
Elementary Cellular Automata with
Minimal Memory and Random Number
Generation

Ramón Alonso-Sanz H1,2L

Larry Bull H1L

H1LBristol Institute of Technology
University of the West of England, Bristol
Frenchay Campus, Bristol BS16 1QY, UK
H2LPolytechnic University of Madrid, Spain
ramon.alonso@upm.es
Larry.Bull@uwe.ac.uk

The effect of endowing cells with memory of their last two state values
in elementary one-dimensional cellular automata is analyzed in this
paper. The potential value of such elementary cellular automata with
minimal memory embedded in cells as random number generators is
assessed.

1. Conventional Cellular Automata

Cellular automata (CA) are discrete, spatially explicit extended
dynamic systems. CA systems are composed of adjacent cells or sites
arranged as a regular lattice, which evolve in discrete time steps. Each
cell is characterized by an internal state whose value belongs to a
finite set. The updating of these states is made simultaneously accord-
ing to a common local transition rule involving a neighborhood of
each cell.

Thus, if si
HTL is taken to denote the value of cell i at time step

T, the site values evolve by iterating the mapping si
HT+1L

fJ:sj
HTL>, j œ iN, with i standing for the set of cells in the neighbor-

hood of cell i.
Here we will consider the simplest scenario, that of elementary CA

[1], that is, one-dimensional CA with two possible state values
Hs œ 80, 1<L, and rules operating on nearest neighbors: si

HT+1L
fJsi-1

HTL , si
HTL, si+1

HTL N. Elementary rules are characterized by a sequence

of binary values b associated with each of the eight possible triplets:

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

Jsi-1
HTL , si

HTL, si+1
HTL N :

111 110 101 100 011 010 001 000
b1 b2 b3 b4 b5 b6 b7 b8

.

The rules are conveniently specified by their rule number,
R = ⁄i=1

8 bi 28-i varying in the @0, 255D interval.
Legal rules are reflection symmetric Ib2 b5 and b4 b7M and

quiescent Ib8 0M. Complementary rules assign complementary b
values, that is, bi 1 ⊕ bi, so the rule number of two complementary
rules add up to 255.

We will pay particular attention in this study to rule 30
(00011110) and to the legal rules 90 (01011010) and 150
(10010110). The spatio-temporal patterns of these rules from a single
site seed are shown in Figure 1 up to T 60. In totalistic rules the
value of a site depends only on the sum of the values of its neighbors
and not on their individual values. The rules 90 and 150 are totalistic
linear (or additive) rules that employ only XOR logic, that is, sums
performed modulo 2 in the two-state scenario. (A further explanation
of the general meaning for a system to be additive is found in [1],
p. 952.) Noting the sum as ⊕, it is: R90: si

HT+1L si-1
HTL ⊕si+1

HTL , and

R150: si
HT+1L si-1

HTL ⊕si
HTL ⊕si+1

HTL . Or in matricial terms,

CHT+1L M CHTL, where CHTL stands for the configuration at time step
T, CHTL Js1

HTL, s2
HTL, … , sN-1

HTL , sN
HTLN

£
, and M is the transition

matrix of the linear rule. Thus,

M90

0 1 0 0 0 … 0 0 1

0 1 0 1 0 … 0 0 0

0 0 1 0 1 … 0 0 0

… … … … … … … … …

0 0 0 0 0 … 1 0 1

1 0 0 0 0 … 0 1 0

M150 M90 ⊕ I.

 196 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

Figure 1. The ahistoric rules 30, 90, and 150 (left), and these rules with rule 6
(parity) as memory (SXT6). In the latter case, the evolving patterns of the
featured (s) cells are also shown.

2. Cellular Automata with Memory

Conventional CA are ahistoric (memoryless); that is, the new state of
a cell depends on the neighborhood configuration solely at the preced-
ing time step. Historic memory can be embedded in the CA dynamics
by endowing memory in cells without altering the mappings f. Thus,
si
HT+1L f J:sj

HTL>, j œ iN, si
HTL is a state function of the series of

states of the cell i up to time step T. In the case of elementary rules,
si
HT+1L f Jsi-1

HTL , si
HTL, si+1

HTL N.

Cells may be featured by a weighted mean value m of all their pre-
vious states [2|7]: si

HTL m Jsi
H1L, si

H2L, … , si
HTLN, or of a limited trail-

ing memory si
HTL m Jsi

HT-t+1L, … , si
HT-1L, si

HTLN. Limiting memory

to the last three time steps (t 3), cells may be featured by some ele-
mentary rule f of them, that is, si

HTL f Jsi
HT-2L, si

HT-1L, si
HTLN, such as

its most frequent value [2], or the totalistic rule 90 or 150 [8].
We will consider in this work the lowest degree of proper (t > 1)

memory conceivable, that is, featuring cells by Boolean functions of
their last two states (t 2): si

HTL f Jsi
HT-1L, si

HTLN, with si
H1L si

H1L.

These mappings are characterized by a sequence of binary values b

associated with each of the four possible pairs Jsi
HT-1L, si

HTLN. So as a

two-bit analog of the codification in elementary CA:

 Elementary CA with Minimal Memory and Random Number Generation 197

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

We will consider in this work the lowest degree of proper (t > 1)
memory conceivable, that is, featuring cells by Boolean functions of
their last two states (t 2): si

HTL f Jsi
HT-1L, si

HTLN, with si
H1L si

H1L.

These mappings are characterized by a sequence of binary values b

associated with each of the four possible pairs Jsi
HT-1L, si

HTLN. So as a

two-bit analog of the codification in elementary CA:

11 10 01 00
b1 b2 b3 b4

ª ‚

i1

4

bs 24-i .

The rule number of these two-input rules varies in the @0, 15D inter-
val. Rule 10 is the identity rule si

HTL si
HTL, and 6 is now the

parity rule si
HTL si

HT-1L ⊕si
HTL. Complementary rules add up to 15 in

this context.
This implementation of memory of the last two states will often be

termed t 2 memory. The spatial rules f will be referred to as
S-rules, and the memory rules f , actuating on time, as T-rules. Thus,
SXTY will refer to the spatial rule with number X actuating on cells
featured by the memory rule with number Y.

3. Elementary Rules with Minimal Memory

3.1 Spatio-Temporal Patterns

Figure 1 shows the effect of featuring cells by rule 6, on rules 30, 90,
and 150, resulting in rules S30T6, S90T6, and S150T6. At the second
time step, the actual configurations (‡‡‡ , ‡ ‡, and ‡‡‡ respec-
tively) and those of featured states (‡ ‡ , ‡‡‡, and ‡ ‡) differ. Conse-
quently the patterns for the historic and ahistoric automata (typically)
diverge as soon as at T 3. Evolution in Figure 1 is shown up to
T 60. (A simple computer code for rule 150 with memory can be
found at uncomp.uwe.ac.uk/alonso-sanz under Cellular Automata
with memory.)

Appendix A shows the effect of minimal memory on some ele-
mentary rules starting from a single site seed, whereas Appendix B
deals with evolving patterns starting at random with the same initial
configuration. The spatio-temporal evolution of a register with 121
cells and periodic boundary conditions is shown in Appendix B up to
T 100.

Complementary rules have the same effect on rule 90 and on the
elementary complementary to rule 90, that is, rule 165. This is
reflected in Appendices A and B, and also holds when keeping
memory of the last three time steps [8].

Linear rules remain linear when cells are endowed with linear
memory rules. Thus, endowing the parity rule (rule 6) of the two last
states in cells upon the elementary linear produces for S90T6:

si
HT+1L Jsi-1

HTL ⊕si-1
HT-1LN⊕ Jsi+1

HTL ⊕si+1
HT-1LN,

and for S150T6:

 198 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

and for S150T6:

si
HT+1L Jsi-1

HTL ⊕si-1
HT-1LN⊕ Jsi

HTL ⊕si
HT-1LN⊕ Jsi+1

HTL ⊕si+1
HT-1LN.

In matricial terms:

CHT+1L MICHTL ⊕ CHT-1LM MCHTL ⊕ M CHT-1L.

3.2 Cycles

Cycles are harder to find in CA with memory than in the conven-
tional ahistoric scenario, in which the mere repetition of a sole pat-
tern marks the beginning of a cycle. This is not so in our CA with
memory, as two consecutive patterns have to be repeated to start a
cycle.

As a simple example, Figure 2 shows the ahistoric dynamics of
rule 150 and that of S150T6 in small lattices of sizes N 5 and
N 11, starting from a single live cell in its central site (periodic
boundary conditions imposed on the edges). The ahistoric evolution
generates a period-three oscillator as soon as T 4 when N 5. In
the historic scenario, the first repetition of two consecutive patterns
(again the first two) is achieved at T 16, a value equal to half the
total number of possible configurations 25 32. When N 11, the
oscillator is of period 31 (the maximum attainable [9]) in the ahistoric
formulation, whereas in S150T6 the period length is 93, notably
lower than the total number of different configurations I211 2048M
but notably longer than the former.

Figure 2. The ahistoric rule 150 and S150T6 in circular registers of sizes
N 5 (upper) and N 11 (lower). Evolution up to T 100.

The last component of a cycle in the N 5 simulation of S150T6
in Figure 2 is that of the empty configuration (as a result of two con-
secutive identical configurations). But just after this, the dynamics
restart. Such a “cataleptic” episode is infeasible in the ahistoric con-
text.

 Elementary CA with Minimal Memory and Random Number Generation 199

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

The last component of a cycle in the N 5 simulation of S150T6
in Figure 2 is that of the empty configuration (as a result of two con-
secutive identical configurations). But just after this, the dynamics
restart. Such a “cataleptic” episode is infeasible in the ahistoric con-
text.

In general, the maximum period conceivably attainable in an ele-
mentary CA of size N is 2N, whereas in CA with a memory of two
time steps the upper bound of period length becomes I2NM

2. That
would lead to the conjecture that CA with memory in cells explore
the configuration space better, so that the number of unreachable con-
figurations is smaller compared to conventional CA, that is, the
Gardens of Eden are less populated [10]. In any case, it takes into
account that the main features of the map f prevail; so that, as an
example, configurations containing an odd number of sites with value
1 can never be generated by the evolution of rule 90; this is so also
with memory.

In order to circumvent the difficult analytical study of the cycles
in the CA dynamics, the so-called return map helps to visually detect
the mere existence of cycles by plotting the points representing suc-
cessive configurations. Thus, HxT , xT+1L, where xT is a real number
representing the configuration at time step T. Usually the binary con-
figurations are mapped in the @0, 2D interval as follows:

xT s1
HTL +⁄i2

N si
HTLH0.5L

i-1
. But here the configurations will be

mapped in the @0, 1D interval by dividing the integer representing the
binary configuration xT ⁄i1

N si
HTL 2N-i, by the maximum integer

attainable in a register of size N, that is, xmax ⁄i1
N 2N-i.

Figures 3 and 4 show the return maps of rules 30, 90, and 150 and
rules S30T6, S90T6, and S150T6, respectively. The same initial ran-
dom configuration over an N 50 register is set in both figures. The
well-known characteristic signatures of the ahistoric rules are com-
pletely changed with parity memory into other ones with a random
aspect.

Figure 3. Pairs of successive numbers in a simulation up to 10 000 time steps
using rules 30, 90, and 150.

 200 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

Figure 4. Pairs of successive numbers in a simulation up to 10 000 time steps
using the rules with parity memory S30T6, S90T6, and S150T6.

3.3 Random Sequences

Random number sequences can be found in a large number of applica-
tions ranging from technological (e.g., cryptography, communica-
tions, computer-based gaming, VLSI, and hardware built-in self-test
or BIST) to scientific large-scale simulations on supercomputers,
which consume huge quantities of random numbers. In some applica-
tions, the quality of the random numbers is not that important.
However, in many applications for which random number generators
(RNGs) are most heavily used, such as Monte Carlo simulations in
statistical physics, the quality of the RNG is crucial, as an inadequate
election can produce incorrect results.

Yet finding good RNGs is a nontrivial task [11, 12]. Fairly recent
studies have shown that CA are a promising technique for generating
pseudorandom numbers. (Random sequences generated on a digital
computer are usually referred to as pseudorandom, as distinguished
from true random numbers, resulting from some natural physical pro-
cess.) For examples see the coevolved CA combinations designed in
[13] or the self-programmable CA in [14]. This kind of generator has
the advantage of being highly parallel and thus is easily scalable with
relatively little hardware cost. Moreover, due to their Boolean nature,
CA are free of numerical errors derived from the finite precision of
floating|point representation of real numbers in computers. This facili-
tates “portability”, so when a random number sequence has been
generated on some particular machine, it is easy to generate the same
sequence on other machines. Hybrid CA using both rules 90 and 150
have also been implemented as RNGs [15|17]. The CA with memory
here may also be called “hybrid”, but in space and time. In both sce-
narios (memory and hybrid), a synergic effect emerges, so that rules
that separately cannot be used as randomizers, when combined, have
very good statistical properties.

As rules 90 and 150 operate à la congruential form, it is expected
that they perform well with respect to the features of a RNG. The
intriguing properties of rule 30 regarding randomness have been
largely studied, among others, by Wolfram [1, 18]. So the radical
transformation from Figure 3 to Figure 4 is not surprising.

The random aspect of the return map, the already mentioned
increase in period length, and the fact that the correlation in state
values induced by the local transition rule in conventional CA turns
out to be weakened by the action of the temporal rule (causing a sort
of random restart at every time step), are important characteristics of
rules S30T6, S90T6, and S150T6. These features justify the potential
value of the three rules as good RNGs, and accomplish, at least quali-
tatively, Knuth’s comment that, “…random numbers should not be
generated with a method chosen at random. Some theory should be
used.” [19, p. 6]

 Elementary CA with Minimal Memory and Random Number Generation 201

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

The random aspect of the return map, the already mentioned
increase in period length, and the fact that the correlation in state
values induced by the local transition rule in conventional CA turns
out to be weakened by the action of the temporal rule (causing a sort
of random restart at every time step), are important characteristics of
rules S30T6, S90T6, and S150T6. These features justify the potential
value of the three rules as good RNGs, and accomplish, at least quali-
tatively, Knuth’s comment that, “…random numbers should not be
generated with a method chosen at random. Some theory should be
used.” [19, p. 6]

But these three positive features are not sufficient to qualify the
mentioned rules as good RNGs. The rules still must past the tests of
randomness specifically designed to decide on that qualification.

To cope with this issue, the rules 30, 90, and 150 were run in a reg-
ister of 150 cells up to T 10 000. One hundred windows of size 50,
from sites @1, 50D up to @100, 150D, were sampled. (This mechanism
differs from the one followed in the general study on proper CA as
RNGs made in [20]. There, the 100 simulations were obtained start-
ing from 100 different, and notably wider, initial random configura-
tions. Savic [21] has tested two-neighbor CA for randomness.) Thus,
extracting a real number in @0, 1D from every window as described pre-
viously, 100 series of 10 000 numbers each are obtained. The whole
process is readily parallelizable, ideally by assigning every window to
a processor, with the communication being just the states of the bor-
der cells.

Rules 30, 90, and 150 are unbiased in their production of 0s and
1s: they produce 1 when receiving any four of the eight possible
inputs and 0 in the contrary case. As a consequence, the distribution
of 0s and 1s in any of the windows sampled is, let us say, uniform, so
that the real numbers generated exhibit the mean and variance of a
UH0, 1L distribution, that is, 0.5 and 1 ê 12 respectively.

3.3.1 Testing Randomness

In order to demonstrate the efficacy of a proposed RNG, it is usually
subject to a battery of empirical and theoretical tests, among which
the most well known are those described by Knuth in [19].

Although there are compiled batteries of tests to deal with
the issue of qualifying randomness (e.g., the suites ENT
[www.fourmilab.ch/random], NIST [csrc.nist.gov], or maybe the most
currently applied DIEHARD [www.stat.fsu.edu/pub/diehard]), we
opted for the robust set of four tests implemented by the Numerical
Algorithms Group (NAG®, www.nag.co.uk). We embedded calls to
the NAG subprograms in the Fortran source code used to implement
the CA with memory in cells, so the whole process is expedited. To
make sure that the process is well implemented, we reproduced the
examples provided by NAG (the documentation of the NAG routines
referring to the nonparametric tests of randomness [G08EAF,
G08EBF, G08ECF, and G08EDF] is straightforward and available on
the NAG website). These examples analyze the randomness of a
sequence of 10 000 numbers obtained by means of the NAG subpro-
gram G05KAF, which generates numbers uniformly taken from a uni-
form distribution between 0 and 1, by a multiplicative congruential
algorithm working modulo 259.

 202 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

Although there are compiled batteries of tests to deal with
the issue of qualifying randomness (e.g., the suites ENT
[www.fourmilab.ch/random], NIST [csrc.nist.gov], or maybe the most
currently applied DIEHARD [www.stat.fsu.edu/pub/diehard]), we
opted for the robust set of four tests implemented by the Numerical
Algorithms Group (NAG®, www.nag.co.uk). We embedded calls to
the NAG subprograms in the Fortran source code used to implement
the CA with memory in cells, so the whole process is expedited. To
make sure that the process is well implemented, we reproduced the
examples provided by NAG (the documentation of the NAG routines
referring to the nonparametric tests of randomness [G08EAF,
G08EBF, G08ECF, and G08EDF] is straightforward and available on
the NAG website). These examples analyze the randomness of a
sequence of 10 000 numbers obtained by means of the NAG subpro-
gram G05KAF, which generates numbers uniformly taken from a uni-
form distribution between 0 and 1, by a multiplicative congruential
algorithm working modulo 259.

The four randomness tests implemented by NAG are the runs
(concerned with the lengths of monotonically increasing or decreasing
series), gaps (between numbers in a certain range), pairs, and triplets.
A detailed description of these tests is beyond the scope of this paper.
Suffice it to say that they belong to the class of Chi-square tests, in
which the final operative parameter to decide on rejection of the null
hypothesis of randomness is that of the tail probability associated
with the chi-square statistic (with the corresponding degree of free-
dom), that is, the significance level. Qualified good results are in the
H0.1, 0.9L interval, ideally close to 0.5, with extremities on both sides
representing unsatisfactory random sequences.

3.3.2 Results

The mean and standard deviation of the probability parameter
obtained are shown in Table 1. This table also reports (under the col-
umn headed NAG) the probability parameters obtained by applying
the tests to 100 sequences of 10 000 random numbers generated by
the program provided by NAG to generate pseudorandom numbers
from a uniform distribution UH0, 1L. These parameters act as a refer-
ence, as it is expected that numbers obtained with good randomizers
should be close to them.

NAG S30T6
Run Pair Trip Gap Run Pair Trip Gap

P .481 .527 .519 .508 .044 .560 .000 .110
sd .308 .273 .300 .274 .104 .281 .000 .195

S90T6 S150T6
Run Pair Trip Gap Run Pair Trip Gap

P .000 .130 .000 .331 .464 .534 .000 .490
sd .000 .181 .000 .301 .308 .299 .000 .278

Table 1. Randomness tests: mean (P) and standard deviation (sd) of probabil-
ity across 100 simulations of 10 000 observations each, obtained using rules
with memory of the parity of the last two state values. Results of the simula-
tions with the NAG package serve as a reference to the results with CA rules.
Good simulations have probabilities in the H0.1, 0.9L interval, ideally close to
0.5.

 Elementary CA with Minimal Memory and Random Number Generation 203

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

Rules without memory fail to pass the tests. Their low P-values are
given in [20]. It seems that the regularities, the triangular features ap-
preciated in their spatio-temporal patterns, are translated into some
kind of tendencies that the tests for randomness detect. These poor re-
sults obtained by the conventional ahistoric rules are due to the corre-
lation induced by extracting the values of a wide sequence of adjacent
sites. To try to remove correlation, it is customary to sample only a
rather limited number of sites (either adjacent or spaced), or solely
one as considered by Wolfram regarding rule 30.

Rules with parity memory (with no obvious patterns in their space-
time diagrams) increase their performance, showing some acceptable
probability parameters in Table 1 under some of the tests, but not
under every test and dramatically failing in respect to the triplets test.

There is a known weakness common to all the conventional (non-
CA) linear congruential generators, as pointed out by Marsaglia
in [22]. If groups of successive values are used as the Cartesian coordi-
nates of points in an n-dimensional space, they do not uniformly fill
up the volume. Instead, they lie on a relatively small number of
parallel hyperplanes producing a lattice structure. (The maximal
distance between adjacent hyperplanes is a convenient measure of the
quality of the generator and its determination is the goal of the so-
called spectral test [19]. When the distance between hyperplanes is
small, the illusion that points are uniformly distributed in the hyper-
cube is reinforced. This criterion is thus frequently employed to find
the best multiplier and modulus for a conventional multiplicative
linear congruential operator.) The clusterization phenomenon turns
out to be apparent in CA rules without memory, as shown in
Figure 5, and it is detected to some extent when memory is present, as
shown in Figure 6. This may be the origin of the weakness of the
studied rules regarding randomness.

Figure 5. Grids of triplets of successive numbers in the simulation of Figure 3.

 204 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

Figure 6. Grids of triplets of successive numbers in the simulation of Figure 4.
Two different perspectives of every dataset are shown. N 50.

This does not happen when keeping parity memory of the three
last states as reported in [20], or moreover of the last four states as
shown in Figure 7, in which case the space seems conveniently filled
with scattered points. Table 2 shows how the probability parameters
in this parity of the last four states’ memory scenario turn out to be
close to 0.5, that is, a genuine random sequence.

Figure 7. Grids of triplets of successive numbers in a simulation up to
T 10 000, using rules with memory of the parity of the last four state
values. N 50.

 Elementary CA with Minimal Memory and Random Number Generation 205

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

S30T4P S150T4P S150T4P
Run Pair Trip Gap Run Pair Trip Gap Run Pair Trip Gap

P .493 .552 .553 .452 .433 .424 .468 .465 .518 .507 .514 .512
sd .290 .268 .294 .307 .320 .284 .280 .281 .294 .269 .279 .304

Table 2. Probability parameters in the scenario of Table 1, but using rules
with memory of the parity of the last four state values.

3.4 An Alternative Minimal Memory Mechanism

An alternative mechanism that only demands an additional bit of
memory per cell is that of keeping unlimited track of the sum of previ-
ous state values, si

HTL si
H1L ⊕⊕si

HT-1L ⊕si
HTL, as si

HTL
si
HT-1L ⊕si

HTL.
Appendix C shows the effect of such a minimal memory mecha-

nism on some elementary rules, in a register of size 150 and up to
T 60. Unlimited trailing parity memory has been coded as UP in
the rule name codification.

In the case of linear rules it holds that,

(1)
CHT+1L M ICHTL ⊕ CHT-1L ⊕⊕ CH1LM

M CHTL ⊕ CHTL HM ⊕ ILCHTL.

Thus, after T 2, rule S150TUP evolves as rule 90 and rule S90TUP
evolves as rule 150. This can be checked in Figure 8, in which the evo-
lution from T 3 is that of rule 90.

Figure 8. The rule S150TUP in circular registers of sizes N 5 and N 11.

4. Conclusion

The dynamics of elementary rules is dramatically altered when endow-
ing cells with memory of the last two time steps, compared to the con-
ventional cellular automata (CA) paradigm that merely takes into
account the last configuration. Particularly interesting is the effect of
the parity rule acting as memory on rule 30 and on the linear rules 90
and 150, as it generates a seemingly random dynamic, albeit failing in
most of the randomness tests.

CA with memory in cells can be considered as a natural and
promising extension of the basic paradigm. A major impediment to
modeling with CA stems from the difficulty of utilizing their complex
behavior to exhibit a particular behavior or perform a particular
function: embedding memory in cells broadens the spectrum of CA as
a tool for modeling. It is likely that in some contexts, a transition rule
with memory could match the “correct” behavior of the CA system of
a given complex system.

 206 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

CA with memory in cells can be considered as a natural and
promising extension of the basic paradigm. A major impediment to
modeling with CA stems from the difficulty of utilizing their complex
behavior to exhibit a particular behavior or perform a particular
function: embedding memory in cells broadens the spectrum of CA as
a tool for modeling. It is likely that in some contexts, a transition rule
with memory could match the “correct” behavior of the CA system of
a given complex system.

Apart from their potential applications, CA with memory are of
aesthetic and mathematical interest. The study of the effect of
memory on CA has been rather neglected. Nevertheless, it seems plau-
sible that further study of the effect of memory on CA (and in lattice
gas automata and in other generalized CA scenarios such as struc-
turally dynamic CA, in which case memory may also be embedded in
links, as explored in [23]) should turn out to be profitable.

Perhaps, as a result of a further full rigorous study of CA with
memory, it will be possible to paraphrase Toffoli [24] in presenting
CA with memory, as an alternative to (rather than an approximation
of) integral equations in modeling, in particular, to Volterra integral
equations that appear in the study of many phenomena incorporating
memory, which are important in applied sciences, such as population
dynamics, diffusion, neural networks, and so on.

Acknowledgment

This work was supported by EPRSC Project EP/E049281/1.

Appendix

A. Elementary Rules from a Single Active Cell

 Elementary CA with Minimal Memory and Random Number Generation 207

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

����� ����� ����� ����� ����� ����	 ����

����� ������ ������ ������ ������ ������

https://doi.org/10.25088/ComplexSystems.18.2.195

 208 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

���������� �������	� �����
��������� ��������
� ���������� ��������

������ ������ ������ ������ ������ �����	

�����
 ������ ������� ������� ������� ������� �������

������ ��� ���

������ ������ ������ ������

������ �����	 �����
 ������

������������ ������� ������� �������

https://doi.org/10.25088/ComplexSystems.18.2.195

B. Elementary Rules Starting at Random

 Elementary CA with Minimal Memory and Random Number Generation 209

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

���� �� ����	 ����

����� ����� �����

���� ����� �����

����� ����	� ����		

����	
 ����	� ����	�

���� �� ������	
�� �����
	
��

�����	
�� ������	
� ������	

�

������	
� ������	�� ������	��

https://doi.org/10.25088/ComplexSystems.18.2.195

 210 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

���� ��� ����	� ����	

����	� ����	� ����	�

����	 ����	� ����	�

����	� ����	�� ����	��

����	�
 ����	�� ����	��

���� ��� ����	�
���� ����	������

����	����� ����	����� ����	������

����	����
� ����	����� ����	�����

https://doi.org/10.25088/ComplexSystems.18.2.195

C. Unlimited Parity Memory

References

[1] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[2] R. Alonso-Sanz and M. Martin, “One-Dimensional Cellular Automata
with Memory in Cells of the Most Frequent Recent Value,” Complex
Systems, 15(3), 2006 pp. 203|236.

[3] R. Alonso-Sanz, “One-Dimensional, r 2 Cellular Automata with
Memory,” International Journal of Bifurcation and Chaos (IJBC),
14(9), 2004 pp. 3217|3248. doi.10.1142/50218127404011338.

 Elementary CA with Minimal Memory and Random Number Generation 211

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

������ ������ ��	���

������ ������ ������

������� ������� �������

������� ������� �������

������� ������� ���	���

������� ������� �������

������� ������� �������

https://doi.org/10.25088/ComplexSystems.18.2.195

[4] R. Alonso-Sanz and M. Martin, “Three-State One-Dimensional Cellular
Automata with Memory,” Chaos, Solitons and Fractals, 21(4), 2004
pp. 809|834. doi.10.1016/j.chaos.2003.12.083.

[5] R. Alonso-Sanz, “Reversible Cellular Automata with Memory: Two-
Dimensional Patterns from a Single Site Seed,” Physica D: Nonlinear
Phenomena, 175(1-2), 2003 pp. 1|30.
doi.10.1016/S0167-2789(02)00693-0.

[6] R. Alonso-Sanz and M. Martin, “Elementary Cellular Automata with
Memory,” Complex Systems, 14(2), 2003 pp. 99|126.

[7] R. Alonso-Sanz and M. Martin, “Two-Dimensional Cellular Automata
with Memory: Patterns Starting with a Single Site Seed,” International
Journal of Modern Physics C (IJMPC), 13(1), 2002 pp. 49|65 and the
references therein. doi.10.1142/S0129183102002973.

[8] R. Alonso-Sanz and M. Martin, “Elementary Cellular Automata with
Elementary Memory Rules in Cells: The Case of Linear Rules,” Journal
of Cellular Automata, 1, 2006 pp. 71|87.

[9] O. Martin, A. M. Odlyzko, and S. Wolfram, “Algebraic Properties of
Cellular Automata,” Communications in M athematical Physics, 93(2),
1984 pp. 219|258. www.projecteuclid.org/euclid.cmp/1103941055.

[10] T. Checherine-Silberstein and M. Coornaert, “The Garden of Eden
Theorem for Linear Cellular Automata,” Ergodic Theory and Dynami-
cal Systems, 26, 2006 pp. 53|68. doi.10.1017/S0143385705000520.

[11] S. K. Park and K. W. Miller, “Random Number Generators: Good Ones
Are Hard to Find,” Communications of the ACM, 31(10), 1988
pp. 1192|1201. doi.acm.org/10.1145/63039.63042.

[12] M. Tomassini, M. Sipper, and M. Perrenoud, “On the Generation of
High-Quality Random Numbers by Two-Dimensional Cellular
Automata,” IEEE Transactions on Computers, 49(10), 2000
pp. 1146|1151. doi.10.1109/12.888056.

[13] M. Sipper and M. Tomassini, “Generating Parallel Random Number
Generators by Cellular Programming,” International Journal of Modern
Physics C (IJMPC), 7(2), 1996 pp. 181|190.

[14] S. U. Guan and S. K. Tan, “Pseudorandom Number Generation with
Self-Programmable Cellular Automata,” IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems, 23(7), 2003
pp. 1095|1101.

[15] P. D. Hortensius, R. D. McLeod, and H. C. Card, “Parallel Random
Number Generation for VLSI Systems using Cellular Automata,” IEEE
Transactions on Computers, 38(10), 1989 pp. 1466|1472.
dx.doi.10.1109/12.35843.

[16] P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller, and
H. C. Card, “Cellular Automata-Based Pseudorandom Number Genera-
tors for Built-In Self-Test,” IEEE Transactions on Computer-Aided
Design, 8(8), 1989 pp. 842|859.

[17] P. Tsalides, T. A. York, and A. Thanailakis, “Pseudorandom Number
Generators for VLSI Systems Based on Linear Cellular Automata,” IEE
Proceedings on Computers and Digital Technologies, 138(4), 1991
pp. 241|249.

 212 R. Alonso-Sanz and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

[18] S. Wolfram, “Random Sequence Generation by Cellular Automata,”
Advances in Applied Mathematics, 7(2), 1986 pp. 123|169.
dx.doi.10.1016/0196-8858(86)90028-X.

[19] D. E. Knuth, The Art of Computer Programming (TAOCP), Vol. 2
(Seminumerical Algorithms), 2nd ed., Reading, MA: Addison-Wesley,
1998.

[20] R. Alonso-Sanz and L. Bull, “Random Number Generation by Cellular
Automata with Memory,” International Journal of Modern Physics C
(IJMPC), 19(2), 2008 pp. 351|367. doi .10.1142/S012918310801211X.

[21] S. Savic, “Testing Two-Neighbor Cellular Automata for Randomness,”
NKS Summer School, 2004.

[22] G. Marsaglia, “Random Numbers Fall Mainly in the Planes,” Proceed-
ings of the National Academy of Sciences, 61(1), 1968 pp. 25|28.

[23] R. Alonso-Sanz, “A Structurally Dynamic Cellular Automaton with
Memory,” Chaos, Solitons & Fractals, 32(4), 2006 pp. 1285|1295.
doi.10.1016/j.chaos.2005.12.047.

[24] T. Toffoli, “Cellular Automata As an Alternative to (Rather than an
Approximation of) Differential Equations in Modeling Physics,”
Physica D: Nonlinear Phenomena, 10(1-2), 1984 pp. 117|127.
doi.10.1016/0167-2789(84)90254-9.

 Elementary CA with Minimal Memory and Random Number Generation 213

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.195

