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We  introduce  a  variation  of  Post’s  tag  systems  that  leads  to  a  finite
state machine. Our system is simpler than those considered by Post,  in
that there are only finitely many states.  It  is  more complicated,  in that
any given state can evolve in multiple directions. Most importantly, we
are able to analyze the system fairly completely and use it to investigate
the properties of certain types of randomly generated trees. 

1. Introduction

We  fix  a  positive  natural  number  m  and  consider  sequences  of  the
form  xn  Hx1, … , xnL,  where  each  xi œ 80, 1, … , m<  and  xi ≠ 0  for
some i. Denote the set of all such sequences by Xn. Given x œ Xn  and
a fixed i œ 81, 2, … , n< satisfying xi ≠ 0, define siHxL by 

(1)si HHx1, … , xnLL  Ix2, … , xi - 1, … , xn, mM.

Note  that  the  domain  of  each  si  is  a  proper  subset  of  Xn  that  con-
tains only those x such that xi ≠ 0. Also, when s1  is applicable, it es-
sentially simply shifts and appends since the decremented element dis-
appears off the end. 

This decrement and shift operation provides a simple modification
of the concept of “tag system” introduced by Emil Post [1] and stud-
ied much later by Wolfram [2]. Post’s tag systems allow blocks of arbi-
trary  length  to  be  removed  from  the  beginning  and  tagged  onto  the
end according to various rules. Since the lengths of the removed block
and the appended block need not be equal, the lengths of the terms in
the  resulting  sequence  under  iteration  can  vary  resulting  in  infinitely
many  states  and  very  complicated  behavior.  Our  system  is  simpler,
since  there  are  only  finitely  many  states;  in  fact,  Hm + 1Ln - 1  states.
However,  most  states  can  spawn multiple  children  resulting  in  many
possible futures. In this sense, it is analogous to the multistate systems
studied  by  Wolfram  [2].  This  process  is  naturally  modeled  by  a
directed  graph  with  labeled  edges  or  a  finite  state  machine.  The  ver-
tices are indexed by the states. We place a directed edge from vertex x
to  vertex  y  and  label  it  with  an  i,  if  siHxL  y.  The  labeled  directed
graph model for m  n  2 is shown in Figure 1. 
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Figure 1. The digraph model for m  n  2.

We  are  particularly  interested  in  identifying  the  recurrent  states,
those  admitting  a  closed  path  from  the  state  to  itself.  The  recurrent
states in Figure 1 are simply H1, 2L and H2, 2L. It is a fairly simple mat-
ter to model the decremental tag process on a computer, construct the
graph model, and determine the recurrent states using standard graph
algorithms.  The  recurrent  states  can  be  determined  much  more  effi-
ciently, however, using the particular structure of this system. It turns
out that these decremental tag systems can be used to model an inter-
esting random tree construction we call  the use it  or lose it  construc-
tion. In fact, our original motivation was to compute certain parame-
ters  describing  the  expected  structure  of  such  a  randomly  generated
tree. 

In Section 2, we describe our recursive procedure to efficiently find
the recurrent states of the decremental tag process. The arguments are
fairly delicate, but we find the resulting procedure to be simple and el-
egant. In Section 3, we apply the results of Section 2 to random trees. 

2. The Recurrent States

Recall that a state is recurrent if there is a closed path from that ver-
tex to itself. We will denote the set of recurrent states in Xn  by R HnL.
The  objective  in  this  section  is  to  characterize  the  recurrent  states
and  provide  a  recursive  construction  of  R HnL.  Following  standard
terminology  for  directed  graphs,  a  walk  is  a  sequence  of  vertices
Hu1, u2, … , unL  so  that  there  is  a  directed  edge  from  ui  to  ui+1  for
each  i.  A  path  is  a  walk  consisting  of  distinct  vertices  and  a  closed
path is a walk consisting of distinct vertices, except for the beginning
and ending vertices that must be the same. 
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Recall that a state is recurrent if there is a closed path from that ver-
tex to itself. We will denote the set of recurrent states in Xn  by R HnL.
The  objective  in  this  section  is  to  characterize  the  recurrent  states
and  provide  a  recursive  construction  of  R HnL.  Following  standard
terminology  for  directed  graphs,  a  walk  is  a  sequence  of  vertices
Hu1, u2, … , unL  so  that  there  is  a  directed  edge  from  ui  to  ui+1  for
each  i.  A  path  is  a  walk  consisting  of  distinct  vertices  and  a  closed
path is a walk consisting of distinct vertices, except for the beginning
and ending vertices that must be the same. 

In our situation,  a  walk can also be described by the labels  of  the
edges,  since  distinct  labels  emanating  from  a  vertex  lead  to  distinct
terminal vertices.  Thus a walk of length k  is  determined by an initial
vertex  and a  sequence  of  labels  Ii1, … , ikM,  provided that  si  is  never
applied  to  a  state  with  xi  0.  We  will  call  a  walk  described  in  this
fashion  a  legal  walk  and  will  use  similar  terminology  for  legal  path
and  closed  legal  path.  The  terminal  vertex  of  a  legal  walk  will  be
called the destination of the walk. As it turns out, the destination of a
walk  is  independent  of  the  starting  point,  provided  the  walk  is  long
enough. 
Lemma 1.  Suppose  that  i  Ii1, … , ikM  defines  a  legal  walk  starting
from x  Hx1, … , xnL  with  destination  z  Hz1, z2, … , znL  and  that  i
also  defines  a  legal  walk  from  y  Hy1, … , ynL  with  destination
z¢  Iz1

£ , … , zn
£ M. Then, zj  zj

£ for j > max Hn - k, 0L.

Proof.  The  lemma  is  trivial  if  k  1,  since  the  last  element  is  an  m
after  one  step.  Now  suppose  that  the  statement  is  true  for  a  fixed
natural number k and consider a legal walk of length k + 1. By induc-
tion, the last min Hk, nL terms are the same after the first k steps. Thus,
for k < n, the situation looks like 

Hx1, … , xnL
Ii1,… ,ikM

Iz1, … zn-k, zn-k+1, … , znM

Hy1, … , ynL
Ii1,… ,ikM

Iz1
£ , … zn-k

£ , zn-k+1, … , znM.

Note that the last k terms are the same. After one more step, we have 

Hx1, … , xnL
Ii1,… ,ik,ik+1M

Iz2, … zn-k
£ , zn-k+1, … , zn, mM

Hy1, … , ynL
Ii1,… ,ik,ik+1M

Iz2
£ , … zn-k

£ , zn-k+1, … , zn, mM,

where 

zi 
zi if i ≠ ik+1

zi - 1 if i  ik+1.

A  similar  definition  holds  for  z£.  Now,  the  last  min Hk + 1, nL  terms
are the same, yielding the result. ·

An immediate consequence is the following. 
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Corollary 1.  Suppose  that  Ii1, … , ikM  defines  legal  walks  starting  from
both  the  vertices  x  Hx1, … , xnL  and  y  Hy1, … , ynL.  Then,  the
destinations of those walks are the same, provided k ¥ n. 

We  can  now  state  the  following  characterization  of  the  recurrent
states. 
Lemma 2.  For  m > 2,  let  x0 œ R HnL  denote  the  special  (clearly  recur-
rent)  state  Hm, … , mL.  Then  R HnL  consists  precisely  of  those  states
that are accessible from x0.

Proof. It is very easy to see that x0  is accessible from any other state;
simply  iteratively  choose  the  smallest  possible  i  such  that  xi ≠ 0  to
generate  a  path  from  the  given  state  to  x0.  It  follows  that  any  state
that is accessible from x0  is recurrent. Conversely, suppose that x is a
recurrent state. Thus, there is a closed path from x to itself. By repeat-
ing  this  path  if  necessary,  we  generate  a  legal  walk  of  length  k ¥ n
from x  to  itself.  If  the  walk  is  legal  from x,  then  it  is  certainly  legal
from x0,  since the state values can only be larger. Since the length of
the walk exceeds n, the destination is the same by Lemma 1. Thus x is
accessible from x0. ·

Lemma 2 and its proof yield the following corollary. 

Corollary 2.  The  directed  graph  that  models  the  recurrent  states  is
strongly connected.

Our  recursive  construction  of  the  recurrent  states  will  depend  on
the nature of shortest paths from x0. The following lemma essentially
states  that  such  a  path  does  not  shift  decremented  elements  off  the
end. 
Lemma 3.  Suppose there are one or more paths from x0  to x.  Clearly,
there  is  a  path  Ii1, … , ikM  of  shortest  length.  This  shortest  path
satisfies ij > k - Hj - 1L for each j. 

Proof.  Suppose  to  the  contrary  that  Ii1, … , ikM  is  a  path  of  shortest
length from x0  to x and that the inequality is not satisfied for some j.
Thus, 

Hm, … , mL
Ii1,… ,ijM

Jy1, … , yij , yij+1, … , ynN
Iij+1,… ,ikM

Hx1, … , xnL.

Focusing on the first j - 1 steps, we see 

Hm, … , mL
Ii1,… ,ij-1M

Jz, y1, … , yij , yij+1, … , yn-1N.

The value of z is unimportant, as it will be shifted off at the next step.
Since  the  initial  state  x0  has  all  elements  the  same,  we  could  have
applied Ii1 - 1, … , ij-1 - 1M and found 
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The value of z is unimportant, as it will be shifted off at the next step.
Since  the  initial  state  x0  has  all  elements  the  same,  we  could  have
applied Ii1 - 1, … , ij-1 - 1M and found 

Hm, … , mL
Ii1-1,… ,ij-1-1M

Jy1, … , yij , yij+1, … , yn-1, mN.

Of course, yn  m. Thus, the result after applying Ii1 - 1, … , ij-1 - 1M
is  the  same  as  the  result  after  applying  Ii1, … , ijM.  Therefore,
Ii1 - 1, … , ij-1 - 1, ij+1, … , ikM is a shorter path from x0  to x. This is
contrary  to  our  initial  assumption so  the  inequality  must  be  satisfied
for shortest paths. ·

There  is  no  a  priori  reason  to  suppose  that  k  is  restricted  by  n.
However,  taking  j  1  in  Lemma  3  and  using  the  fact  that  i1 § n
yields the following corollary. 

Corollary 3.  Given  any  x œ R HnL,  there  is  a  path  from  x0  to  x  with
length at most n - 1. 

For the remainder of this section, we will be interested in the rela-
tionship  between  R HnL  and  R Hn + 1L.  For  clarity,  we  will  typically
denote  an  element  of  R HnL  with  a  superscript.  Thus  xn  denotes  the
typical  element  in  R HnL  and  x0

n œ RHnL  denotes  Hm, … , mL.  A  simple
example of this type is the following lemma. 

Lemma 4.  Suppose  that  xn  Hx1, … , xnL œ RHnL.  Then  xn-1 
Hx2, … , xnL œ RHn - 1L and xn+1  Hm, x1, … , xnL œ RHn + 1L. 

Proof.  If  Ii1, … , ikM  is  a  shortest  legal  path  from  x0
n  to  xn,  then

Ii1 + 1, … , ik + 1M  is  a  legal  path  from  x0
n+1  to  xn+1  and

Ii1 - 1, … , ik - 1M  is  a  legal  path  from  x0
n-1to  xn-1,  deleting  zeros  if

necessary. ·

Using these same ideas, we can now present our recursive construc-
tion of R HnL. 

Theorem 1.  Fix  m ¥ 2  and  let  R HnL  denote  the  set  of  recurrent  states
for the decremental tag system on sequences of length n  chosen from
the symbols 80, 1, … , m<. Define the set S HnL recursively as follows:

† S H1L  8HmL< 

† Given  Hx1, … , xnL œ SHnL,  and  a  non-negative  integer  r § m,
Hm - r, x1, … , xnL œ SHn + 1L if and only if x1 + + xn ¥ Hm - 1L n + r. 

Then S HnL  R HnL. 
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Proof.  We  prove  the  theorem  by  induction.  For  n  1,  the  theorem
states that HmL  is the only recurrent state, which is clearly true. Now,
fix n and assume for induction that S Hn£L  R Hn£L for all n£ § n. 

We  first  show  that  R Hn + 1L Õ S Hn + 1L.  Let  xn 
Hx1, … , xnL œ RHnL  and  suppose  that  x1 + + xn <
Hm - 1L n + r.  We  must  show  that  xn+1  Hm - r, x1, … , xnL –
RHn + 1L. Now, since each application of a si  decrements a value, the
number of steps required to get from x0

n+1  to xn+1  is m Hn + 1L  minus

the sum of the terms in xn+1. Thus, a shortest path from x0
n+1  to xn+1

requires  m n - Hx1 + + xnL + r > n - 1  steps  and  the  result  now
follows from Corollary 3. 

To  show  that  S Hn + 1L Õ R Hn + 1L,  suppose  that  xn+1 œ SHn + 1L.
Thus,  xn+1  Hm - r, x1, … , xnL  where  x1 + + xn ¥ Hm - 1L n + r
and  xn  Hx1, … , xnL œ SHnL  RHnL.  Now  let  xr,k

n+1 
Hm, … , m, m - r, m, … , mL, where the m - r term appears in position
k + 1.  We  will  show  that  xr,k

n+1 œ RHn + 1L  and  that  there  is  a  legal

walk from xr,k
n+1 to xn+1. This implies that xn+1 œ RHn + 1L. 

To  show  that  xr,k
n+1 œ RHn + 1L,  we  first  note  that

Hm - r, m, … , mL œ SHn - k + 1L.  This  is  because  we  may  prepend
m - r  to  x0

n-k œ SHn - kL  since  Hn - kLm ¥ Hm - 1L Hn - kL - r.  Thus,
Hm - r, m, … , mL œ RHn - k + 1L  SHn - k + 1L  by  the  induction
hypothesis.  Then  xr,k

n+1 œ RHn + 1L,  since  we  can  simply  prepend  k

number of m to Hm - r, m, … , mL to generate xr,k
n+1. 

Now,  let  Ii1, … , ikM  be  a  shortest  path  from  x0
n  to  xn.  We  claim

that  Ii1 + 1, … , ik + 1M  is  a  legal  walk  from  xr,k
n+1  to  x0

n+1.  This  is

almost  immediate.  Note  that  the  inequalities  ij > k - Hj - 1L  for
j  1, … , k imply that the m in position k of x0

n  is never decremented

by the action of Ii1, … , ikM.  Thus, the m - r  in position k + 1 of xr,k
n+1

is never decremented under the action of Ii1 + 1, … , ik + 1M. ·

This  recursive  construction  is  easy  to  implement  on  a  computer
and we have done so in  Mathematica.  Furthermore,  the  construction
of  these  recurrent  states  is  a  key  step  in  the  application  described  in
the next section. 

3. Application to Use It or Lose It Trees

The study of trees generated by a random process has a long history.
We  introduce  here  a  variation  of  the  classical  construction  of  Erdös
and  Rényi  [3]  that  we  call  the  use  it  or  lose  it  construction.  It  turns
out  that  decremental  tag  systems  offer  a  tool  for  analyzing  the
expected structure of use it or lose it trees. Start with any tree whose
vertices  are  labeled  with  integers  chosen  from  80, 1, 2, … , n<.  The
label  of  a  vertex  indicates  its  life  expectancy  and the  labels  need  not
be distinct.  A vertex labeled 0 is  dead.  We then construct  a new tree
by  randomly  choosing  one  of  the  live  vertices  of  the  given  tree  and
attaching  m - 1  new  leaves  to  the  chosen  vertex.  All  the  new  leaves
have life expectancy n  and the life expectancy of the chosen vertex is
reset to n (hence the name of the process). Figure 2 shows a few steps
in  this  process  corresponding  to  m  n  2  and  Figure  3  shows  a
graph after 150 steps in the process. Note that since m  2, we attach
m - 1  nodes  to  the  chosen  leaf  resulting  in  two  nodes  of  maximum
life expectancy in the new tree. 
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Figure 2. A few use it or lose it steps.

Figure 3. 150 use it or lose it steps.

It is now natural to ask what properties a large tree generated from
this  process  might  have.  What,  for  example,  is  the  probability  that
a  vertex  chosen  randomly  from  the  tree  is  a  leaf?  We  call  this  the
leaf  probability  question.  It  is  fairly  simple  to  answer  the  question
when  each  vertex  has  a  lifespan  of  1  and  m - 1  leaves  are  added  at
each step. A vertex born into such a tree has one chance out of m  to
be selected at the next level and not die as a leaf. Thus with probabil-
ity  Hm - 1L ê m,  any  given  vertex  will  die  as  a  leaf.  The  situation  is
more  complicated  when  the  lifespan  is  larger,  but  our  computations
indicate  the  leaf  probability  is  independent  of  the  lifespan.  We  have
no general proof of this fact, rather we have an algorithm (using decre-
mental tag systems) that may be used to compute the leaf probability
for  particular  m  and  n.  Based  on  those  computations,  we  conjecture
that the leaf probability is indeed independent of lifespan. 
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It is now natural to ask what properties a large tree generated from
this  process  might  have.  What,  for  example,  is  the  probability  that
a  vertex  chosen  randomly  from  the  tree  is  a  leaf?  We  call  this  the
leaf  probability  question.  It  is  fairly  simple  to  answer  the  question
when  each  vertex  has  a  lifespan  of  1  and  m - 1  leaves  are  added  at
each step. A vertex born into such a tree has one chance out of m  to
be selected at the next level and not die as a leaf. Thus with probabil-
ity  Hm - 1L ê m,  any  given  vertex  will  die  as  a  leaf.  The  situation  is
more  complicated  when  the  lifespan  is  larger,  but  our  computations
indicate  the  leaf  probability  is  independent  of  the  lifespan.  We  have
no general proof of this fact, rather we have an algorithm (using decre-
mental tag systems) that may be used to compute the leaf probability
for  particular  m  and  n.  Based  on  those  computations,  we  conjecture
that the leaf probability is indeed independent of lifespan. 

In  order  to  model  the  use  it  or  lose  it  process  with  a  decremental
tag  system,  we  introduce  the  state  vector  of  a  tree,  x  Hx1, … , xnL,
where  xi  indicates  the  number  of  vertices  in  the  tree  with  life
expectancy i.  If we choose a vertex with life expectancy i  from a tree
in  state  x,  we  generate  a  tree  in  state  siHxL,  where  s  is  exactly  the
decremental tag operation. The parameter m - 1 in the use it or lose it
description is chosen precisely to obtain this direct correspondence. 

We now consider the probability that a leaf born into a particular
state  eventually  dies  as  a  leaf;  these  may  be  computed  recursively.
Clearly a leaf with remaining life expectancy 1 in a tree in state x has
probability Hx1 + + xn - 1L ê Hx1 + + xnL of dying and remaining a
leaf.  The probability that a leaf with higher life expectancy i  remains
a  leaf  may  be  computed  using  conditional  probabilities.  More  pre-
cisely,  let  PHx, iL  denote  the  probability  that  a  leaf  in  a  state  x  tree
with remaining life expectancy i eventually dies as a leaf. Then, 

(2)PHx, iL  ‚

j1

n xj - di,j

x1 + + xn
PIsjHxL, i - 1M,

where di,j is the Kronecker delta. Thus, 

(3)
xj - di,j

x1 + + xn

represents  the  probability  of  picking  a  vertex  with  lifespan  j,  where
we subtract off a 1 in the particular case that j  i. After picking that
vertex,  with lifespan say j,  we generate  a  new tree  in  state  sjHxL  and
the  leaf  under  consideration has  a  remaining  life  expectancy  of  i - 1.
Thus  equation  (2)  arises  by  computing  conditional  probabilities  and
summing  over  all  j.  Since  we  know each  PHx, 1L,  this  can  be  used  to
compute  each  PHx, iL  recursively.  The  asymptotic  probability  that  a
randomly chosen vertex from a  large  use  it  or  lose  it  tree  is  a  leaf  is
then a weighted average over all  possible  states.  The probability  that
a randomly generated use it or lose it tree is in a particular state is not
uniformly  distributed  over  all  the  recurrent  states,  but  these  can  be
computed using a Markov chain corresponding to the directed graph
model of the recurrent states. We illustrate this with an example. 
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represents  the  probability  of  picking  a  vertex  with  lifespan  j,  where
we subtract off a 1 in the particular case that j  i. After picking that
vertex,  with lifespan say j,  we generate  a  new tree  in  state  sjHxL  and
the  leaf  under  consideration has  a  remaining  life  expectancy  of  i - 1.
Thus  equation  (2)  arises  by  computing  conditional  probabilities  and
summing  over  all  j.  Since  we  know each  PHx, 1L,  this  can  be  used  to
compute  each  PHx, iL  recursively.  The  asymptotic  probability  that  a
randomly chosen vertex from a  large  use  it  or  lose  it  tree  is  a  leaf  is
then a weighted average over all  possible  states.  The probability  that
a randomly generated use it or lose it tree is in a particular state is not
uniformly  distributed  over  all  the  recurrent  states,  but  these  can  be
computed using a Markov chain corresponding to the directed graph
model of the recurrent states. We illustrate this with an example. 

Consider the simplest nontrivial example of a use it or lose it pro-
cess~each vertex has a lifespan of 2 and gives birth to one new ver-
tex.  The  possible  recurrent  states  of  such a  tree  are  H2, 2L  and H1, 2L,
indicating that at any stage there are two vertices with a lifespan of 2
and either one or two vertices with a lifespan of 1. We would like to
follow a particular vertex born in some state through its life process;
we  will  indicate  the  (state,  current  lifespan)  pair  as  Hx, iL.  Thus  the
new leaf  is  born as  either  HH2, 2L, 2L  or  HH1, 2L, 2L.  Assuming that  this
new  vertex  eventually  dies  as  a  leaf,  we  can  follow  its  path  through
the appropriate tree shown in Figure 4. 

1ê3 1ê3

1ê4 1ê2 2ê3

HH1,2L, 2L

HH2,2L, 1L HH1,2L, 1L

HH2,2L, 0L HH1,2L, 0L HH1,2L, 0L

1ê2 1ê4

1ê4 1ê2 2ê3

HH2,2L, 2L

HH2,2L, 1L HH1,2L, 1L

HH2,2L, 0L HH1,2L, 0L HH1,2L, 0L

Figure 4. Life cycle of a leaf.

Now,  simply  computing  conditional  probabilities  and  summing,
we  see  that  a  vertex  born  in  state  HH1, 2L, 2L  has  probability
1
3
ÿ 1

4
+ 1

3
ÿ 1

2
+ 1

3
ÿ 2

3
 17

36
 of dying as a leaf, while a vertex born into

state  HH2, 2L, 2L  has  probability  1
2
ÿ 1

4
+ 1

2
ÿ 1

2
+ 1

4
ÿ 2

3
 13

24
 of  dying  as

a leaf. 
Finally,  in  order  to  compute  the  overall  probability  that  a  vertex

born into this system dies as a leaf, regardless of the original state, we
need  to  take  a  weighted  average  (according  to  state  probability)  of
these  two  answers.  This  weighted  average  may  be  computed  using  a
Markov chain corresponding to the digraph model, or transition dia-
gram,  for  the  two  recurrent  states  shown in  Figure  5.  This  is  simply
the recurrent portion of the directed graph shown in Figure 1. 
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1
2

1
2 82, 2<81, 2<

Figure 5. The transition diagram.

Now, the transition matrix associated with this directed graph has
rows  and  columns  indexed  by  the  states.  The  entry  in  row  u  and
column v  indicates the probability of  moving from state u  to state v.
Basic  Markov chain theory tells  us  that  the  largest  eigenvalue of  this
matrix  is  1,  that  it  is  a  simple  eigenvalue,  and  that  the  long-term
probability  distribution  of  the  two  states  as  this  process  evolves  is
given by  the  corresponding eigenvector  normalized  so  that  its  sum is
1.  In  this  particular  example,  the  transition  matrix  and  dominant
eigenvector are 

(4)

1

2

1

2
1

3

2

3

 and  

2

5

3

5

.

This  leads  to  a  leaf  probability  of  3
5
ÿ 17

36
+ 2

5
ÿ 13

24
 1

2
.  We  note

that  the  lifespan  has  not  changed  the  leaf  probability  from  the  case
where m  2 and n  1, in spite of the complexity of the new compu-
tation. 

While  we  have  no  general  proof  that  leaf  probability  is  indepen-
dent  of  lifespan  in  this  construction,  the  recursive  construction  of
R HnL  and  subsequent  computation  of  leaf  probability  can  easily  be
programmed. We have done so and verified our leaf probability con-
jecture for m § 20 and n § 10. 

4. Directions for Future Work

This paper raises a number of obvious questions for both random tree
construction and decremental tag systems. Foremost is 

Conjecture 1.  The  probability  that  a  given  vertex  in  a  use  it  or  lose  it
tree dies as a leaf is 1 ê 2, independent of the parameter pair Hm, nL. 

This  implies  that  these  trees  share  some  structural  properties  with
the  classical  Erdös|Rényi  process,  where  the  leaf  probability  is  also
1 ê 2. We might also ask other structural questions about use it or lose
it trees.
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† What is the expected value of the independence number of such a tree? 

† What is the expected value of the diameter of such a tree? 

† What is the expected degree sequence of such a tree? 

We might also consider other random tree constructions. 
The  decremental  tag  systems  in  this  paper  were  developed  specifi-

cally to model use it or lose it trees, but they seem interesting in their
own  right.  Our  main  conjecture  concerns  the  number  of  recurrent
states. 

Conjecture 2.  Given  n,  let  m  n  and  let  Dn  denote  the  number  of
recurrent  states  in  the  corresponding  decremental  tag  system.  Then
Dn is the nth Catalan number. 

We  generated  this  conjecture  by  simply  plugging  the  first  few  Dn
into The On-Line Encyclopedia of Integer Sequences [4]. 

5. Computational Supplement

All  the  algorithms  outlined  in  this  paper  have  been  implemented  by
the  authors  using  Mathematica.  These  programs  are  freely  available
at facstaff.unca.edu/mcmcclur/DecrementalTagTrees. 
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