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In this  paper we attempt to model the reliability of a steel  rope that is
susceptible  to  breakage  during  its  operation.  Each individual  strand of 
the  rope  is  modeled  using  a  counting  process  for  breakages  and  the
associated  process  describing  new  breakages.  The  decision  to  replace
the rope is based on the maximum number of breakages in the strands
along  a  given  length.  Using  a  stochastic  simulation,  significant  simpli-
fications  in  the  model  of  the  associated  process  are  introduced.  The
decision  to  replace  the  rope  is  based  on  the  convolution  of  the  associ-
ated  processes  acting  on the  strands.  This  is  approximated by  a  Gaus-
sian  process.  Deterministic  modeling  of  the  strands  indicates  the
possibility of estimating the parameters of the processes that character-
ize the rope. 

1. Description of the Rope

J.  Czaplicki  [1]  suggests  the  following  mathematical  description  of  a
steel rope. The rope is coiled from N strands and it is K screw threads
long.  The  strands  are  susceptible  to  breakdowns  (fracture)  during
operation. If a strand breaks down, the damage extends over an inter-
val of m ¥ 2 screw threads symmetrically around the breakage point.
A new breakdown occurs at random over the whole strand excluding
the damaged segment.  We also assume that  the rate  of  strand break-
downs does not increase as a result of placing a larger weight on the
functional  strands.  The  ends  of  the  rope  are  attached,  which  elimi-
nates the problem of modeling the rope ends. The rope is out of order
if s**  strand breakages appear within a space of m threads. Examples
of real rope parameters are suggested in Section 4. 

2. Mathematical Model of the Rope

The  main  objects  in  our  considerations  are  the  parallel  strands  from
which the rope is rolled. One strand of the rope is modeled as an inter-
val @0, KD of length K on which a Poisson process 8s Hd L, 0 § d § K< of 
a  given  rate  occurs.  This  rate  may  be  dependent  upon  the  time  for
which  a  rope  has  operated.  This  possibility  is  not  examined  here,
although  the  dependence  of  the  rope  reliability  upon  the  time  for
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The  main  objects  in  our  considerations  are  the  parallel  strands  from
which the rope is rolled. One strand of the rope is modeled as an inter-
val @0, KD of length K on which a Poisson process 8s HdL, 0 § d § K<

which  a  rope  has  operated  may  be  of  interest  and  practical  impor-
tance. 

We  define  the  associated  binary  process  8a Hd L, 0 § d § K<  on
@0, KD. It is assumed that the value 1 describes a damaged site and the
value 0 describes a functional site. 

It  is  well  known  that  the  signals  of  a  Poisson  stream
8s Hd L, 0 § d § K<  conditioned  by  s HKL  s  are  uniformly  distributed
on @0, KD. Under this condition these signals can be numbered and the
associated process can be defined inductively according to the appear-
ance of successive signals.  If  the i th  signal,  which appears at  di,  does
not  occur  in  an  already  damaged  site,  that  is,  previously  a IdiM  0,
then  we  set  a Hd L  1  for  di -

m
2

§ d § di +
m
2

.  We  declare  that  the

rope is  circular  in shape with no endpoints,  so the damage that  does
not fit on one end spreads to the other end of the strand. If the signal
occurs  at  a  place  where  a  blockade  already  exists,  for  example,
a IdiM  1,  then  no  changes  in  the  state  of  the  associated  process  are
made. 

Denote  the  counting  process  for  the  signals  that  generate  damage
by  8s* Hd L, 0 § d § K<.  The  number  s* HKL  s*  given  that  s HKL  s  is
obviously also a random variable. 

Let  us  consider  N  independent  probabilistic  copies  of  sj Hd L,  aj Hd L,
and  sj

* Hd L,  1 § j § N  of  the  processes  describing  the  N  strands  that

form the rope. The process S Hd L  is  the total  number of signals of the
Poisson processes, A Hd L is the total number of blockades, and S* Hd L is
the number of breakdowns in the rope. They are defined by: 

S Hd L = ‚

j1

N

sj Hd L  A Hd L  ‚

j1

N

aj Hd L,

S* Hd L = ‚

j1

N

sj
* Hd L  0 § d § K.

3. Problem

Observing the process S* Hd L enables us to decide when to replace the
rope,  but  the  extreme  congestion  of  breakdowns  is  taken  into
consideration  in  practice.  The  decision  criterion  is  usually  the
maximum  number  of  breakdowns  in  m  threads  of  the  rope.  Let  us
define the random variable 

S**  max
0§d§K

HS* Hd + mL - S* Hd LL,

where  for  d + m > K  we  substitute  the  argument  d + m - K,  since  the
ends  of  the  rope  are  attached.  Note  that  S*Hd + mL - S*HdL 
AJd + 1

2
mN.  In  fact,  let  d œ @0, KD,  and  let  an  event  of  the  Poisson

process 9sj HdL, 0 § d § K= take place in xi  generating the damage in a

process  9aj HdL, 0 § d § K=  where  d - 1
2

m < xj § d - 1
2

m,  as  well  as

aj Jd + 1
2
 1N.  Because S* Hd + mL - S* HdL  denotes the total number of

breakdowns in Hd, d + mD it is equal to A Jd + 1
2

mN. Thus the decision

variable is of the form 
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where  for  d + m > K  we  substitute  the  argument  d + m - K,  since  the
ends  of  the  rope  are  attached.  Note  that  S*Hd + mL - S*Hd L 
AJd + 1

2
mN.  In  fact,  let  d œ @0, KD,  and  let  an  event  of  the  Poisson

process 9sj Hd L, 0 § d § K= take place in xi  generating the damage in a

process  9aj Hd L, 0 § d § K=  where  d - 1
2

m < xj § d - 1
2

m,  as  well  as

aj Jd + 1
2
 1N.  Because S* Hd + mL - S* Hd L  denotes the total number of 

breakdowns in Hd, d + mD it is equal to A Jd + 1
2

mN. Thus the decision

variable is of the form 

S**  max
1
2

m§d§K+
1
2

m

A Hd L  max
0§d§K

A Hd L.

Note that given a small number of signals has occurred in the asso-
ciated  process  a Hd L,  the  length  of  a  blockade  is  equal  to  m  with  a
large  probability.  Given  that  a  larger  number  of  signals  have
occurred, blockades can become extended and the lengths of neighbor-
ing  functional  and  damaged  intervals  are  mutually  dependent.  The
central  limit  theorem  suggests  that  A Hd L,  which  depends  on  N,  if 
N Ø ¶ is approximately a stationary Gaussian process (see [2], Theo-
rem  and  Comments).  In  analyzing  the  limiting  properties  of  the
extreme  of  this  process  we  limit  our  considerations  to  stationary
processes.  Such a process  is  characterized by its  expected value,  vari-
ance, and correlation function. 

4. Stochastic Simulation of the Rope

The  random  variable  S**  defined  previously  is  rather  difficult  to
analyze.  Sensible  simplifications  can  be  proposed  after  a  preliminary
investigation  of  the  rope  characteristics  using  stochastic  simulations.
Our  simulations  enable  observing  the  processes  a Hd L  and  s* Hd L  to
describe  a  strand  and  the  processes  A Hd L  and  S* Hd L  to  describe  the
rope as a whole. 

In  these  simulations  we  divide  the  interval  @0, KD  into  units  of 
length equal to one thread of the screw. For example,  a blockade on
the interval @0, mD is defined to cover the set 81, 2, … , m<. It is conve-
nient  to  assume  that  m  is  odd.  The  center  of  a  blockade  segment  is
integer-valued and the blockade covers 1

2
Hm - 1L units to both the left

and right of the center. The following values for the rope parameters
are considered: 

† K  1600 is the length of the rope.

† N  20 is the number of strands in the rope (hence, the total length of 
the strands in the rope is equal to N K  32 000).
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† m  11 is the blockade length.

† s  100, 200, 400, 800  gives  values  taken  for  the  number  of  break-
ages. 

Using these parameters, we simulate the associated processes aj Hd L,
1 § j § N,  as  independent  realizations  of  the  appropriate  stationary
processes. We analyze the number of breakages, as well as the lengths
of  functional  and  damaged  intervals.  We  calculate  the  correlation
between the lengths of  neighboring functional  and damaged intervals
and  the  correlation  function  of  the  process.  The  extreme  S**  is  also
observed. The simulation was repeated 20 times for each case. 

We introduce the following notation: X is the length of a damaged
interval,  Y  is  the  length  of  a  functional  interval,  S*  S* HKL  is  the
number  of  signals  generating  damage,  C  is  the  number  of  blockades
in the associated process, C2  is the number of blockades in the associ-
ated  process  for  which  m < X § 2 m  (two  breakages  in  a  blockade),
C3  is  the  number  of  cycles  in  the  associated  process  for  which
X > 2 m  (at  least  three  breakages  in  a  blockade),  and  cHtL 
CorrHa Hd L, a Hd + tLL  is  the  correlation  function  of  the  process  a Hd L.
Let  X2  X Hm < X § 2 mL, X3  X HX > 2 mL.  In  the  case  consid- 
ered,  the  correlation  function  of  the  process  A Hd L  is  identical  to  the
correlation function of a Hd L. 

5. Conclusions from the Stochastic Simulations

Table 1 gives the results of the stochastic simulations: S*,  C,  C2,  and
C3 describe the number of blockades in the associated process and the
parameters  of  the  probability  distribution  of  the  length  of  damaged
and  functional  intervals.  Table  1  also  gives  the  characteristics  of 
damaged intervals of selected lengths, which are useful when describ-
ing the  structure  of  this  random variable,  its  expected value,  and the
variance of the process A Hd L. Table 2 gives the correlation function of
the associated process. These are the means of the results from the 20
repetitions of the simulation. 

Note that given there is a small number of blockades in the associ-
ated process, the expected value of the length of a functional interval
is  almost  equal  to its  standard deviation.  Hence,  we can assume that
the distribution of this length is approximately exponential. The corre-
lation between the lengths of neighboring damaged and functional in-
tervals is close to zero, therefore it can be assumed that these random
variables are independent. We consider the following simplified associ-
ated process. 

 248 B. Kopocinski 

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.
 
https://doi.org/10.25088/ComplexSystems.18.2.245



 Number of breakages

1 .1 s 100 200 400 800
1 .2 S* 98.8 192.8 374.5 701.6
1 .3 C 96.9 185.4 346.3 604.8
1 .4 C2 1.9 6.8 24.3 72.7
1 .5 C3 0 0.3 1.9 11.1

 Length of functional intervals

1 .6 EHYL 315.6 160.0 80.5 40.5
1 .7 DHYL 312.2 156.0 78.3 39.5

 Length of damaged intervals

1 .8 EHXL 11.17 11.34 11.69 12.36
1 .9 DHXL 1.23 1.78 2.57 3.70
1 .10 cHX, YL -0.001 0.002 0.015 0.024

 Conditioned length of damaged intervals

1 .11 PHm < X § 2 mL 0.020 0.037 0.070 0.120
1 .12 EHX2L 19.7 19.6 19.5 19.5
1 .13 DHX2L 1.84 1.75 1.76 1.75
1 .14 PHX > 2 mL 0 0.002 0.005 0.018

1 .15 EIX3M | 27.7 28.8 29.3

1 .16 DIX3M | 2.21 3.30 4.48

1 .17 EHAHtLL 0.68 1.32 2.53 4.67
1 .18 DHAHtLL 0.81 1.10 1.48 1.90

 Extreme value

1 .19 EHS**L 4.1 5.6 7.8 11.15

Table 1. Parameters of the associated process a HdL.

The results concerning the damaged intervals suggest the following
structure for X.  X  m  with some probability  p1  (one breakdown in
a blockade) or X  m + X1  with probability p2  1 - p1  (at least two

breakdowns  in  a  blockade).  For  small  p2,  X1  X0 + 1
2
Hm - 1L,

where  X0  is  uniformly  distributed  on  :1, 2, … , 1
2
Hm + 1L>.  The

extension  of  a  blockade  happens  if  a  new  breakdown  occurs
sufficiently close to an existing blockade. Such an extension can occur
again, but for small p2  such consecutive extensions may be neglected.
Thus, we have 

X  m + d1 X1,
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s 100 200 400 800
t Correlation function cHtL
1 0.91 0.91 0.90 0.90
2 0.81 0.81 0.81 0.79
3 0.72 0.72 0.71 0.69
4 0.63 0.63 0.62 0.59
5 0.53 0.53 0.52 0.50
6 0.44 0.44 0.43 0.40
7 0.35 0.35 0.34 0.31
8 0.26 0.26 0.26 0.22
9 0.16 0.17 0.17 0.13

10 0.07 0.07 0.08 0.05
11 -0.03 -0.02 -0.01 -0.04

Table 2. Correlation function c HtL of the process A HdL.

where  d1  denotes  the  binary  random  variable  P Hd1  0L  p1,

P Hd1  1L  p2.  It  is  easy  to  check  that  EIX0M  m0  1
4
Hm + 3L,

EHX1L  m1  1
4
H3 m + 1L, D2 HX1L  s1

2  1
12

J
1
4
Hm + 1L2 - 1N.

Hence, EHXL  m + p2 m1, D2 HXL  p2 s1
2 + p1 p2 m1

2. 
If p2  is somewhat larger, then we may assume that the probability

of three extensions is negligible. In this case we assume 

X  m + d1 X1 + d1 d2 X2,

where d1, d2, X1,  and X2  are mutually independent. The Xi  have the
probability  distribution  function  as  described  earlier  and  the  di  are
binary random variables. It can be shown that 

EHXL = m + Ip2 + p2
2Mm1,

D2HXL = Ip2 + p2
2Ms1

2 + p1 p2 I1 + 3 p2 + p2
2Mm1

2.

Table  1  (see  lines  (1.8)  and  (1.9))  confirms  the  reasonableness  of 
this  approximation:  when  s  100,  the  possibility  of  two  extensions
may  be  neglected,  when  s = 200, 400, 800,  the  possibility  of  three
extensions may be neglected. 

6. Deterministic Simulation of the Rope

Deterministic simulations can be carried out by replacing the random
variables  used  in  the  stochastic  simulation  by  their  expected  values.
Using this approach to model the strands, we introduce the following
notation. As earlier, s is the number of signals in the Poisson process,

xi  is the total length of
a  blockade,  yi  is  the  total  length  of  a  functional  interval,  pi  is  the
number of signals counted, pi

* is the number of blockades of length m,
and pi - pi

* is the number of extensions to blockades. 
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i is the index of a signal, si
*  is the number of the signals counted, ci  is

the number of cycles of the associated process, xi  is the total length of 
a  blockade,  yi  is  the  total  length  of  a  functional  interval,  pi  is  the
number of signals counted, pi

* is the number of blockades of length m,
and pi - pi

* is the number of extensions to blockades. 
We  wish  to  derive  recurrence  formulas  for  the  expected  length  of

the  damaged  intervals  of  strands.  When  s  is  small  (in  comparison  to
K), we make the following simplifications: 

† The quantities si
*, ci, xi, yi, pi, and pi

* are deterministic.

† The length of each functional interval is at least m.

† The  length  of  each  extension  to  a  blockade  is  constant,  that  is,  it  is

equal to m1  1
4
H3 m + 1L. 

We assume that the following recurrence formulas hold: 

s1
* = 1,  c1  1,  x1  m,  y1  K - m,

pi+1 =
yi

K
,  si+1

*  si
* + pi+1,

pi+1
* =

1

K
Iyi - 2 Im0 + 1M ciM,  ci+1  ci + pi+1

* ,

xi+1 = xi + m pi+1
* + Hm1 + 1L Ipi+1 - pi+1

* M,

yi+1 = K - xi+1,  1 § i § s - 1.

The quantities m0  and m1  are increased by 1 due to the discretiza-
tion of the modeled strands. 

Table  3  gives  the  results  of  the  deterministic  simulation.  They  are
consistent  with  the  results  of  the  stochastic  simulations  presented  in
Tables  1  and  2;  see  lines  (1.2)  and  (3.2),  (1.3)  and  (3.3),  (1.6)  and
(3.4), (1.8) and (3.5), and (1.17) and (3.6). 

3.1 s 100 200 400 800

3.2 ss
* 98.3 193.3 373.9 700.5

3.3 cs 97.0 188.0 353.2 624.1

3.4 ys ë cs 318.9 159.0 79.0 39.1

3.5 xs ê cs 11.13 11.27 11.56 12.16

3.6 N xs ê K 0.67 1.32 2.55 4.74

Table 3. Results of the deterministic simulation.
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7. The Extreme Value

Numerous texts have been devoted to analyzing the probability distri-
bution of  the extreme of  a  Gaussian process  [3|5].  We are interested
in  the  asymptotic  properties  of  P HS** > s**L.  In  the  case  of  standard-
ized  Gaussian  processes,  the  probability  distribution  function  of  the
extreme value  depends  upon the  shape  of  the  correlation  function  at
zero. Assuming that the lengths of blockades and functional intervals
have an exponential probability distribution, it is well known (see [6,
p.  295])  that  the  correlation  function  has  an  exponential  shape.  The
stochastic simulation shows that in our problem the correlation func-
tion is linear in the neighborhood of zero. A proof that the extreme of 
A Hd L has a double exponential distribution as K Ø ¶ can be found in
[4] (see Theorem 8.2.7). 

More precisely,  let  p   EHa Hd LL  and define the following standard-
ized process and its extreme: 

X Hd L 
A Hd L - N p

N p H1 - pL
,  0 § d § K,  XK

*  sup
0§d§K

X HdL.

The following result holds 

lim
KØ¶

P HaK HXK
* - aKL § xL  Y HxL  exp H-e-xL,

where aK  2 log K . 
This  result  enables  the  specification  of  quantile  intervals  for  the

extreme value.  For  some given  a,  let  ua  be  the  solution  of  the  equa-
tion Y HuL  a.  Using the continuity correction for a discrete variable,
a quantile interval for X* at the level of 1 - 2 a is given by 

Smin
** = N p -

1

2
-

ua

aK
+ aK N p H1 - pL § S** § Smax

** =

N p +
1

2
+

u1-a

aK
+ aK N p H1 - pL .

8. Example  

Let  us  consider  the  numerical  values  N p   EHA Hd LL  presented  in
Table  1.  Line  (1.17)  characterizes  the  deterministic  simulation  of 
A Hd L.  Table  4   gives  quantile  intervals  for  the  extreme  value  at  the
level  of  1 - 2 a  0.95.  The  final  column  gives  the  range  of  the
extreme values observed in the stochastic simulations. These results fit
the quantile intervals well. 
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s Smin
** Smax

** Range in 20 stochastic simulations

100 3.02 5.07 3 | 5
200 4.71 7.15 5 | 7
400 7.24 10.16 7 | 9
800 10.81 14.27 10 | 12

Table 4. Quantile intervals for S** at the level of 1 - 2 a  0.95.

9. Conclusions  

The reliability of a rope can be considered with respect to the number
of breakages in its  strands during operation.  The state  of  the strands
may  be  described  by  an  associated  process.  The  state  of  the  rope  is
described by the convolution of these associated processes, which can
be approximated using a stationary Gaussian process. The parameters
of this process depend on the number of breakages in the strands. The
correlation function of this process has the desired shape in the neigh-
borhood of zero. The theorem on the limit of the extreme of the Gaus-
sian process  gives  the  asymptotic  distribution of  the  extreme number
of breakages along an interval of m threads of the rope, S**. The deci-
sion on whether  to  replace  the  rope  may be  undertaken on the  basis
of S**. 
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