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A computational model of business firm size based on random division
is  presented.  Simulations  generate  size  distributions  that  are  positively
skewed  with  Pareto  (power-law)  upper  tails.  Furthermore,  the  simu-
lated  distributions  are  shown  to  deviate  from  the  lognormal  in  ways
consistent with some recent empirical findings.

1. Introduction

The positively skewed distribution of firm sizes,  with a large number
of relatively small  firms coexisting alongside fewer larger firms, is  an
enduring  empirical  fact  in  market  economies.  Typically,  when  data
points  conform  to  a  Gaussian  distribution,  they  are  supposed  to  be
the  result  of  multiple  random  factors  and  not  worthy  of  further  in-
vestigation. A skewed distribution, on the other hand, calls  out for a
theory.  In  1931,  French  economist  Robert  Gibrat  applied  Jacobus
Kapteyn’s 1903 work on skew distributions in biology to explain the
observed distribution of firm sizes. He speculated that the distribution
was  lognormal  and  generated  in  the  steady  state  by  a  process  of 
stochastic  proportional  growth  [1].  Gibrat’s  explanation  is  the
dominant one in the economics literature, having set the direction for
subsequent research on the distribution of firm sizes, as well as on the
distribution of city sizes. Simon [2], in a variation of the model based
on  Yule’s  [3]  analysis  of  the  distribution  of  species  across  genera,
shows  that  a  positively  skewed  distribution  with  a  Pareto  upper  tail
arises  if  the  stochastic  proportional  growth  process  allows  for  the
random  addition  of  new  firms.  Another  variation  of  the  model  that
shows  a  Pareto  upper  tail  in  the  steady  state  postulates  a  lower
reflective  barrier  preventing  the  stochastically  growing  entity  from
becoming too small [4].

Stochastic proportional growth models are susceptible, however, to
several  criticisms. Criticism can be made regarding the realism of the
Gibrat  model  assumption  that  the  growth  rate  of  a  firm  is  indepen-
dent  of  its  size.  And  on  a  more  fundamental  level,  it  can  be  argued
that  the  steady-state  construct  is  not  appropriate  for  economic

cannot  be  safely  assumed  to  ever  settle  into  a  steady  state.  Mandel-
brot  [5]  raises  this  issue  and,  in  addition,  questions  the  assumption,
implicit  in  diffusion  models,  that  the  growth  of  one  economic  entity
will not affect the growth of the others.
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Stochastic proportional growth models are susceptible, however, to
several  criticisms. Criticism can be made regarding the realism of the
Gibrat  model  assumption  that  the  growth  rate  of  a  firm  is  indepen-
dent  of  its  size.  And  on  a  more  fundamental  level,  it  can  be  argued
that  the
systems. Such systems are subject to frequent exogenous changes and
cannot  be  safely  assumed  to  ever  settle  into  a  steady  state.  Mandel-
brot  [5]  raises  this  issue  and,  in  addition,  questions  the  assumption,
implicit  in  diffusion  models,  that  the  growth  of  one  economic  entity
will not affect the growth of the others.

In  this  paper  an  alternative  simpler  explanation  for  the  observed
size distribution of firms is presented. Its advantage over existing mod-
els  is  that  it  does  not  rely  on  restrictive  assumptions  about  growth
rates,  nor  does  it  need  to  evoke  the  notion  of  a  steady  state.  The
simpler  explanation  points  to  a  common  cause  for  apparent  power-
laws in disparate phenomena, including such things as word frequen-
cies  in  texts  and  the  sizes  of  shattered  pottery  pieces,  that  are  not
undergoing a process of growth.

The essential insight of the model is that the random division of a
constrained quantity results in a skewed distribution of the part sizes.
Consider a line of unit length divided into n  intervals by n - 1 points
dropped  onto  the  line  at  random.  If  the  intervals  are  ordered  from
smallest  to  largest,  the  expected  size  of  the  r th  smallest  interval  is
given by 

1

n
‚

i=1

r 1

n + 1 - i
.

Although  this  expression  for  the  expected  value,  colloquially  known
as the broken stick rule, is familiar to students of probability, the size
frequency distribution is not so readily characterized. It appears to be
an  example  of  a  case  where  a  simple  rule  gives  rise  to  a  surprising
degree of complexity [6].

Random  division  has  been  suggested  as  an  explanation  for
observed  size  distributions  in  a  variety  of  contexts.  The  correspon-
dence  between the  broken stick  rule  and observed market  shares  has
been  noted  by  several  authors  [7|9].  In  zoology,  the  rule  has  been
used to explain the relative abundance of animals of different species
in  a  given  locality.  MacArthur  [10],  for  instance,  finds  that  the  rule
fits census data on birds in tropical forests almost perfectly; and it can
be  made  to  fit  the  more  uneven  distribution  of  birds  in  Quaker  Run
Valley,  New  York,  if  viewed  as  multiple  sticks  of  different  lengths
being  broken.  In  linguistics,  Perline  [11]  relates  the  broken stick  rule
to  Zipf’s  law  for  word  frequencies.  The  random division  model  also
shares  a  resemblance to the  so-called “monkeys  typing” models  used
to explain power-law behavior in word frequencies [12]. In these mod-
els, a string of letters is imagined to be divided into words by random
hits to a notional space bar.

To investigate the extent to which random division provides a satis-
factory explanation for empirical firm size distributions, a simple mod-
el of market shares is suggested that connects the idea of random divi-
sion with  the  division of  total  revenue  between competing  firms in  a
given market. To generate a size distribution for firms economy-wide
from the simple model  of  market  shares,  it  is  necessary to make two
additional assumptions:  the first  assumption is  about the relative size
of revenue in each of the markets, and the second assumption is about
the number of firms in each of the markets~that is, the degree of mar-
ket concentration. Since the size of total spending in an economy can
be supposed to be constrained by the quantity of resources, it is reason-
able to model the share of total spending in each of the markets as be-
ing determined by random division. For the degree of market concen-
tration,  we  will  start  with  the  simplest  assumption  that  it  is  uniform
across  markets.  The assumption is  then relaxed,  allowing for  a  vary-
ing degree of market concentration, and a greater degree of inequality
is found that is more consistent with empirical distributions.
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To investigate the extent to which random division provides a satis-
factory explanation for empirical firm size distributions, a simple mod-
el of market shares is suggested that connects the idea of random divi-
sion with  the  division of  total  revenue  between competing  firms in  a

from the simple model  of  market  shares,  it  is  necessary to make two
additional assumptions:  the first  assumption is  about the relative size
of revenue in each of the markets, and the second assumption is about
the number of firms in each of the markets~that is, the degree of mar-
ket concentration. Since the size of total spending in an economy can
be supposed to be constrained by the quantity of resources, it is reason-
able to model the share of total spending in each of the markets as be-
ing determined by random division. For the degree of market concen-
tration,  we  will  start  with  the  simplest  assumption  that  it  is  uniform
across  markets.  The assumption is  then relaxed,  allowing for  a  vary-
ing degree of market concentration, and a greater degree of inequality
is found that is more consistent with empirical distributions.

Since random division does not generate a clearly identifiable distri-
bution,  the  implications  of  the  model  are  explored  through  running
computer experiments. The aim is to discover the simplest model that
will  generate  distributions  that  match  empirical  findings.  Empirical
distributions  of  publicly  held  firms  have  been  found  to  be  approx-
imately  lognormal  with  power-law  upper  tails.  Furthermore,  recent
work  [13,  14]  shows  the  distributions  of  the  log  sizes  to  be  skewed
and  leptokurtic.  All  these  features  are  replicated  in  the  model  pre-
sented here.

2. A Model of Market Shares

Assume that markets are monopolistically competitive with each firm
producing  a  unique  product,  but  one  that  buyers  could  substitute
with  the  products  of  other  firms  in  the  same  market.  Let  the  firm’s
size be represented by its sales revenue, that is, by its share of the total
spending in the market. To model the market shares, consider a theo-
retical  construction introduced by  Hotelling  in  [15].  Firms differenti-
ate  their  product  along  a  single  quantifiable  dimension  and  buyers’
preferences  are  distributed  evenly  along  that  dimension.  Hotelling
uses the example of competing sellers located at different positions on
a  main  street.  The  buyers  are  evenly  distributed  spatially  and have  a
preference for the nearest seller. Hotelling indicates that the construc-
tion can be applied more generally citing the example of two compet-
ing cider merchants, one selling a sweeter product than the other. 

While  Hotelling  analyzes  a  situation of  two sellers  with full  infor-
mation about the competitor’s product, the model presented here has
the  added  complexity  that  the  number  of  sellers  is  unknown  to  the
competitors, as is the type of product that competing firms offer. Let
there be a large number of buyers in each market, and let each buyer
have a unique first preference for the quantifiable quality over which
firms  are  differentiating  their  product.  Imagine  lining  up  all  the  con-
sumers  in  order  of  their  first  preference  and  assign  each  a  successive
integer number. Call these numbers the varieties. Further, assume that
preference rankings are such that a consumer will select the variety of
product  with  the  integer  number  closest  to  that  of  his  or  her  unique
preference. It is not necessary to make any assumption about the dis-
tribution  of  the  preferences  over  the  quality,  but  by  assigning  each
consumer a successive number, we are transforming it into a uniform
distribution.
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preference rankings are such that a consumer will select the variety of 
product  with  the  integer  number  closest  to  that  of  his  or  her  unique
preference. It is not necessary to make any assumption about the dis-
tribution  of  the  preferences  over  the  quality,  but  by  assigning  each
consumer a successive number, we are transforming it into a uniform
distribution.

Without  knowing  what  the  competition  is  doing,  or  even  how
many competitors are in the field, there is no strategy for a firm that
beats random selection when choosing which variety to offer. We can
allow that the firms’ managers are acting purposively in deciding how
to differentiate their products but still  assume that, in effect, they are
acting as if by random. The market share of a given firm will be deter-
mined by the number of  consumers whose preference is  closer  to the
firm’s variety, than to any other. Figure 1 shows an example of mar-
ket  shares  in  a  market  with  five  firms.  The  tick  marks  indicate  the
firms’  varieties  and  the  gray  and  black  shaded  regions  represent  the
market shares.

Figure  1.  Market  shares  in  a  market  with  five  firms.  The  ticks  represent  the
firms’  choices  of  variety,  and  the  black  and  gray  shaded  areas  represent  the
market shares.

The  model  generates  a  size  distribution  that  is  close,  but  not
identical,  to  what  would  be  determined  by  dropping  points  onto  a
line  at  random  and  considering  the  intervals.  The  size  frequency
histogram of simulated data in Figure 2 shows that the distribution is
positively skewed with a few large shares coexisting alongside a larger
number of smaller shares. Figure 3 shows the same data organized as
a  Zipf  plot,  that  is,  a  rank-size  plot  using  a  log  scale  on  both  axes.
The upper tail is approximately a straight line and could pass a rough
test for a power-law. The power-law exponent, given by the slope of 
the  Zipf  plot,  measures  the  degree  of  inequality  in  the  distribution.
Alternatively, the data could be presented in the form of a cumulative
distribution function. A straight line Zipf plot corresponds to a Pareto
distribution  whose  shape  parameter  is  the  reciprocal  of  the  absolute
value of the power-law exponent. Zipf’s law refers to a Pareto distri-
bution  with  a  shape  parameter  equal  to  one.  Our  random  division
model of market shares, with a power-law exponent of around -0.3,
shows  less  inequality  in  the  upper  tail  than  would  be  found  under
Zipf’s law.
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Figure  2.  A  frequency  histogram  of  share  sizes  in  a  market  with  100  firms.
The  share  sizes  were  obtained  by  running  100  simulations  and  taking  the
means of the ranked data.

Figure 3. A Zipf plot of market shares in a market with 100 firms. The points
were obtained by running 100 simulations and taking the means.  Regressing
the mean sizes of the top quartile of the firms on their rank gives a coefficient
of determination of 0.98 and a slope of -0.31.

Testing the model of market shares against actual observations pre-
sents difficulties because real-world market shares do not conform to
any  neat  systematic  pattern.  As  expected  with  complex  phenomena,
they take on a variety of configurations, and the most that can be said
is  that  they  are  generally  positively  skewed.  If  we  aggregate  all  the
firms  in  the  economy,  however,  a  more  distinct  pattern  emerges.  So
the next step is to take the model of market shares and embed it into
a model for the economy-wide firm size distribution. It  is  then possi-
ble  to  run  computer  simulations  and  compare  the  resulting  firm  size
distributions with their empirical counterparts.
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3. A Computational Model of Firm Size

Assume that  each  firm produces  only  one  type  of  output  and  let  the
firm’s size be measured by its annual sales revenue. Randomly divide
aggregate  spending  in  the  economy  over  m  markets  and  let  Si,

i = 1, … , m,  represent  spending  in  the  i th  market.  Let  there  be  ni,
i = 1, … , m,  competing  firms  comprising  the  m  markets.  Let  si j,

j = 1, … , ni,  be  the  market  share  of  the  j th  firm  in  the  i th  market
and  let  it  be  determined  according  to  the  model  of  market  shares  in
Section 2. Thus, the size of the j th  firm in the i th  market will be given
by Si si j.

Begin with the simplest assumption that the degree of market con-
centration  is  uniform  across  markets,  that  is,  ni = nj  for  all  i, j.  The
resulting distribution is similar in shape to the distribution for market
shares illustrated in Figures 1 and 2, but it displays a greater degree of 
inequality,  as  evidenced  by  a  steeper  slope  on  the  upper  tail  of  the
Zipf  plot.  For  example,  taking  the  means  from  100  simulations  of
100  firms  divided  evenly  between  5,  10,  and  25  markets  generates
upper  tail  slopes  and  coefficients  of  determination  of  -0.55  (0.98),
-0.54  (0.98),  and  -0.46  (0.97),  respectively.  While  the  inequality  is
greater than in the case of a single market, it is still less than in empiri-
cal distributions. 

Using a large dataset reporting the number of employees of all tax-
paying  firms,  Axtell  [16]  finds  a  power-law  exponent  of  minus  one,
corresponding  to  Zipf’s  law.  Unlike  other  studies  that  include  only
the larger publicly-held firms, Axtell finds that a power-law holds for
all  parts  of  the distribution,  and not just  to the upper tail.  As would
be  expected  with  Zipf’s  law,  the  data  reveals  that  the  most  frequent
firm  size  is  the  minimum  size  of  zero  employees.  Interpreting  data
based  on  tax  records  requires  care,  however,  as  small  firms  may not
report  employees  who  are  working  off-the-books.  In  addition,  a
number  of  the  small  businesses  that  report  zero  employees  may  be
artificial economic entities created to reduce tax liabilities by offseting
income  from  other  sources.  If  the  number  of  very  small  firms  is
indeed inflated in the data, then the true Zipf plot might dip down at
the low end, as predicted by the model.

Taking  logs  of  the  simulated  sizes  and  normalizing  by  subtracting
the mean and dividing by the  standard deviation,  allows us  to  ascer-
tain if the simulated size distribution is lognormal. If the size distribu-
tion  is  lognormal,  then  the  log  of  the  sizes  will  be  normally  dis-
tributed  with  an  expected  skewness  of  zero  and  kurtosis  of  three.
Table  1  provides  the  mean  skewness  and  Table  2  the  mean  kurtosis
over 100 simulations with different values for the number of firms in
each  market  and  for  the  number  of  markets.  In  a  recent  study  using
data  from Bloomberg,  Kaizoji  et  al.  [14]  find  negative  skewness  and
positive  excess  kurtosis  in  the  normalized  log  sizes  for  U.S.  firms.

of 0.34, and a mean kurtosis of 3.66. Interestingly, for Japanese firms
over  the  same  period  they  find  a  similar  kurtosis,  but  a  positive,
rather than negative, skew.
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Taking  logs  of  the  simulated  sizes  and  normalizing  by  subtracting
the mean and dividing by the  standard deviation,  allows us  to  ascer-
tain if the simulated size distribution is lognormal. If the size distribu-
tion  is  lognormal,  then  the  log  of  the  sizes  will  be  normally  dis-
tributed  with  an  expected  skewness  of  zero  and  kurtosis  of  three.
Table  1  provides  the  mean  skewness  and  Table  2  the  mean  kurtosis
over 100 simulations with different values for the number of firms in
each  market  and  for  the  number  of  markets.  In  a  recent  study  using
data  from Bloomberg,  Kaizoji  et  al.  [14]  find  negative  skewness  and

 for  U.S.  firms.
Over the time period 1995|2003, they find a mean negative skewness
of 0.34, and a mean kurtosis of 3.66. Interestingly, for Japanese firms
over  the  same  period  they  find  a  similar  kurtosis,  but  a  positive,
rather than negative, skew.

Firms

M
ar

ke
ts

20 40 60 80 100

20 -0.628 -0.576 -0.589 -0.627 -0.585

40 -0.704 -0.668 -0.663 -0.694 -0.691

60 -0.723 -0.714 -0.74 -0.739 -0.716

80 -0.765 -0.745 -0.754 -0.701 -0.723

100 -0.681 -0.728 -0.743 -0.77 -0.76

120 -0.808 -0.743 -0.75 -0.757 -0.758

140 -0.805 -0.759 -0.78 -0.739 -0.74

160 -0.767 -0.755 -0.825 -0.745 -0.774

180 -0.812 -0.842 -0.764 -0.772 -0.776

200 -0.784 -0.772 -0.765 -0.82 -0.775

Table  1.  Skewness  of  standardized  log  sizes  for  simulations  with  a  uniform
number of competitors in each market.

Firms

M
ar

ke
ts

20 40 60 80 100

20 3.4 3.41 3.3 3.6 3.43

40 3.68 3.65 3.58 3.65 3.67

60 3.95 3.89 3.82 3.89 3.89

80 3.82 4.05 4.08 3.93 3.95

100 4.26 4.08 3.97 4.12 3.95

120 4.02 4.28 4.4 4.04 4.26

140 4.08 4.1 3.98 3.96 4.1

160 4.05 4.06 4.23 4.03 4.2

180 4.31 4.11 4.15 4.18 4.23

200 4.08 4.25 3.93 4.29 4.21

Table  2.  Kurtosis  of  standardized  log  sizes  for  simulations  with  a  uniform
number of competitors in each market.

Under  the  assumption  of  a  uniform number  of  competitors  across
markets,  the  simulations  show  features  found  in  empirical  distribu-
tions:  a  power-law  upper  tail,  as  well  as  skewness  and  a  positive
excess kurtosis of the normalized log sizes. But the degree of inequal-
ity  in  the  upper  tail  in  the  simulated  distributions  is  low  relative  to
what is found in empirical distributions. To obtain a better match to
the  empirical  distributions,  the  simplifying  assumption that  the  num-
ber of competing firms is uniform across markets can be relaxed. Let
the markets be divided equally into three groups: one group contains
markets that are highly concentrated with just a few competitors, the
next group contains markets that are less concentrated with a moder-
ate number of competitors, and the third group contains markets with
many  competitors.  Varying  the  number  of  competitors  in  the  three
groups leads to firm size distributions with different power-law expo-
nents.  For  example,  we  can  match  an  empirical  distribution  with  a
Zipf  law upper tail  by selecting values  of  two,  10,  and 200 competi-
tors for the three groups of markets. Figure 4 shows the slopes of the
upper tail for 1000 simulations using those values for the numbers of
competing  firms.  The  mean  slope  over  the  1000  simulations  was
-1.02 with a mean coefficient of determination of 0.98.
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ity  in  the  upper  tail  in  the  simulated  distributions  is  low  relative  to
what is found in empirical distributions. To obtain a better match to
the  empirical  distributions,  the  simplifying  assumption that  the  num-
ber of competing firms is uniform across markets can be relaxed. Let
the markets be divided equally into three groups: one group contains
markets that are highly concentrated with just a few competitors, the
next group contains markets that are less concentrated with a moder-
ate number of competitors, and the third group contains markets with
many  competitors.  Varying  the  number  of  competitors  in  the  three
groups leads to firm size distributions with different power-law expo-
nents.  For  example,  we  can  match  an  empirical  distribution  with  a
Zipf  law upper tail  by selecting values  of  two,  10,  and 200 competi-
tors for the three groups of markets. Figure 4 shows the slopes of the
upper tail for 1000 simulations using those values for the numbers of 
competing  firms.  The  mean  slope  over  the  1000  simulations  was
-1.02 with a mean coefficient of determination of 0.98.

0 200 400 600 800 1000
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Figure 4. The slopes of the upper quartile tails of Zipf plots for 1000 simula-
tions. Markets in the simulation were assumed equally likely to contain two,
10, or 200 competing firms.

Allowing for  varying degrees  of  market  concentration leads  to  the
greater inequality in firm sizes that we find in empirical distributions.
The  skewness  and  kurtosis  of  the  normalized  log  sizes  are  also
affected.  Whereas  with  the  uniform  number  of  competing  firms  the
skewness  was  consistently  negative,  with  varying  degrees  of  market
concentration  the  skewness  can  be  positive.  The  greater  degree  of
inequality  in  the  sizes  is  also  associated  with  a  greater  degree  of 
kurtosis.

4. Conclusion

Power-laws  in  economic  phenomena  first  became  evident  with
Vilfredo  Pareto’s  observation  in  the  late  nineteenth  century  of  a
distinctive size frequency distribution for income and wealth. Later in
1949,  Zipf’s  discovery  of  a  power-law  distribution  for  city  popu-
lations and word frequencies reignited interest in the topic. And more
recently, the same pattern has shown up in the degree distributions of
networks like the World Wide Web, stimulating further research and
popular interest [17, 18].
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1949,  Zipf’s  discovery  of  a  power-law  distribution  for  city  popu-
lations and word frequencies reignited interest in the topic. And more
recently, the same pattern has shown up in the degree distributions of 
networks like the World Wide Web, stimulating further research and
popular interest [17, 18].

The  distributions  call  out  for  an  explanation  beyond  randomness
because  the  tendency  is  to  assume  that  randomness,  by  itself,  would
lead  to  a  Gaussian  distribution.  Gibrat’s  idea  of  stochastic  propor-
tional growth has provided the dominant explanation. The rich-grow-
richer idea of the model is that larger entities are expected on average
to grow by larger increments than smaller entities. In the theory of net-
works,  the  notion  of  preferential  attachment  amounts  to  much  the
same  thing.  The  Chinese  restaurant  process,  for  instance,  compares
the stochastically growing entity to the number of patrons sitting at a
table in a restaurant. A new patron entering the restaurant will either
start a new table with some given probability, or join an already occu-
pied table,  with a  probability  proportional  to  the  number of  existing
occupants at the table.

While  stochastic  proportional  growth  and  preferential  attachment
models  make sense  in  some contexts,  it  is  not  immediately  clear  that
they  should  apply  to  business  firms,  as  smaller,  younger  firms  are
more likely to experience growth spurts than the larger, more mature
companies. In addition, it is unrealistic, as Mandelbrot [5] has noted,
to apply the concept of the steady state to economic systems that are
in a constant state of flux.

The model presented in this paper shows that the essential features
of  the  observed  distributions  of  firm  sizes  can  be  derived  without
invoking  any  special  mechanism  beyond  random  division.  While  the
focus  was  on  the  distribution  of  firm  sizes,  similar  models  could
probably be worked out for the size distributions of other phenomena
exhibiting the same general features.
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