
Decremental Tag Systems and
Random Trees

Patrick Bahls
Mark McClure

Department of Mathematics
University of North Carolina at Asheville
Asheville, NC 28804

Josh Knox

Department of Mathematics
Morehead State University
Morehead, KY 40351

We introduce a variation of Post’s tag systems that leads to a finite
state machine. Our system is simpler than those considered by Post, in
that there are only finitely many states. It is more complicated, in that
any given state can evolve in multiple directions. Most importantly, we
are able to analyze the system fairly completely and use it to investigate
the properties of certain types of randomly generated trees.

1. Introduction

We fix a positive natural number m and consider sequences of the
form xn  Hx1, … , xnL, where each xi œ 80, 1, … , m< and xi ≠ 0 for
some i. Denote the set of all such sequences by Xn. Given x œ Xn and
a fixed i œ 81, 2, … , n< satisfying xi ≠ 0, define siHxL by

(1)si HHx1, … , xnLL  Ix2, … , xi - 1, … , xn, mM.

Note that the domain of each si is a proper subset of Xn that con-
tains only those x such that xi ≠ 0. Also, when s1 is applicable, it es-
sentially simply shifts and appends since the decremented element dis-
appears off the end.

This decrement and shift operation provides a simple modification
of the concept of “tag system” introduced by Emil Post [1] and stud-
ied much later by Wolfram [2]. Post’s tag systems allow blocks of arbi-
trary length to be removed from the beginning and tagged onto the
end according to various rules. Since the lengths of the removed block
and the appended block need not be equal, the lengths of the terms in
the resulting sequence under iteration can vary resulting in infinitely
many states and very complicated behavior. Our system is simpler,
since there are only finitely many states; in fact, Hm + 1Ln - 1 states.
However, most states can spawn multiple children resulting in many
possible futures. In this sense, it is analogous to the multistate systems
studied by Wolfram [2]. This process is naturally modeled by a
directed graph with labeled edges or a finite state machine. The ver-
tices are indexed by the states. We place a directed edge from vertex x
to vertex y and label it with an i, if siHxL  y. The labeled directed
graph model for m  n  2 is shown in Figure 1.

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

This decrement and shift operation provides a simple modification
of the concept of “tag system” introduced by Emil Post [1] and stud-
ied much later by Wolfram [2]. Post’s tag systems allow blocks of arbi-
trary length to be removed from the beginning and tagged onto the
end according to various rules. Since the lengths of the removed block
and the appended block need not be equal, the lengths of the terms in
the resulting sequence under iteration can vary resulting in infinitely
many states and very complicated behavior. Our system is simpler,
since there are only finitely many states; in fact, Hm + 1Ln - 1 states.
However, most states
possible futures. In this sense, it is analogous to the multistate systems
studied by Wolfram [2]. This process is naturally modeled by a
directed graph with labeled edges or a finite state machine. The ver-
tices are indexed by the states. We place a directed edge from vertex x
to vertex y and label it with an i, if siHxL  y. The labeled directed
graph model for m  n  2 is shown in Figure 1.

221

2 1

1 2

1 2

1

1 2

80, 1<80, 2<81, 2<

81, 0<

81, 1<

82, 2<

82, 0<

82, 1<

Figure 1. The digraph model for m  n  2.

We are particularly interested in identifying the recurrent states,
those admitting a closed path from the state to itself. The recurrent
states in Figure 1 are simply H1, 2L and H2, 2L. It is a fairly simple mat-
ter to model the decremental tag process on a computer, construct the
graph model, and determine the recurrent states using standard graph
algorithms. The recurrent states can be determined much more effi-
ciently, however, using the particular structure of this system. It turns
out that these decremental tag systems can be used to model an inter-
esting random tree construction we call the use it or lose it construc-
tion. In fact, our original motivation was to compute certain parame-
ters describing the expected structure of such a randomly generated
tree.

In Section 2, we describe our recursive procedure to efficiently find
the recurrent states of the decremental tag process. The arguments are
fairly delicate, but we find the resulting procedure to be simple and el-
egant. In Section 3, we apply the results of Section 2 to random trees.

2. The Recurrent States

Recall that a state is recurrent if there is a closed path from that ver-
tex to itself. We will denote the set of recurrent states in Xn by R HnL.
The objective in this section is to characterize the recurrent states
and provide a recursive construction of R HnL. Following standard
terminology for directed graphs, a walk is a sequence of vertices
Hu1, u2, … , unL so that there is a directed edge from ui to ui+1 for
each i. A path is a walk consisting of distinct vertices and a closed
path is a walk consisting of distinct vertices, except for the beginning
and ending vertices that must be the same.

 216 P. Bahls, M. McClure, and J. Knox

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

Recall that a state is recurrent if there is a closed path from that ver-
tex to itself. We will denote the set of recurrent states in Xn by R HnL.
The objective in this section is to characterize the recurrent states
and provide a recursive construction of R HnL. Following standard
terminology for directed graphs, a walk is a sequence of vertices
Hu1, u2, … , unL so that there is a directed edge from ui to ui+1 for
each i. A path is a walk consisting of distinct vertices and a closed
path is a walk consisting of distinct vertices, except for the beginning
and ending vertices that must be the same.

In our situation, a walk can also be described by the labels of the
edges, since distinct labels emanating from a vertex lead to distinct
terminal vertices. Thus a walk of length k is determined by an initial
vertex and a sequence of labels Ii1, … , ikM, provided that si is never
applied to a state with xi  0. We will call a walk described in this
fashion a legal walk and will use similar terminology for legal path
and closed legal path. The terminal vertex of a legal walk will be
called the destination of the walk. As it turns out, the destination of a
walk is independent of the starting point, provided the walk is long
enough.
Lemma 1. Suppose that i  Ii1, … , ikM defines a legal walk starting
from x  Hx1, … , xnL with destination z  Hz1, z2, … , znL and that i
also defines a legal walk from y  Hy1, … , ynL with destination
z¢  Iz1

£ , … , zn
£ M. Then, zj  zj

£ for j > max Hn - k, 0L.

Proof. The lemma is trivial if k  1, since the last element is an m
after one step. Now suppose that the statement is true for a fixed
natural number k and consider a legal walk of length k + 1. By induc-
tion, the last min Hk, nL terms are the same after the first k steps. Thus,
for k < n, the situation looks like

Hx1, … , xnL
Ii1,… ,ikM

Iz1, … zn-k, zn-k+1, … , znM

Hy1, … , ynL
Ii1,… ,ikM

Iz1
£ , … zn-k

£ , zn-k+1, … , znM.

Note that the last k terms are the same. After one more step, we have

Hx1, … , xnL
Ii1,… ,ik,ik+1M

Iz2, … zn-k
£ , zn-k+1, … , zn, mM

Hy1, … , ynL
Ii1,… ,ik,ik+1M

Iz2
£ , … zn-k

£ , zn-k+1, … , zn, mM,

where

zi 
zi if i ≠ ik+1

zi - 1 if i  ik+1.

A similar definition holds for z£. Now, the last min Hk + 1, nL terms
are the same, yielding the result. ·

An immediate consequence is the following.

 Decremental Tag Systems and Random Trees 217

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

Corollary 1. Suppose that Ii1, … , ikM defines legal walks starting from
both the vertices x  Hx1, … , xnL and y  Hy1, … , ynL. Then, the
destinations of those walks are the same, provided k ¥ n.

We can now state the following characterization of the recurrent
states.
Lemma 2. For m > 2, let x0 œ R HnL denote the special (clearly recur-
rent) state Hm, … , mL. Then R HnL consists precisely of those states
that are accessible from x0.

Proof. It is very easy to see that x0 is accessible from any other state;
simply iteratively choose the smallest possible i such that xi ≠ 0 to
generate a path from the given state to x0. It follows that any state
that is accessible from x0 is recurrent. Conversely, suppose that x is a
recurrent state. Thus, there is a closed path from x to itself. By repeat-
ing this path if necessary, we generate a legal walk of length k ¥ n
from x to itself. If the walk is legal from x, then it is certainly legal
from x0, since the state values can only be larger. Since the length of
the walk exceeds n, the destination is the same by Lemma 1. Thus x is
accessible from x0. ·

Lemma 2 and its proof yield the following corollary.

Corollary 2. The directed graph that models the recurrent states is
strongly connected.

Our recursive construction of the recurrent states will depend on
the nature of shortest paths from x0. The following lemma essentially
states that such a path does not shift decremented elements off the
end.
Lemma 3. Suppose there are one or more paths from x0 to x. Clearly,
there is a path Ii1, … , ikM of shortest length. This shortest path
satisfies ij > k - Hj - 1L for each j.

Proof. Suppose to the contrary that Ii1, … , ikM is a path of shortest
length from x0 to x and that the inequality is not satisfied for some j.
Thus,

Hm, … , mL
Ii1,… ,ijM

Jy1, … , yij , yij+1, … , ynN
Iij+1,… ,ikM

Hx1, … , xnL.

Focusing on the first j - 1 steps, we see

Hm, … , mL
Ii1,… ,ij-1M

Jz, y1, … , yij , yij+1, … , yn-1N.

The value of z is unimportant, as it will be shifted off at the next step.
Since the initial state x0 has all elements the same, we could have
applied Ii1 - 1, … , ij-1 - 1M and found

 218 P. Bahls, M. McClure, and J. Knox

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

The value of z is unimportant, as it will be shifted off at the next step.
Since the initial state x0 has all elements the same, we could have
applied Ii1 - 1, … , ij-1 - 1M and found

Hm, … , mL
Ii1-1,… ,ij-1-1M

Jy1, … , yij , yij+1, … , yn-1, mN.

Of course, yn  m. Thus, the result after applying Ii1 - 1, … , ij-1 - 1M
is the same as the result after applying Ii1, … , ijM. Therefore,
Ii1 - 1, … , ij-1 - 1, ij+1, … , ikM is a shorter path from x0 to x. This is
contrary to our initial assumption so the inequality must be satisfied
for shortest paths. ·

There is no a priori reason to suppose that k is restricted by n.
However, taking j  1 in Lemma 3 and using the fact that i1 § n
yields the following corollary.

Corollary 3. Given any x œ R HnL, there is a path from x0 to x with
length at most n - 1.

For the remainder of this section, we will be interested in the rela-
tionship between R HnL and R Hn + 1L. For clarity, we will typically
denote an element of R HnL with a superscript. Thus xn denotes the
typical element in R HnL and x0

n œ RHnL denotes Hm, … , mL. A simple
example of this type is the following lemma.

Lemma 4. Suppose that xn  Hx1, … , xnL œ RHnL. Then xn-1 
Hx2, … , xnL œ RHn - 1L and xn+1  Hm, x1, … , xnL œ RHn + 1L.

Proof. If Ii1, … , ikM is a shortest legal path from x0
n to xn, then

Ii1 + 1, … , ik + 1M is a legal path from x0
n+1 to xn+1 and

Ii1 - 1, … , ik - 1M is a legal path from x0
n-1to xn-1, deleting zeros if

necessary. ·

Using these same ideas, we can now present our recursive construc-
tion of R HnL.

Theorem 1. Fix m ¥ 2 and let R HnL denote the set of recurrent states
for the decremental tag system on sequences of length n chosen from
the symbols 80, 1, … , m<. Define the set S HnL recursively as follows:

† S H1L  8HmL<

† Given Hx1, … , xnL œ SHnL, and a non-negative integer r § m,
Hm - r, x1, … , xnL œ SHn + 1L if and only if x1 + + xn ¥ Hm - 1L n + r.

Then S HnL  R HnL.

 Decremental Tag Systems and Random Trees 219

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

Proof. We prove the theorem by induction. For n  1, the theorem
states that HmL is the only recurrent state, which is clearly true. Now,
fix n and assume for induction that S Hn£L  R Hn£L for all n£ § n.

We first show that R Hn + 1L Õ S Hn + 1L. Let xn 
Hx1, … , xnL œ RHnL and suppose that x1 + + xn <
Hm - 1L n + r. We must show that xn+1  Hm - r, x1, … , xnL –
RHn + 1L. Now, since each application of a si decrements a value, the
number of steps required to get from x0

n+1 to xn+1 is m Hn + 1L minus

the sum of the terms in xn+1. Thus, a shortest path from x0
n+1 to xn+1

requires m n - Hx1 + + xnL + r > n - 1 steps and the result now
follows from Corollary 3.

To show that S Hn + 1L Õ R Hn + 1L, suppose that xn+1 œ SHn + 1L.
Thus, xn+1  Hm - r, x1, … , xnL where x1 + + xn ¥ Hm - 1L n + r
and xn  Hx1, … , xnL œ SHnL  RHnL. Now let xr,k

n+1 
Hm, … , m, m - r, m, … , mL, where the m - r term appears in position
k + 1. We will show that xr,k

n+1 œ RHn + 1L and that there is a legal

walk from xr,k
n+1 to xn+1. This implies that xn+1 œ RHn + 1L.

To show that xr,k
n+1 œ RHn + 1L, we first note that

Hm - r, m, … , mL œ SHn - k + 1L. This is because we may prepend
m - r to x0

n-k œ SHn - kL since Hn - kLm ¥ Hm - 1L Hn - kL - r. Thus,
Hm - r, m, … , mL œ RHn - k + 1L  SHn - k + 1L by the induction
hypothesis. Then xr,k

n+1 œ RHn + 1L, since we can simply prepend k

number of m to Hm - r, m, … , mL to generate xr,k
n+1.

Now, let Ii1, … , ikM be a shortest path from x0
n to xn. We claim

that Ii1 + 1, … , ik + 1M is a legal walk from xr,k
n+1 to x0

n+1. This is

almost immediate. Note that the inequalities ij > k - Hj - 1L for
j  1, … , k imply that the m in position k of x0

n is never decremented

by the action of Ii1, … , ikM. Thus, the m - r in position k + 1 of xr,k
n+1

is never decremented under the action of Ii1 + 1, … , ik + 1M. ·

This recursive construction is easy to implement on a computer
and we have done so in Mathematica. Furthermore, the construction
of these recurrent states is a key step in the application described in
the next section.

3. Application to Use It or Lose It Trees

The study of trees generated by a random process has a long history.
We introduce here a variation of the classical construction of Erdös
and Rényi [3] that we call the use it or lose it construction. It turns
out that decremental tag systems offer a tool for analyzing the
expected structure of use it or lose it trees. Start with any tree whose
vertices are labeled with integers chosen from 80, 1, 2, … , n<. The
label of a vertex indicates its life expectancy and the labels need not
be distinct. A vertex labeled 0 is dead. We then construct a new tree
by randomly choosing one of the live vertices of the given tree and
attaching m - 1 new leaves to the chosen vertex. All the new leaves
have life expectancy n and the life expectancy of the chosen vertex is
reset to n (hence the name of the process). Figure 2 shows a few steps
in this process corresponding to m  n  2 and Figure 3 shows a
graph after 150 steps in the process. Note that since m  2, we attach
m - 1 nodes to the chosen leaf resulting in two nodes of maximum
life expectancy in the new tree.

 220 P. Bahls, M. McClure, and J. Knox

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

The study of trees generated by a random process has a long history.
We introduce here a variation of the classical construction of Erdös
and Rényi [3] that we call the use it or lose it construction. It turns
out that decremental tag systems offer a tool for analyzing the
expected structure of use it or lose it trees. Start with any tree whose
vertices are labeled with integers chosen from 80, 1, 2, … , n<. The
label of a vertex indicates its life expectancy and the labels need not
be distinct. A vertex labeled 0 is dead. We then construct a new tree
by randomly choosing one of the live vertices of the given tree and
attaching m - 1 new leaves to the chosen vertex. All the new leaves
have life expectancy n and the life expectancy of the chosen vertex is
reset to n (hence the name of the process). Figure 2 shows a few steps
in this process corresponding to m  n  2 and Figure 3 shows a
graph after 150 steps in the process. Note that since m  2, we attach
m - 1 nodes to the chosen leaf resulting in two nodes of maximum
life expectancy in the new tree.

2

2 1

2

2
0

2

1 2

0

1

2 1

2

0

0

1 2

1 2

0

0

0 1

0 2

2

Figure 2. A few use it or lose it steps.

Figure 3. 150 use it or lose it steps.

It is now natural to ask what properties a large tree generated from
this process might have. What, for example, is the probability that
a vertex chosen randomly from the tree is a leaf? We call this the
leaf probability question. It is fairly simple to answer the question
when each vertex has a lifespan of 1 and m - 1 leaves are added at
each step. A vertex born into such a tree has one chance out of m to
be selected at the next level and not die as a leaf. Thus with probabil-
ity Hm - 1L ê m, any given vertex will die as a leaf. The situation is
more complicated when the lifespan is larger, but our computations
indicate the leaf probability is independent of the lifespan. We have
no general proof of this fact, rather we have an algorithm (using decre-
mental tag systems) that may be used to compute the leaf probability
for particular m and n. Based on those computations, we conjecture
that the leaf probability is indeed independent of lifespan.

 Decremental Tag Systems and Random Trees 221

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

It is now natural to ask what properties a large tree generated from
this process might have. What, for example, is the probability that
a vertex chosen randomly from the tree is a leaf? We call this the
leaf probability question. It is fairly simple to answer the question
when each vertex has a lifespan of 1 and m - 1 leaves are added at
each step. A vertex born into such a tree has one chance out of m to
be selected at the next level and not die as a leaf. Thus with probabil-
ity Hm - 1L ê m, any given vertex will die as a leaf. The situation is
more complicated when the lifespan is larger, but our computations
indicate the leaf probability is independent of the lifespan. We have
no general proof of this fact, rather we have an algorithm (using decre-
mental tag systems) that may be used to compute the leaf probability
for particular m and n. Based on those computations, we conjecture
that the leaf probability is indeed independent of lifespan.

In order to model the use it or lose it process with a decremental
tag system, we introduce the state vector of a tree, x  Hx1, … , xnL,
where xi indicates the number of vertices in the tree with life
expectancy i. If we choose a vertex with life expectancy i from a tree
in state x, we generate a tree in state siHxL, where s is exactly the
decremental tag operation. The parameter m - 1 in the use it or lose it
description is chosen precisely to obtain this direct correspondence.

We now consider the probability that a leaf born into a particular
state eventually dies as a leaf; these may be computed recursively.
Clearly a leaf with remaining life expectancy 1 in a tree in state x has
probability Hx1 + + xn - 1L ê Hx1 + + xnL of dying and remaining a
leaf. The probability that a leaf with higher life expectancy i remains
a leaf may be computed using conditional probabilities. More pre-
cisely, let PHx, iL denote the probability that a leaf in a state x tree
with remaining life expectancy i eventually dies as a leaf. Then,

(2)PHx, iL  ‚

j1

n xj - di,j

x1 + + xn
PIsjHxL, i - 1M,

where di,j is the Kronecker delta. Thus,

(3)
xj - di,j

x1 + + xn

represents the probability of picking a vertex with lifespan j, where
we subtract off a 1 in the particular case that j  i. After picking that
vertex, with lifespan say j, we generate a new tree in state sjHxL and
the leaf under consideration has a remaining life expectancy of i - 1.
Thus equation (2) arises by computing conditional probabilities and
summing over all j. Since we know each PHx, 1L, this can be used to
compute each PHx, iL recursively. The asymptotic probability that a
randomly chosen vertex from a large use it or lose it tree is a leaf is
then a weighted average over all possible states. The probability that
a randomly generated use it or lose it tree is in a particular state is not
uniformly distributed over all the recurrent states, but these can be
computed using a Markov chain corresponding to the directed graph
model of the recurrent states. We illustrate this with an example.

 222 P. Bahls, M. McClure, and J. Knox

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

represents the probability of picking a vertex with lifespan j, where
we subtract off a 1 in the particular case that j  i. After picking that
vertex, with lifespan say j, we generate a new tree in state sjHxL and
the leaf under consideration has a remaining life expectancy of i - 1.
Thus equation (2) arises by computing conditional probabilities and
summing over all j. Since we know each PHx, 1L, this can be used to
compute each PHx, iL recursively. The asymptotic probability that a
randomly chosen vertex from a large use it or lose it tree is a leaf is
then a weighted average over all possible states. The probability that
a randomly generated use it or lose it tree is in a particular state is not
uniformly distributed over all the recurrent states, but these can be
computed using a Markov chain corresponding to the directed graph
model of the recurrent states. We illustrate this with an example.

Consider the simplest nontrivial example of a use it or lose it pro-
cess~each vertex has a lifespan of 2 and gives birth to one new ver-
tex. The possible recurrent states of such a tree are H2, 2L and H1, 2L,
indicating that at any stage there are two vertices with a lifespan of 2
and either one or two vertices with a lifespan of 1. We would like to
follow a particular vertex born in some state through its life process;
we will indicate the (state, current lifespan) pair as Hx, iL. Thus the
new leaf is born as either HH2, 2L, 2L or HH1, 2L, 2L. Assuming that this
new vertex eventually dies as a leaf, we can follow its path through
the appropriate tree shown in Figure 4.

1ê3 1ê3

1ê4 1ê2 2ê3

HH1,2L, 2L

HH2,2L, 1L HH1,2L, 1L

HH2,2L, 0L HH1,2L, 0L HH1,2L, 0L

1ê2 1ê4

1ê4 1ê2 2ê3

HH2,2L, 2L

HH2,2L, 1L HH1,2L, 1L

HH2,2L, 0L HH1,2L, 0L HH1,2L, 0L

Figure 4. Life cycle of a leaf.

Now, simply computing conditional probabilities and summing,
we see that a vertex born in state HH1, 2L, 2L has probability
1
3
ÿ 1

4
+ 1

3
ÿ 1

2
+ 1

3
ÿ 2

3
 17

36
 of dying as a leaf, while a vertex born into

state HH2, 2L, 2L has probability 1
2
ÿ 1

4
+ 1

2
ÿ 1

2
+ 1

4
ÿ 2

3
 13

24
 of dying as

a leaf.
Finally, in order to compute the overall probability that a vertex

born into this system dies as a leaf, regardless of the original state, we
need to take a weighted average (according to state probability) of
these two answers. This weighted average may be computed using a
Markov chain corresponding to the digraph model, or transition dia-
gram, for the two recurrent states shown in Figure 5. This is simply
the recurrent portion of the directed graph shown in Figure 1.

 Decremental Tag Systems and Random Trees 223

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

1
2

1
2 82, 2<81, 2<

Figure 5. The transition diagram.

Now, the transition matrix associated with this directed graph has
rows and columns indexed by the states. The entry in row u and
column v indicates the probability of moving from state u to state v.
Basic Markov chain theory tells us that the largest eigenvalue of this
matrix is 1, that it is a simple eigenvalue, and that the long-term
probability distribution of the two states as this process evolves is
given by the corresponding eigenvector normalized so that its sum is
1. In this particular example, the transition matrix and dominant
eigenvector are

(4)

1

2

1

2
1

3

2

3

 and

2

5

3

5

.

This leads to a leaf probability of 3
5
ÿ 17

36
+ 2

5
ÿ 13

24
 1

2
. We note

that the lifespan has not changed the leaf probability from the case
where m  2 and n  1, in spite of the complexity of the new compu-
tation.

While we have no general proof that leaf probability is indepen-
dent of lifespan in this construction, the recursive construction of
R HnL and subsequent computation of leaf probability can easily be
programmed. We have done so and verified our leaf probability con-
jecture for m § 20 and n § 10.

4. Directions for Future Work

This paper raises a number of obvious questions for both random tree
construction and decremental tag systems. Foremost is

Conjecture 1. The probability that a given vertex in a use it or lose it
tree dies as a leaf is 1 ê 2, independent of the parameter pair Hm, nL.

This implies that these trees share some structural properties with
the classical Erdös|Rényi process, where the leaf probability is also
1 ê 2. We might also ask other structural questions about use it or lose
it trees.

 224 P. Bahls, M. McClure, and J. Knox

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

† What is the expected value of the independence number of such a tree?

† What is the expected value of the diameter of such a tree?

† What is the expected degree sequence of such a tree?

We might also consider other random tree constructions.
The decremental tag systems in this paper were developed specifi-

cally to model use it or lose it trees, but they seem interesting in their
own right. Our main conjecture concerns the number of recurrent
states.

Conjecture 2. Given n, let m  n and let Dn denote the number of
recurrent states in the corresponding decremental tag system. Then
Dn is the nth Catalan number.

We generated this conjecture by simply plugging the first few Dn
into The On-Line Encyclopedia of Integer Sequences [4].

5. Computational Supplement

All the algorithms outlined in this paper have been implemented by
the authors using Mathematica. These programs are freely available
at facstaff.unca.edu/mcmcclur/DecrementalTagTrees.

Acknowledgment

This research was performed as a portion of UNCA’s Research Experi-
ence for Undergraduates supported by NSF grant DMS 0647804.

References

[1] E. Post, “Formal Reductions of the General Combinatorial Decision
Problem,” American Journal of Mathematics, 65(2), 1943 pp. 197|215.

[2] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[3] P. Erdös and A. Rényi, “On the Evolution of Random Graphs,” Magyar
Tudomanyos Akademia Matematikai Kutato Intezet Közlemenye, 5,
1960 pp. 17|61.

[4] N. J. A. Sloane, “The On-Line Encyclopedia of Integer Sequences.”
(Nov 19, 2008) www.research.att.com/~njas/sequences/index.html.

 Decremental Tag Systems and Random Trees 225

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.2.215

