut-and-edge pairing reversed, and a dif-
ferent  one  in  each  case.  This  is  the  complement  to  the  zigzag
“slippage”  effect:  among  the  four  quaternion  copies  associated,  say,
with Ha, d, eL,  only Ha, D, EL  will  share its orientation. The other two
U-trips,  whose  singleton  L-index  is  not  shared  with  the  zigzag,  have
CPO  forms  HA, E, dL  and  HA, e, DL.  Each  of  the  trefoil  HBKs,  then,
has  flow structure  like  that  of  a  for  a  “T”:  the  reversed
strut flows from an angle to the midpoint of the likewise flow-flipped
side-trip. Doing the fourfold g-appending to the nodes not included in
the  only  reversed  line  (containing  the  only  L-index  from  the  pre-
exploded box-kite’s zigzag) will also result, as direct symbolic calcula-
tion shows, in a Type I box-kite. 

All  told,  then,  if  none  or  two  of  the  struts  are  reversed,  we  have
proper  box-kites,  of  Types  I  and  II  respectively.  If  all  or  one  of  the
struts  are  reversed,  we  have  zigzag  or  trefoil  HBKs  in  that  order  for
Type I spandrels. Type II spandrels appear, at first, to have their own
distinct  Fano  plane  flow  patterns.  However,  by  swapping  sides  with
zigzags,  the  HBK  reversal  patterns  take  on  very  different  appear-
ances~and the full  set  of 16 sail-based presentations are the same in
both spandrels, but in different orders. The display with central circle
housing the default Ha, b, cL line, and that with Ha, d, eL, reverse places
in  Type  I  and Type  II  spandrels.  This  shuffling  is  crucial:  because  of
it, both types will be found to facilitate “cowbirding”, a process of par- 
amount interest. 

Successive  explosions  of  the  sedenions’  S  1  box-kite  take  us  to
the S  9 and S  25 ETs of the pathions and chingons, respectively.
Such  instantiating  is  readily  generalized,  since  each  spectral  band  of
eight  consecutive  S  values  (powers  of  2  excluded)  obeys  the  same
hide/fill  logic: like the seven sand mandala ETs in the pathions, there
is  an  animation-like  impetus  connecting  each  to  each,  all  with  the
same  counts  of  proper  and  hidden  box-kites.  For  those  who  like  to
read the libretto at the opera, the graphics corresponding to the cases
just  mentioned,  in  the  order  just  given,  are  on Slides  16,  25,  and 48
of [9]. 

Our  sedenion  starter  kit  has  Z-trip  H3, 6, 5L.  For  this  and  its  L-
trips,  we  get  the  four  HBKs,  all  with  S  9,  X  25,  G  16,  as
shown  in  Table  2.  (The  original  assessor  L-  and  U-indices,  all  with
S  1,  X  9,  G  8,  are  shown  on  the  first  and  third  lines;  as
pathion L-indices, their corresponding U-indices appear in the second
and fourth.) 

Ha, b, cL Ha, d, eL Id, b, f M Ie, f , cM
H03, 06, 05L
H26, 31, 28L

H03, 04, 07L
H26, 29, 30L

H04, 06, 02L
H29, 31, 27L

H07, 02, 05L
H30, 27, 28L

H10, 15, 12L
H19, 22, 21L

H10, 13, 14L
H19, 20, 23L

H13, 15, 11L
H20, 22, 18L

H14, 11, 12L
H23, 18, 21L

Table  2.  Sedenion  sails  and  their  pathion  explosions  (S,  X,  G  =  1,  9,  8)  Ø
HS, X, GL = 9, 15, 16L.

The zigzags of  the pathion HBKs share a special  feature:  when all
six L- and U-indices are treated as a set, to which X and the real unit
are appended, we find that not only are the HBKs edges bereft of ZD
currents; this 8D ensemble shows no ZD currents anywhere within it,
no  matter  how  you  twist  it.  No  two  pairings  of  one  element  each
from  Ha, b, cL  and  HA, B, C, XL  will  mutually  zero-divide.  We  have,
then, a pure octonion copy. 
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The zigzags of  the pathion HBKs share a special  feature:  when all
six L- and U-indices are treated as a set, to which X and the real unit
are  of ZD
currents; this 8D ensemble shows no ZD currents anywhere within it,
no  matter  how  you  twist  it.  No  two  pairings  of  one  element  each
from  Ha, b, cL  and  HA, B, C, XL  will  mutually  zero-divide.  We  have,
then, a pure octonion copy. 

Clearly,  the  four  Q-copies  involving  L-  and  U-units  along  the
zigzag’s  edges  are  ZD-free,  as  are  the  three  trips  involving  the
spandrel’s X with the U- and L-indices of each zigzag assessor in turn.
Such  an  ensemble,  whose  indices  can  be  relabeled  to  be  identified
with  standard  octonions,  are  called  an  egg;  its  habitat,  a  cowbird’s
nest. Such nidi exist in all spandrels, one per each of the four HBK zig-
zags,  in  their  zigzag  (ADE)  sails  for  Type  I  (Type  II).  Implied  in  this
are three claims, comprising the…

Cowbird Theorem. Each HBK in a spandrel contains a ZD-free octonion
egg O, consisting of the reals, the L-indexed units of one of the source
box-kite’s  sails,  their  U-index partners  in  the HBK exploded from it,
plus  another  imaginary  indexed  by  the  spandrel’s  X.  O-containment
is universal  among HBKs found in either Type I or Type II spandrels,
and is also habitat-specific: for Type I, an O is always and only to be
found in an HBK’s zigzag sail, whose L-index set is identically that of
the source box-kite’s sail from which the HBK was exploded. Type II
spandrels,  meanwhile,  harbor  eggs  in  their  HBK’s  ADE sails,  in  pat-
terns that are flowmorphic~that is, have identically connected and ori- 
ented lines in their Fano presentations~to the Type I eggs’ nests. 

We  introduce  and  exemplify  seven  lemmas  that  pave  the  way  to
our proof. These highlight and customize familiar aspects of PSL(2,7),
the  168-element  simple  group  governing  manipulation  of  the  Fano
diagram’s  labeling.  (This  is  not  to  be  confused  with  the  480  distinct
labeling schemes for octonions mentioned earlier: only a small subset
of these entail the XOR relations defining triplets upon which our appa-
ratus  depends.)  We  also  want  to  indicate  certain  correspondences
between  the  fourfold  G  loading~at  the  corners,  and  in  the  center~
which effects the explosion process taking one from 2N  to 2N+1 levels,
and the same-level fourfold label-exchange  process which underwrites
the basic PSL(2,7) symmetries. 
Lemma 1. Explosion fixes one of the seven Fano plane lines (the zigzag
circle,  in  our  arguments’  context),  with  the  other  six  having  their
orientations reversed: all six contain exactly two of the four high-bit-
augmented  nodes,  so  Rule  2  applies  to  each.  By  Fano symmetry,  the
same holds true whatever four nodes are sites for G loading, provided
no three  reside  in  one  line  (occurring  only  if  exactly  one  line  has  no
nodes selected). 
Lemma 2. If the fixed line is one of the three sides, the G-loading nodes
will  form  a  kite  containing  S  and  the  angle  opposite  the  fixed  side,
and the two midpoint nodes joined to both. If a strut, G-loading sites
are  the  node-pairs  perpendicular  to  it,  residing  in  midpoints  and
vertices.  But all  three cases  are projectively equivalent,  and any four-
node  loading  can  be  uniquely  specified  writing  PLHm, n, pL,  triplet
Hm, n, pL the fixed line, each line choice uniquely corresponding to the
explosion  of  one  of  the  seven  (possibly  hidden)  box-kites  in  a  single
brocade.
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Lemma 2. If the fixed line is one of the three sides, the G-loading nodes
will  form  a  kite  containing  S  and  the  angle  opposite  the  fixed  side,
and the two midpoint nodes joined to both. If a strut, G-loading sites
are  the  node-pairs  perpendicular  to  it,  residing  in  midpoints  and
vertices.  But all  three -
node  loading  can  be  uniquely  specified  writing  PLHm, n, pL,  triplet
Hm, n, pL the fixed line, each line choice uniquely corresponding to the
explosion  of  one  of  the  seven  (possibly  hidden)  box-kites  in  a  single
brocade.
Lemma 3.  Consider  two  distinct  lines  l1  and  l2  among  a  Fano
presentation’s seven. If N HPL lines œ P, the set whose orientations are
preserved  (i.e.,  oriented  identically  to  those  placed  in  the  same  posi-
tions  in  a  standard  Type  I  box-kite,  per  Figure  3),  and
N HRL  H7 - N HPLL  lines  œ  R,  where  orientations  are  reversed,  per-
form PL(l1).  For  l1  only,  orientation  stays  unchanged.  If  l1 œ P,  then
after  the  performance,  N HRL  HN HPL - 1L;  if  œ  R,  then
N HRL  HN HPL + 1L.  If  we  start  with  standard  presentations  of  either
Type  I  (N HRL  0),  Type  II  (N HRL  2),  Type  I’s  explosion
(N HRL  6),  or  Type  II’s  (N HRL  6  if  the  fixed  line  l1,  which  pro-
duced it begins in R, else N HRL  4), then any followup performance
of PLHl2L will have N HRL an even number. 

Lemma 4.  The  four-point  sites  for  G-loading  are  the  necessary  and
sufficient  bases  for  double  exchange  (DX)  of  labels,  the  minimal
nontrivial label exchanges possible which preserve the mutual connec-
tions among the seven lines. For a fixed line Hm, n, pL, the expression
DXHm, n, p; O pL,  O p  either  H,  V,  D,  or  the  identity  operator  I,
defines  a  Klein  group.  Taking  the  fixed  line  to  be  the  vertical  strut
(d, S, c)  on  the  standard  Type  I  layout  for  ease  of  visualizing,  the
horizontal  DX  operator  H  (instantiated  here  via  a F b,  e F f )  pro-
duces a dihedral  flip of the Fano triangle along Hd, S, cL.  The vertical
DX  V  (realized  here  as  e F a,  f F b)  makes  the  trefoil  He, c, f L  and
zigzag  Ha, b, cL  trade  places  while  preserving  their  (and  the  vertical
strut’s)  orientations.  The  composite  D = H ÿ V  V ÿ H  is  commuta-
tive,  and  exchanges  diagonally  opposite  members  of  the  four-point
site.  All  three  operators  being  involutions,  their  Klein  group  can  be
written  by  supplementing  the  D  composition  just  given  with  the
relations  H2  V2  D2  I.  (As  168  4 ÿ 7 ÿ 6,  with  seven  lines  of
triplets  each  permutable  in  3 !  6  ways,  the  structure  of  the  Fano
plane’s group qua brocade presentation is hereby given.) 
Lemma 5.  Define  counts  N HRL,  N HPL  of  lines  in  sets  R  and  P  as  in
Lemma 3. Assume a given Fano presentation is derived from standard
Type  I  or  Type  II  presentations  by  PL  operations,  as  in  Lemma  4.
Then  N HRL  is  even.  Consider  the  before  and  after  counts  for  the
dihedral  flip  along  the  vertical  strut,  DX(aSf ; V).  Orientations  of  all
three struts are unaffected; hence, if their contribution to N HRL before
DX is odd, it will be so after DX, and ditto for DX even. Orientations
for all  three sides plus the center,  meanwhile,  are all  reversed: hence,
if  their  contribution  to  N HRL  before  DX  is  k,  it  will  be  H4 - kL  after
DX, hence its  odd or even status will  remain unchanged. If  we start,
then, with Type I, Type II, or any HBK derived from either by multi-
ple applications of PL, N HRL  will  be even before DX, and remain so,
since  odd  plus  odd  and  even  plus  even  are  both  even.  As  all  DX
operations, per Lemma 4, are equivalent in all senses relevant, all DX
operations preserve evenness of the reversed-flow count. 
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Lemma 5.  Define  counts  N HRL,  N HPL  of  lines  in  sets  R  and  P  as  in
Lemma 3. Assume a given Fano presentation is derived from standard
Type  I  or  Type  II  presentations  by  PL  operations,  as  in  Lemma  4.
Then  N HRL  is  even.  Consider  the  before  and  after  counts  for  the
dihedral  flip  along  the  vertical  strut,  DX(aSf ; V).  Orientations  of  all
three struts are unaffected; hence, if their contribution to N HRL before
DX is odd, it will be so after DX, and ditto for DX even. Orientations
for all  three sides plus the center,  meanwhile,  are all  reversed: hence,
if  their  contribution  to  N HRL  before  DX  is  k,  it  will  be  H4 - kL  after
DX, hence its  odd or even status will  remain unchanged. If  we start,

-
ple applications of PL, N HRL  will  be even before DX, and remain so,
since  odd  plus  odd  and  even  plus  even  are  both  even.  As  all  DX
operations, per Lemma 4, are equivalent in all senses relevant, all DX
operations preserve evenness of the reversed-flow count. 
Lemma 6.  Any  standard-form  Type  I  can  be  converted  into  any  of
three different standard-form Type IIs by performing, in either order,
a DX and a PL on a strut mSn.  For the zigzag H3, 6, 5L  of the S  1,
N  4  (hence,  Type  I)  box-kite,  DX(aSf ; VL  and  PL(aSf L,  performed
in either order, gives two easy ways to generate the Type II shown in
Figure 4(b). 
Lemma 7. By Lemmas 3 and 5, any combination of PL and DX opera-
tions  (mutually  commuting  where  orientation-preservation  is  con-
cerned),  will  always  reverse  an  even  number  of  lines;  further,  the
number of reversed lines with respect to the standard Type I presenta-
tion will likewise always be even after performing any number of such
operations.  Ergo,  standard-presentation  Type  III  and  Type  IV  box-
kites (Type I with one or three struts reversed, respectively) can never
be derived from Types I and II. But G-loading and catamaran twisting
within  a  brocade  are  the  bases  for  all  possible  creations  of  standard
box-kites. Hence, Types III and IV are impossible. 

Now let us tackle the cowbirding theorem, give reasons for so nam-
ing it, then spell out our claims for its potential to underwrite models
of semantic networks. 
Proof. We consider only Type I for most of our argument, then find a
simple  way  to  carry  over  everything  shown  therein  to  the  Type  II
situation.  Label  a  standard-form  Type  I  box-kite  in  the  2N-ions  in
conformity with that shown in Figure 3(b): strut constant S appears in
the  center,  the  zigzag’s  a, b, c  are  arrayed  about  it  at  10,  2,  and  6
o’clock, respectively, with their strut-opposite nodes f , e, d  appearing
in  the  lower-right  and  lower-left  corners  and  apex,  in  that  order.
Explode  by  G-loading  the  corners  and  center  with  g  (the  pre-explo-
sion  G),  synonymous  with  saying  perform  the  operation  PL(a, b, c).
The result is the Ha, b, cL-based HBK, with the new S now equal to the
pre-exploded  X = s + g,  and  the  new  G  2 g  2N.  To  prevent
ambiguity  when  pre-  and  post-explosion  nodes  are  referenced,  the
subscript “H” designates nodes in the HBK, not the source box-kite. 

For arbitrary zigzag assessor HZ, zL and its strut-opposite vent asses-
sor  HV, vL  in  the  HBK,  U-indices  Z = G + v;  but  PL(a, b, c)  having
loaded each pre-exploded v with g,  this means Hz, ZL  Hz, G + g + vL,
and Hv, VL  Hv, G + g + zL. Our initial claim: in this HBK, the six zig-
zag  units,  X  H  G + g + sL,  and  the  real  unit  (index  0)  are  isomor-
phic  to  the  standard  octonions,  hence ZD-free.  Call  this  octet  egg O
in the Ha, b, cL cowbird’s nest, associated with Type I box-kite, having
S  s  and  zigzag  L-index  set  Ha, b, cL  in  the  2N-ions,  shorthanded
Ha, b, c; s; NL. 

The multiplication table  of  O  is  clearly isomorphic to that for the
usual  octonions:  for  each  Hz, ZL  choice,  z ÿ X  Z,  and  HBK  trips
Ha, b, cL, Ha, BH, CHL, HAH, b, CHL, and HAH, BH, cL provide the remain-
ing four quaternion copies that complete the septet found in standard
octonions. And, as this is an HBK, we already know that the products
represented  by  the  HBK’s  zigzag  edges  are  not  zero.  We now take  a
“voyage  by  catamaran”,  showing,  by  twist-product  logic,  how  the
other L- and U-index pairings contained in O also make no zeros. 
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The multiplication table  of  O  is  clearly isomorphic to that for the
usual  octonions:  for  each  Hz, ZL  choice,  z ÿ X  Z,  and  HBK  trips
Ha, b, cL, Ha, BH, CHL, HAH, b, CHL, and HAH, BH, cL provide the remain- 
ing four quaternion copies that complete the septet found in standard
octonions. And, as this is an HBK, we already know that the products
represented  by  the  HBK’s  zigzag  edges  are  not  zero.  We now take  a
“voyage  by  catamaran”,  showing,  by  twist-product  logic,  how  the
other L- and U-index pairings contained in O also make no zeros. 

For each pairing among zigzag L-indices, the Fano triangle presenta-
tion  makes  it  clear  that  the  arrow sweeping  out  120 ±  between  them
forms  an  arc  beneath  the  corner  L-index  which  represents  the  strut
constant  of  the  box-kite  the  assessors  containing  said  L-indices  twist
to.  For an Ha, b, cL  Type I  HBK, all  three exceed g,  equalling Hg + dL,
Hg + f L,  and  Hg + eL,  for  twists  between  HAH, BHL,  HBH, CHL  and
HCH, AHL,  respectively.  For  the  first  such  twisting,  switch  the  L-indi-
ces  while  retaining  the  U-indices,  and  consider  the  product  of
Hb, G + g + f L  and  Ha, G + g + eL.  Write  these  index  pairs  in  left-to-
right  order,  with the pair  starting with a  on the bottom, and further
mark the right-hand term on the top with a “+” (since the unit  with
this  index will  have the opposite  sign from that of  the other zigzag’s
corresponding term; hence, their twist product will have the same sign
in  the  same  location).  Symbolic  multiplication  shows  combining  the
four term-by-term products cannot sum to zero, as follows: 

+HbL + HG + g + f L 
+HaL + HG + g + eL  
-HG + g + sL + HcL 
+HcL + HG + g + sL 
2 c : not zero.

Since He, f , cL is CPO for the L-index trip along the bottom side of
the  triangle,  and  Ha, b, cL  is  likewise  the  Z-trip  in  CPO,  the  upper-
right and lower-left  results are clearly same-signed copies of c.  (Since
the top-right product entails two Rule 2 eliminations, there is no result- 
ing sign change affecting e f .) The other two results, meanwhile, both
prepend HG + gL  with no effect on sign; signs on s  are opposite, how-
ever,  because  one  results  from multiplying  terms  in  v ÿ z  order,  while
the other multiplication has the form z ÿ v. 

By  symmetry,  parallel  results  (of  2 a  and 2 b)  are  obtained  for  the
twists of BH  CH  and CH  AH  respectively. As these exhaust the nontriv-
ial  possibilities  for  products  between  L-  and  U-index  pairings  in  O,
our initial claim proves true. 

A similar symmetry argument lets us prove our case for all  Type I
trefoil HBKs by proving it for any one: recall that each of these differs
from Type I by having reversed flows along the strut and side contain-
ing the single L-index shared with the zigzag in the pre-exploded box-
kite.  It  will  suffice,  then,  to  consider  the  case  of  the  Ha, d, eL  HBK
derived from the same pre-explosion box-kite. Its zigzag assessors AH,
BH,  CH  then  read  Ha, G + g + f L;  Hd, G + g + cL;  He, G + g + bL.  Twists
among these three all  result  in box-kites  with strut constants exceed-
ing  g,  with  similar  effect.  Since  edge-signs  are  not  all  the  same  (two
are  positive,  one  negative),  twist-product  signs  will  also  lack  unifor-
mity, so we append the binary variable s to the top-right term in the
multiplication’s  setup,  and  test  that  neither  possible  value  for  it  can
lead to a final summation of zero. 
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trefoil HBKs by proving it for any one: recall that each of these differs
from Type I by having reversed flows along the strut and side contain-

 box-
kite.  It  will  suffice,  then,  to  consider  the  case  of  the  Ha, d, eL  HBK
derived from the same pre-explosion box-kite. Its zigzag assessors AH,
BH,  CH  then  read  Ha, G + g + f L;  Hd, G + g + cL;  He, G + g + bL.  Twists
among these three all  result  in box-kites  with strut constants exceed-
ing  g,  with  similar  effect.  Since  edge-signs  are  not  all  the  same  (two
are  positive,  one  negative),  twist-product  signs  will  also  lack  unifor-
mity, so we append the binary variable s to the top-right term in the
multiplication’s  setup,  and  test  that  neither  possible  value  for  it  can
lead to a final summation of zero. 

Twisting  AH  and  BH  (with  a  Fano  plane  arrow  curving  between
their L-indices in the zigzag’s circle and beneath dH  g + b) yields the
following symbolic arithmetic: 

+HdL + s ÿ HG + g + aL 
+HaL + HG + g + cL  
-HG + g + sL + s ÿ e 
-HeL - s ÿ HG + g + sL 
2 e or 2 HG + g + sL : not zero.

By symmetry once more, we assert a “not zero” result for a twist-
product  ZD testing  for  BH  CH  and CH  AH.  This  completes  the  proof
of  universality:  all  zigzags  of  all  Type  I  HBKs  have  cowbird’s  nests,
and thereby can “hold eggs”. 

Only the zigzags, however,  in such spandrels can do so. For while
the  strut  constants  of  box-kites  being  twisted  to  all  exceed  g  in  the
above treatments, the zigzag’s L-indices all are less than g, and two of
these will be strut constants for box-kites being twisted to for the tre-
foil  HBKs.  When  the  source  box-kite  resides  in  the  sedenions,  this
clearly  means  that  these  two  S  values  are  being  twisted  to  designate
ETs with no empty spaces save the long diagonals; hence, all products
of ZDs within them that are not trivially excluded (self-products and
strut constants) will be zero. But symbolic calculations like those just
considered  make  it  clear  that  this  low-N  situation  generalizes  com-
pletely. 

Consider,  for  instance,  the  Ha, b, cL  HBK’s  own  Ha, d, eL  sail,
HaH, dH, eHL  a, g + d, g + e.  By  Rule  2,  the  last  two  terms  must  be
placed  in  reverse  order  when  their  trip  is  written  CPO,  so  we  have
Ha, g + e, g + dL  HaH, eH, dHL:  the  side  and  strut  containing  a  are
both  reversed  in  this  HBK.  U-indices  are  HG + g + f L,  HG + cL,  and
HG + bL. (Note the lack of a “g” term in both DH  and EH.) The aH  dH

twist implies a box-kite with strut constant a < g, leading to this sym-
bolic arithmetic: 
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+HaL + s ÿ HG + cL 
+Hg + dL + HG + g + f L  
+HG + g + sL + s ÿ Hg + eL 
+Hg + eL + s ÿ HG + g + sL 
Hs  -1L ñ 0 \ no egg. 

The  obvious  symmetry  argument  holds  for  the  other  two  trefoils’
twist products involving the assessor the reversed side shares with the
zigzag.  Our  claim  of  “no  egg”  must  hold,  then,  for  all  trefoil  sails
within  the  Ha, b, cL  HDK.  But  as  the  trefoil-based  HDKs  also  have
(two of three)  zigzag twist  products  in box-kites with strut constants
less  than  g,  mutually  zero-dividing  ZDs  must  be  contained  in  these;
hence, “no egg”. Hence, the Type I HBK eggs are all to be found nes-
tled in zigzag sails only, proving our claim of habitat locality. 

Finally,  what  of  Type  II  box-kites,  which  (aside,  of  course,  from
HBKs)  we  know  by  Lemma  7  are  the  only  other  kind  that  exist?
Recall  from  Lemma  6  how  they  derive  from  Type  I:  to  test  their
HBK’s, we will  need to consider three,  not two, high-bit  appendings,
which  we  will  label,  by  increasing  size,  g,  G,  and  G.  This  makes  the
bookkeeping  more  convoluted,  but  the  proofs  are  not  more  difficult
in principle. This is where the notion of oriented lines in two different
Fano presentations  being “flowmorphic”,  introduced toward the end
of the Cowbird Theorem’s statement, must be made concrete. 

As  Type  I  spandrels  require  only  one  explosion,  symbolic  expres-
sions describing oriented triplets of nodes within them entail only the
use  of  g  in  addition  to  the  standard  seven  letters.  Type  II  spandrels,
however,  require  two  PL  operations,  the  first  to  convert  the  Type  I
into  a  Type  II.  Hence,  symbolic  expressions  within  them entail  G  as
well as g, and so will frequently require applying Rule 2 twice. This is
best  explained through examples.  For Type I,  we stick with our run-
ning  for-instance,  exemplified  in  Table  2:  the  explosion  of  the  S  1
sedenion box-kite  with  zigzag  L-indices  H3, 6, 5L.  By  XOR  with  S,  we
know  that,  for  the  latter  source,  the  strut-opposite  f , e, d  L-indices
are 2, 7, 4 in that order, with corresponding U-indices found by add-
ing  G  to  the  strut-opposites:  hence,  A  G + f  10,  B  G + e  15,
C  G + d  12,  and  so  on.  Now,  explode  the  (A,  B,  C)  sail  into  its
own HBK by PL, and we get the leftmost “ABC” column entry in the
top  row:  the  old  Ha, AL  H3, 10L  is  split  into  the  new  strut-opposite
Ha, f L  pairing,  and  their  U-indices  are  now  the  new
G + f  16 + 10  26,  with  the  rest  filled  out  as  shown  in  the  table.
The next three columns do the same for the trefoil  sails’  assessors as
indicated. The row immediately below then spells out the contents of
the F, E, D assessors associated with the A, B, C above. 

Now, let us first rewrite the HA, B, CL HBK with Ha, b, cL sail in the
zigzag,  both  literally  and symbolically.  (Rewrite,  since  this  is  what  is
given by default upon completing the usual G-loading by corners-and-
center PL.) Then, use DX(a d e; DL~D, not H, since all three trefoil L-
index sets are reversed in this HBK~to swap zigzag and a-sharing tre-
foil  while preserving both their  orientations,  so that we can compare
these two different Fano presentations for this same HBK. 
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Now, let us first rewrite the HA, B, CL HBK with Ha, b, cL sail in the
zigzag,  both  literally  and symbolically.  (Rewrite,  since  this  is  what  is

-and-
center PL.) Then, use DX(a d e; DL~D, not H, since all three trefoil L-
index sets are reversed in this HBK~to swap zigzag and a-sharing tre-
foil  while preserving both their  orientations,  so that we can compare
these two different Fano presentations for this same HBK. 

Next,  do  the  same for  the  Type  II  built  by G-loading  (then swap-
ping,  to  retain  original  orientations)  d  and  e,  and  b  and  c,  per  the
move  from  the  left  to  right  diagrams  in  Figure  4.  Use  g  in  the  sym-
bolic  expressions  of  this  first  step,  then  explode  into  an  HBK  with
2 g  G,  eventually  deriving  associated  U-indices  via  adding  of
4 g  2 G  G  to  L-index  strut-opposites.  Likewise,  write  the  Type  II
HA, B, CL  HBK in two different Fano presentations, with Ha, b, cL and
Ha, d, eL in their respective zigzags. 

Shorthand  the  Ha, b, cL~then  Hd, e, f L~as  zigzag  presentations  of
the Type I HA, B, CL  HBK as I:ABC ↬  a b c  and I:ABC ↬  d e f  in that
order, and write the analogous Type II’s identically, but with II preced-
ing  the  colon.  If  one  converts  all  symbolic  expressions  at  nodes  into
pure  graphical  elements  (oriented  arrows),  two  deep  surprises  are
revealed: 

I:ABC ↬ a b c ^ II:ABC ↬ a d e 
I:ABC ↬ a d e ^ II:ABC ↬ a b c. 

Here,  we  use  ^  to  mean  is  flowmorphic  to:  their  oriented  Fano
graphs,  with  nodes  labeled  only  with  the  minimal  symbolic  elements
of the set Ha, b, c, d, e, f , sL, are identical. 

Proceed in the same fashion,  employing all  four columns of literal
indices in Table 2: taking care to match letters and positions (so that
the b L-index of the third Hf , d, bL trefoil is written in the second posi-
tion  of  the  zigzag,  the  c  L-index  of  the  fourth  Hf , c, eL  is  put  in  the
third zigzag slot,  etc.),  the flowmorphic correspondences continue, in
the same exact manner. 

Consider  the  three  T-bar  graphs  mentioned  earlier,  which  present
as  successive  rotations  clockwise  through  120 ±:  two  reversed  lines,
the  T’s  crossbar  and  stem,  share  the  a  node  in  I:ADE  ↬  a b c,  the  b
node  in  I:DBF  ↬  a b c,  and  c  in  I:EFC  ↬  a b c.  These  correspond  to
Type II’s  analogous  graphs  in  the  Ha, d, eL  presentations  of  the  ADE,
DBF,  and  EFC  HBKs  respectively  (with  the  Ha, d, eL  in  the  Type  II
ABC  being  flowmorphic  to  the  Type  I  HBK’s  all-lines-reversed-but-
the-zigzag explosion graph). 

Ditto,  for  the  Ha, d, eL  row of  presentations  in  Type  I’s  HBKs and
the Ha, b, cL row in Type II’s. For all, the zigzag circular line is always
clockwise  (guaranteed  by  judicious  choice  of  H  or  D  in  the  DX).
Viewed left (the ABC HBK) to right (the EFC), we first encounter the
pup-tent  graph,  so-called  because  it  has  all  three  sides  reversed,  and
only  the  strut  not  reversed  in  the  pathion  Type  II  box-kite  source
being reversed here, suggesting the vertical zipper in a pup-tent’s trian-
gular  entryway.  Then  comes  the  swallow’s  tail,  with  all  nonzigzag
lines reversed, except the two sides with midpoints not a. Third is the
two-tined shrimp fork, where the only reversals are the line pair point-
ing  out  and  away  from  e  and  not  including  the  third  ray  from  e’s
angle containing a.  Finally, in the EFC HBK, the two reversals of the
switchblade  comprise the side on the right leading into, and the strut
leading out from, the node d at the top. 
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Ditto,  for  the  Ha, d, eL  row of  presentations  in  Type  I’s  HBKs and
the Ha, b, cL row in Type II’s. For all, the zigzag circular line is always
clockwise  (guaranteed  by  judicious  choice  of  H  or  D  in  the  DX).
Viewed left (the ABC HBK) to right (the EFC), we first encounter the
pup-tent  graph,  so-called  because  it  has  all  three  sides  reversed,  and
only  the  strut  not  reversed  in  the  pathion  Type  II  box-kite  source
being reversed here, suggesting the vertical zipper in a pup-tent’s trian-

lines reversed, except the two sides with midpoints not a. Third is the
two-tined shrimp fork, where the only reversals are the line pair point-
ing  out  and  away  from  e  and  not  including  the  third  ray  from  e’s
angle containing a.  Finally, in the EFC HBK, the two reversals of the
switchblade  comprise the side on the right leading into, and the strut
leading out from, the node d at the top. 

For the third and fourth rows we can construct beneath these same
column  heads,  DX’s  bringing  properly  oriented  Hd, b, f L  and  He, f , cL
L-trips into the zigzag, display T-bar-style rotations of only these four
graphs (pup-tents always and only in the ABC column, the others shuf-
fled  around  in  the  other  columns).  This  exact  correspondence
between Type I and Type II HBK graphs makes it clear that Type II’s
second row of graphs, and Type I’s first, comprise the complete set of
cowbird’s nests, thereby completing our proof. ‡

3. Cowbirding, Bricolage, and Future Directions

Cowbirds  famously  lay  their  eggs  in  other  birds’  nests.  As  a  verb,
“cowbirding” was how some object-oriented programmers at the old
Lotus Development Corporation described stuffing methods or struc-
tures in abandoned object slots, when creating new ones was inconve-
nient or disallowed. Our cowbird’s nests permit infiltration from out-
side  the  current  index-system  context,  directly  from  another  such:
indefinitely  many  octonion  copies,  one  per  spandrel  hidden  box-kite
(HBK), mean innumerable sites from which to restart the Cayley|Dick-
son  process  (CDP).  Map  indices  of  units  in  a  given  nest
H3, 6, 5, 26, 31, 28, plus X  25 and 0 for reals in our running exam-
ple) to the usual “starter kit” (of 0 through 7, with X  mapping most
readily  to  4  in  the  center,  per  the  L-index  Fano  of  the  sedenions’
S  4 box-kite).  Or map them to any other “kit” that seemed conve-
nient, then back again after “digressing”. Chomsky’s context-sensitive
grammars (as opposed to the context-free typical of programming lan-
guages)  are  clearly  implicated,  suggesting  algorithmic  opportunities
exceeding the built-in givens of our “new kind of number theory”. 

“Cowbirding” as  described here  is  synonymous with a  term made
famous by Lévi-Strauss in The Savage Mind, then disseminated by his
colleague  François  Jacob  [15]  among  evolutionary  biologists.  Brico-
lage, per the anthropologist, is what a rural jack-of-all-trades or “Mr.
Fixit” (translated as a “tinkerer” in Jacob’s piece) performs. Like “the
significant images of myth”, 

the materials of the bricoleur are elements which can be defined
by  two  criteria:  they  have  had  a  use,  as  words  in  a  piece  of
discourse  which  mythical  thought  “detaches”  in  the  same  way
as  a  bricoleur,  in  the  course  of  repairing  them,  detaches  the
cogwheels  of  an  old  alarm  clock;  and  they  can  be  used  again
either  for the same purpose or for a different  one if  they are at
all diverted from their previous function. [16, p. 35] 
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discourse  which  mythical  thought  “detaches”  in  the  same  way
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either  for the same purpose or for a different  one if  they are at
all diverted from their previous function. [16, p. 35] 

Like MacGyver, the Swiss-army-knife and duct-tape-toting protago-
nist of the eponymous television series,  the bricoleur, bereft of a spe-
cialized collection of high-tech tools, employs odds and ends that are
found  at  hand,  solving  seemingly  unrelated  problems  of  the  moment
in unconventional ways. In the words of the authors of a highly influ-
ential  tract  on  cognitive  science,  this  is  one  among  many  ways  of
describing  evolution  as  driven  by  suboptimal  solution-finding,  or
“satisficing”, wherein selection 

operates as a broad survival filter that admits any structure that
has  sufficient  integrity  to  persist.  Given  this  point  of  view,  the
focus of analysis is no longer on traits but rather on organismic
patterns via their life history. [This] is evolution as bricolage, the
putting  together  of  parts  and  items  in  complicated  arrays,  not
because  they  fulfill  some  ideal  design  but  simply  because  they
are possible. Here the evolutionary problem is no longer how to
force a precise trajectory by the requirements of optimal fitness;
it  is,  rather,  how to  prune  the  multiplicity  of  viable  trajectories
that exist at any given point. [17, p. 196] 

What we need is a grasp of dynamic processes that drive or enable
our flip-books, balloon rides, explosions, and so forth. Elsewhere (see
pp. 139|140 of [1],  and Sections 2 and 3 of [14]),  we have deployed
zero-divisor (ZD) tools to represent key objects of semiotics. For exam-
ple,  we  used  the  correspondence  between  the  four-unit  pattern  of
strut-opposite assessors and Jean Petitot’s four-control butterfly catas-
trophe rendering of Algirdas Greimas’ “semiotic square” [15]. But Peti- 
tot  also  provides  a  more complex,  double cusp catastrophe model  of
the  primary  tool  used  by  Lévi-Strauss:  the  “canonical  law of  myths”
[16]. As the third section of this monograph’s first draft sketches out
at length [18], sequel studies [19] will deploy a sort of catastrophic rep-
resentation theory based on ZDs. Beginning with the correspondence
between  the  “local”  level  of  our  strut-opposite  quartets  of  assessor
indices  and  the  semiotic  square,  we  proceed  into  more  rarefied  air,
where  explosion  necessitates  connecting  with  the  “global”  network
trafficking the canonical  law would regulate.  (Leading question:  Will
the  future  architecture  of  the  Web-replacing  grid  recapitulate  that  of
Lévi-Strauss’s “web that knows no weaver” made of myths?) 

To  briefly  review  our  earlier  work  relating  ZD  patterns  to
Greimas’  square,  place  A  and  a,  say,  on  a  square’s  top  corners,  and
strut-opposite  units  F  and  f  on  the  corners  diagonally  opposite.  The
two ends of each line are connected by XOR with X, the diagonals by
G,  and the verticals by S.  Instantiations of this “atom of meaningful-
ness” abound in Greimas’  and Petitot’s  works,  but one telling exam-
ple implicitly demonstrates its difference from Boolean binary logic. 

Across  the  horizontals  at  the  top  and  bottom  of  the  box,  write
“True”  and  “False”;  along  left  and  right  verticals,  put  “Secret”  and
“Lie”. Label the nodes at top-left and bottom-right “Being” and “Non-
being”, and refer to the diagonal as the schema for immanence; those
at top and bottom of the other diagonal, regulating manifestation, are
labeled “Seeming” and “Nonseeming”, respectively. (For a detailed dis-
cussion, see Section 3.7 of [15].)  This provides a framework for con-
templating verediction, which plays a key role in the contractual com-
ponent  of  narratives.  The  exposure  of  the  villain  transforms  “Lie”
into  “False”  at  the  turning  point  in  countless  fairy  tales,  where  the
threat  to  the  true  order  of  things  is  finally  rejected  (typically,  at  the
last  possible moment).  In stories like Cinderella,  the narrative is  pro-
pelled  by  the  inevitability  of  transforming  the  “Secret”  into  the
“True”: it is the possessor of the secret of the glass slipper, not one of
her evil step-sisters, who rightly wins Prince Charming’s heart. 
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Across  the  horizontals  at  the  top  and  bottom  of  the  box,  write
“True”  and  “False”;  along  left  and  right  verticals,  put  “Secret”  and
“Lie”. Label the nodes at top-left and bottom-right “Being” and “Non- 
being”, and refer to the diagonal as the schema for immanence; those
at top and bottom of the other diagonal, regulating manifestation, are
labeled “Seeming” and “Nonseeming”, respectively. (For a detailed dis-
cussion, see Section 3.7 of [15].)  This provides a framework for con-
templating verediction, which plays a key role in the contractual com-
ponent  of  narratives.  The  exposure  of  the  villain  transforms  “Lie”
into  “False”  at  the  turning  point  in  countless  fairy  tales,  where  the
threat  to  the  true  order  of  things  is  finally  rejected  (typically,  at  the
last  possible moment).  In stories like Cinderella,  the narrative is  pro-
pelled  by  the  inevitability  of  transforming  the  “Secret”  into  the
“True”: it is the possessor of the secret of the glass slipper, not one of
her evil step-sisters, who rightly wins Prince Charming’s heart. 

The three kinds of lines relate to Roman Jakobson’s three kinds of
“binary  opposition”  in  his  groundbreaking  studies  of  phonemics,  at
the  basis  of  all  later  structuralist  set-ups,  including  that  of  Lévi-
Strauss.  The  diagonals  indicate  Jakobson’s  “privation”:  for  example,
the plosive “p” differs from “b” solely by its absence of voicing~and
indicate, for us, where the singleton high-bit indicated by G  is XOR’d
with the index of a lowercase or uppercase letter, thereby connecting
L-  to  U-units  in  strut-opposite  assessors.  The  horizontals  are  sites  of
contrariety~a  two-control  competition  between  two  warring  parties
in catastrophe terms (or a pair of “sememes” forced into relationship
from  the  semiotician’s  vantage).  They  generate  the  synchronous  (/)
and antisynchronous (\) diagonals in the assessor planes in our model.
Verticals  are  linked  with  implication.  Per  the  previous  paragraph’s
examples,  transforming  competitive  dynamics  on  horizontals,  into
orders  of  implication  along  verticals,  opens  the  door  to  higher-order
models: conversion of horizontals into verticals in this sense is exactly
what our explosion process effects. 

Here we can underwrite  the full  workings  of  “spandrel  thinking”,
as Gould and Lewontin explain it. For spandrels exist not only on post-
age stamps, but in the quartet of curved triangles formed where dome-
supporting arches cross in front of cathedral naves. Spandrels became
favorite  sites  for  mosaic  and  painterly  expression~so  much  so  that
one who was architecturally naïve might think archways’ intersection
patterns  were  concocted  to  facilitate  their  production.  But  in  fact,
they  are  the  happy  side-effect  of  the  architecture~the  evolution  of
architectural design selected for crossed arches, not the spandrels that
rode on their coattails. Gould and Lewontin’s point: many evolution-
ary  arguments  assume selection pressures  are  at  work evolving span-
drel-like  attributes~or,  in  Greimas’  argot,  that  presuppositions  (the
square’s  verticals)  must  sometimes  fight  for  survival  (along  horizon-
tals). 

Such  cart-before-horse  flip-flops  are  endemic  in  any  explanatory
enterprise.  What  we  claim  here  is  that  our  toolkit  suffices  to  model

cowbird  logic,  become  sites  for  future  adaptations  (hence,  selection
pressures) in their own right [20]. 
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Such  cart-before-horse  flip-flops  are  endemic  in  any  explanatory
 What  we  claim  here  is  that  our  toolkit  suffices  to  model

conundra  of  this  sort  and  allow  for  contexts  wherein  spandrels,  by
cowbird  logic,  become  sites  for  future  adaptations  (hence,  selection
pressures) in their own right [20]. 
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