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The effect of endowing cells with memory of their last two state values
in  elementary  one-dimensional  cellular  automata  is  analyzed  in  this
paper.  The  potential  value  of  such  elementary  cellular  automata  with
minimal  memory  embedded  in  cells  as  random  number  generators  is
assessed. 

1. Conventional Cellular Automata

Cellular  automata  (CA)  are  discrete,  spatially  explicit  extended
dynamic systems.  CA systems are  composed of  adjacent  cells  or  sites
arranged as a regular lattice, which evolve in discrete time steps. Each
cell  is  characterized  by  an  internal  state  whose  value  belongs  to  a
finite set. The updating of these states is made simultaneously accord-
ing  to  a  common  local  transition  rule  involving  a  neighborhood  of
each cell. 

Thus,  if  si
HTL  is  taken  to  denote  the  value  of  cell  i  at  time  step

T,  the  site  values  evolve  by  iterating  the  mapping  si
HT+1L 

fJ:sj
HTL>, j œ iN, with i  standing for the set of cells in the neighbor-

hood of cell i. 
Here we will consider the simplest scenario, that of elementary CA

[1],  that  is,  one-dimensional  CA  with  two  possible  state  values
Hs œ 80, 1<L,  and  rules  operating  on  nearest  neighbors:  si

HT+1L 
fJsi-1

HTL , si
HTL, si+1

HTL N.  Elementary  rules  are  characterized  by  a  sequence

of binary values b associated with each of the eight possible triplets: 
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Jsi-1
HTL , si

HTL, si+1
HTL N :

111 110 101 100 011 010 001 000
b1 b2 b3 b4 b5 b6 b7 b8

.

The  rules  are  conveniently  specified  by  their  rule  number,
R = ⁄i=1

8 bi 28-i varying in the @0, 255D interval. 
Legal  rules  are  reflection  symmetric  Ib2  b5  and  b4  b7M  and

quiescent  Ib8  0M.  Complementary  rules  assign  complementary  b
values, that is, bi  1 ⊕ bi, so the rule number of two complementary
rules add up to 255. 

We  will  pay  particular  attention  in  this  study  to  rule  30
(00011110)  and  to  the  legal  rules  90  (01011010)  and  150
(10010110). The spatio-temporal patterns of these rules from a single
site  seed  are  shown  in  Figure  1  up  to  T  60.  In  totalistic  rules  the
value of a site depends only on the sum of the values of its neighbors
and not on their individual values. The rules 90 and 150 are totalistic
linear  (or  additive)  rules  that  employ  only  XOR  logic,  that  is,  sums
performed modulo 2 in the two-state scenario. (A further explanation
of  the  general  meaning  for  a  system  to  be  additive  is  found  in  [1],
p. 952.)  Noting  the  sum  as  ⊕,  it  is:  R90:  si

HT+1L  si-1
HTL ⊕si+1

HTL ,  and

R150:  si
HT+1L  si-1

HTL ⊕si
HTL ⊕si+1

HTL .  Or  in  matricial  terms,

CHT+1L  M CHTL, where CHTL  stands for the configuration at time step
T,  CHTL  Js1

HTL, s2
HTL, … , sN-1

HTL , sN
HTLN

£
,  and  M  is  the  transition

matrix of the linear rule. Thus, 

M90 

0 1 0 0 0 … 0 0 1

0 1 0 1 0 … 0 0 0

0 0 1 0 1 … 0 0 0

… … … … … … … … …

0 0 0 0 0 … 1 0 1

1 0 0 0 0 … 0 1 0

 

M150  M90 ⊕ I.
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Figure 1. The ahistoric rules 30, 90, and 150 (left), and these rules with rule 6
(parity)  as  memory  (SXT6).  In  the  latter  case,  the  evolving  patterns  of  the
featured (s) cells are also shown.

2. Cellular Automata with Memory

Conventional CA are ahistoric (memoryless); that is, the new state of
a cell depends on the neighborhood configuration solely at the preced-
ing time step. Historic memory can be embedded in the CA dynamics
by endowing memory in cells without altering the mappings f.  Thus,
si
HT+1L  f J:sj

HTL>, j œ iN,  si
HTL  is  a  state  function  of  the  series  of

states  of  the cell  i  up to time step T.  In the case of  elementary rules,
si
HT+1L  f Jsi-1

HTL , si
HTL, si+1

HTL N.

Cells may be featured by a weighted mean value m of all their pre-
vious states  [2|7]:  si

HTL  m Jsi
H1L, si

H2L, … , si
HTLN,  or  of  a limited trail-

ing  memory  si
HTL  m Jsi

HT-t+1L, … , si
HT-1L, si

HTLN.  Limiting  memory

to the last three time steps (t  3), cells may be featured by some ele-
mentary rule f  of them, that is, si

HTL  f Jsi
HT-2L, si

HT-1L, si
HTLN, such as

its most frequent value [2], or the totalistic rule 90 or 150 [8]. 
We  will  consider  in  this  work  the  lowest  degree  of  proper  (t > 1)

memory  conceivable,  that  is,  featuring  cells  by  Boolean  functions  of
their  last  two  states  (t  2):  si

HTL  f Jsi
HT-1L, si

HTLN,  with  si
H1L  si

H1L.

These  mappings  are  characterized  by  a  sequence  of  binary  values  b

associated with each of the four possible pairs Jsi
HT-1L, si

HTLN.  So as a

two-bit analog of the codification in elementary CA: 
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We will  consider  in  this  work  the  lowest  degree  of  proper  (t > 1)
memory  conceivable,  that  is,  featuring  cells  by  Boolean  functions  of
their  last  two  states  (t  2):  si

HTL  f Jsi
HT-1L, si

HTLN,  with  si
H1L  si

H1L.

These  mappings  are  characterized  by  a  sequence  of  binary  values  b

associated with each of the four possible pairs Jsi
HT-1L, si

HTLN.  So as a

two-bit analog of the codification in elementary CA: 

11 10 01 00
b1 b2 b3 b4

ª ‚

i1

4

bs 24-i  .

The rule number of these two-input rules varies in the @0, 15D inter-
val. Rule   10 is the identity rule si

HTL  si
HTL, and   6 is now the

parity rule si
HTL  si

HT-1L ⊕si
HTL. Complementary rules add up to 15 in

this context. 
This implementation of memory of the last two states will often be

termed  t  2  memory.  The  spatial  rules  f  will  be  referred  to  as
S-rules,  and the memory rules  f ,  actuating on time,  as  T-rules.  Thus,
SXTY will  refer  to the spatial  rule  with number X actuating on cells
featured by the memory rule with number Y. 

3. Elementary Rules with Minimal Memory

3.1 Spatio-Temporal Patterns

Figure 1 shows the effect of featuring cells by rule 6, on rules 30, 90,
and 150, resulting in rules S30T6, S90T6, and S150T6. At the second
time  step,  the  actual  configurations  (‡‡‡  ,  ‡  ‡,  and  ‡‡‡  respec-
tively) and those of featured states (‡ ‡ , ‡‡‡, and ‡ ‡) differ. Conse-
quently the patterns for the historic and ahistoric automata (typically)
diverge  as  soon  as  at  T  3.  Evolution  in  Figure  1  is  shown  up  to
T  60.  (A  simple  computer  code  for  rule  150  with  memory  can  be
found  at  uncomp.uwe.ac.uk/alonso-sanz  under  Cellular  Automata
with memory.)

Appendix  A  shows  the  effect  of  minimal  memory  on  some  ele-
mentary  rules  starting  from  a  single  site  seed,  whereas  Appendix  B
deals  with  evolving  patterns  starting  at  random with  the  same initial
configuration.  The  spatio-temporal  evolution  of  a  register  with  121
cells and periodic boundary conditions is shown in Appendix B up to
T  100. 

Complementary  rules  have  the  same  effect  on  rule  90  and  on  the
elementary  complementary  to  rule  90,  that  is,  rule  165.  This  is
reflected  in  Appendices  A  and  B,  and  also  holds  when  keeping
memory of the last three time steps [8]. 

Linear  rules  remain  linear  when  cells  are  endowed  with  linear
memory rules. Thus, endowing the parity rule (rule 6) of the two last
states in cells upon the elementary linear produces for S90T6: 

si
HT+1L  Jsi-1

HTL ⊕si-1
HT-1LN⊕ Jsi+1

HTL ⊕si+1
HT-1LN,

and for S150T6: 
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and for S150T6: 

si
HT+1L  Jsi-1

HTL ⊕si-1
HT-1LN⊕ Jsi

HTL ⊕si
HT-1LN⊕ Jsi+1

HTL ⊕si+1
HT-1LN.

In matricial terms: 

CHT+1L  MICHTL ⊕ CHT-1LM  MCHTL ⊕ M CHT-1L.

3.2 Cycles

Cycles  are  harder  to  find  in  CA  with  memory  than  in  the  conven-
tional  ahistoric  scenario,  in  which  the  mere  repetition  of  a  sole  pat-
tern  marks  the  beginning  of  a  cycle.  This  is  not  so  in  our  CA  with
memory,  as  two  consecutive  patterns  have  to  be  repeated  to  start  a
cycle. 

As  a  simple  example,  Figure  2  shows  the  ahistoric  dynamics  of
rule 150  and  that  of  S150T6  in  small  lattices  of  sizes  N  5  and
N  11,  starting  from  a  single  live  cell  in  its  central  site  (periodic
boundary  conditions  imposed  on  the  edges).  The  ahistoric  evolution
generates  a  period-three  oscillator  as  soon  as  T  4 when  N  5.  In
the  historic  scenario,  the  first  repetition  of  two  consecutive  patterns
(again  the  first  two)  is  achieved  at  T  16,  a  value  equal  to  half  the
total  number  of  possible  configurations  25  32.  When  N  11,  the
oscillator is of period 31 (the maximum attainable [9]) in the ahistoric
formulation,  whereas  in  S150T6  the  period  length  is  93,  notably
lower than the total  number of  different configurations I211  2048M
but notably longer than the former. 

Figure  2.  The  ahistoric  rule  150  and  S150T6  in  circular  registers  of  sizes
N  5 (upper) and N  11 (lower). Evolution up to T  100.

The last component of a cycle in the N  5 simulation of S150T6
in Figure 2 is that of the empty configuration (as a result of two con-
secutive  identical  configurations).  But  just  after  this,  the  dynamics
restart.  Such  a  “cataleptic”  episode  is  infeasible  in  the  ahistoric  con-
text. 
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The last component of a cycle in the N  5 simulation of S150T6
in Figure 2 is that of the empty configuration (as a result of two con-
secutive  identical  configurations).  But  just  after  this,  the  dynamics
restart.  Such  a  “cataleptic”  episode  is  infeasible  in  the  ahistoric  con-
text. 

In  general,  the  maximum  period  conceivably  attainable  in  an  ele-
mentary  CA of  size  N  is  2N,  whereas  in  CA with  a  memory  of  two
time  steps  the  upper  bound  of  period  length  becomes  I2NM

2.  That
would  lead  to  the  conjecture  that  CA  with  memory  in  cells  explore
the configuration space better, so that the number of unreachable con-
figurations  is  smaller  compared  to  conventional  CA,  that  is,  the
Gardens  of  Eden  are  less  populated  [10].  In  any  case,  it  takes  into
account  that  the  main  features  of  the  map  f  prevail;  so  that,  as  an
example, configurations containing an odd number of sites with value
1  can  never  be  generated  by  the  evolution  of  rule  90;  this  is  so  also
with memory. 

In  order  to  circumvent  the  difficult  analytical  study  of  the  cycles
in the CA dynamics, the so-called return map helps to visually detect
the  mere  existence  of  cycles  by  plotting  the  points  representing  suc-
cessive  configurations.  Thus,  HxT , xT+1L,  where  xT  is  a  real  number
representing the configuration at time step T. Usually the binary con-
figurations  are  mapped  in  the  @0, 2D  interval  as  follows:

xT  s1
HTL +⁄i2

N si
HTLH0.5L

i-1
.  But  here  the  configurations  will  be

mapped in  the  @0, 1D  interval  by  dividing the  integer  representing the
binary  configuration  xT  ⁄i1

N si
HTL 2N-i,  by  the  maximum  integer

attainable in a register of size N, that is, xmax  ⁄i1
N 2N-i. 

Figures 3 and 4 show the return maps of rules 30, 90, and 150 and
rules  S30T6,  S90T6,  and  S150T6,  respectively.  The  same  initial  ran-
dom configuration over an N  50 register is set in both figures. The
well-known  characteristic  signatures  of  the  ahistoric  rules  are  com-
pletely  changed  with  parity  memory  into  other  ones  with  a  random
aspect. 

Figure 3.  Pairs of successive numbers in a simulation up to 10 000 time steps
using rules 30, 90, and 150.

 200 R. Alonso-Sanz and L. Bull 

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.
 
https://doi.org/10.25088/ComplexSystems.18.2.195



Figure 4.  Pairs of successive numbers in a simulation up to 10 000 time steps
using the rules with parity memory S30T6, S90T6, and S150T6. 

3.3 Random Sequences

Random number sequences can be found in a large number of applica-
tions  ranging  from  technological  (e.g.,  cryptography,  communica-
tions,  computer-based  gaming,  VLSI,  and  hardware  built-in  self-test
or  BIST)  to  scientific  large-scale  simulations  on  supercomputers,
which consume huge quantities of random numbers. In some applica-
tions,  the  quality  of  the  random  numbers  is  not  that  important.
However, in many applications for which random number generators
(RNGs)  are  most  heavily  used,  such  as  Monte  Carlo  simulations  in
statistical physics, the quality of the RNG is crucial, as an inadequate
election can produce incorrect results. 

Yet  finding good RNGs is  a  nontrivial  task [11,  12].  Fairly  recent
studies have shown that CA are a promising technique for generating
pseudorandom  numbers.  (Random  sequences  generated  on  a  digital
computer  are  usually  referred  to  as  pseudorandom,  as  distinguished
from true random numbers, resulting from some natural physical pro-
cess.)  For  examples  see  the  coevolved  CA  combinations  designed  in
[13] or the self-programmable CA in [14]. This kind of generator has
the advantage of being highly parallel and thus is easily scalable with
relatively little hardware cost. Moreover, due to their Boolean nature,
CA  are  free  of  numerical  errors  derived  from  the  finite  precision  of
floating|point representation of real numbers in computers. This facili-
tates  “portability”,  so  when  a  random  number  sequence  has  been
generated on some particular machine, it is easy to generate the same
sequence on other machines. Hybrid CA using both rules 90 and 150
have also been implemented as RNGs [15|17]. The CA with memory
here may also be called “hybrid”, but in space and time. In both sce-
narios  (memory  and  hybrid),  a  synergic  effect  emerges,  so  that  rules
that separately cannot be used as randomizers, when combined, have
very good statistical properties. 

As rules 90 and 150 operate à la congruential  form, it  is  expected
that  they  perform  well  with  respect  to  the  features  of  a  RNG.  The
intriguing  properties  of  rule  30  regarding  randomness  have  been
largely  studied,  among  others,  by  Wolfram  [1,  18].  So  the  radical
transformation from Figure 3 to Figure 4 is not surprising. 

The  random  aspect  of  the  return  map,  the  already  mentioned
increase  in  period  length,  and  the  fact  that  the  correlation  in  state
values  induced  by  the  local  transition  rule  in  conventional  CA  turns
out to be weakened by the action of the temporal rule (causing a sort
of random restart at every time step), are important characteristics of
rules S30T6, S90T6, and S150T6. These features justify the potential
value of the three rules as good RNGs, and accomplish, at least quali-
tatively,  Knuth’s  comment  that,  “…random  numbers  should  not  be
generated  with  a  method  chosen  at  random.  Some  theory  should  be
used.”  [19, p. 6] 
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The  random  aspect  of  the  return  map,  the  already  mentioned
increase  in  period  length,  and  the  fact  that  the  correlation  in  state
values  induced  by  the  local  transition  rule  in  conventional  CA  turns
out to be weakened by the action of the temporal rule (causing a sort
of random restart at every time step), are important characteristics of
rules S30T6, S90T6, and S150T6. These features justify the potential
value of the three rules as good RNGs, and accomplish, at least quali-
tatively,  Knuth’s  comment  that,  “…random  numbers  should  not  be
generated  with  a  method  chosen  at  random.  Some  theory  should  be
used.”  [19, p. 6] 

But  these  three  positive  features  are  not  sufficient  to  qualify  the
mentioned rules  as  good RNGs.  The rules  still  must  past  the  tests  of
randomness specifically designed to decide on that qualification.

To cope with this issue, the rules 30, 90, and 150 were run in a reg-
ister of 150 cells up to T  10 000. One hundred windows of size 50,
from  sites  @1, 50D  up  to  @100, 150D,  were  sampled.  (This  mechanism
differs  from  the  one  followed  in  the  general  study  on  proper  CA  as
RNGs made in [20].  There,  the 100 simulations were obtained start-
ing  from 100 different,  and  notably  wider,  initial  random configura-
tions.  Savic  [21]  has  tested two-neighbor CA for  randomness.)  Thus,
extracting a real number in @0, 1D from every window as described pre-
viously,  100  series  of  10 000  numbers  each  are  obtained.  The  whole
process is readily parallelizable, ideally by assigning every window to
a processor, with the communication being just the states of the bor-
der cells. 

Rules  30,  90,  and 150 are  unbiased in  their  production of  0s  and
1s:  they  produce  1  when  receiving  any  four  of  the  eight  possible
inputs  and 0 in the contrary case.  As a consequence,  the distribution
of 0s and 1s in any of the windows sampled is, let us say, uniform, so
that  the  real  numbers  generated  exhibit  the  mean  and  variance  of  a
UH0, 1L distribution, that is, 0.5 and 1 ê 12 respectively. 

3.3.1 Testing Randomness

In order to demonstrate the efficacy of a proposed RNG, it is usually
subject  to  a  battery  of  empirical  and  theoretical  tests,  among  which
the most well known are those described by Knuth in [19]. 

Although  there  are  compiled  batteries  of  tests  to  deal  with
the  issue  of  qualifying  randomness  (e.g.,  the  suites  ENT
[www.fourmilab.ch/random], NIST [csrc.nist.gov], or maybe the most
currently  applied  DIEHARD  [www.stat.fsu.edu/pub/diehard]),  we
opted  for  the  robust  set  of  four  tests  implemented  by  the  Numerical
Algorithms  Group  (NAG®,  www.nag.co.uk).  We  embedded  calls  to
the NAG subprograms in the Fortran source code used to implement
the  CA  with  memory  in  cells,  so  the  whole  process  is  expedited.  To
make  sure  that  the  process  is  well  implemented,  we  reproduced  the
examples provided by NAG (the documentation of the NAG routines
referring  to  the  nonparametric  tests  of  randomness  [G08EAF,
G08EBF, G08ECF, and G08EDF] is straightforward and available on
the  NAG  website).  These  examples  analyze  the  randomness  of  a
sequence of 10 000 numbers obtained by means of the NAG subpro-
gram G05KAF, which generates numbers uniformly taken from a uni-
form  distribution  between  0  and  1,  by  a  multiplicative  congruential
algorithm working modulo 259. 
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Although  there  are  compiled  batteries  of  tests  to  deal  with
the  issue  of  qualifying  randomness  (e.g.,  the  suites  ENT
[www.fourmilab.ch/random], NIST [csrc.nist.gov], or maybe the most
currently  applied  DIEHARD  [www.stat.fsu.edu/pub/diehard]),  we
opted  for  the  robust  set  of  four  tests  implemented  by  the  Numerical
Algorithms  Group  (NAG®,  www.nag.co.uk).  We  embedded  calls  to
the NAG subprograms in the Fortran source code used to implement
the  CA  with  memory  in  cells,  so  the  whole  process  is  expedited.  To
make  sure  that  the  process  is  well  implemented,  we  reproduced  the
examples provided by NAG (the documentation of the NAG routines
referring  to  the  nonparametric  tests  of  randomness  [G08EAF,
G08EBF, G08ECF, and G08EDF] is straightforward and available on
the  NAG  website).  These  examples  analyze  the  randomness  of  a
sequence of 10 000 numbers obtained by means of the NAG subpro-
gram G05KAF, which generates numbers uniformly taken from a uni-
form  distribution  between  0  and  1,  by  a  multiplicative  congruential
algorithm working modulo 259. 

The  four  randomness  tests  implemented  by  NAG  are  the  runs
(concerned with the lengths of monotonically increasing or decreasing
series), gaps (between numbers in a certain range), pairs, and triplets.
A detailed description of these tests is beyond the scope of this paper.
Suffice  it  to  say  that  they  belong  to  the  class  of  Chi-square  tests,  in
which the final operative parameter to decide on rejection of the null
hypothesis  of  randomness  is  that  of  the  tail  probability  associated
with  the  chi-square  statistic  (with  the  corresponding  degree  of  free-
dom),  that  is,  the  significance  level.  Qualified  good results  are  in  the
H0.1, 0.9L  interval,  ideally close to 0.5, with extremities on both sides
representing unsatisfactory random sequences. 

3.3.2 Results

The  mean  and  standard  deviation  of  the  probability  parameter
obtained are shown in Table 1. This table also reports (under the col-
umn  headed  NAG)  the  probability  parameters  obtained  by  applying
the  tests  to  100  sequences  of  10 000  random  numbers  generated  by
the  program  provided  by  NAG  to  generate  pseudorandom  numbers
from a uniform distribution UH0, 1L.  These parameters  act  as  a refer-
ence,  as  it  is  expected that  numbers obtained with good randomizers
should be close to them. 

NAG S30T6
Run Pair Trip Gap Run Pair Trip Gap

P .481 .527 .519 .508 .044 .560 .000 .110
sd .308 .273 .300 .274 .104 .281 .000 .195

S90T6 S150T6
Run Pair Trip Gap Run Pair Trip Gap

P .000 .130 .000 .331 .464 .534 .000 .490
sd .000 .181 .000 .301 .308 .299 .000 .278

Table 1. Randomness tests: mean (P) and standard deviation (sd) of probabil-
ity  across  100 simulations  of  10 000 observations  each,  obtained  using  rules
with memory of the parity of the last two state values. Results of the simula-
tions with the NAG package serve as a reference to the results with CA rules.
Good simulations have probabilities in the H0.1, 0.9L  interval, ideally close to
0.5.
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Rules without memory fail to pass the tests. Their low P-values are
given in [20]. It seems that the regularities, the triangular features ap-
preciated  in  their  spatio-temporal  patterns,  are  translated  into  some
kind of tendencies that the tests for randomness detect. These poor re-
sults obtained by the conventional ahistoric rules are due to the corre-
lation induced by extracting the values of a wide sequence of adjacent
sites.  To  try  to  remove  correlation,  it  is  customary  to  sample  only  a
rather  limited  number  of  sites  (either  adjacent  or  spaced),  or  solely
one as considered by Wolfram regarding rule 30. 

Rules with parity memory (with no obvious patterns in their space-
time  diagrams)  increase  their  performance,  showing  some  acceptable
probability  parameters  in  Table  1  under  some  of  the  tests,  but  not
under every test and dramatically failing in respect to the triplets test. 

There is  a known weakness common to all  the conventional (non-
CA)  linear  congruential  generators,  as  pointed  out  by  Marsaglia
in [22]. If groups of successive values are used as the Cartesian coordi-
nates  of  points  in  an  n-dimensional  space,  they  do  not  uniformly  fill
up  the  volume.  Instead,  they  lie  on  a  relatively  small  number  of
parallel  hyperplanes  producing  a  lattice  structure.  (The  maximal
distance between adjacent hyperplanes is a convenient measure of the
quality  of  the  generator  and  its  determination  is  the  goal  of  the  so-
called  spectral  test  [19].  When  the  distance  between  hyperplanes  is
small,  the  illusion that  points  are  uniformly  distributed in  the  hyper-
cube  is  reinforced.  This  criterion  is  thus  frequently  employed  to  find
the  best  multiplier  and  modulus  for  a  conventional  multiplicative
linear  congruential  operator.)  The  clusterization  phenomenon  turns
out  to  be  apparent  in  CA  rules  without  memory,  as  shown  in
Figure 5, and it is detected to some extent when memory is present, as
shown  in  Figure  6.  This  may  be  the  origin  of  the  weakness  of  the
studied rules regarding randomness. 

Figure 5. Grids of triplets of successive numbers in the simulation of Figure 3.
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Figure 6. Grids of triplets of successive numbers in the simulation of Figure 4.
Two different perspectives of every dataset are shown. N  50.

This  does  not  happen  when  keeping  parity  memory  of  the  three
last  states  as  reported  in  [20],  or  moreover  of  the  last  four  states  as
shown in  Figure  7,  in  which  case  the  space  seems  conveniently  filled
with scattered points.  Table 2 shows how the probability parameters
in  this  parity  of  the  last  four  states’  memory  scenario  turn  out  to  be
close to 0.5, that is, a genuine random sequence. 

Figure  7.  Grids  of  triplets  of  successive  numbers  in  a  simulation  up  to
T  10 000,  using  rules  with  memory  of  the  parity  of  the  last  four  state
values. N  50.
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S30T4P S150T4P S150T4P
Run Pair Trip Gap Run Pair Trip Gap Run Pair Trip Gap

P .493 .552 .553 .452 .433 .424 .468 .465 .518 .507 .514 .512
sd .290 .268 .294 .307 .320 .284 .280 .281 .294 .269 .279 .304

Table  2.  Probability  parameters  in  the  scenario  of  Table  1,  but  using  rules
with memory of the parity of the last four state values.

3.4 An Alternative Minimal Memory Mechanism

An  alternative  mechanism  that  only  demands  an  additional  bit  of
memory per cell is that of keeping unlimited track of the sum of previ-
ous  state  values,  si

HTL  si
H1L ⊕⊕si

HT-1L ⊕si
HTL,  as  si

HTL 
si
HT-1L ⊕si

HTL. 
Appendix  C  shows  the  effect  of  such  a  minimal  memory  mecha-

nism  on  some  elementary  rules,  in  a  register  of  size  150  and  up  to
T  60.  Unlimited  trailing  parity  memory  has  been  coded  as  UP  in
the rule name codification. 

In the case of linear rules it holds that, 

(1)
CHT+1L  M ICHTL ⊕ CHT-1L ⊕⊕ CH1LM 

M CHTL ⊕ CHTL  HM ⊕ ILCHTL.

Thus, after T  2, rule S150TUP evolves as rule 90 and rule S90TUP
evolves as rule 150. This can be checked in Figure 8, in which the evo-
lution from T  3 is that of rule 90. 

Figure 8. The rule S150TUP in circular registers of sizes N  5 and N  11.

4. Conclusion

The dynamics of elementary rules is dramatically altered when endow-
ing cells with memory of the last two time steps, compared to the con-
ventional  cellular  automata  (CA)  paradigm  that  merely  takes  into
account  the  last  configuration.  Particularly  interesting  is  the  effect  of
the parity rule acting as memory on rule 30 and on the linear rules 90
and 150, as it generates a seemingly random dynamic, albeit failing in
most of the randomness tests. 

CA  with  memory  in  cells  can  be  considered  as  a  natural  and
promising  extension  of  the  basic  paradigm.  A  major  impediment  to
modeling with CA stems from the difficulty of utilizing their complex
behavior  to  exhibit  a  particular  behavior  or  perform  a  particular
function: embedding memory in cells broadens the spectrum of CA as
a tool for modeling. It is likely that in some contexts, a transition rule
with memory could match the “correct” behavior of the CA system of
a given complex system. 
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CA  with  memory  in  cells  can  be  considered  as  a  natural  and
promising  extension  of  the  basic  paradigm.  A  major  impediment  to
modeling with CA stems from the difficulty of utilizing their complex
behavior  to  exhibit  a  particular  behavior  or  perform  a  particular
function: embedding memory in cells broadens the spectrum of CA as
a tool for modeling. It is likely that in some contexts, a transition rule
with memory could match the “correct” behavior of the CA system of
a given complex system. 

Apart  from  their  potential  applications,  CA  with  memory  are  of
aesthetic  and  mathematical  interest.  The  study  of  the  effect  of 
memory on CA has been rather neglected. Nevertheless, it seems plau-
sible that further study of the effect of memory on CA (and in lattice
gas  automata  and  in  other  generalized  CA  scenarios  such  as  struc-
turally dynamic CA, in which case memory may also be embedded in
links, as explored in [23]) should turn out to be profitable. 

Perhaps,  as  a  result  of  a  further  full  rigorous  study  of  CA  with
memory,  it  will  be  possible  to  paraphrase  Toffoli  [24]  in  presenting
CA with memory, as an alternative to (rather than an approximation
of)  integral  equations  in  modeling,  in  particular,  to  Volterra  integral
equations that appear in the study of many phenomena incorporating
memory, which are important in applied sciences, such as population
dynamics, diffusion, neural networks, and so on. 
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A. Elementary Rules from a Single Active Cell
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B. Elementary Rules Starting at Random
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C. Unlimited Parity Memory
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