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The main goal of this paper is  to develop tools for constructing differ-
ent kinds of abstract automata based on cellular automata. We call this
engineering problem cellular  engineering.  Different levels of computing
systems and models  are  considered.  The emphasis  is  made on the top-
level  model  called  a  grid  automaton.  Our  goal  is  to  construct  grid
automata  using  cellular  automata.  To  achieve  this,  we  develop  a
specific  technology  based  on  multilevel  finite  automata.  It  is  proved
that two-dimensional cellular automata allow the construction of some
types  of  grid  automata,  as  well  as  Turing  machines  and  pushdown
automata.

1. Introduction

The goal of this work is to study relations between uniform and non-
uniform  computational  systems  and  develop  tools  for  representing,
modeling,  and  building  different  computational  schemas  and  devices
(from simple  to more advanced,  such as  grid automata)  by means of
cellular automata. This is an engineering problem that we call cellular
engineering. Here are the three main types of cellular engineering.

† Process cellular engineering is aimed at building a cellular automaton to
reproduce, organize, model, or simulate some process.

† Function cellular engineering  is  aimed at building a cellular automaton
to reproduce, organize, model, or simulate some function.

† System cellular engineering is aimed at building a cellular automaton to
reproduce or model some system with its subsystems, components, and
elements.

Traditional engineering problems solved with cellular automata are
mostly  related  to  cellular  process  organization  or  reproduction,  that
is,  how to get  a process  with all  necessary characteristics  represented
by a cellular automaton. Sometimes functions are modeled, like when
cellular  automata  are  used  to  model  the  functioning  of  a  Turing
machine.  System  cellular  engineering  reproduces  (models)  a  system
with some level of detail. For instance, it is possible to represent a sys-
tem at the level of its elements or at the level of its components. 

The  area  of  cellular  automata  can  be  divided  into  three  big  sub-
areas:  CA science,  CA computation,  and CA engineering.  CA science
studies properties of cellular automata and, in particular, their dynam-
ics, or how they function. CA computation uses cellular automata for
computation, simulation, optimization, and generation of evolving pro-
cesses. CA engineering is aimed at constructing different devices from
cellular automata. All three areas are complementary to one another.
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The  area  of  cellular  automata  can  be  divided  into  three  big  sub-

studies properties of cellular automata and, in particular, their dynam-
ics, or how they function. CA computation uses cellular automata for
computation, simulation, optimization, and generation of evolving pro-
cesses. CA engineering is aimed at constructing different devices from
cellular automata. All three areas are complementary to one another.

Cellular  automata  are  the  simplest  uniform  models  of  distributed
computations  and  concurrent  processes.  Grid  automata  are  the  most
advanced and powerful  models of distributed computations and con-
current processes, which synthesizes different approaches to modeling
and simulating such processes [1, 2]. 

A  grid  automaton  is  a  system  of  automata  that  are  situated  in  a
grid and called nodes. Some of these automata are connected and inter-
act with one another.

Cellular  automata are  special  cases  of  grid  automata;  although,  in
general,  grid automata are nonuniform. Our goal  is  not to substitute
cellular  automata  by  grid  automata,  but  to  use  cellular  automata  as
the  basic  level  for  building  hierarchies  of  grid  automata.  The  reason
for doing this is to reduce the complexity of the description of the sys-
tem  and  its  processes.  For  instance,  a  computer  has  several  levels  of
hierarchy: from the lowest logic gate level to the highest level of func-
tional  units,  such  as  system  memory,  CPU,  keyboard,  monitor,  and
printer. In addition, as Clark writes (cf. [3]), “all good computer scien-
tists worship the god of modularity, since modularity brings many ben-
efits,  including  the  all-powerful  benefit  of  not  having  to  understand
all  parts  of  a problem at the same time in order to solve it.” That is
why  another  goal  of  this  paper  is  to  introduce  modularity  into  the
realm  of  cellular  automata.  This  allows  a  better  understanding  and
more  flexible  construction  tools  without  going  into  detailed  exposi-
tion  of  the  lower  system levels.  As  a  result,  we develop a  computing
hierarchy based on cellular automata.

Cellular  engineering  is  a  complimentary  approach  to  evolutionary
simulation and optimization. Evolutionary simulation is aimed at mod-
eling complex behavior by simple systems, such as cellular automata.
Evolutionary  optimization  is  directed  toward  improving  systems  by
simple automata, such as cellular automata, which imitate natural evo-
lutionary processes. Cellular engineering is aimed at constructing com-
plex systems using simple systems, such as cellular automata. In evolu-
tionary processes, systems are evolving subject to definite rules. In engi- 
neering, systems are purposefully constructed according to a designed
plan.  

Function cellular engineering is the weakest form, while system cel-
lular engineering is the strongest form of cellular engineering. Indeed,
building a system with necessary properties solves the problem of creat-
ing a process with necessary features, while the latter solves the prob-
lem of  constructing a  function with necessary characteristics.  Usually
only  function  cellular  engineering  has  been  considered,  for  example,
when  cellular  automata  computed  the  same  function  as  a  Turing
machine  [4].  Here  we  emphasize  system  cellular  engineering.  Results

diversity of complex systems can be obtained from cellular automata.
In addition, as von Neumann demonstrated [5], construction of com-
plex systems using cellular automata allows one to essentially increase
reliability of these systems.
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Function cellular engineering is the weakest form, while system cel-
lular engineering is the strongest form of cellular engineering. Indeed,
building a system with necessary properties solves the problem of creat-
ing a process with necessary features, while the latter solves the prob-
lem of  constructing a  function with necessary characteristics.  Usually
only  function  cellular  engineering  has  been  considered,  for  example,
when  cellular  automata  computed  the  same  function  as  a  Turing

obtained  in  this  paper  support  the  conjecture  of  Wolfram  [4]  that  a
diversity of complex systems can be obtained from cellular automata.
In addition, as von Neumann demonstrated [5], construction of com-
plex systems using cellular automata allows one to essentially increase
reliability of these systems.

It is necessary to remark that different authors studied hierarchical
cellular automata, for example, [6, 7]. We expand hierarchical compu-
tational structures beyond the level of cellular automata, taking cellu-
lar structure as the base.

1.1 Denotations

If X is a set, then †X§ is the number of elements in X.
If X and Y are sets, then X µ Y is the direct product of these sets.

2. A Hierarchy of Computational Levels

The hierarchy of computational  levels  studied in this paper is  similar
to the hierarchy in the physical, biological, and social levels of nature.
As we know, the latter consists of these levels: (1) subatomic particles;
(2) atoms; (3) molecules; (4) rigid bodies, liquids, and gases; (5) living
cells; (6) organs; (7) organisms; (8) living beings; and (9) societies.

It is possible to build a similar hierarchy in the world of computing
to give us the following material computational-universe hierarchy.

1. Examples of computational subatomic particles are gates in computing
devices.

2. Systems of gates that realize computing operations, such as addition or
multiplication, are atoms.

3. Chips are molecules.

4. The  hardware  of  computers  represent  rigid  bodies,  while  embedded
devices are liquids and gases.

5. Systems  of  gates  with  programs  that  realize  some  computing  opera-
tions, such as addition or multiplication, are living cells.

6. Computer  components,  such  as  a  CPU,  memory,  display,  CD,  mouse,
or notepad, are organs of the organisms.

7. Computers are organisms.

8. Computer networks are societies.

Here is the abstract computational hierarchy.

1. Examples  of  abstract  computational  subatomic  particles  are  Boolean
circuits  and  binary  neurons  of  McCulloch  and  Pitts  [8].  For  instance,
Minsky  [9]  demonstrated  how  to  build  Turing  machines  that  are
computational “rigid bodies” from such “particles”.

2. Finite  automata  and  general  artificial  neurons  are  abstract  computa-
tional atoms.
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3. Cellular  automata,  Petri  nets,  and  artificial  neural  networks  are  three
different types of abstract computational molecules.

4. Turing machines,  inductive Turing machines,  random access machines,
alternating  Turing  machines,  and  many  other  recursive  algorithms  are
rigid bodies, liquids, and gases of the abstract computational universe.

5. Grid automata and other network models are systems of rigid bodies in
the abstract computational universe.

The goal of this paper is to build different rigid bodies and their sys-
tems from computational molecules such as cellular automata.

3. Grid Automata

3.1 General Constructions

In  comparison with cellular  automata,  a grid automaton can contain
different  kinds  of  automata  as  its  nodes.  For  example,  finite  autom-
ata,  Turing  machines,  and  inductive  Turing  machines  can  belong  to
one  and  the  same  grid.  In  comparison  with  systolic  arrays,  connec-
tions  between  different  nodes  in  a  grid  automaton  can  be  arbitrary,
like  connections  in  neural  networks.  In  comparison  with  neural  net-
works  and  Petri  nets,  a  grid  automaton  contains,  as  its  nodes,  more
powerful  machines  than  finite  automata.  Consequently,  neural  net-
works,  cellular  automata,  systolic  arrays,  and  Petri  nets  are  special
kinds  of  grid  automata.  An  important  property  of  grid  automata  is
the  possibility  of  realizing  hierarchical  structures;  that  is,  a  node  can
be also a grid automaton. In grid automata, interaction and communi-
cation becomes  as  important  as  computation.  This  peculiarity  results
in  a  variety  of  automata  types,  their  functioning  modes,  and  space
organization.

Forming  the  highest  structural  level  in  the  computational  hierar-
chy, grid automata formalize a rather simple idea.
Definition 1.  A  grid  automaton  is  a  system  of  automata,  which  are
situated  in  a  grid,  are  called  nodes,  are  optionally  connected,  and
interact with one another. 

Making  this  semiformal  definition  mathematical,  we  come  to  two
types  of  grid  automata:  basic  grid  automata  and grid  automata  with
ports. The latter are simply called grid automata.

The basic idea of interacting processes is for a transmitting process
to  send  a  message  to  a  port  and  for  the  receiving  process  to  get  the
message from another port. To formalize this structure, we assume, as
it is often true in reality, that connections are attached to automata by
means of ports. Ports are specific automaton elements through which
data come into (input ports or inlets) and send outside the automaton
(output ports or outlets). Thus, any system P  of ports is the union of
its two (possibly) disjoint subsets P = Pin ‹ Pout  where Pin  consists of
all  inlets  from  P  and  Pout  consists  of  all  outlets  from  P.  If  there  are
ports in the real system that are both inlets and outlets, in the model,
we  split  them  into  pairs  consisting  of  an  input  port  and  an  output
port. There are other different types of ports. For example, contempo-
rary computers have parallel and serial ports. Ports can have an inner
structure,  but  in  this  first  approximation,  it  is  possible  to  consider
them as elementary units.
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The basic idea of interacting processes is for a transmitting process
to  send  a  message  to  a  port  and  for  the  receiving  process  to  get  the
message from another port. To formalize this structure, we assume, as
it is often true in reality, that connections are attached to automata by
means of ports. Ports are specific automaton elements through which
data come into (input ports or inlets) and send outside the automaton
(output ports or outlets). Thus, any system P  of ports is the union of
its two (possibly) disjoint subsets P = Pin ‹ Pout  where Pin  consists of
all  inlets  from  P  and  Pout  consists  of  all  outlets  from  P.  If  there  are
ports in the real system that are both inlets and outlets, in the model,
we  split  them  into  pairs  consisting  of  an  input  port  and  an  output
port. There are other different types of ports. For example, contempo-
rary computers have parallel and serial ports. Ports can have an inner
structure,  but  in  this  first  approximation,  it  is  possible  to  consider
them as elementary units.

We  also  assume  that  each  connection  is  directed;  that  is,  it  has  a
beginning and an end. It is possible to build bidirectional connections
from directed connections.
Definition 2.  A grid automaton  G  is  the following system that  consists
of three sets and three mappings:

G = IAG, PG, CG, pIG, cG, pEGM.
Here the set AG  is the set of all automata from G. CG  is the set of all
links from G. The set PG = PIG ‹ PEG  (with PIG › PEG = «) is the set
of all ports of G, PIG  is the set of internal ports of the automata from
AG, and PEG  is the set of external ports  of G, which are used for the
interaction  of  G  with  different  external  systems.  pIG : PIG Ø AG  is  a
total  function,  called  the  internal  port  assignment  function,  that
assigns  ports  to  automata.   cG : CG Ø IPIGout µ PIGinM ‹ PIGin

£ ‹ PIGout
″

is  a  (eventually,  partial)  function,  called  the  port-link  adjacency
function,  that assigns connections to ports where PIGin

£  and PIGout
″  are

disjunctive copies of PIGin.  pEG : PEG Ø AG ‹ PIG ‹ CG  is  a function,
called  the  external  port  assignment  function,  that  assigns  ports  to
different elements from G. 

If  l  is  a  link  that  belongs  to  the  set  CG  and  cGHlL  belongs  to
PGin µ PGout;  that  is,  cGHlL = Hp1, p2L,  it  means  that  the  beginning  of  l
is  attached to p1,  while  the  end of  l  is  attached to p2.  Such a  link is
called  closed.  If  l  is  a  link  from  CG  and  cGHlL  belongs  to  PGin  (or
PGout);  that  is,  cGHlL = p1 œ PGin  (correspondingly,  cAHlL = p2 œ PGout),
it means that the beginning of l is attached to p1 (correspondingly, the
end of l is attached to p2). Such a link is called open.

The  automata  from  AG  are  also  called  nodes  of  G,  and
connections/links  from  CG  are  also  called  edges  of  G.  Like  ports,
nodes  and  edges  can  be  of  different  types.  For  instance,  nodes  in  a
grid automaton can be neurons, neural networks, finite automata, Tur-
ing  machines,  port  automata  [10],  vector  machines,  array  machines,
random access machines (RAM), inductive Turing machines [2], fuzzy
Turing machines  [11],  or  others.  Some of  the nodes  can also be grid
automata.

As  a  result,  elements  from  the  set  AG  have  an  inner  structure.
Besides, elements from the sets PG and CA can also have an inner struc- 
ture.  For example,  a  link or  a  port  can be an automaton.  If  we con-

links  include  modems,  servers,  routers,  and  eventually  some  other
devices.  A  network  adapter  is  an  example  of  a  port  with  an  inner
structure.
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As  a  result,  elements  from  the  set  AG  have  an  inner  structure.
Besides, elements from the sets PG and CA can also have an inner struc-
ture.  For  be an automaton.  If  we con-
sider the Internet as a grid automaton with computers as nodes, then
links  include  modems,  servers,  routers,  and  eventually  some  other
devices.  A  network  adapter  is  an  example  of  a  port  with  an  inner
structure.
Remark 1.  To  have  meaningful  assignments  of  ports,  the  port  assign-
ment  functions  pIG  and  pEG  have  to  satisfy  some  additional  condi-
tions.  For  instance,  it  is  necessary  not  to  assign  input  ports  of  the
automaton  G  to  the  end  of  any  link  in  G.  In  the  case  of  a  neural
network as a node of G, inner ports of G assigned to this network are
usually  connected  to  open  links  going  to  and  from  neurons.  At  the
same  time,  it  is  possible  to  have  such  ports  connected  to  neurons
directly, as well as free ports that are not connected to any element of
the  network.  Free  ports  might  be  useful  for  increasing  the  reliability
of network connections to the environment. When some port fails,  it
would  be  possible  by  dynamically  changing  the  assignment  function
to switch from the damaged port to a free port.

Taking the nervous system of a human being and representing it as
a  grid  automaton with  neurons as  its  nodes,  it  is  natural  to consider
dendrites and axons as links:  dendrites are input links and axons are
output  links.  Then  synaptic  membranes  are  ports  of  this  automaton:
presynaptic  membranes  are  outlets  and  postsynaptic  membranes  are
inlets.  Presynaptic  membranes  are  axon  terminals,  that  is,  output
ports  are  adjusted  only  to  output  links,  while  postsynaptic  mem-
branes  are  parts  of  dendrites  and  bodies  of  neurons,  that  is,  input
ports  are  adjusted  both  to  nodes  (automata)  and  to  input  links.  Cell
membranes in general and neuron membranes, in particular, are exam-
ples of ports with a complex inner structure.
Remark 2.  Representing  a  grid  automata  without  ports  is  the  first
approximation  to  a  general  network  model  [1],  while  representing  a
grid  automata  with  ports  is  the  second  (more  exact)  approximation.
In  some  cases,  it  is  sufficient  to  use  grid  automata  without  ports,
while  in  other  situations  to  build  an  adequate,  flexible,  and  efficient
model, we need automata with ports as nodes of a grid automaton. 

We  now  give  a  formal  description  of  a  grid  automaton  without
ports.
Definition 3.  A  basic  grid  automaton  A  is  the  following  system  that
consists of two sets and one mapping:

R = HAA, CA, cAL.
Here  AA  is  the  set  of  all  automata  from  A,  CR  is  the  set  of  all
connections/links  from  R,  and  cA : CA Ø AA µ AA ‹ AA

£ ‹ AA
″  is  a

(variable)  function,  called  the  node-link  adjacency  function,  that
assigns connections to nodes where AA

£  and AA
″  are disjunctive copies

of AA.

There are different types of connections. For instance, computer net-
work  links  or  connections  are  implemented  on  a  variety  of  different
physical  media,  including  twisted  pair,  coaxial  cable,  optical  fiber,
and space (cf. [3]).  
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There are different types of connections. For instance, computer net- 
work  links  or  connections  are  implemented  on  a  variety  of  different
physical  media,  including  twisted  pair,  coaxial  cable,  optical  fiber,
and space (cf. [3]).  

Grid  automata  are  abstract  models  of  grid  arrays  that  are  real
(physical  systems).  These  models  are  used to study properties  of  grid
arrays, their functioning, and behavior.

What is  possible to do with grid automata and how they function
depends  on  their  characteristics.  A grid  automaton B  is  described by
three  grid  characteristics,  three  node  characteristics,  and  three  edge
characteristics.  Characteristics  allow  one  to  separate  different  classes
of grid automata.

3.2 Grid Characteristics

1. The  space  organization  or  structure  of  the  grid  automaton  B  is  the
spatial  structure  in  which  nodes  and  connection  of  the  automaton
function.  This  space  structure  may  be  in  physical  space,  reflecting
where  the  corresponding  information  processing  systems  are  situated,
or it may be a mathematical structure defined by the node relations. We
consider  three  levels  of  space  structures  in  a  schema:  local,  regional,
and  global.  Sometimes  these  structures  are  the  same,  while  in  other
cases they are different. 

The space structure of a grid automaton can be static or dynamic. The
functioning  of  a  grid  consists  of  elementary  operations,  which  can  be
discrete  or  continuous.  In  addition,  these  operations  are  organized  so
that  they  form  definite  cycles  of  computation  and  interaction.  For
instance,  taking  a  finite  automaton,  we  see  that  an  elementary  opera-
tion is the processing of a single symbol, while a cycle is the processing
of  a  separate  word.  A  cycle  for  a  Turing  machine  is  the  process  that
goes  from the  start  state  to  a  final  state  of  the  machine.  This  gives  us
three kinds of space organization for a grid automaton: static structure
that  is  always  the  same,  persistent  dynamic  structure  that  may change
between different cycles of computation, and flexible dynamic structure
that  may  change  at  any  time  during  a  computation.  Reflexive  Turing
machines [12]  have flexible  dynamic structure,  while  persistent  Turing
machines  [13]  and  von  Neumann  automata  [5],  have  persistent
dynamic structure.

2. The topology of B is determined by the neighborhoods of the nodes. A
neighborhood of a node is the set of those nodes with which this node
directly  interacts.  In  a  physical  grid  these  are  often  the  nodes  that  are
the closest to the node in question. For example, if each node has only
two neighbors, one on its right and one on its left, the topology is either
linear or circular. The topology of computer networks is an example of
the grid automaton topology [14].

Here are the three main types of grid automaton topology.

† A  uniform  topology,  in  which  neighborhoods  of  all  nodes  of  the
grid automaton have the structure.

† A regular topology, in which the structure of different node neighbor- 
hoods  is  subjected  to  some  regularity.  For  instance,  the  system

tions similar to gauge transformations in physics (cf. [15]).
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†

A regular topology, in which the structure of different node neighbor-
hoods  is  subjected  to  some  regularity.  For  instance,  the  system
neighborhoods  can  be  invariant  with  respect  to  gauge  transforma-
tions similar to gauge transformations in physics (cf. [15]).

† An irregular topology where there is no regularity in the structure of
different node neighborhoods.

Conventional  cellular  automata  have  a  uniform  topology.  Cellular
automata  in  the  hyperbolic  plane  or  on  a  Fibonacci  tree  [16]  are
examples of grid automata with a regular topology.

3. The  dynamics  of  B  determine  the  rules  its  nodes  use  to  exchange
information  with  each  other  and  with  the  environment  of  B.  For
example,  it  is  possible  that  there  is  an  automaton  A  in  B  that  deter-
mines when and how all automata in B interact. Then if the automaton
A is equivalent to a Turing machine~that is, A is a recursive algorithm
[2], and all other automata in the grid automaton B are also recursive~
then  B  is  equivalent  to  a  Turing  machine  [1].  At  the  same time,  when
the  interaction  of  Turing  machines  in  a  grid  automaton  B  is  random,
then B is much more powerful than any Turing machine [1].

Environmental  interaction  gives  two  classes  of  grid  automata:  open
grid  automata  interact  with  the  environment  through  definite  connec-
tions, while closed grid automata have no interaction with the environ-
ment.  For  example,  Turing  machines  are  usually  considered  closed
automata  because  they  begin  functioning  from  some  start  state  and
tape configuration,  and finish functioning (if  at all)  in some final state
and tape configuration, and do not interact with their environment.

In turn, here are the three types of open grid automata.

(a) Grid  automata  open  only  for  receiving  information  from  the
environment are called accepting grid automata or acceptors.

(b)Grid  automata  open  only  for  sending  their  output  to  the
environment are called transmitting grid automata or transmitters.

(c) Grid  automata  open  for  both  receiving  information  from  and
sending their  output to the environment are called transducing grid
automata or transducers.

To  be  open,  a  grid  automaton  must  have  a  definite  topology.  For
instance,  to  be  an  acceptor,  a  grid  automaton  must  have  open  input
edges.  Existence  of  free  ports  makes  a  closed  grid  automaton  poten-
tially open as it is possible to attach connections to these ports.

3.3 Node Characteristics

1. The structure of the node, including structures of its ports, reflects inner
organization  of  this  node  and  its  external  connections.  For  instance,  a
finite automaton as a node has the one node structure. The structure of
a  node  that  is  a  Turing  machine  can  also  be  the  one  node  structure  if
we do not separate different modules, for example, the head, tape, and
control  device,  of  the  Turing  machine.  It  is  possible  that  nodes  also
have  inner  structure.  For  instance,  dendrites  as  ports  of  a  natural
neuron have rather developed inner structure, which can be represented
on different levels~from functional components to molecular and even
atomic organization.  The inner  structure of  a  Turing machine includes
such modules  as  the head,  tape,  and control  device,  as well  as connec-

thus, has its inner structure determined by connections between cells.
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1.

The structure of the node, including structures of its ports, reflects inner
organization  of  this  node  and  its  external  connections.  For  instance,  a
finite automaton as a node has the one node structure. The structure of
a  node  that  is  a  Turing  machine  can  also  be  the  one  node  structure  if
we do not separate different modules, for example, the head, tape, and
control  device,  of  the  Turing  machine.  It  is  possible  that  nodes  also
have  inner  structure.  For  instance,  dendrites  as  ports  of  a  natural
neuron have rather developed inner structure, which can be represented
on different levels~from functional components to molecular and even
atomic organization.  The inner  structure of  a  Turing machine includes
such modules  as  the head,  tape,  and control  device,  as well  as connec-
tions  between  these  modules.  In  turn,  the  tape  consists  of  cells  and,
thus, has its inner structure determined by connections between cells.

In particular, the structure of a node defines how ports are adjusted in
the  node.  For  instance,  if  a  neural  network  is  a  node  of  the  grid
automaton A,  inner ports of A  are usually connected to links going to
and  from  neurons.  It  is  also  possible  to  have  ports  connected  to
neurons  directly,  as  well  as  free  ports  that  are  not  connected  to  any
element of the network. Free ports might be useful for the reliability of
network connections to the environment.

In the case when a Turing machine T  is  a node of the grid automaton
A,  it  is  possible  to  connect  inner  ports  of  A  to  some cells  of  the tapes
from T or to whole tapes. In the first case, external information coming
to  such  input  ports  will  be  written  in  the  adjusted  cells,  while  output
ports  send  the  symbol  written  in  those  cells  to  another  node.  In  the
second  case,  external  information  coming  to  such  input  ports  will  be
distributed  on  the  corresponding  tape  by  some  rule,  while  an  output
port sends the word written on the tape to another node.

2. The  external  dynamics  of  the  node  determines  the  interactions  of  this
node.  According  to  this  characteristic,  there  are  three  types  of  nodes:
accepting nodes  that only accept or reject their input; generating nodes
that  only produce some input;  and transducing nodes  that both accept
some  input  and  produce  some  input.  Note  that  nodes  with  the  same
external  dynamics  can  work  in  grids  with  various  dynamics.  Primitive
ports  do  not  change  node  dynamics.  However,  compound  ports  are
able  to  influence  processes  not  only  in  the  node  to  which  they  belong
but also in the whole grid automaton. 

3. The internal dynamics of the node determines what processes go inside
this node. For instance, the internal dynamics of a finite automaton are
defined  by  its  transition  function,  while  the  internal  dynamics  of  a
Turing machine are defined by its rules. Differences in internal dynam-
ics  of  nodes  are  very  important  because,  for  example,  a  change  in
producing  the  output  allows  us  to  go  from  conventional  Turing
machines to much more powerful inductive Turing machines of the first
order [2].

3.4 Edge Characteristics

1. The external structure of the edge reflects how this edge is connected in
the  grid  automaton.  According  to  this  characteristic,  there  are  three
types of edges: a closed edge, both sides of which are connected to ports
of  the  grid  automaton;  an  ingoing  edge,  in  which  only  the  end  side  is
connected  to  a  port  of  the  grid  automaton;  and  an  outgoing  edge,  in
which  only  the  beginning  side  is  connected  to  a  port  of  the  grid
automaton.

2. Properties  and the internal structure  of  the edge reflect inner organiza-
tion  of  this  edge.  According  to  the  internal  structure,  there  are  three
types  of  edges:  a  simple  channel  that  only  transmits  data,  a  channel
with  filtering  that  separates  a  signal  from  noise,  and  a  channel  with
data correction.
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3. The  dynamics  of  the  edge  determines  edge  functioning.  For  instance,
two important dynamic characteristics of an edge are bandwidth, as the
number of bits per second transmitted on the edge, and throughput, as
the measured performance of the edge.

Link properties separate all links into these three standard classes.

(a) An information link is a channel for processed data transmission.

(b)A control link is a channel for transmitting instructions.

(c) A  process  link  realizes  control  transfer  and  determines  how  the
process  goes  by  initiation  of  an  automaton  in  the  grid  by  another
automaton (other automata) in the grid.

Process  links  determine  what  to  do,  control  links  are  used  to  instruct
how  to  work,  and  information  links  supply  automata  with  data  in  a
process of grid automaton functioning.

Example 1.  When  a  sequential  composition  of  two  finite  automata  A
and  B  is  built,  these  automata  are  connected  by  two  links.  One  of
them is an information link. Through this link, the result obtained by
the first automaton A  is transferred from the output port (open from
the right edge) of A to the input port (open from the left edge) of B. In
addition, A and B are connected by a control link. When the automa-
ton A produces its result, it transfers control to B. However, this does
not mean that A halts, it can immediately start a new cycle.

It is essential to remark that in some situations there are no control
links  between  the  automata  in  the  composition  and  both  automata
are synchronized by data transfer.

Here are the three main categories of links with respect to a given
grid automaton.

† External links connect other systems.

† Intermediate links connect nodes of this automaton to other systems.

† Internal links connect nodes of the given grid automaton.

Remark 3. Initiation of an automaton in the grid by a signal that comes
through  a  control  link  is  usually  regulated  by  some  condition(s).
Examples  of  conditions  are:  (a)  some  automata  in  the  grid  have
obtained their results, (b) the initiated automaton has enough data to
start working, and (c) the number (level) of initiating signals is above
a  prescribed  threshold.  This  is  an  event-driven  functioning,  which  is
usually contrasted with operating on a time-scale.
Example 2.  Artificial  neurons  are  initiated  only  when  the  combined
effect  of  all  their  input  signals  is  above  the  firing  threshold.  For  a
natural  neuron,  single  excitatory  postsynaptic  potentials  have  ampli-
tudes  in  the  range  of  1  millivolt  (mV).  The  critical  value  for  spike
initiation  is  about  20  to  30 mV  above  the  resting  potential.  In  most
neurons,  four  spikes  are  not  sufficient  to  trigger  an  action  potential.
Instead,  about  20  to  50  presynaptic  spikes  have  to  arrive  within  a
short time window before postsynaptic action potentials are triggered.
Remark 4.  Transmission  of  instructions  from  one  automaton  in  the
grid  to  another  one  can  be  realized  by  transmitting  values  of  some
control parameter.
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Remark 4.  Transmission  of  instructions  from  one  automaton  in  the
grid  to  another  one  can  be  realized  by  transmitting  values  of  some
control parameter.

3.5 Structures of Grid Automata

To represent  structures  of  grid  automata  now and schemas  later,  we
use oriented multigraphs and generalized oriented multigraphs.
Definition 4. [17]. An oriented or directed multigraph G has the follow-
ing form:

G = HV, E, cL.
Here V  is the set of vertices or nodes of G, E is the set of edges of G,
and  c : E Ø V µ V  is  the  edge-node  adjacency  or  incidence  function.
This function assigns each edge to a pair of vertices so that the begin-
ning of each edge is connected to the first element in the correspond-
ing pair of vertices, and the end of the same edge is connected to the
second element in the same pair of vertices.

A multigraph is a graph when c is an injection [17].
Open systems demand a more general construction.

Definition 5.  A  generalized  oriented  or  directed  multigraph  G  has  the
following form:

G = IV, E, c : E Ø IV µ V ‹ Vb ‹ VeMM.
Here V  is the set of vertices or nodes of G, E is the set of edges of

G  (with  fixed  beginnings  and  ends),  Vb º Ve º V,  and  c  is  the  edge-
node  adjacency  function,  which  assigns  each  edge  either  to  a  pair  of
vertices or to one vertex. In the latter case, when the image cHeL of an
edge e belongs to Vb, it means that e is connected to the vertex cHeL by
its  beginning.  When  the  image  cHeL  of  an  edge  e  belongs  to  Ve,  it
means that e is connected to the vertex cHeL by its end. Edges that are
mapped to the set Vb ‹ Ve are called open.

The difference between multigraphs and generalized oriented multi-
graphs is  that in a multigraph each edge connects two vertices, while
in  a  generalized  multigraph  an  edge  may  be  connected  only  to  one
vertex.

A grid automaton is realized on a grid. Here is an exact definition
of this grid.
Definition 6.  The  grid  GHAL  of  a  grid  automaton  A  is  the  generalized
oriented multigraph that has exactly the same vertices and edges as A,
while  its  adjacency  function  cGIAM  is  a  composition  of  functions  pIA

and cA, namely, cGIAMHlL = pIA
* H cAHlLL where l is an arbitrary link from

CA,  AA
£  and  AA

″  are  disjoint  copies  of  AA,  and  pIA
* = HpIA µ pIAL *

pIA * pIA : IPIAin µ PIAoutM ‹ PIAin ‹ PIAout Ø HAA µ AAL ‹ AA
£ ‹ AA

″ .
Here × is the product and * is the coproduct of mappings in the sense
of category theory [18].
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Here × is the product and * is the coproduct of mappings in the sense
of category theory [18].
Example 3.  The  grid  GHGAL  of  the  grid  automaton  GA  from  [2],
Chapter 4 is given in Figure 1.

Figure 1. The grid of the grid automaton GA from [2], Chapter 4.

Grids  of  the  grid  automata  allow  one  to  characterize  definite
classes of grid automata.
Proposition 1. A grid automaton B is closed if and only if its grid GHBL
satisfies  the condition Im c Œ V µ V,  or  in  other  words,  the grid GHBL
of B is a conventional multigraph. 

Many  classical  models  of  computation  for  example,  Turing
machines, are closed grid automata. 
Proposition 2. A grid automaton B is an acceptor only if it has external
input  ports  or/and  Im c › Ve ≠ «;  that  is,  the  grid  GHBL  has  edges
connected by their end. 
Proposition 3.  A grid automaton B  is  a transmitter only if  it  has exter-
nal  output  ports  or/and  Im c › Vb ≠ «;  that  is,  the  grid  GHBL  has
edges connected by their beginning. 
Proposition 4.  A grid automaton B  is  a  transducer if  and only if  it  has
external  input  and  output  ports  or/and  Im c › Vb ≠ «  and
Im c › Ve ≠ «;  that  is,  the  grid  GHBL  has  edges  connected  by  their
beginning and edges connected by their end. 
Definition 7.  The  connection  grid  CGHAL  of  a  grid  automaton A  is  the
generalized  oriented  multigraph  nodes  that  bijectively  correspond  to
internal ports of A, while edges and the adjacency function cCGIAM  are

the same as in A.
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Proposition 5.  The grid GHBL  of a grid automaton B  is  a homomorphic
image of its connection grid CGHBL. 

Indeed,  by  the  definition  of  a  grid  automaton,  ports  are  uniquely
assigned to nodes, and by the definition of the grid GHBL a grid automa-
ton B,  the adjacency function cGHBL  of the grid GHBL  is  a composition
of  the  port  assignment  function  pB  and  the  adjacency  function  cB  of
the automaton B. 

Grid automata as abstract information processing systems have dif-
ferent  categories  of  resources:  memory,  interface  (input  and  output)
devices,  control  devices,  operating  devices,  software,  and
data/knowledge bases.

Resource utilization modes yield this interdependence classification
of automata in a grid.

1. Autonomous automata with independent resources.

2. Automata with shared resources, in which some resource, for example,
memory, belongs to one node, but some other nodes from the grid can
also use it.

3. Automata with common resources, for example, common memory or a
database, which belong to two or more nodes from the grid.

Each  type  of  automata  implies  specific  styles  of  exchange  in  the
grid.  For  example,  here  are  three  levels  of  exchange  for  autonomous
automata.

1. Data and program exchange (distributed storage of information).

2. Task and workspace exchange  (distributed computation and intelligent
agent systems).

3. System  exchange  (data,  knowledge,  tasks,  programs,  and  agents  are
specific systems in such an exchange).

4. Constructing with Cellular Automata

In this section, we develop techniques for cellular engineering.

Definition 8.  It  is  possible  to  model  an  abstract  automaton  A  by  a
cellular automaton C if there is a configuration W  of cells from A and
a system R  of  states of cells  from W  such that after initializing these
states, the cellular automaton C works as the automaton A.

This  is  either  process  cellular  engineering  or  function  cellular
engineering.

In some cases, individual cellular engineering allows us to perform
cellular engineering for classes of automata.
Definition 9.  It  is  possible  to  model  a  model  of  computation  M  in  a
class C  of  cellular automata if  it  is  possible to model any automaton
A from M by some cellular automaton C from C.

There are different types of modeling.
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There are different types of modeling.

Definition 10.  An  abstract  automaton  A  is  called  programmable  in  a
cellular automaton C if there is a configuration W  of cells from A and
a system R  of  states of cells  from W  such that after initializing these
states,  the  cellular  automaton  C  works  as  the  automaton  A;  that  is,
with the same input, C gives the same result as A.

This is function cellular engineering.
As in a general  case,  we can perform function cellular  engineering

for classes of automata.
Definition 11.  A model  of  computation M  is  called programmable  in  a
class C of cellular automata if any automaton A from M is program-
mable in some cellular automaton C from C.

Let  us  consider  a  model  of  computation  M  that  has  a  universal
automaton U.
Theorem 1.  A model  of  computation  M  is  programmable  in  a  class  C
of cellular automata if and only if a universal automaton U is program- 
mable in some cellular automaton C from M .
Corollary 1.  A model  of  computation M  is  programmable  in  a  cellular
automaton C if the automaton U is programmable in C.

For illustration,  we now give a well-known result  in the theory of
cellular automata.
Theorem 2. The class T of all Turing machines is programmable in the
class C1 of one-dimensional cellular automata.

Definition 12.  An  abstract  automaton  A  is  called  constructible  in  a
cellular automaton C if there is a configuration W  of cells from A and
a system R  of  states of cells  from W  such that after initializing these
states,  the  cellular  automaton C  works  as  the  automaton A.  And,  to
each structural component D of A, some part B of the automaton C is
corresponded in such a way that B works as D.

This is system cellular engineering.

Definition 13.  A  model  of  computation  M  is  called  constructible  in  a
class C of cellular automata if any automaton A from M is construct-
ible in some cellular automaton C from C.

To  construct  definite  devices,  we  need  elements  from  which  to
choose and algorithms to assemble them.

There  are  three  main  element  types  (in  information  typology),
which  correspond  to  the  three  main  types  of  information  operations
described in [19].

† Computational elements or transformers.

† Transaction elements or transmitters.

† Storage elements or memory cells.

There are three element types (in dynamic typology),  which corre-
spond to their dynamics.
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There are three element types (in dynamic typology),  which corre-
spond to their dynamics.

† Elements with a fixed structure.

† Reconfigurable elements.

† Switching elements.

Elements  with  a  fixed  structure  have  the  same  structure  during  the
whole process. Reconfigurable elements can change their structure dur-
ing  the  process.  Switching  elements  tentatively  change  their  structure
in each operation.

There  are  three  element  types  of  memory  cells:  read-only  cells,
write-only  cells,  and  two-way  cells,  which  allow  both  reading  and
writing.

We  use  multilevel  finite  automata  to  realize  all  these  types  of  ele-
ments in cellular automata.

The  set  QA  of  the  states  in  an  n-level  finite  automaton  A  is  the
direct product Q1 µ Q2 µ Q3 µµ Qn  where Qi  is the set of states of
the level i.  All levels function in a parallel mode and their inputs and
outputs have the same stratification, that is, a data element, or datum,
with the form Ia1, a2, a3, …, anM. 

It  is  possible to use each level  either for computation, information
transmission, or as a memory. As a rule, we use the first level for com-
putation; that is, Q1 is a finite automaton that computes in the conven- 
tional  way by  changing its  state  and giving  some (may be  void)  out-
put.  An  intermediate  range  of  levels  HQ2, …L  are  used  as  a  memory
for the automaton Q1. Each such level Qj  can store exactly °Qj• sym-
bols or words when elements of Qj  are words. Upper levels are trans-
mitters used for data transmission.

Each  level  i  can  also  be  stratified,  that  is,  Qi = Qi1 µ Qi2 µQik

where  sets  Qi2  are  called  layers  of  the  level  i.  All  transmitters  Qi  in
the  automaton  Q  are  stratified.  One  layer  is  used  for  data  that  are
transmitted. Another layer is used for indicating the direction of trans-
mission. One more layer is used for indicating when it is necessary to
stop  transmission.  In  addition,  there  is  a  layer  that  can  be  used  for
some changes of data on all other layers of this level.

For  instance,  it  is  necessary  to  transmit  the  symbol  a  five  cells  to
the right and 10 cells up in rectangular grid of a two-dimensional cellu- 
lar automaton. The symbol a is preserved in the first layer during the
whole  process  of  transmission.  The  word  H5 r, 10 uL  goes  to  the  sec-
ond  layer.  The  third  layer  contains  the  word  H0, 0L.  The  automaton
on the  fourth  layer  sends data to prescribed neighbors  and decreases
the  word  on  the  second  level,  subtracting  1  after  each  move.  When
the move is to the right, 1 is subtracted from the first part of the word
in the second layer. When the move is up, 1 is subtracted from the sec-
ond part of the word in the second layer. When the word on the sec-

the symbol a goes to a lower level of the automaton where the process
stopped. The symbol can go to one of the levels in the memory or to
the processor on the first level.
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For  instance,  it  is  necessary  to  transmit  the  symbol  a  five  cells  to
the right and 10 cells up in rectangular grid of a two-dimensional cellu-
lar automaton. The symbol a is preserved in the first layer during the
whole  process  of  transmission.  The  word  H5 r, 10 uL  goes  to  the  sec-
ond  layer.  The  third  layer  contains  the  word  H0, 0L.  The  automaton
on the  fourth  layer  sends data to prescribed neighbors  and decreases
the  word  on  the  second  level,  subtracting  1  after  each  move.  When
the move is to the right, 1 is subtracted from the first part of the word
in the second layer. When the move is up, 1 is subtracted from the sec-

ond layer  contains  only zeros,  the process  of  transmission stops,  and
the symbol a goes to a lower level of the automaton where the process
stopped. The symbol can go to one of the levels in the memory or to
the processor on the first level.

Building a two-dimensional cellular automaton CA from such multi-
 level finite automata, we can prove the following result.
Theorem 3.  A  two-dimensional  cellular  automaton  can  realize  any
finite grid of connections between nodes in a grid automaton G.
Corollary 2.  If  all  nodes  in  a  finite  grid  automaton  G  have  a  finite
number of ports and are programmable (constructible) in one-dimen-
sional  cellular  automata,  then  the  automaton  G  is  programmable
(respectively, constructible) in a two-dimensional cellular automaton.

Note  that  not  any  finite  configuration  is  a  finite  automaton.  For
instance, at each step, a Turing machine is a finite configuration, but
it is not a finite automaton. Another example is when a node in a grid
automaton can be an automaton that works with real numbers.

We now show how to construct a Turing machine in a two-dimen-
sional cellular automaton.
Theorem 4. An arbitrary Turing machine is constructible in the class C1
of one-dimensional cellular automata. 

Proof of this theorem is given in the Appendix.
Note  that  one-dimensional  cellular  automata  that  can  emulate  a

one-dimensional Turing machine are not the standard result. The stan-
dard result says that an arbitrary Turing machine is programmable in
the  class  C1  of  one-dimensional  cellular  automata.  Theorem 4 estab-
lishes  that  an  arbitrary  Turing  machine  is  constructible  in  the  class
C1.  Constructibility  implies  programmability,  but  the  converse  is  not
true.  For  instance,  any  Turing  machine  with  a  two-dimensional  tape
is  programmable  in  the  class  of  Turing  machines  with  a  one-dimen-
sional tape, but it is not constructible in this class.

As  the  class  T  has  universal  Turing  machines,  Theorems  1  and  4
imply the following result.
Corollary 3.  The  class  T  of  all  Turing  machines  is  constructible  in  the
class C1 of one-dimensional cellular automata.

Global  Turing  machines  or  Internet  machines,  introduced  by  Van
Leeuwen  and  Wiedermann  in  [20],  form  an  important  class  of  grid
automata. An Internet machine is a finite grid automaton in which all
nodes are Turing machines. The number of Turing machines and their
connections may change in the process of functioning.

Theorems 3 and 4 imply the following result.

Corollary 4.  An Internet machine IM  is  constructible  in the class C2  of
two-dimensional cellular automata.

This implies the following result.
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Corollary 5. The class IM of all Internet machines is constructible in the
class C2 of two-dimensional cellular automata.

Theorem 5.  An  arbitrary  pushdown  automaton  is  constructible  in  the
class C2 of two-dimensional cellular automata.

The proof of this is similar to the proof of Theorem 4. 

Corollary 6.  The  class  T  of  all  Turing  machines  is  constructible  in  the
class C2 of two-dimensional cellular automata.

In such a way, it is possible to program many other abstract autom-
ata (models of computation).

Appendix

A. Proof of Theorem 4

As all  kinds  of  Turing  machines  are  functionally  equivalent  to deter-
ministic Turing machines with one head and one linear tape (cf. [2]),
we can prove this result only for a deterministic Turing machine with
one  head  and  one  linear  tape.  In  addition,  we  can  assume  that  the
tape is one-directional.

Let  us  consider  a  Turing machine  T.  It  has  an alphabet  X,  a  con-
trol device A that is a finite automaton and controls the performance
of T, a head or operating device H, and a linear tape E used as a mem-
ory of T. The tape E consists of identical cells, which are enumerated
by  natural  numbers.  The  head H  can  write  a  symbol  from X  to  any
cell or erase such a symbol from a cell. At the beginning, a finite num-
ber of cells may be filled with symbols from X. The functioning of T
is determined by a system R of rules, which have the form

(A.1)Xqh, ai\ Ø Yaj, qk, e].
Here qh  and qk  are states of the automaton A,  ai  and aj  are symbols
of the alphabet of T, and c is either R, L, or N. Rule (A.1) means that
if the state of the control device A of T  is qh  and the head H observes
the symbol ai  in the cell, then the state of A  becomes qk,  the head H
writes the symbol aj  in the cell  where it  is  situated and moves to the
next  cell  by  a  connection  of  the  type  c.  That  is,  if  e = R,  the  head
moves  to  the  nearest  right  cell  in  E.  When e = L,  the  head  moves  to
the nearest left cell in E.  When e = N, the head does not move. Each
rule directs one computation step of the Turing machine T. 

To model the machine T  by a one-dimensional cellular automaton
CA, we use a three-level deterministic finite automaton AT as the cell
of  the automaton CA.  On the first  level  of  AT,  we have an identical
copy of the automaton A from the Turing machine T. On the second
level of AT,  we have an automaton C  that models the functioning of
an arbitrary cell from the memory E of the Turing machine T. If X is
the alphabet of the Turing machine T,  then for each symbol from X,
the  automaton  C  has  a  corresponding  state  or  even  several  states.
This allows CA to store data on this level. We denote the second level
of  the  automaton  AT  by  cAT.  On  the  third  level  of  the  automaton
AT, we have an automaton D that is used only for data transmission. 
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To model the machine T  by a one-dimensional cellular automaton
CA, we use a three-level deterministic finite automaton AT as the cell
of  the automaton CA.  On the first  level  of  AT,  we have an identical
copy of the automaton A from the Turing machine T. On the second
level of AT,  we have an automaton C  that models the functioning of
an arbitrary cell from the memory E of the Turing machine T. If X is
the  from X,
the  automaton  C  has  a  corresponding  state  or  even  several  states.
This allows CA to store data on this level. We denote the second level
of  the  automaton  AT  by  cAT.  On  the  third  level  of  the  automaton
AT, we have an automaton D that is used only for data transmission. 

Each  of  the  levels  has  a  dead-end  state  dj,  j = 1, 2, 3;  when  the
level  comes  to  this  state,  it  stops  functioning.  Other  levels  may  con-
tinue to work, but this level halts. In addition, the second and third lev- 
els have closed states. When the memory cell level is in an open state,
it  is  possible  to  write  to  this  cell  (i.e.,  to  change  its  content)  and  to
read  from this  cell  (i.e.,  to  take  the  symbol  written  in  the  cell  to  the
transmission  level  of  the  same  automaton).  When  the  memory  cell
level is in a closed state, it is forbidden (impossible) to write into this
cell, that is, to change its content, and it is also forbidden (impossible)
to read from this cell.  Each time the content is  changed in a cell,  the
memory cell level comes to a closed state. Thus, the states of the sec-
ond level have the form Ha, cL and Ha, f L where a œ X ‹ 8L<, L denotes
the empty cell, c denotes the closed state of the cell, and f  denotes the
open state of the cell. 

When the transmission level is in an open state, data can be trans-
mitted  in  the  prescribed  direction;  that  is,  this  level  gives  output  in
this direction. When the memory cell level is in a closed state, it is for-
bidden  (impossible)  to  transmit  data;  that  is,  this  level  does  not  give
output in all directions.

Thus,  one-dimensional  cellular  automaton  CA  is  a  sequence  of
deterministic  finite  automata  9AT0, AT1, AT2, …, ATn, …=,  each
of  which  is  an  identical  copy  of  the  automaton  AT.  It  is  possible  to
extend  this  sequence  infinitely  to  the  left,  using  integer  numbers  for
enumeration, but we do not need this.

When  starting  the  functioning  of  the  cellular  automaton  CA,  we
have  to  reproduce  the  initial  state  of  the  Turing  machine  T,  which
starts  working  with  an  input  word w  in  the  alphabet  X.  To do this,
we put the memory cell level of the automaton AT0  in the state d2. As
a  result,  this  level  never  functions  in  AT0.  By  the  rules  of  Turing
machine functioning (cf. [2] or [21]), the input w is written in cells of
the  tape  of  the  Turing  machine  T.  Usually  cells  with  numbers
1, 2, 3, …, k  are  used  where  k  is  the  length  of  the  word  w.  Corre-
spondingly,  if  w = a1 a2 a3 … ak,  then  we  put  the  second  level  of  the
automata  AT1, AT2, AT3, …, ATk  in  the  states  Ha1, f L,  Ha2, cL,
Ia3, cM, …, Iak, cM.  We keep the memory level of the automaton ATi

open when the head of T  is  at the cell  with number i.  The head of a
Turing machine is usually at the first cell when functioning begins (cf.
[2]  or  [21]).  So,  we  keep  the  memory  level  of  the  automaton  AT1
open.

Note  that  the  cellular  automaton  CA  models  the  structure  of  the
Turing  machine  T.  Indeed,  it  has  the  control  device  AT0   and  the
sequence of cells 8cAT1, cAT2, …, cATn, …<. This sequence of cells
corresponds  to  the  one-directional  linear  tape  of  the  Turing  machine
T.   Besides,  the  head  H  of  the  Turing  machine  T  is  modeled  by  the
symbol f ,  which denotes the open cell;  that is,  the cell of T  observed
by the head H corresponds to the open cell of CA.
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Note  that  the  cellular  automaton  CA  models  the  structure  of  the
Turing  machine  T.  Indeed,  it  has  the  control  device  AT0   and  the
sequence of cells 8cAT1, cAT2, …, cATn, …<. This sequence of cells
corresponds  to  the  one-directional  linear  tape  of  the  Turing  machine
T.   Besides,  the  head  H  of  the  Turing  machine  T  is  modeled  by  the
symbol f ,  which denotes the open cell;  that is,  the cell of T  observed
by the head H corresponds to the open cell of CA.

We prove that the cellular  automaton CA  imitates  the functioning
of Turing machine T  for the input word w  by induction. To do this,
we, at first, model the first step of the Turing machine T.

The head H reads the symbol a1  written in the first cell of the tape.
In a similar way, the cellular automaton AT1 reads the symbol a1 writ-
ten in the first cell cAT1  of the cellular automaton CA by the follow-
ing rule of the automaton AT1:

8XHd1L, e\, XHa1, f L, e\, XHL, rc, lcL, e\< Ø

9XHd1L, e\, XHa1, f L, e\, YIa1, rc, lf M, a1]=.
Here e denotes the empty input. L denotes the empty symbol. XHd1L, e\
means that the first level of AT1  is switched off, that is, gives no out-
put and has no input. XHa1, f L, e\ means that the second level of AT1
is  in  the  open  state  a1,  that  is,  gives  no  output  and  has  no  input.
XHL, rc, lcL, e\ means that the third level of AT1  contains no symbols
from X, is in the closed state to the right and left, gives no output to
the  right  or  left,  and  has  no  input  from  the  right  or  left.
XH a1, rc, lf L, a1\  means that the third level of AT1  contains the sym-
bol a1 from X, is in the closed state to the right, is in the open state to
the left, gives no output to the right, gives a1  as its output to the left,
and has no input from the right or left.

Informally, this rule determines an operation that rewrites the sym-
bol a1 from the memory to the transmission cell, which gives this sym-
bol a1  as its output to the left. Consequently, this symbol a1  comes as
input  to  AT0  from  the  right.  To  process  it,  the  automaton  AT0

accepts this symbol a1 to its third, transmission level by the rule

9YIq0M, e], XHd2, cL, e\, XHL, rf , lcL, a1\= Ø

9YIq0M, e], XH d2, cL, e\, XH a1, rc, lf L, e\=.
Here  YIq0M, e]  means  that  the  first  level  of  AT0  is  in  the  state  q0,
which is the start state of the Turing machine T, so it gives no output
and has no input. XH d2, cL, e\ means that the second level of AT0 is in
the  dead-end  state  d2,  so  it  gives  no  output  and  accepts  no  input.
XHL, rf , lcL, a1\  means  that  the  third  level  of  AT0  contains  no  sym-
bols from X, is in the closed state to the left, is in the open state to the
right,  gives  no  output  to  the  right  or  left  and  has  the  symbol  a1  as
input  from  the  right.  XH a1, rc, lf L, e\  means  that  the  third  level  of
AT0  contains the symbol a1  from X, is in the closed state to the right,
is in the open state to the left, gives no output to the right, gives a1  as
its output to the left, and has no input from the right or left.

At the same time, the automaton AT1 performs the rule
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At the same time, the automaton AT1 performs the rule

8XHd1L, ε\, XHa1, f L, ε\, XHa1, rc, lf L, ε\< Ø

8XHd1L, ε\, XHa1, f L, ε\, XHL, rc, lf L, ε\<.
Then the automaton AT0  lowers the symbol a1  to its first level by

the rule
9YIq0M, ε], XHd2, cL, ε\, XHa1, rf , lcL, ε\= Ø

9YIq0M, a1], XHd2, cL, ε\, XHL, rc, lcL, ε\=.
Here  YIq0M, a1]  means  that  the  first  level  of  AT0  is  in  the  state  q0,
which is the start state of the Turing machine T, so it gives no output
and  has  the  symbol  a1  as  input.  XHd2, cL, ε\  means  that  the  second
level  of  AT0  is  in  the  dead-end  state  d2,  so  it  gives  no  output  and
accepts no input. XHa1, rf , lcL, ε\ means that the third level of AT0 con-
tains symbol a1  from X, is in the open state to the right, gives no out-
put to the right or left, and has no input from the right or left.

The  automaton  AT0  works  as  the  control  device  A  of  the  Turing
machine T. Thus, AT0 looks through the system R of rules of the Tur-
ing machine T. If there is no rule that has the form

(A.2)Yq0, a1] Ø Yaj, qt, e]
for some numbers j and t, then the automaton AT0 and thus, the cellu-
lar  automaton  CA,  stop  because  this  state  of  AT0  has  no  continua-
tion,  and  all  other  automata  AT1, AT2, AT3, …, ATk, … from CA
are closed. At the same time, the absence of rule (A.2) in R means that
the automaton A and thus, the Turing machine T, also stop due to the
impossibility of making another move. Consequently, in this case, the
cellular automaton CA behaves exactly as the Turing machine T.

When the system R has rule (A.2), for some numbers j and t, then
the automaton AT0 makes the following transition:

9YIq0M, a1], XHd2, cL, ε\, XHL, rc, lcL, ε\= Ø

9YHqtL, aj], XHd2, cL, ε\, YIaj, rc, lcM, ε]=.
The state of AT0  changes to qt  and it gives the output Iaj, eM. Then

the automaton AT0 elevates the pair Iaj, eM to its third level by the rule

9YHqtL, aj], XHd2, cL, ε\, YIaj, rc, lcM, ε]= Ø

9XHqtL, ε\, XHd2, cL, ε\, YIIaj, eM, rc, lcM, ε]=.
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After  this  move,  the  automaton  AT0  transmits  the  pair  Iaj, eM  to
the third level of the second cell AT1 in CA by these rules:

9XHqtL, ε\, XHd2, cL, ε\, YIIaj, eM, rc, lcM, ε]= Ø

9XHqtL, ε\, XHd2, cL, ε\, YHL, rf , lcL, Iaj, eM]= and

9XHd1L, ε\, XHa1, f L, ε\, YHL, rc, lf L, Iaj, eM]= Ø

9XHd1L, ε\, XHa1, f L, ε\, YIIaj, eM, rc, lf M, ε]=.
Here the first rule determines operation in AT0, while the second rule
determines  operation  in  AT1.  Then  the  symbol  is  written  to  the  cell
cAT1 by one of the following rules.

† When e = N, we apply the rule

9XHd1L, ε\, XHa1, f L, ε\, YIIaj, eM, rc, lf M, ε]= Ø

9XHd1L, ε\, YIaj, f M, ε], XHL, rc, lf L, ε\=.
† When e = R, we apply the rule

9XHd1L, ε\, XHa1, f L, ε\, YIIaj, eM, rc, lf M, ε]= Ø

9XHd1L, ε\, YIaj, cM, ε], XHL, rf , lcL, R\=.
† When e = L, we apply the rule

9XHd1L, ε\, XHa1, f L, ε\, YIIaj, eM, rc, lf M, ε]= Ø

9XHd1L, ε\, YIaj, cM, ε], XHL, rc, lf L, L\=.
Here XHL, rf , lcL, R\ means that the third level of AT1 contains no sym-
bols from X, is in the closed state to the left, is in the open state to the
right,  gives  output  R  to  the  right,  and  no  output  to  the  left.
XHL, rc, lf L, L\  means that the third level of AT1  contains no symbols
from X,  is  in  the closed state  to the right,  is  in the open state  to the
left, gives no output to the right, gives L as its output to the left, and
has no input from the right or left.

The first case means that the same cell of CA stays open. The corre-
sponding rule of the Turing machine T  means that the head of T  does
not move from the initial cell. Consequently, in this case, the cellular
automaton CA behaves exactly as the Turing machine T.

The second case means that the cell cAT2  of CA  becomes open by
the rule

8XHd1L, ε\, XHav, cL, ε\, XHL, rc, lcL, R\< Ø

8XHd1L, ε\, XHav, f L, ε\, XHL, rc, lcL, ε\<,
or, when this cell is empty, by the rule

8X«, ε\, X«, ε\, X«, R\< Ø 8XHd1L, ε\, XHL, f L, ε\, XHL, rc, lcL, ε\<.
Rule  (A.2),  in  this  case,  means  that  the  Turing  machine  T  moves

the  head  to  the  right  of  the  first  memory  cell.  Consequently,  in  this
case,  the  cellular  automaton  CA  behaves  exactly  as  the  Turing
machine T.
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Rule  (A.2),  in  this  case,  means  that  the  Turing  machine  T  moves
the  head  to  the  right  of  the  first  memory  cell.  Consequently,  in  this
case,  the  cellular  automaton  CA  behaves  exactly  as  the  Turing
machine T.

The third case makes the cellular automaton CA stop because there
are  no  memory  cells  to  the  left  of  cAT1.  This  also  means  that  the
machine T  stops because its rule demands moving the head to the left
of the first memory cell.

Thus, we have demonstrated that the automaton CA exactly simu-
lates the first move of the Turing machine T.

Now we describe how the cellular automaton CA imitates one step
of the Turing machine T.  Let us assume that the machine T  is in the
state qj and the head H observes a cell with number i in which the sym- 
bol  al  is  written,  meaning that  the control  device  of  T  is  in  the state
qj. By the induction assumption, the automaton AT0 is in the state 

9YIqjM, ε], XHd2, cL, ε\, XHL, rc, lcL, ε\=,
and the automaton ATi is in the state 

9Xd1, ε\, YIal, f M, ε], XHL, rc, lcL, ε\=.
Then the head H  reads the symbol al  written in the cell. In a simi-

lar way, the cellular automaton ATi reads the symbol al  written in the
cell cATi  of the cellular automaton CA  by this rule of the automaton
ATi:

9XHd1L, ε\, YIal, f M, ε], XHL, rc, lcL, ε\= Ø

9XHd1L, ε\, YIal, f M, ε], YIal, rc, lf M, al]=.
Here ε denotes the empty input. L denotes the empty symbol. XHd1L, ε\
means that the first level of ATi  is switched off, so it gives no output
and has no input.  YIal, f M, ε]  means that the second level  of  ATi  is  in
the open state a1,  so it gives no output and has no input. X(L,  rc, lc),
ε\ means that the third level of ATi  contains no symbols from X, is in
the  closed  state  to  the  right  and  left,  gives  no  output  to  the  right  or
left, and has no input from the right or left. YIal, rc, lf M, al] means that
the third level of ATi  contains the symbol al  from X,  is  in the closed
state to the right, is in the open state to the left, gives no output to the
right, gives al  as its output to the left, and has no input from the right
or left.
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Informally, this rule determines an operation that rewrites the sym-
bol al  from the memory of ATi  to the transmission cell of ATi, which
gives this symbol al  as its output to left. Consequently, this symbol al

comes as  input  to the automaton ATi-1  from the right.  The automa-
ton ATi-1 processes this symbol by the rule

9XHd1L, ε\, YIal, cM, ε], YHL, rc, lcL, al]= Ø

9XHd1L, ε\, YIal, f M, ε], YIal, rc, lf M, al]=.
This  rule  means  that  the  symbol  al  comes  as  input  from the  right  to
the  third  level  of  this  automaton.  Then  the  symbol  is  written  to  this
third level and goes as its output to the left, coming to the automaton
ATi-2.

At the same time, the automaton ATi cleans it transmission level by
the rule

9XHd1L, ε\, YIal, f M, ε], YIal, rc, lcM, ε]= Ø

9XHd1L, ε\, YIal, f M, ε], XHL, rc, lcL, ε\=.
After i  steps,  this symbol al  comes as input to the automaton AT0

from the right. To process it, the automaton AT0  accepts this symbol
al to its third transmission level by the rule

9YIq0M, ε], XHd2, cL, ε\, YHL, rf , lcL, al]= Ø

9YIq0M, ε], XHd2, cL, ε\, YIal, rc, lcM, ε]=.
Here YIq0M, ε] means that the first level of AT0 is in the state q0, which
is  the  start  state  of  the  Turing  machine  T,  so  it  gives  no output  and
has no input. XHd2, cL, ε\  means that the second level of AT0  is in the
dead-end  state  d2,  so  it  gives  no  output  and  accepts  no  input.
YHL, rc, lcL, al]  means that the third level of AT0  contains no symbols
from  X,  is  in  the  closed  state  to  the  left,  is  in  the  open  state  to  the
right,  gives  no  output  to  the  right  or  left,  and  has  the  symbol  al  as
input from the right. YIal, rc, lcM, ε]  means that the third level of AT0

contains the symbol al  from X, is in the closed state to the right, is in
the  open state  to the left,  gives  no output  to the right,  gives  al  as  its
output to the left, and has no input from the right or left.

At the same time, the automaton AT1 performs the rule

9XHd1L, ε\, XHa1, f L, ε\, YIal, rc, lf M, ε]= Ø

9XHd1L, ε\, YIal, f M, ε], XHL, rc, lf L, ε\=.
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Then the automaton AT0  lowers  the symbol al  to  its  first  level  by
the rule

9 YIq0M, ε], XHd2, cL, ε\, YIal, rf , lcM, ε]= Ø

9YIq0M, al], XHd2, cL, ε\, XHL, rc, lcL, ε\=.
Here  YIq0M, al]  means  that  the  first  level  of  AT0  is  in  the  state  q0,
which is the start state of the Turing machine T, so it gives no output
and has the symbol al  as input. XHd2, cL, ε\ means that the second level
of  AT0  is  in  the dead-end state  d2,  so it  gives  no output  and accepts
no input. YIal, rf , lcM, ε] means that the third level of AT0 contains sym- 
bol a1 from X, is in the open state to the right, gives no output to the
right or left, and has no input from the right and from the left.

The  automaton  AT0  works  as  the  control  device  A  of  the  Turing
machine T. Thus, AT0 looks through the system R of rules of the Tur-
ing machine T. If there is no rule that has the form

(A.3)Yq0, al] Ø Xah, qt, e\
for some numbers j and t, then the automaton AT0 and, thus, the cellu- 
lar automaton CA, stop because this state of AT0 has no continuation
and  all  other  automata  AT1, AT2, AT3, …, ATk, …  from  CA  are
closed. At the same time, the absence of rule (A.2) in R means that the
automaton  A  and,  thus,  the  Turing  machine  T,  also  stop  due  to  the
impossibility of making another move. Consequently, in this case, the
cellular automaton CA behaves exactly as the Turing machine T.

When the system R  has rule (A.3) for some numbers j  and t,  then
the automaton AT0 makes the following transition:

9YIq0M, al], XHd2, cL, ε\, XHL, rc, lcL, ε\= Ø

8XHqtL, ah\, XHd2, cL, ε\, XHah, rc, lcL, ε\<.
The state of AT0 changes to qt, and it gives the output Iaj, eM. Then

the  automaton  AT0  elevates  the  pair  Hah, eL  to  its  third  level  by  the
rule

8XHqtL, ah\, XHd2, cL, ε\, XHah, rc, lcL, ε\< Ø

8XHqtL, ε\, XHd2, cL, ε\, XHHah, eL, rc, lcL, ε\<.
After  this  move,  the  automaton  AT0  transmits  the  pair  Hah, eL  to

the third level of the second cell AT1 in CA by these rules:

8XHqtL, ε\, XHd2, cL, ε\, XHHah, eL, rc, lcL, ε\< Ø

8XHqtL, ε\, XHd2, cL, ε\, XHL, rf , lcL, Hah, eL\< and
8XHd1L, ε\, XHa1, cL, ε\, XHL, rc, lf L, Hah, eL\< Ø

8XHd1L, ε\, XHa1, cL, ε\, XHHah, eL, rc, lf L, ε\<.
Here the first rule determines operation in AT0, while the second rule
determines operation in AT1.
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Here the first rule determines operation in AT0, while the second rule
determines operation in AT1.

Then  the  automaton  AT1  transmits  the  pair  Hah, eL  to  the  third
level  of the second cell  AT2  by similar rules, and this process contin-
ues until the pair Hah, eL reaches the third level of the automaton ATk,
in which the second level is open. However, the only automaton ATk,
in  which  the  second  level  is  open,  is  the  automaton  ATi.  Thus,  the
new symbol ah reaches the third level of the automaton ATi.

Then the symbol is written to the cell cATi  by one of the following
rules.

† When e = N, we apply the rule

9XHd1L, ε\, YIal, f M, ε], XHHah, eL, rc, lf L, ε\= Ø

8XHd1L, ε\, XHah, f L, ε\, XHL, rc, lf L, ε\<.
† When e = R, we apply the rule

9XHd1L, ε\, YIal, f M, ε], XHHah, eL, rc, lf L, ε\= Ø

8XHd1L, ε\, XHah, cL, ε\, XHL, rf , lcL, R\<.
† When e = L, we apply the rule

9XHd1L, ε\, YIal, f M, ε], XHHah, eL, rc, lf L, ε\= Ø

8XHd1L, ε\, XHah, cL, ε\, XHL, rc, lf L, L\<.
Here XHL, rf , lcL, R\ means that the third level of ATi contains no sym-
bols from X, is in the closed state to the left, is in the open state to the
right,  gives  output  R  to  the  right,  and  no  output  to  the  left.
XHL, rc, lf L, L\  means  that  the  third  level  of  ATi  contains  no symbols
from X,  is  in  the closed state  to the right,  is  in the open state  to the
left, gives no output to the right, gives L as its output to the left, and
has no input from the right or left.

The first case means that the same cell of CA stays open. The corre-
sponding rule of the Turing machine T  means that the head of T  does
not move from the initial cell. Consequently, in this case, the cellular
automaton CA behaves exactly as the Turing machine T.

The second case means that the cell cATi+1 of CA becomes open by
the rule

8XHd1L, ε\, XHav, cL, ε\, XHL, rc, lcL, R\< Ø

8XHd1L, ε\, XHav, f L, ε\, XHL, rc, lcL, ε\<
or when this cell is empty, by the rule

8X«, ε\, X«, ε\, X«, R\< Ø 8XHd1L, ε\, XHL, f L, ε\, XHL, rc, lcL, ε\<.
Rule (A.2),  in this  case,  means that the Turing machine T  moves the
head to the right of the memory cell with number i. Consequently, in
this  case,  the  cellular  automaton  CA  behaves  exactly  as  the  Turing
machine T.
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Rule (A.2),  in this  case,  means that the Turing machine T  moves the
head to the
this  case,  the  cellular  automaton  CA  behaves  exactly  as  the  Turing
machine T.

When  i > 1,  then  the  third  case  means  that  the  cell  cATi-1  of  CA
becomes open by the rule

8XHd1L, ε\, XHav, cL, ε\, XHL, rc, lcL, R\< Ø

8XHd1L, ε\, XHav, f L, ε\, XHL, rc, lcL, ε\<,
or when this cell is empty, by the rule

8X«, ε\, X«, ε\, X«, R\< Ø 8XHd1L, ε\, XHL, f L, ε\, XHL, rc, lcL, ε\<.
Rule (A.2),  in this  case,  means that the Turing machine T  moves the
head  to  the  left  of  the  memory  cell  with  number  i.  Consequently,  in
this  case,  the  cellular  automaton  CA  behaves  exactly  as  the  Turing
machine T.

When i = 1,  then  the  third  case  makes  the  cellular  automaton CA
stop because there are no memory cells to the left of cAT1.  This also
means that the Turing machine T stops because its rule demands mov-
ing the head to the left of the first memory cell.

Thus,  we  have  demonstrated  that  the  cellular  automaton  CA
exactly  simulates  an  arbitrary  move  of  the  Turing  machine  T.  Now
we  can  apply  the  induction  principle,  which  asserts  that  the  cellular
automaton CA  exactly simulates any number of moves of the Turing
machine T.

The theorem is proved.
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