
Cellular Engineering

M. Burgin

Department of Mathematics
University of California, Los Angeles
405 Hilgard Avenue
Los Angeles, CA 90095

The main goal of this paper is to develop tools for constructing differ-
ent kinds of abstract automata based on cellular automata. We call this
engineering problem cellular engineering. Different levels of computing
systems and models are considered. The emphasis is made on the top-
level model called a grid automaton. Our goal is to construct grid
automata using cellular automata. To achieve this, we develop a
specific technology based on multilevel finite automata. It is proved
that two-dimensional cellular automata allow the construction of some
types of grid automata, as well as Turing machines and pushdown
automata.

1. Introduction

The goal of this work is to study relations between uniform and non-
uniform computational systems and develop tools for representing,
modeling, and building different computational schemas and devices
(from simple to more advanced, such as grid automata) by means of
cellular automata. This is an engineering problem that we call cellular
engineering. Here are the three main types of cellular engineering.

† Process cellular engineering is aimed at building a cellular automaton to
reproduce, organize, model, or simulate some process.

† Function cellular engineering is aimed at building a cellular automaton
to reproduce, organize, model, or simulate some function.

† System cellular engineering is aimed at building a cellular automaton to
reproduce or model some system with its subsystems, components, and
elements.

Traditional engineering problems solved with cellular automata are
mostly related to cellular process organization or reproduction, that
is, how to get a process with all necessary characteristics represented
by a cellular automaton. Sometimes functions are modeled, like when
cellular automata are used to model the functioning of a Turing
machine. System cellular engineering reproduces (models) a system
with some level of detail. For instance, it is possible to represent a sys-
tem at the level of its elements or at the level of its components.

The area of cellular automata can be divided into three big sub-
areas: CA science, CA computation, and CA engineering. CA science
studies properties of cellular automata and, in particular, their dynam-
ics, or how they function. CA computation uses cellular automata for
computation, simulation, optimization, and generation of evolving pro-
cesses. CA engineering is aimed at constructing different devices from
cellular automata. All three areas are complementary to one another.

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

The area of cellular automata can be divided into three big sub-

studies properties of cellular automata and, in particular, their dynam-
ics, or how they function. CA computation uses cellular automata for
computation, simulation, optimization, and generation of evolving pro-
cesses. CA engineering is aimed at constructing different devices from
cellular automata. All three areas are complementary to one another.

Cellular automata are the simplest uniform models of distributed
computations and concurrent processes. Grid automata are the most
advanced and powerful models of distributed computations and con-
current processes, which synthesizes different approaches to modeling
and simulating such processes [1, 2].

A grid automaton is a system of automata that are situated in a
grid and called nodes. Some of these automata are connected and inter-
act with one another.

Cellular automata are special cases of grid automata; although, in
general, grid automata are nonuniform. Our goal is not to substitute
cellular automata by grid automata, but to use cellular automata as
the basic level for building hierarchies of grid automata. The reason
for doing this is to reduce the complexity of the description of the sys-
tem and its processes. For instance, a computer has several levels of
hierarchy: from the lowest logic gate level to the highest level of func-
tional units, such as system memory, CPU, keyboard, monitor, and
printer. In addition, as Clark writes (cf. [3]), “all good computer scien-
tists worship the god of modularity, since modularity brings many ben-
efits, including the all-powerful benefit of not having to understand
all parts of a problem at the same time in order to solve it.” That is
why another goal of this paper is to introduce modularity into the
realm of cellular automata. This allows a better understanding and
more flexible construction tools without going into detailed exposi-
tion of the lower system levels. As a result, we develop a computing
hierarchy based on cellular automata.

Cellular engineering is a complimentary approach to evolutionary
simulation and optimization. Evolutionary simulation is aimed at mod-
eling complex behavior by simple systems, such as cellular automata.
Evolutionary optimization is directed toward improving systems by
simple automata, such as cellular automata, which imitate natural evo-
lutionary processes. Cellular engineering is aimed at constructing com-
plex systems using simple systems, such as cellular automata. In evolu-
tionary processes, systems are evolving subject to definite rules. In engi-
neering, systems are purposefully constructed according to a designed
plan.

Function cellular engineering is the weakest form, while system cel-
lular engineering is the strongest form of cellular engineering. Indeed,
building a system with necessary properties solves the problem of creat-
ing a process with necessary features, while the latter solves the prob-
lem of constructing a function with necessary characteristics. Usually
only function cellular engineering has been considered, for example,
when cellular automata computed the same function as a Turing
machine [4]. Here we emphasize system cellular engineering. Results

diversity of complex systems can be obtained from cellular automata.
In addition, as von Neumann demonstrated [5], construction of com-
plex systems using cellular automata allows one to essentially increase
reliability of these systems.

104 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Function cellular engineering is the weakest form, while system cel-
lular engineering is the strongest form of cellular engineering. Indeed,
building a system with necessary properties solves the problem of creat-
ing a process with necessary features, while the latter solves the prob-
lem of constructing a function with necessary characteristics. Usually
only function cellular engineering has been considered, for example,
when cellular automata computed the same function as a Turing

obtained in this paper support the conjecture of Wolfram [4] that a
diversity of complex systems can be obtained from cellular automata.
In addition, as von Neumann demonstrated [5], construction of com-
plex systems using cellular automata allows one to essentially increase
reliability of these systems.

It is necessary to remark that different authors studied hierarchical
cellular automata, for example, [6, 7]. We expand hierarchical compu-
tational structures beyond the level of cellular automata, taking cellu-
lar structure as the base.

1.1 Denotations

If X is a set, then †X§ is the number of elements in X.
If X and Y are sets, then X µ Y is the direct product of these sets.

2. A Hierarchy of Computational Levels

The hierarchy of computational levels studied in this paper is similar
to the hierarchy in the physical, biological, and social levels of nature.
As we know, the latter consists of these levels: (1) subatomic particles;
(2) atoms; (3) molecules; (4) rigid bodies, liquids, and gases; (5) living
cells; (6) organs; (7) organisms; (8) living beings; and (9) societies.

It is possible to build a similar hierarchy in the world of computing
to give us the following material computational-universe hierarchy.

1. Examples of computational subatomic particles are gates in computing
devices.

2. Systems of gates that realize computing operations, such as addition or
multiplication, are atoms.

3. Chips are molecules.

4. The hardware of computers represent rigid bodies, while embedded
devices are liquids and gases.

5. Systems of gates with programs that realize some computing opera-
tions, such as addition or multiplication, are living cells.

6. Computer components, such as a CPU, memory, display, CD, mouse,
or notepad, are organs of the organisms.

7. Computers are organisms.

8. Computer networks are societies.

Here is the abstract computational hierarchy.

1. Examples of abstract computational subatomic particles are Boolean
circuits and binary neurons of McCulloch and Pitts [8]. For instance,
Minsky [9] demonstrated how to build Turing machines that are
computational “rigid bodies” from such “particles”.

2. Finite automata and general artificial neurons are abstract computa-
tional atoms.

Cellular Engineering 105

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

3. Cellular automata, Petri nets, and artificial neural networks are three
different types of abstract computational molecules.

4. Turing machines, inductive Turing machines, random access machines,
alternating Turing machines, and many other recursive algorithms are
rigid bodies, liquids, and gases of the abstract computational universe.

5. Grid automata and other network models are systems of rigid bodies in
the abstract computational universe.

The goal of this paper is to build different rigid bodies and their sys-
tems from computational molecules such as cellular automata.

3. Grid Automata

3.1 General Constructions

In comparison with cellular automata, a grid automaton can contain
different kinds of automata as its nodes. For example, finite autom-
ata, Turing machines, and inductive Turing machines can belong to
one and the same grid. In comparison with systolic arrays, connec-
tions between different nodes in a grid automaton can be arbitrary,
like connections in neural networks. In comparison with neural net-
works and Petri nets, a grid automaton contains, as its nodes, more
powerful machines than finite automata. Consequently, neural net-
works, cellular automata, systolic arrays, and Petri nets are special
kinds of grid automata. An important property of grid automata is
the possibility of realizing hierarchical structures; that is, a node can
be also a grid automaton. In grid automata, interaction and communi-
cation becomes as important as computation. This peculiarity results
in a variety of automata types, their functioning modes, and space
organization.

Forming the highest structural level in the computational hierar-
chy, grid automata formalize a rather simple idea.
Definition 1. A grid automaton is a system of automata, which are
situated in a grid, are called nodes, are optionally connected, and
interact with one another.

Making this semiformal definition mathematical, we come to two
types of grid automata: basic grid automata and grid automata with
ports. The latter are simply called grid automata.

The basic idea of interacting processes is for a transmitting process
to send a message to a port and for the receiving process to get the
message from another port. To formalize this structure, we assume, as
it is often true in reality, that connections are attached to automata by
means of ports. Ports are specific automaton elements through which
data come into (input ports or inlets) and send outside the automaton
(output ports or outlets). Thus, any system P of ports is the union of
its two (possibly) disjoint subsets P = Pin ‹ Pout where Pin consists of
all inlets from P and Pout consists of all outlets from P. If there are
ports in the real system that are both inlets and outlets, in the model,
we split them into pairs consisting of an input port and an output
port. There are other different types of ports. For example, contempo-
rary computers have parallel and serial ports. Ports can have an inner
structure, but in this first approximation, it is possible to consider
them as elementary units.

106 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

The basic idea of interacting processes is for a transmitting process
to send a message to a port and for the receiving process to get the
message from another port. To formalize this structure, we assume, as
it is often true in reality, that connections are attached to automata by
means of ports. Ports are specific automaton elements through which
data come into (input ports or inlets) and send outside the automaton
(output ports or outlets). Thus, any system P of ports is the union of
its two (possibly) disjoint subsets P = Pin ‹ Pout where Pin consists of
all inlets from P and Pout consists of all outlets from P. If there are
ports in the real system that are both inlets and outlets, in the model,
we split them into pairs consisting of an input port and an output
port. There are other different types of ports. For example, contempo-
rary computers have parallel and serial ports. Ports can have an inner
structure, but in this first approximation, it is possible to consider
them as elementary units.

We also assume that each connection is directed; that is, it has a
beginning and an end. It is possible to build bidirectional connections
from directed connections.
Definition 2. A grid automaton G is the following system that consists
of three sets and three mappings:

G = IAG, PG, CG, pIG, cG, pEGM.
Here the set AG is the set of all automata from G. CG is the set of all
links from G. The set PG = PIG ‹ PEG (with PIG › PEG = «) is the set
of all ports of G, PIG is the set of internal ports of the automata from
AG, and PEG is the set of external ports of G, which are used for the
interaction of G with different external systems. pIG : PIG Ø AG is a
total function, called the internal port assignment function, that
assigns ports to automata. cG : CG Ø IPIGout µ PIGinM ‹ PIGin

£ ‹ PIGout
″

is a (eventually, partial) function, called the port-link adjacency
function, that assigns connections to ports where PIGin

£ and PIGout
″ are

disjunctive copies of PIGin. pEG : PEG Ø AG ‹ PIG ‹ CG is a function,
called the external port assignment function, that assigns ports to
different elements from G.

If l is a link that belongs to the set CG and cGHlL belongs to
PGin µ PGout; that is, cGHlL = Hp1, p2L, it means that the beginning of l
is attached to p1, while the end of l is attached to p2. Such a link is
called closed. If l is a link from CG and cGHlL belongs to PGin (or
PGout); that is, cGHlL = p1 œ PGin (correspondingly, cAHlL = p2 œ PGout),
it means that the beginning of l is attached to p1 (correspondingly, the
end of l is attached to p2). Such a link is called open.

The automata from AG are also called nodes of G, and
connections/links from CG are also called edges of G. Like ports,
nodes and edges can be of different types. For instance, nodes in a
grid automaton can be neurons, neural networks, finite automata, Tur-
ing machines, port automata [10], vector machines, array machines,
random access machines (RAM), inductive Turing machines [2], fuzzy
Turing machines [11], or others. Some of the nodes can also be grid
automata.

As a result, elements from the set AG have an inner structure.
Besides, elements from the sets PG and CA can also have an inner struc-
ture. For example, a link or a port can be an automaton. If we con-

links include modems, servers, routers, and eventually some other
devices. A network adapter is an example of a port with an inner
structure.

Cellular Engineering 107

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

As a result, elements from the set AG have an inner structure.
Besides, elements from the sets PG and CA can also have an inner struc-
ture. For be an automaton. If we con-
sider the Internet as a grid automaton with computers as nodes, then
links include modems, servers, routers, and eventually some other
devices. A network adapter is an example of a port with an inner
structure.
Remark 1. To have meaningful assignments of ports, the port assign-
ment functions pIG and pEG have to satisfy some additional condi-
tions. For instance, it is necessary not to assign input ports of the
automaton G to the end of any link in G. In the case of a neural
network as a node of G, inner ports of G assigned to this network are
usually connected to open links going to and from neurons. At the
same time, it is possible to have such ports connected to neurons
directly, as well as free ports that are not connected to any element of
the network. Free ports might be useful for increasing the reliability
of network connections to the environment. When some port fails, it
would be possible by dynamically changing the assignment function
to switch from the damaged port to a free port.

Taking the nervous system of a human being and representing it as
a grid automaton with neurons as its nodes, it is natural to consider
dendrites and axons as links: dendrites are input links and axons are
output links. Then synaptic membranes are ports of this automaton:
presynaptic membranes are outlets and postsynaptic membranes are
inlets. Presynaptic membranes are axon terminals, that is, output
ports are adjusted only to output links, while postsynaptic mem-
branes are parts of dendrites and bodies of neurons, that is, input
ports are adjusted both to nodes (automata) and to input links. Cell
membranes in general and neuron membranes, in particular, are exam-
ples of ports with a complex inner structure.
Remark 2. Representing a grid automata without ports is the first
approximation to a general network model [1], while representing a
grid automata with ports is the second (more exact) approximation.
In some cases, it is sufficient to use grid automata without ports,
while in other situations to build an adequate, flexible, and efficient
model, we need automata with ports as nodes of a grid automaton.

We now give a formal description of a grid automaton without
ports.
Definition 3. A basic grid automaton A is the following system that
consists of two sets and one mapping:

R = HAA, CA, cAL.
Here AA is the set of all automata from A, CR is the set of all
connections/links from R, and cA : CA Ø AA µ AA ‹ AA

£ ‹ AA
″ is a

(variable) function, called the node-link adjacency function, that
assigns connections to nodes where AA

£ and AA
″ are disjunctive copies

of AA.

There are different types of connections. For instance, computer net-
work links or connections are implemented on a variety of different
physical media, including twisted pair, coaxial cable, optical fiber,
and space (cf. [3]).

108 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

There are different types of connections. For instance, computer net-
work links or connections are implemented on a variety of different
physical media, including twisted pair, coaxial cable, optical fiber,
and space (cf. [3]).

Grid automata are abstract models of grid arrays that are real
(physical systems). These models are used to study properties of grid
arrays, their functioning, and behavior.

What is possible to do with grid automata and how they function
depends on their characteristics. A grid automaton B is described by
three grid characteristics, three node characteristics, and three edge
characteristics. Characteristics allow one to separate different classes
of grid automata.

3.2 Grid Characteristics

1. The space organization or structure of the grid automaton B is the
spatial structure in which nodes and connection of the automaton
function. This space structure may be in physical space, reflecting
where the corresponding information processing systems are situated,
or it may be a mathematical structure defined by the node relations. We
consider three levels of space structures in a schema: local, regional,
and global. Sometimes these structures are the same, while in other
cases they are different.

The space structure of a grid automaton can be static or dynamic. The
functioning of a grid consists of elementary operations, which can be
discrete or continuous. In addition, these operations are organized so
that they form definite cycles of computation and interaction. For
instance, taking a finite automaton, we see that an elementary opera-
tion is the processing of a single symbol, while a cycle is the processing
of a separate word. A cycle for a Turing machine is the process that
goes from the start state to a final state of the machine. This gives us
three kinds of space organization for a grid automaton: static structure
that is always the same, persistent dynamic structure that may change
between different cycles of computation, and flexible dynamic structure
that may change at any time during a computation. Reflexive Turing
machines [12] have flexible dynamic structure, while persistent Turing
machines [13] and von Neumann automata [5], have persistent
dynamic structure.

2. The topology of B is determined by the neighborhoods of the nodes. A
neighborhood of a node is the set of those nodes with which this node
directly interacts. In a physical grid these are often the nodes that are
the closest to the node in question. For example, if each node has only
two neighbors, one on its right and one on its left, the topology is either
linear or circular. The topology of computer networks is an example of
the grid automaton topology [14].

Here are the three main types of grid automaton topology.

† A uniform topology, in which neighborhoods of all nodes of the
grid automaton have the structure.

† A regular topology, in which the structure of different node neighbor-
hoods is subjected to some regularity. For instance, the system

tions similar to gauge transformations in physics (cf. [15]).

Cellular Engineering 109

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

†

A regular topology, in which the structure of different node neighbor-
hoods is subjected to some regularity. For instance, the system
neighborhoods can be invariant with respect to gauge transforma-
tions similar to gauge transformations in physics (cf. [15]).

† An irregular topology where there is no regularity in the structure of
different node neighborhoods.

Conventional cellular automata have a uniform topology. Cellular
automata in the hyperbolic plane or on a Fibonacci tree [16] are
examples of grid automata with a regular topology.

3. The dynamics of B determine the rules its nodes use to exchange
information with each other and with the environment of B. For
example, it is possible that there is an automaton A in B that deter-
mines when and how all automata in B interact. Then if the automaton
A is equivalent to a Turing machine~that is, A is a recursive algorithm
[2], and all other automata in the grid automaton B are also recursive~
then B is equivalent to a Turing machine [1]. At the same time, when
the interaction of Turing machines in a grid automaton B is random,
then B is much more powerful than any Turing machine [1].

Environmental interaction gives two classes of grid automata: open
grid automata interact with the environment through definite connec-
tions, while closed grid automata have no interaction with the environ-
ment. For example, Turing machines are usually considered closed
automata because they begin functioning from some start state and
tape configuration, and finish functioning (if at all) in some final state
and tape configuration, and do not interact with their environment.

In turn, here are the three types of open grid automata.

(a) Grid automata open only for receiving information from the
environment are called accepting grid automata or acceptors.

(b)Grid automata open only for sending their output to the
environment are called transmitting grid automata or transmitters.

(c) Grid automata open for both receiving information from and
sending their output to the environment are called transducing grid
automata or transducers.

To be open, a grid automaton must have a definite topology. For
instance, to be an acceptor, a grid automaton must have open input
edges. Existence of free ports makes a closed grid automaton poten-
tially open as it is possible to attach connections to these ports.

3.3 Node Characteristics

1. The structure of the node, including structures of its ports, reflects inner
organization of this node and its external connections. For instance, a
finite automaton as a node has the one node structure. The structure of
a node that is a Turing machine can also be the one node structure if
we do not separate different modules, for example, the head, tape, and
control device, of the Turing machine. It is possible that nodes also
have inner structure. For instance, dendrites as ports of a natural
neuron have rather developed inner structure, which can be represented
on different levels~from functional components to molecular and even
atomic organization. The inner structure of a Turing machine includes
such modules as the head, tape, and control device, as well as connec-

thus, has its inner structure determined by connections between cells.

110 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

1.

The structure of the node, including structures of its ports, reflects inner
organization of this node and its external connections. For instance, a
finite automaton as a node has the one node structure. The structure of
a node that is a Turing machine can also be the one node structure if
we do not separate different modules, for example, the head, tape, and
control device, of the Turing machine. It is possible that nodes also
have inner structure. For instance, dendrites as ports of a natural
neuron have rather developed inner structure, which can be represented
on different levels~from functional components to molecular and even
atomic organization. The inner structure of a Turing machine includes
such modules as the head, tape, and control device, as well as connec-
tions between these modules. In turn, the tape consists of cells and,
thus, has its inner structure determined by connections between cells.

In particular, the structure of a node defines how ports are adjusted in
the node. For instance, if a neural network is a node of the grid
automaton A, inner ports of A are usually connected to links going to
and from neurons. It is also possible to have ports connected to
neurons directly, as well as free ports that are not connected to any
element of the network. Free ports might be useful for the reliability of
network connections to the environment.

In the case when a Turing machine T is a node of the grid automaton
A, it is possible to connect inner ports of A to some cells of the tapes
from T or to whole tapes. In the first case, external information coming
to such input ports will be written in the adjusted cells, while output
ports send the symbol written in those cells to another node. In the
second case, external information coming to such input ports will be
distributed on the corresponding tape by some rule, while an output
port sends the word written on the tape to another node.

2. The external dynamics of the node determines the interactions of this
node. According to this characteristic, there are three types of nodes:
accepting nodes that only accept or reject their input; generating nodes
that only produce some input; and transducing nodes that both accept
some input and produce some input. Note that nodes with the same
external dynamics can work in grids with various dynamics. Primitive
ports do not change node dynamics. However, compound ports are
able to influence processes not only in the node to which they belong
but also in the whole grid automaton.

3. The internal dynamics of the node determines what processes go inside
this node. For instance, the internal dynamics of a finite automaton are
defined by its transition function, while the internal dynamics of a
Turing machine are defined by its rules. Differences in internal dynam-
ics of nodes are very important because, for example, a change in
producing the output allows us to go from conventional Turing
machines to much more powerful inductive Turing machines of the first
order [2].

3.4 Edge Characteristics

1. The external structure of the edge reflects how this edge is connected in
the grid automaton. According to this characteristic, there are three
types of edges: a closed edge, both sides of which are connected to ports
of the grid automaton; an ingoing edge, in which only the end side is
connected to a port of the grid automaton; and an outgoing edge, in
which only the beginning side is connected to a port of the grid
automaton.

2. Properties and the internal structure of the edge reflect inner organiza-
tion of this edge. According to the internal structure, there are three
types of edges: a simple channel that only transmits data, a channel
with filtering that separates a signal from noise, and a channel with
data correction.

Cellular Engineering 111

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

3. The dynamics of the edge determines edge functioning. For instance,
two important dynamic characteristics of an edge are bandwidth, as the
number of bits per second transmitted on the edge, and throughput, as
the measured performance of the edge.

Link properties separate all links into these three standard classes.

(a) An information link is a channel for processed data transmission.

(b)A control link is a channel for transmitting instructions.

(c) A process link realizes control transfer and determines how the
process goes by initiation of an automaton in the grid by another
automaton (other automata) in the grid.

Process links determine what to do, control links are used to instruct
how to work, and information links supply automata with data in a
process of grid automaton functioning.

Example 1. When a sequential composition of two finite automata A
and B is built, these automata are connected by two links. One of
them is an information link. Through this link, the result obtained by
the first automaton A is transferred from the output port (open from
the right edge) of A to the input port (open from the left edge) of B. In
addition, A and B are connected by a control link. When the automa-
ton A produces its result, it transfers control to B. However, this does
not mean that A halts, it can immediately start a new cycle.

It is essential to remark that in some situations there are no control
links between the automata in the composition and both automata
are synchronized by data transfer.

Here are the three main categories of links with respect to a given
grid automaton.

† External links connect other systems.

† Intermediate links connect nodes of this automaton to other systems.

† Internal links connect nodes of the given grid automaton.

Remark 3. Initiation of an automaton in the grid by a signal that comes
through a control link is usually regulated by some condition(s).
Examples of conditions are: (a) some automata in the grid have
obtained their results, (b) the initiated automaton has enough data to
start working, and (c) the number (level) of initiating signals is above
a prescribed threshold. This is an event-driven functioning, which is
usually contrasted with operating on a time-scale.
Example 2. Artificial neurons are initiated only when the combined
effect of all their input signals is above the firing threshold. For a
natural neuron, single excitatory postsynaptic potentials have ampli-
tudes in the range of 1 millivolt (mV). The critical value for spike
initiation is about 20 to 30 mV above the resting potential. In most
neurons, four spikes are not sufficient to trigger an action potential.
Instead, about 20 to 50 presynaptic spikes have to arrive within a
short time window before postsynaptic action potentials are triggered.
Remark 4. Transmission of instructions from one automaton in the
grid to another one can be realized by transmitting values of some
control parameter.

112 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Remark 4. Transmission of instructions from one automaton in the
grid to another one can be realized by transmitting values of some
control parameter.

3.5 Structures of Grid Automata

To represent structures of grid automata now and schemas later, we
use oriented multigraphs and generalized oriented multigraphs.
Definition 4. [17]. An oriented or directed multigraph G has the follow-
ing form:

G = HV, E, cL.
Here V is the set of vertices or nodes of G, E is the set of edges of G,
and c : E Ø V µ V is the edge-node adjacency or incidence function.
This function assigns each edge to a pair of vertices so that the begin-
ning of each edge is connected to the first element in the correspond-
ing pair of vertices, and the end of the same edge is connected to the
second element in the same pair of vertices.

A multigraph is a graph when c is an injection [17].
Open systems demand a more general construction.

Definition 5. A generalized oriented or directed multigraph G has the
following form:

G = IV, E, c : E Ø IV µ V ‹ Vb ‹ VeMM.
Here V is the set of vertices or nodes of G, E is the set of edges of

G (with fixed beginnings and ends), Vb º Ve º V, and c is the edge-
node adjacency function, which assigns each edge either to a pair of
vertices or to one vertex. In the latter case, when the image cHeL of an
edge e belongs to Vb, it means that e is connected to the vertex cHeL by
its beginning. When the image cHeL of an edge e belongs to Ve, it
means that e is connected to the vertex cHeL by its end. Edges that are
mapped to the set Vb ‹ Ve are called open.

The difference between multigraphs and generalized oriented multi-
graphs is that in a multigraph each edge connects two vertices, while
in a generalized multigraph an edge may be connected only to one
vertex.

A grid automaton is realized on a grid. Here is an exact definition
of this grid.
Definition 6. The grid GHAL of a grid automaton A is the generalized
oriented multigraph that has exactly the same vertices and edges as A,
while its adjacency function cGIAM is a composition of functions pIA

and cA, namely, cGIAMHlL = pIA
* H cAHlLL where l is an arbitrary link from

CA, AA
£ and AA

″ are disjoint copies of AA, and pIA
* = HpIA µ pIAL *

pIA * pIA : IPIAin µ PIAoutM ‹ PIAin ‹ PIAout Ø HAA µ AAL ‹ AA
£ ‹ AA

″ .
Here × is the product and * is the coproduct of mappings in the sense
of category theory [18].

Cellular Engineering 113

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Here × is the product and * is the coproduct of mappings in the sense
of category theory [18].
Example 3. The grid GHGAL of the grid automaton GA from [2],
Chapter 4 is given in Figure 1.

Figure 1. The grid of the grid automaton GA from [2], Chapter 4.

Grids of the grid automata allow one to characterize definite
classes of grid automata.
Proposition 1. A grid automaton B is closed if and only if its grid GHBL
satisfies the condition Im c Œ V µ V, or in other words, the grid GHBL
of B is a conventional multigraph.

Many classical models of computation for example, Turing
machines, are closed grid automata.
Proposition 2. A grid automaton B is an acceptor only if it has external
input ports or/and Im c › Ve ≠ «; that is, the grid GHBL has edges
connected by their end.
Proposition 3. A grid automaton B is a transmitter only if it has exter-
nal output ports or/and Im c › Vb ≠ «; that is, the grid GHBL has
edges connected by their beginning.
Proposition 4. A grid automaton B is a transducer if and only if it has
external input and output ports or/and Im c › Vb ≠ « and
Im c › Ve ≠ «; that is, the grid GHBL has edges connected by their
beginning and edges connected by their end.
Definition 7. The connection grid CGHAL of a grid automaton A is the
generalized oriented multigraph nodes that bijectively correspond to
internal ports of A, while edges and the adjacency function cCGIAM are

the same as in A.

114 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Proposition 5. The grid GHBL of a grid automaton B is a homomorphic
image of its connection grid CGHBL.

Indeed, by the definition of a grid automaton, ports are uniquely
assigned to nodes, and by the definition of the grid GHBL a grid automa-
ton B, the adjacency function cGHBL of the grid GHBL is a composition
of the port assignment function pB and the adjacency function cB of
the automaton B.

Grid automata as abstract information processing systems have dif-
ferent categories of resources: memory, interface (input and output)
devices, control devices, operating devices, software, and
data/knowledge bases.

Resource utilization modes yield this interdependence classification
of automata in a grid.

1. Autonomous automata with independent resources.

2. Automata with shared resources, in which some resource, for example,
memory, belongs to one node, but some other nodes from the grid can
also use it.

3. Automata with common resources, for example, common memory or a
database, which belong to two or more nodes from the grid.

Each type of automata implies specific styles of exchange in the
grid. For example, here are three levels of exchange for autonomous
automata.

1. Data and program exchange (distributed storage of information).

2. Task and workspace exchange (distributed computation and intelligent
agent systems).

3. System exchange (data, knowledge, tasks, programs, and agents are
specific systems in such an exchange).

4. Constructing with Cellular Automata

In this section, we develop techniques for cellular engineering.

Definition 8. It is possible to model an abstract automaton A by a
cellular automaton C if there is a configuration W of cells from A and
a system R of states of cells from W such that after initializing these
states, the cellular automaton C works as the automaton A.

This is either process cellular engineering or function cellular
engineering.

In some cases, individual cellular engineering allows us to perform
cellular engineering for classes of automata.
Definition 9. It is possible to model a model of computation M in a
class C of cellular automata if it is possible to model any automaton
A from M by some cellular automaton C from C.

There are different types of modeling.

Cellular Engineering 115

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

There are different types of modeling.

Definition 10. An abstract automaton A is called programmable in a
cellular automaton C if there is a configuration W of cells from A and
a system R of states of cells from W such that after initializing these
states, the cellular automaton C works as the automaton A; that is,
with the same input, C gives the same result as A.

This is function cellular engineering.
As in a general case, we can perform function cellular engineering

for classes of automata.
Definition 11. A model of computation M is called programmable in a
class C of cellular automata if any automaton A from M is program-
mable in some cellular automaton C from C.

Let us consider a model of computation M that has a universal
automaton U.
Theorem 1. A model of computation M is programmable in a class C
of cellular automata if and only if a universal automaton U is program-
mable in some cellular automaton C from M .
Corollary 1. A model of computation M is programmable in a cellular
automaton C if the automaton U is programmable in C.

For illustration, we now give a well-known result in the theory of
cellular automata.
Theorem 2. The class T of all Turing machines is programmable in the
class C1 of one-dimensional cellular automata.

Definition 12. An abstract automaton A is called constructible in a
cellular automaton C if there is a configuration W of cells from A and
a system R of states of cells from W such that after initializing these
states, the cellular automaton C works as the automaton A. And, to
each structural component D of A, some part B of the automaton C is
corresponded in such a way that B works as D.

This is system cellular engineering.

Definition 13. A model of computation M is called constructible in a
class C of cellular automata if any automaton A from M is construct-
ible in some cellular automaton C from C.

To construct definite devices, we need elements from which to
choose and algorithms to assemble them.

There are three main element types (in information typology),
which correspond to the three main types of information operations
described in [19].

† Computational elements or transformers.

† Transaction elements or transmitters.

† Storage elements or memory cells.

There are three element types (in dynamic typology), which corre-
spond to their dynamics.

116 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

There are three element types (in dynamic typology), which corre-
spond to their dynamics.

† Elements with a fixed structure.

† Reconfigurable elements.

† Switching elements.

Elements with a fixed structure have the same structure during the
whole process. Reconfigurable elements can change their structure dur-
ing the process. Switching elements tentatively change their structure
in each operation.

There are three element types of memory cells: read-only cells,
write-only cells, and two-way cells, which allow both reading and
writing.

We use multilevel finite automata to realize all these types of ele-
ments in cellular automata.

The set QA of the states in an n-level finite automaton A is the
direct product Q1 µ Q2 µ Q3 µµ Qn where Qi is the set of states of
the level i. All levels function in a parallel mode and their inputs and
outputs have the same stratification, that is, a data element, or datum,
with the form Ia1, a2, a3, …, anM.

It is possible to use each level either for computation, information
transmission, or as a memory. As a rule, we use the first level for com-
putation; that is, Q1 is a finite automaton that computes in the conven-
tional way by changing its state and giving some (may be void) out-
put. An intermediate range of levels HQ2, …L are used as a memory
for the automaton Q1. Each such level Qj can store exactly °Qj• sym-
bols or words when elements of Qj are words. Upper levels are trans-
mitters used for data transmission.

Each level i can also be stratified, that is, Qi = Qi1 µ Qi2 µQik

where sets Qi2 are called layers of the level i. All transmitters Qi in
the automaton Q are stratified. One layer is used for data that are
transmitted. Another layer is used for indicating the direction of trans-
mission. One more layer is used for indicating when it is necessary to
stop transmission. In addition, there is a layer that can be used for
some changes of data on all other layers of this level.

For instance, it is necessary to transmit the symbol a five cells to
the right and 10 cells up in rectangular grid of a two-dimensional cellu-
lar automaton. The symbol a is preserved in the first layer during the
whole process of transmission. The word H5 r, 10 uL goes to the sec-
ond layer. The third layer contains the word H0, 0L. The automaton
on the fourth layer sends data to prescribed neighbors and decreases
the word on the second level, subtracting 1 after each move. When
the move is to the right, 1 is subtracted from the first part of the word
in the second layer. When the move is up, 1 is subtracted from the sec-
ond part of the word in the second layer. When the word on the sec-

the symbol a goes to a lower level of the automaton where the process
stopped. The symbol can go to one of the levels in the memory or to
the processor on the first level.

Cellular Engineering 117

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

For instance, it is necessary to transmit the symbol a five cells to
the right and 10 cells up in rectangular grid of a two-dimensional cellu-
lar automaton. The symbol a is preserved in the first layer during the
whole process of transmission. The word H5 r, 10 uL goes to the sec-
ond layer. The third layer contains the word H0, 0L. The automaton
on the fourth layer sends data to prescribed neighbors and decreases
the word on the second level, subtracting 1 after each move. When
the move is to the right, 1 is subtracted from the first part of the word
in the second layer. When the move is up, 1 is subtracted from the sec-

ond layer contains only zeros, the process of transmission stops, and
the symbol a goes to a lower level of the automaton where the process
stopped. The symbol can go to one of the levels in the memory or to
the processor on the first level.

Building a two-dimensional cellular automaton CA from such multi-
 level finite automata, we can prove the following result.
Theorem 3. A two-dimensional cellular automaton can realize any
finite grid of connections between nodes in a grid automaton G.
Corollary 2. If all nodes in a finite grid automaton G have a finite
number of ports and are programmable (constructible) in one-dimen-
sional cellular automata, then the automaton G is programmable
(respectively, constructible) in a two-dimensional cellular automaton.

Note that not any finite configuration is a finite automaton. For
instance, at each step, a Turing machine is a finite configuration, but
it is not a finite automaton. Another example is when a node in a grid
automaton can be an automaton that works with real numbers.

We now show how to construct a Turing machine in a two-dimen-
sional cellular automaton.
Theorem 4. An arbitrary Turing machine is constructible in the class C1
of one-dimensional cellular automata.

Proof of this theorem is given in the Appendix.
Note that one-dimensional cellular automata that can emulate a

one-dimensional Turing machine are not the standard result. The stan-
dard result says that an arbitrary Turing machine is programmable in
the class C1 of one-dimensional cellular automata. Theorem 4 estab-
lishes that an arbitrary Turing machine is constructible in the class
C1. Constructibility implies programmability, but the converse is not
true. For instance, any Turing machine with a two-dimensional tape
is programmable in the class of Turing machines with a one-dimen-
sional tape, but it is not constructible in this class.

As the class T has universal Turing machines, Theorems 1 and 4
imply the following result.
Corollary 3. The class T of all Turing machines is constructible in the
class C1 of one-dimensional cellular automata.

Global Turing machines or Internet machines, introduced by Van
Leeuwen and Wiedermann in [20], form an important class of grid
automata. An Internet machine is a finite grid automaton in which all
nodes are Turing machines. The number of Turing machines and their
connections may change in the process of functioning.

Theorems 3 and 4 imply the following result.

Corollary 4. An Internet machine IM is constructible in the class C2 of
two-dimensional cellular automata.

This implies the following result.

118 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Corollary 5. The class IM of all Internet machines is constructible in the
class C2 of two-dimensional cellular automata.

Theorem 5. An arbitrary pushdown automaton is constructible in the
class C2 of two-dimensional cellular automata.

The proof of this is similar to the proof of Theorem 4.

Corollary 6. The class T of all Turing machines is constructible in the
class C2 of two-dimensional cellular automata.

In such a way, it is possible to program many other abstract autom-
ata (models of computation).

Appendix

A. Proof of Theorem 4

As all kinds of Turing machines are functionally equivalent to deter-
ministic Turing machines with one head and one linear tape (cf. [2]),
we can prove this result only for a deterministic Turing machine with
one head and one linear tape. In addition, we can assume that the
tape is one-directional.

Let us consider a Turing machine T. It has an alphabet X, a con-
trol device A that is a finite automaton and controls the performance
of T, a head or operating device H, and a linear tape E used as a mem-
ory of T. The tape E consists of identical cells, which are enumerated
by natural numbers. The head H can write a symbol from X to any
cell or erase such a symbol from a cell. At the beginning, a finite num-
ber of cells may be filled with symbols from X. The functioning of T
is determined by a system R of rules, which have the form

(A.1)Xqh, ai\ Ø Yaj, qk, e].
Here qh and qk are states of the automaton A, ai and aj are symbols
of the alphabet of T, and c is either R, L, or N. Rule (A.1) means that
if the state of the control device A of T is qh and the head H observes
the symbol ai in the cell, then the state of A becomes qk, the head H
writes the symbol aj in the cell where it is situated and moves to the
next cell by a connection of the type c. That is, if e = R, the head
moves to the nearest right cell in E. When e = L, the head moves to
the nearest left cell in E. When e = N, the head does not move. Each
rule directs one computation step of the Turing machine T.

To model the machine T by a one-dimensional cellular automaton
CA, we use a three-level deterministic finite automaton AT as the cell
of the automaton CA. On the first level of AT, we have an identical
copy of the automaton A from the Turing machine T. On the second
level of AT, we have an automaton C that models the functioning of
an arbitrary cell from the memory E of the Turing machine T. If X is
the alphabet of the Turing machine T, then for each symbol from X,
the automaton C has a corresponding state or even several states.
This allows CA to store data on this level. We denote the second level
of the automaton AT by cAT. On the third level of the automaton
AT, we have an automaton D that is used only for data transmission.

Cellular Engineering 119

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

To model the machine T by a one-dimensional cellular automaton
CA, we use a three-level deterministic finite automaton AT as the cell
of the automaton CA. On the first level of AT, we have an identical
copy of the automaton A from the Turing machine T. On the second
level of AT, we have an automaton C that models the functioning of
an arbitrary cell from the memory E of the Turing machine T. If X is
the from X,
the automaton C has a corresponding state or even several states.
This allows CA to store data on this level. We denote the second level
of the automaton AT by cAT. On the third level of the automaton
AT, we have an automaton D that is used only for data transmission.

Each of the levels has a dead-end state dj, j = 1, 2, 3; when the
level comes to this state, it stops functioning. Other levels may con-
tinue to work, but this level halts. In addition, the second and third lev-
els have closed states. When the memory cell level is in an open state,
it is possible to write to this cell (i.e., to change its content) and to
read from this cell (i.e., to take the symbol written in the cell to the
transmission level of the same automaton). When the memory cell
level is in a closed state, it is forbidden (impossible) to write into this
cell, that is, to change its content, and it is also forbidden (impossible)
to read from this cell. Each time the content is changed in a cell, the
memory cell level comes to a closed state. Thus, the states of the sec-
ond level have the form Ha, cL and Ha, f L where a œ X ‹ 8L<, L denotes
the empty cell, c denotes the closed state of the cell, and f denotes the
open state of the cell.

When the transmission level is in an open state, data can be trans-
mitted in the prescribed direction; that is, this level gives output in
this direction. When the memory cell level is in a closed state, it is for-
bidden (impossible) to transmit data; that is, this level does not give
output in all directions.

Thus, one-dimensional cellular automaton CA is a sequence of
deterministic finite automata 9AT0, AT1, AT2, …, ATn, …=, each
of which is an identical copy of the automaton AT. It is possible to
extend this sequence infinitely to the left, using integer numbers for
enumeration, but we do not need this.

When starting the functioning of the cellular automaton CA, we
have to reproduce the initial state of the Turing machine T, which
starts working with an input word w in the alphabet X. To do this,
we put the memory cell level of the automaton AT0 in the state d2. As
a result, this level never functions in AT0. By the rules of Turing
machine functioning (cf. [2] or [21]), the input w is written in cells of
the tape of the Turing machine T. Usually cells with numbers
1, 2, 3, …, k are used where k is the length of the word w. Corre-
spondingly, if w = a1 a2 a3 … ak, then we put the second level of the
automata AT1, AT2, AT3, …, ATk in the states Ha1, f L, Ha2, cL,
Ia3, cM, …, Iak, cM. We keep the memory level of the automaton ATi

open when the head of T is at the cell with number i. The head of a
Turing machine is usually at the first cell when functioning begins (cf.
[2] or [21]). So, we keep the memory level of the automaton AT1
open.

Note that the cellular automaton CA models the structure of the
Turing machine T. Indeed, it has the control device AT0 and the
sequence of cells 8cAT1, cAT2, …, cATn, …<. This sequence of cells
corresponds to the one-directional linear tape of the Turing machine
T. Besides, the head H of the Turing machine T is modeled by the
symbol f , which denotes the open cell; that is, the cell of T observed
by the head H corresponds to the open cell of CA.

120 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Note that the cellular automaton CA models the structure of the
Turing machine T. Indeed, it has the control device AT0 and the
sequence of cells 8cAT1, cAT2, …, cATn, …<. This sequence of cells
corresponds to the one-directional linear tape of the Turing machine
T. Besides, the head H of the Turing machine T is modeled by the
symbol f , which denotes the open cell; that is, the cell of T observed
by the head H corresponds to the open cell of CA.

We prove that the cellular automaton CA imitates the functioning
of Turing machine T for the input word w by induction. To do this,
we, at first, model the first step of the Turing machine T.

The head H reads the symbol a1 written in the first cell of the tape.
In a similar way, the cellular automaton AT1 reads the symbol a1 writ-
ten in the first cell cAT1 of the cellular automaton CA by the follow-
ing rule of the automaton AT1:

8XHd1L, e\, XHa1, f L, e\, XHL, rc, lcL, e\< Ø

9XHd1L, e\, XHa1, f L, e\, YIa1, rc, lf M, a1]=.
Here e denotes the empty input. L denotes the empty symbol. XHd1L, e\
means that the first level of AT1 is switched off, that is, gives no out-
put and has no input. XHa1, f L, e\ means that the second level of AT1
is in the open state a1, that is, gives no output and has no input.
XHL, rc, lcL, e\ means that the third level of AT1 contains no symbols
from X, is in the closed state to the right and left, gives no output to
the right or left, and has no input from the right or left.
XH a1, rc, lf L, a1\ means that the third level of AT1 contains the sym-
bol a1 from X, is in the closed state to the right, is in the open state to
the left, gives no output to the right, gives a1 as its output to the left,
and has no input from the right or left.

Informally, this rule determines an operation that rewrites the sym-
bol a1 from the memory to the transmission cell, which gives this sym-
bol a1 as its output to the left. Consequently, this symbol a1 comes as
input to AT0 from the right. To process it, the automaton AT0

accepts this symbol a1 to its third, transmission level by the rule

9YIq0M, e], XHd2, cL, e\, XHL, rf , lcL, a1\= Ø

9YIq0M, e], XH d2, cL, e\, XH a1, rc, lf L, e\=.
Here YIq0M, e] means that the first level of AT0 is in the state q0,
which is the start state of the Turing machine T, so it gives no output
and has no input. XH d2, cL, e\ means that the second level of AT0 is in
the dead-end state d2, so it gives no output and accepts no input.
XHL, rf , lcL, a1\ means that the third level of AT0 contains no sym-
bols from X, is in the closed state to the left, is in the open state to the
right, gives no output to the right or left and has the symbol a1 as
input from the right. XH a1, rc, lf L, e\ means that the third level of
AT0 contains the symbol a1 from X, is in the closed state to the right,
is in the open state to the left, gives no output to the right, gives a1 as
its output to the left, and has no input from the right or left.

At the same time, the automaton AT1 performs the rule

Cellular Engineering 121

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

At the same time, the automaton AT1 performs the rule

8XHd1L, ε\, XHa1, f L, ε\, XHa1, rc, lf L, ε\< Ø

8XHd1L, ε\, XHa1, f L, ε\, XHL, rc, lf L, ε\<.
Then the automaton AT0 lowers the symbol a1 to its first level by

the rule
9YIq0M, ε], XHd2, cL, ε\, XHa1, rf , lcL, ε\= Ø

9YIq0M, a1], XHd2, cL, ε\, XHL, rc, lcL, ε\=.
Here YIq0M, a1] means that the first level of AT0 is in the state q0,
which is the start state of the Turing machine T, so it gives no output
and has the symbol a1 as input. XHd2, cL, ε\ means that the second
level of AT0 is in the dead-end state d2, so it gives no output and
accepts no input. XHa1, rf , lcL, ε\ means that the third level of AT0 con-
tains symbol a1 from X, is in the open state to the right, gives no out-
put to the right or left, and has no input from the right or left.

The automaton AT0 works as the control device A of the Turing
machine T. Thus, AT0 looks through the system R of rules of the Tur-
ing machine T. If there is no rule that has the form

(A.2)Yq0, a1] Ø Yaj, qt, e]
for some numbers j and t, then the automaton AT0 and thus, the cellu-
lar automaton CA, stop because this state of AT0 has no continua-
tion, and all other automata AT1, AT2, AT3, …, ATk, … from CA
are closed. At the same time, the absence of rule (A.2) in R means that
the automaton A and thus, the Turing machine T, also stop due to the
impossibility of making another move. Consequently, in this case, the
cellular automaton CA behaves exactly as the Turing machine T.

When the system R has rule (A.2), for some numbers j and t, then
the automaton AT0 makes the following transition:

9YIq0M, a1], XHd2, cL, ε\, XHL, rc, lcL, ε\= Ø

9YHqtL, aj], XHd2, cL, ε\, YIaj, rc, lcM, ε]=.
The state of AT0 changes to qt and it gives the output Iaj, eM. Then

the automaton AT0 elevates the pair Iaj, eM to its third level by the rule

9YHqtL, aj], XHd2, cL, ε\, YIaj, rc, lcM, ε]= Ø

9XHqtL, ε\, XHd2, cL, ε\, YIIaj, eM, rc, lcM, ε]=.

122 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

After this move, the automaton AT0 transmits the pair Iaj, eM to
the third level of the second cell AT1 in CA by these rules:

9XHqtL, ε\, XHd2, cL, ε\, YIIaj, eM, rc, lcM, ε]= Ø

9XHqtL, ε\, XHd2, cL, ε\, YHL, rf , lcL, Iaj, eM]= and

9XHd1L, ε\, XHa1, f L, ε\, YHL, rc, lf L, Iaj, eM]= Ø

9XHd1L, ε\, XHa1, f L, ε\, YIIaj, eM, rc, lf M, ε]=.
Here the first rule determines operation in AT0, while the second rule
determines operation in AT1. Then the symbol is written to the cell
cAT1 by one of the following rules.

† When e = N, we apply the rule

9XHd1L, ε\, XHa1, f L, ε\, YIIaj, eM, rc, lf M, ε]= Ø

9XHd1L, ε\, YIaj, f M, ε], XHL, rc, lf L, ε\=.
† When e = R, we apply the rule

9XHd1L, ε\, XHa1, f L, ε\, YIIaj, eM, rc, lf M, ε]= Ø

9XHd1L, ε\, YIaj, cM, ε], XHL, rf , lcL, R\=.
† When e = L, we apply the rule

9XHd1L, ε\, XHa1, f L, ε\, YIIaj, eM, rc, lf M, ε]= Ø

9XHd1L, ε\, YIaj, cM, ε], XHL, rc, lf L, L\=.
Here XHL, rf , lcL, R\ means that the third level of AT1 contains no sym-
bols from X, is in the closed state to the left, is in the open state to the
right, gives output R to the right, and no output to the left.
XHL, rc, lf L, L\ means that the third level of AT1 contains no symbols
from X, is in the closed state to the right, is in the open state to the
left, gives no output to the right, gives L as its output to the left, and
has no input from the right or left.

The first case means that the same cell of CA stays open. The corre-
sponding rule of the Turing machine T means that the head of T does
not move from the initial cell. Consequently, in this case, the cellular
automaton CA behaves exactly as the Turing machine T.

The second case means that the cell cAT2 of CA becomes open by
the rule

8XHd1L, ε\, XHav, cL, ε\, XHL, rc, lcL, R\< Ø

8XHd1L, ε\, XHav, f L, ε\, XHL, rc, lcL, ε\<,
or, when this cell is empty, by the rule

8X«, ε\, X«, ε\, X«, R\< Ø 8XHd1L, ε\, XHL, f L, ε\, XHL, rc, lcL, ε\<.
Rule (A.2), in this case, means that the Turing machine T moves

the head to the right of the first memory cell. Consequently, in this
case, the cellular automaton CA behaves exactly as the Turing
machine T.

Cellular Engineering 123

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Rule (A.2), in this case, means that the Turing machine T moves
the head to the right of the first memory cell. Consequently, in this
case, the cellular automaton CA behaves exactly as the Turing
machine T.

The third case makes the cellular automaton CA stop because there
are no memory cells to the left of cAT1. This also means that the
machine T stops because its rule demands moving the head to the left
of the first memory cell.

Thus, we have demonstrated that the automaton CA exactly simu-
lates the first move of the Turing machine T.

Now we describe how the cellular automaton CA imitates one step
of the Turing machine T. Let us assume that the machine T is in the
state qj and the head H observes a cell with number i in which the sym-
bol al is written, meaning that the control device of T is in the state
qj. By the induction assumption, the automaton AT0 is in the state

9YIqjM, ε], XHd2, cL, ε\, XHL, rc, lcL, ε\=,
and the automaton ATi is in the state

9Xd1, ε\, YIal, f M, ε], XHL, rc, lcL, ε\=.
Then the head H reads the symbol al written in the cell. In a simi-

lar way, the cellular automaton ATi reads the symbol al written in the
cell cATi of the cellular automaton CA by this rule of the automaton
ATi:

9XHd1L, ε\, YIal, f M, ε], XHL, rc, lcL, ε\= Ø

9XHd1L, ε\, YIal, f M, ε], YIal, rc, lf M, al]=.
Here ε denotes the empty input. L denotes the empty symbol. XHd1L, ε\
means that the first level of ATi is switched off, so it gives no output
and has no input. YIal, f M, ε] means that the second level of ATi is in
the open state a1, so it gives no output and has no input. X(L, rc, lc),
ε\ means that the third level of ATi contains no symbols from X, is in
the closed state to the right and left, gives no output to the right or
left, and has no input from the right or left. YIal, rc, lf M, al] means that
the third level of ATi contains the symbol al from X, is in the closed
state to the right, is in the open state to the left, gives no output to the
right, gives al as its output to the left, and has no input from the right
or left.

124 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Informally, this rule determines an operation that rewrites the sym-
bol al from the memory of ATi to the transmission cell of ATi, which
gives this symbol al as its output to left. Consequently, this symbol al

comes as input to the automaton ATi-1 from the right. The automa-
ton ATi-1 processes this symbol by the rule

9XHd1L, ε\, YIal, cM, ε], YHL, rc, lcL, al]= Ø

9XHd1L, ε\, YIal, f M, ε], YIal, rc, lf M, al]=.
This rule means that the symbol al comes as input from the right to
the third level of this automaton. Then the symbol is written to this
third level and goes as its output to the left, coming to the automaton
ATi-2.

At the same time, the automaton ATi cleans it transmission level by
the rule

9XHd1L, ε\, YIal, f M, ε], YIal, rc, lcM, ε]= Ø

9XHd1L, ε\, YIal, f M, ε], XHL, rc, lcL, ε\=.
After i steps, this symbol al comes as input to the automaton AT0

from the right. To process it, the automaton AT0 accepts this symbol
al to its third transmission level by the rule

9YIq0M, ε], XHd2, cL, ε\, YHL, rf , lcL, al]= Ø

9YIq0M, ε], XHd2, cL, ε\, YIal, rc, lcM, ε]=.
Here YIq0M, ε] means that the first level of AT0 is in the state q0, which
is the start state of the Turing machine T, so it gives no output and
has no input. XHd2, cL, ε\ means that the second level of AT0 is in the
dead-end state d2, so it gives no output and accepts no input.
YHL, rc, lcL, al] means that the third level of AT0 contains no symbols
from X, is in the closed state to the left, is in the open state to the
right, gives no output to the right or left, and has the symbol al as
input from the right. YIal, rc, lcM, ε] means that the third level of AT0

contains the symbol al from X, is in the closed state to the right, is in
the open state to the left, gives no output to the right, gives al as its
output to the left, and has no input from the right or left.

At the same time, the automaton AT1 performs the rule

9XHd1L, ε\, XHa1, f L, ε\, YIal, rc, lf M, ε]= Ø

9XHd1L, ε\, YIal, f M, ε], XHL, rc, lf L, ε\=.

Cellular Engineering 125

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Then the automaton AT0 lowers the symbol al to its first level by
the rule

9 YIq0M, ε], XHd2, cL, ε\, YIal, rf , lcM, ε]= Ø

9YIq0M, al], XHd2, cL, ε\, XHL, rc, lcL, ε\=.
Here YIq0M, al] means that the first level of AT0 is in the state q0,
which is the start state of the Turing machine T, so it gives no output
and has the symbol al as input. XHd2, cL, ε\ means that the second level
of AT0 is in the dead-end state d2, so it gives no output and accepts
no input. YIal, rf , lcM, ε] means that the third level of AT0 contains sym-
bol a1 from X, is in the open state to the right, gives no output to the
right or left, and has no input from the right and from the left.

The automaton AT0 works as the control device A of the Turing
machine T. Thus, AT0 looks through the system R of rules of the Tur-
ing machine T. If there is no rule that has the form

(A.3)Yq0, al] Ø Xah, qt, e\
for some numbers j and t, then the automaton AT0 and, thus, the cellu-
lar automaton CA, stop because this state of AT0 has no continuation
and all other automata AT1, AT2, AT3, …, ATk, … from CA are
closed. At the same time, the absence of rule (A.2) in R means that the
automaton A and, thus, the Turing machine T, also stop due to the
impossibility of making another move. Consequently, in this case, the
cellular automaton CA behaves exactly as the Turing machine T.

When the system R has rule (A.3) for some numbers j and t, then
the automaton AT0 makes the following transition:

9YIq0M, al], XHd2, cL, ε\, XHL, rc, lcL, ε\= Ø

8XHqtL, ah\, XHd2, cL, ε\, XHah, rc, lcL, ε\<.
The state of AT0 changes to qt, and it gives the output Iaj, eM. Then

the automaton AT0 elevates the pair Hah, eL to its third level by the
rule

8XHqtL, ah\, XHd2, cL, ε\, XHah, rc, lcL, ε\< Ø

8XHqtL, ε\, XHd2, cL, ε\, XHHah, eL, rc, lcL, ε\<.
After this move, the automaton AT0 transmits the pair Hah, eL to

the third level of the second cell AT1 in CA by these rules:

8XHqtL, ε\, XHd2, cL, ε\, XHHah, eL, rc, lcL, ε\< Ø

8XHqtL, ε\, XHd2, cL, ε\, XHL, rf , lcL, Hah, eL\< and
8XHd1L, ε\, XHa1, cL, ε\, XHL, rc, lf L, Hah, eL\< Ø

8XHd1L, ε\, XHa1, cL, ε\, XHHah, eL, rc, lf L, ε\<.
Here the first rule determines operation in AT0, while the second rule
determines operation in AT1.

126 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Here the first rule determines operation in AT0, while the second rule
determines operation in AT1.

Then the automaton AT1 transmits the pair Hah, eL to the third
level of the second cell AT2 by similar rules, and this process contin-
ues until the pair Hah, eL reaches the third level of the automaton ATk,
in which the second level is open. However, the only automaton ATk,
in which the second level is open, is the automaton ATi. Thus, the
new symbol ah reaches the third level of the automaton ATi.

Then the symbol is written to the cell cATi by one of the following
rules.

† When e = N, we apply the rule

9XHd1L, ε\, YIal, f M, ε], XHHah, eL, rc, lf L, ε\= Ø

8XHd1L, ε\, XHah, f L, ε\, XHL, rc, lf L, ε\<.
† When e = R, we apply the rule

9XHd1L, ε\, YIal, f M, ε], XHHah, eL, rc, lf L, ε\= Ø

8XHd1L, ε\, XHah, cL, ε\, XHL, rf , lcL, R\<.
† When e = L, we apply the rule

9XHd1L, ε\, YIal, f M, ε], XHHah, eL, rc, lf L, ε\= Ø

8XHd1L, ε\, XHah, cL, ε\, XHL, rc, lf L, L\<.
Here XHL, rf , lcL, R\ means that the third level of ATi contains no sym-
bols from X, is in the closed state to the left, is in the open state to the
right, gives output R to the right, and no output to the left.
XHL, rc, lf L, L\ means that the third level of ATi contains no symbols
from X, is in the closed state to the right, is in the open state to the
left, gives no output to the right, gives L as its output to the left, and
has no input from the right or left.

The first case means that the same cell of CA stays open. The corre-
sponding rule of the Turing machine T means that the head of T does
not move from the initial cell. Consequently, in this case, the cellular
automaton CA behaves exactly as the Turing machine T.

The second case means that the cell cATi+1 of CA becomes open by
the rule

8XHd1L, ε\, XHav, cL, ε\, XHL, rc, lcL, R\< Ø

8XHd1L, ε\, XHav, f L, ε\, XHL, rc, lcL, ε\<
or when this cell is empty, by the rule

8X«, ε\, X«, ε\, X«, R\< Ø 8XHd1L, ε\, XHL, f L, ε\, XHL, rc, lcL, ε\<.
Rule (A.2), in this case, means that the Turing machine T moves the
head to the right of the memory cell with number i. Consequently, in
this case, the cellular automaton CA behaves exactly as the Turing
machine T.

Cellular Engineering 127

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

Rule (A.2), in this case, means that the Turing machine T moves the
head to the
this case, the cellular automaton CA behaves exactly as the Turing
machine T.

When i > 1, then the third case means that the cell cATi-1 of CA
becomes open by the rule

8XHd1L, ε\, XHav, cL, ε\, XHL, rc, lcL, R\< Ø

8XHd1L, ε\, XHav, f L, ε\, XHL, rc, lcL, ε\<,
or when this cell is empty, by the rule

8X«, ε\, X«, ε\, X«, R\< Ø 8XHd1L, ε\, XHL, f L, ε\, XHL, rc, lcL, ε\<.
Rule (A.2), in this case, means that the Turing machine T moves the
head to the left of the memory cell with number i. Consequently, in
this case, the cellular automaton CA behaves exactly as the Turing
machine T.

When i = 1, then the third case makes the cellular automaton CA
stop because there are no memory cells to the left of cAT1. This also
means that the Turing machine T stops because its rule demands mov-
ing the head to the left of the first memory cell.

Thus, we have demonstrated that the cellular automaton CA
exactly simulates an arbitrary move of the Turing machine T. Now
we can apply the induction principle, which asserts that the cellular
automaton CA exactly simulates any number of moves of the Turing
machine T.

The theorem is proved.

Acknowledgments

The author is grateful to the anonymous reviewer for useful advice.

References

[1] M. Burgin, “Cluster Computers and Grid Automata,” in Proceedings of
the Eighteenth ISCA International Conference on Computers and Their
Applications (CATA’03), Honolulu (N. Debnath, ed.), Cary, NC:
International Society for Computers and Their Applications, 2003
pp. 106|109.

[2] M. Burgin, Super-recursive Algorithms, New York: Springer-Verlag,
2005.

[3] L. L. Peterson and B. S. Davie, Computer Networks: A System
Approach, San Francisco: Morgan Kaufmann Publishers, 2000.

[4] S. Wolfram, A New Kind Of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[5] J. von Neumann, John von Neumann Collected Works, New York:
Macmillan, 1963.

128 M. Burgin

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

[6] E. D. Adamides, P. Tsalides, and A. Thanailakis, “Hierarchical Cellular
Automata Structures,” Parallel Computing, 8(5), 1992 pp. 517|524.

[7] B. K. Sikdar, P. Majumder, M. Mukherjee, P. P. Chaudhuri, D. K. Das,
and N. Ganguly, “Hierarchical Cellular Automata As an On-Chip Test
Pattern Generator,” in Proceedings of the Fourteenth International
Conference on VLSI Design (VLSID’01), Washington, DC: IEEE
Computer Society, 2001 pp. 403|408.
doi.ieeecomputersociety.org/10.1109/ICVD.2001.902692.

[8] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Imma-
nent in Nervous Activity,” Bulletin of Mathematical Biology, 5(4), 1943
pp. 115|133.

[9] M. L. Minsky, Computation: Finite and Infinite Machines (Automatic
Computation), New York: Prentice-Hall, 1967.

[10] M. Steenstrup, M. A. Arbib, and E. G. Manes, “Port Automata and the
Algebra of Concurrent Processes,” Journal of Computer and System
Sciences, 27(1), 1983 pp. 29|50.

[11] J. Wiedermann, “Characterizing the Super-Turing Computing Power
and Efficiency of Classical Fuzzy Turing Machines,” Theoretical
Computer Science, 317(1-3), 2004 pp. 61|69.

[12] M. Burgin, “Reflexive Turing Machines and Calculi,” Vychislitelnyye
Systemy (Logical Methods in Computer Science), No. 148, 1993
pp. 94|116, 175|176 (in Russian).

[13] P. Wegner and D. Goldin, “Computation beyond Turing Machines,”
Communications of the ACM, 46(4), 2003 pp. 100|102.

[14] V. P. Heuring and H. F. Jordan, Computer Systems Design and Architec-
ture, Menlo Park, CA: Addison-Wesley Publishing Company, 1997.

[15] F. J. Yndurain, Quantum Chromodynamics: An Introduction to the
Theory of Quarks and Gluons (Texts and Monographs in Physics), New
York: Springer-Verlag, 1983.

[16] M. Margenstern, “Cellular Automata in the Hyperbolic Plane: A
Survey,” Romanian Journal of Information Science and Technology,
5(1-2), 2002 pp. 155|179.

[17] C. Berge, Graphs and Hypergraphs, New York: North Holland P. C.,
1973.

[18] H. Herrlich and G. E. Strecker, Category Theory: An Introduction
(Allyn and Bacon Series in Advanced Mathematics), Boston: Allyn and
Bacon, 1973.

[19] M. Burgin, “Information Algebras,” Control Systems and Machines,
No. 6, 1997 pp. 5|16 (in Russian).

[20] J. van Leeuwen and J. Wiedermann, “Breaking the Turing Barrier: The
Case of the Internet,” Technical Report, Prague: Institute of Computer
Science, Academy of Sciences of the Czech Republic, 2000.

[21] H. Rogers, Theory of Recursive Functions and Effective Computability,
Cambridge, MA: MIT Press, 1987.

Cellular Engineering 129

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.1.103

