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This  paper  deals  with  new  analytical  and  experimental  aspects  of  a
channel’s  capacity  in  the  presence  of  excess  nonwhite  Gaussian  noise
with  long-range  dependencies  described  by  the  Hurst  parameter  H.
Shannon’s theory of information based on the assumptions given by the
Boltzmann|Gibbs  extensive  thermodynamical  basis,  does  not  allow
description  of  many  different  phenomena  directly  connected  with  the
ideas  of  a  complex  systems  approach.  This  theory  is  also  a  basis  of 
many  considerations  in  communication,  but  a  new  approach  to
transmission  channels  is  needed.  The  transmission  channels  are  no
longer  simple  systems built  with only  one wire  connection,  but  consist
of many different transmission media. For each type of partial  connec-
tion  in  such  channels  there  are  many  various  interferences  that  influ-
ence  some  parts  of  the  channel  in  different  ways.  We  suggest  that  in
many  cases  the  real  capacity  of  the  whole  channel  can  no  longer  be
determined  by  Shannon’s  equation  without  taking  into  account  the
problem of  excess  1 ë f  noise,  which  appears  as  an  intrinsic  feature  of
dynamically  packet  switched  networks.  The  ideas  presented  in  this
paper  show  how  the  complex  system  approach  can  provide  a  good
perspective for analyzing the whole transmission channel.

1. Introduction

The  system  notion,  in  a  wide  range  of  disciplines  from  ecology  to
physics, social sciences, and informatics, has received significant atten-
tion  in  recent  years.  Generally,  the  notion  system  can  be  interpreted
as  a  structure  consisting  of  a  large  number  of  interdependent  ele-
ments. To understand the behavior of a complex system, in contradic-
tion to a simple system approach, requires understanding not only the
behavior  of  the  individual  elements  but  also  how  they  act  together
[1]. This approach should be used in many cases, and it seems that it
may be appropriate to describe the problem of information transmis-
sion through a noisy channel, which is a very dynamic process. 
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Figure 1. (a) The channel as a simple system based on circuit switching where
the information flow is “laminar” and (due to the homogeneity) the problems
with queueing can be described by Kendall’s  approach.  (b)  The channel  as  a
complex  system,  where  information  from the  transmitter  to  the  receiver  can
follow different, dynamically switched paths that consist of different types of 
transmission  media  (heterogeneity),  which  are  connected  in  nodes,  but  with
queueing systems that manage self-similar traffic.

More  precisely,  the  classical  approach  seems  to  be  based  on  tacit
assumptions that the channel is a connection that once established (by
a  circuit  switching)  does  not  change  during  the  transmission
(Figure 1(a)). According to Shannon [2, 3], the channel is “merely the
medium used to transmit the signal from the transmitting to the receiv-
ing  point.”  This  suggests  that  Shannon  probably  did  not  pay  much
attention  to  the  channel  as  a  thing  (system).  He  used  the  expression
“merely  the  medium”,  which can have many interpretations  and,  for
example, can be understood as a “thing” that is not as important as it
now seems to be. Of course, in the next sentence he wrote “It may be
a pair  of  wires,  a  coaxial  cable,  a  band of  radio frequencies,  a  beam
of light, etc.” But this is an explanation of what a channel can be and
not the assumption that a channel can be a system (particularly a com-
plex  one)  that  itself  can  influence  the  transmission  (or  the  channel
capacity) by the existence of excess noise or distortion. 

We  suggest  that  the  channel  capacity  analysis  proposed  by  Shan-
non  considers  the  case  when  the  channel  has  a  spatial  homogeneous
structure, and that possible interactions “inside” the channel are gov-
erned by  short-range  dependencies.  That  is,  from the  thermodynami-
cal point of view, the whole system stays in equilibrium and the infor-
mation flow is laminar. But the assumption that the channel is only a
medium  with  the  properties  mentioned  seems  to  fail.  The  situation
nowadays  is  diametrically  different  because  information  from  the
transmitter  to  the  receiver  can  follow  different  dynamically  switched
paths  (packet  switching),  which  can  be  disturbed  by  different  types
and levels  of noise (Figure 1(b)).  These paths are heterogeneous,  that
is, a channel is a hybrid consisting of wires and wireless technologies
and the contact between them is usually built by a queue, which influ-
ences the time that packets need to stay and get out of an actual part
(path)  of  the  channel.  This  heterogeneity  and  queueing  lead  to  the
generation  of  long-range  dependent  processes  and  nonequilibrium
states. The information flow becomes turbulent and excess 1 ê f  noise
appears.  Because  circuit  switching  was  replaced  by  packet  switching
(which itself is a process that so far cannot be fully understood) infor-
mation  can  follow  many  different  paths  to  “create”  the  channel
rather  as  a  (complex)  system  built  from  many  different  parts.  Thus,
from  the  complex  systems  approach,  a  channel  seems  to  be  a  thing
that  emerges  as  a  system  consisting  of  many  heterogenous  parts,
which  in  addition  interact  (e.g.,  by  queueing  problems,  congestions,
different  faults,  etc.).  The  whole  problem  of  describing  transmission
needs an approach other than information theory. 
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cal point of view, the whole system stays in equilibrium and the infor-
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is, a channel is a hybrid consisting of wires and wireless technologies
and the contact between them is usually built by a queue, which influ-
ences the time that packets need to stay and get out of an actual part
(path)  of  the  channel.  This  heterogeneity  and  queueing  lead  to  the
generation  of  long-range  dependent  processes  and  nonequilibrium
states. The information flow becomes turbulent and excess 1 ê f  noise
appears.  Because  circuit  switching  was  replaced  by  packet  switching
(which itself is a process that so far cannot be fully understood) infor-
mation  can  follow  many  different  paths  to  “create”  the  channel
rather  as  a  (complex)  system  built  from  many  different  parts.  Thus,
from  the  complex  systems  approach,  a  channel  seems  to  be  a  thing
that  emerges  as  a  system  consisting  of  many  heterogenous  parts,
which  in  addition  interact  (e.g.,  by  queueing  problems,  congestions,
different  faults,  etc.).  The  whole  problem  of  describing  transmission
needs an approach other than information theory. 

It  should also be noted that during the transmission at  each node,
the primary route can be dynamically changed. A few questions imme-
diately  arise:  Why  does  this  change  occur?  Is  this  change  always  a
desirable  process?  Does  it  lead  to  self-organization?  The  resulting
routes  can have  different  properties  that  can be  disturbed by  various
levels of noise or have smaller buffers in their queue. This additionally
increases the degree of complexity of such a system. But this complex
process  can be analyzed by the  problem,  which is  well  known in the
literature. 

Each switched path can be compared to the generation-recombina-
tion (g-r) process with a power law that determines the trap’s lifetime,
which, for example, can be governed by long-range dependencies and
directly leads to excess 1 ê f  noise [4]. This similarity is due to the fact
that each dynamically switched path can be a kind of “trap” for pack-
ets  and its  lifetime can vary (e.g.,  due to  the  problem of  queue over-
load  at  the  end  of  a  path,  see  Figure  1(b)).  This  variety  can  be  gov-
erned by a power law and the dependencies that appear can have the
long-term property. 

As  already  mentioned,  each  packet  switching  is  done  in  the  net-
work, which is not a homogenous system, and can be a very dynamic
and complex process,  whose  description requires  a  wider  view based
on  problems  that  concern  real  network  topology  (e.g.,  as  a  “small
world”) and a proper description of the network as a queueing system
with the dispersion of delays due to different buffer lengths or queue
regulations. This process itself can lead to excess noise. 
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We think  that  the  change  from circuit  switching  (where  an  estab-
lished  path  is  disturbed  by  a  level  of  noise  that  does  not  undergo
dynamic  changes  due  to  path  switching  and  the  queueing  problems
can  be  described  by  Kendall’s  approach  [5])  to  packet  switching
(where the levels of noise for different parts of a channel can dynam-
ically  change  and  the  queueing  problems  cannot  be  described  by
Kendall’s  approach  due  to  the  existence  of  self-similarity  in  network
traffic  [6,  7])  suggests  that  total  channel  capacity  can  also  undergo
dynamic  changes  and  even  more,  can  be  less  than  that  given  by
Shannon’s  theory  of  information  [2,  3].  The  whole  problem  can  be
understood  only  when  a  complex  systems  approach  is  taken  because
in many cases the transmission channels should be considered systems
that are no longer simple.

It is known that the capacity of a noisy channel is described by the
famous Shannon-Hartley theorem of channel capacity that states [2]: 

(1)C  W log 1 +
S

N
,

where W  denotes the frequency band, S is the source power, and N is
the total noise power. 

However,  is  it  possible  to  understand  precisely  what  kinds  of 
processes exist and influence channel capacity in reality by taking into
account only equation (1)? This formula cannot say what will happen
when  the  problem of  long-range  dependencies  is  taken  into  account.
This  paper  addresses  the  possible  influence  of  excess  1 ê f  noise  on
channel capacity. To understand the problems under consideration, a
brief  introduction  to  noise  theory  is  given  in  Section  2,  where  some
interesting  properties  of  long-range  dependencies  in  noises  via  spec-
trum analysis  are described.  The fundamentals  of  Shannon’s  commu-
nication  theory  are  given  in  Section  3,  which  covers  the  basic
assumptions  of  Shannon’s  theory  of  information  and  the  channel
capacity  theorem.  It  also  presents  a  possible  influence  of  the  excess
1 ê f  noise  on  channel  capacity  and  the  results  of  our  investigations.
Section 4 offers conclusions. 

2. Noise

Noise  in  electronic  systems is  the  effect  of  electrical  fluctuations  in  a
structure  of  elements  or  electrons  carrying  the  current  as  they  are
jolted around by thermal energy. In each circuit many different types
of noise can exist, especially thermal, flicker, and generation-recombi-
nation (g-r). The statistical properties of each noise can be analyzed in
the time domain by its autocorrelation function R HtL.  By the Wiener-
Khinchin theorem it is known that for each stationary noise there is a
transformation from the time domain to the frequency domain that is
usually called the power spectrum S Hf L: 
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Noise  in  electronic  systems is  the  effect  of  electrical  fluctuations  in  a
structure  of  elements  or  electrons  carrying  the  current  as  they  are
jolted around by thermal energy. In each circuit many different types
of noise can exist, especially thermal, flicker, and generation-recombi-
nation (g-r). The statistical properties of each noise can be analyzed in
the time domain by its autocorrelation function R HtL.  By the Wiener-
Khinchin theorem it is known that for each stationary noise there is a
transformation from the time domain to the frequency domain that is
usually called the power spectrum S Hf L: 

(2)S Hf L  ‡
-¶

¶
R HtL ej 2 p f t d t.

A  thermal  noise  in  the  frequency  domain  is  sometimes  called
“white noise”, because its spectrum is flat, that is, independent of fre-
quency f . This noise in the time domain has an autocorrelation func-
tion  R HtL  that  quickly  goes  to  0.  In  other  words,  this  noise  does  not
have  any  long-range  dependencies  [8,  9].  But  when  the  power  spec-
trum is not flat and behaves like

(3)S H f L º
1

fa
,

it  can  be  said  that  such  a  noise  is  governed  in  the  time  domain  by
long-range dependencies [8]. 

In  addition,  if  the  probability  density  function  of  such  a  noise  is
Gaussian or has different  densities  with a finite  value of  variance,  its
fractal  properties  can be  described by the  Hurst  parameter  H,  which
is directly connected with a by the relation [8]: 

(4)a = 2 H - 1  for a < 1.

Such  a  noise  is  sometimes  called  the  fractional  Gaussian  noise  or
simply  1 ê fa  (1  over  f ).  If  a  1,  it  is  a  “flicker  noise”  or  a  “pink
noise”. Another important property of 1 ê f  noise is that it is a low-fre-
quency  phenomenon  that  in  the  higher  frequencies  is  overshadowed
by a white thermal noise. 

It  can  be  shown  that  in  semiconductors  (e.g.,  in  MOS  transistors
[4]) 1 ê f  noise can occur as a superposition of g-r processes that has a
flat  (white)  spectrum  to  some  frequency  f £  and  then  vanishes  like
1 ë f 2  [10].  The  graphical  illustration  of  equation  (3)  in  Figure  2
shows where each type of noise occurs.
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Figure  2.  Superposition  of  long-range  dependencies  in  g-r  processes  gives  the
type of excess 1 ë fa noise that exists in each time scale [10].

In the case of packet switching it is possible to proceed similarly to
the problem of the superposition of 1 ë f 2  noises, because each packet
or  a  set  of  packets  can  be  “trapped”  in  a  path  with  different  noise
levels  (i.e.,  different  noise  power  values  with  the  flat  spectrum S Hf L).
The flat part of the spectrum of a g-r process will represent a possible
level  of  noise  in  a  given part  of  a  channel,  and the  1 ë f 2  part  of  the
characteristics will represent the state of the packet switching (i.e., the
situation  when  a  new  path  is  obtained  for  successive  packets).  Two
possible situations can be assumed. The first situation is when the pro-
cess  of  packet  trapping  is  not  governed  by  long-range  dependencies,
that is, the resultant spectrum of this process will be flat. The second
is  when  the  process  is  governed  by  long-range  dependencies  and  the
dispersion  of  trap  lifetimes  is  governed  by  the  power  law.  If  the  sec-
ond  case  appears,  the  resultant  spectrum  will  show  the  existence  of
excess 1 ê f  noise. 

3. Channel Capacity in the Presence of Excess 1 ê f  Noise

Many statements in the literature say that information is the same as
entropy.  The  reason  given  to  Tribus  [11]  is  that  Shannon  did  not
know what to call his measure so he asked von Neumann, who said:
“You  should  call  it  entropy  H…L  [since]  no  one  knows  what  entropy
really is, so in a debate you will always have the advantage.” Despite
this  doubt,  researchers  maintain  Shannon’s  definition  of  information
as an entropy for a discrete source where each symbol is some kind of
random variable [2]. 
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Many statements in the literature say that information is the same as
entropy.  The  reason  given  to  Tribus  [11]  is  that  Shannon  did  not
know what to call his measure so he asked von Neumann, who said:
“You  should  call  it  entropy  H…L

as an entropy for a discrete source where each symbol is some kind of 
random variable [2]. 

If  source  S  sends  a  symbol  from  the  finite  alphabet  Y 
9s0, s 1, … , sk-1= in each time step, then each symbol will occur with
probability  P IS  skM  pk,  k  0, 1, … , K - 1.  The  function  I  that
describes the amount of information that is connected to each symbol
sk should be [2]: 

(5)I IskM  log
1

pk

.

For a discrete information source,  I IskM  is  a discrete random vari-
able  that  has  the  values  I Hs1L, I Hs2L, … , IHsK-1L  with  probabilities
p0, p1, … , pK-1. The average value of such a variable is: 

(6)H HYL  E AI IskME  ‚

k0

K-1

pk I IskM  ‚

k0

K-1

pk log
1

pk

.

To  analyze  the  entropy  for  a  continuous  random  variable  instead
of a discrete variable, a definition of the differential entropy similar to
equation (6) is needed [2, 12]: 

(7)h HXL  ‡
-¶

¶
fX HxL log

1

fX HxL
d x.

Shannon showed that when a random variable has a Gaussian dis-
tribution, its differential entropy equals [2]: 

(8)h HXL 
1

2
log I2 p es2M,

and its value is the largest of all probability densities with a finite vari-
ance. 

When any information is transmitted through some noisy channel,
a few entropies can be calculated: the entropy of the source H HxL, the
entropy  of  the  signal  received  H HyL,  the  conditional  entropies  Hy HxL
and  Hx HyL,  and  a  joint  entropy  H Hx, yL.  If  H HxL  H HyL  there  is  no
noise in the channel. The transmission rate R cannot exceed [2]: 

(9)R  H HxL - HyHxL,

thus  the  capacity  C  of  a  channel  is  the  maximal  transmission  rate  R
and equals equation (1) [2, 12], where N is the power of interferences
that have a white noise power spectrum. Shannon showed in [3] that
white noise is the worst case, because the channel disturbed by such a
noise  has  the  smallest  total  capacity.  The  power  P  of  an  analyzed
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thus  the  capacity  C  of  a  channel  is  the  maximal  transmission  rate  R
and equals equation (1) [2, 12], where N is the power of interferences
that have a white noise power spectrum. Shannon showed in [3] that
white noise is the worst case, because the channel disturbed by such a
noise  has  the  smallest  total
signal  can  be  obtained  from  the  power  spectrum  of  the  analyzed
noise: 

(10)P  ‡
0

¶
SH f L d f .

Because  the  spectrum of  white  noise  has  a  constant  power  N0  for
each frequency in band W, the power spectrum is equal to

(11)PW N  ‡
0

W
N0 d f  N0 f 0

W  N0 W.

Taking this into account, equation (1) can be rewritten (assuming that
S  const) in the following form: 

(12)C  W log 1 +
S

N0 W
.

In the case of 1 ê f  noise, assuming that a ≠ 1, a similar method can
be used to obtain (recalling equation (4)): 

(13)

P1ëf 

‡
0

W N01êf

fa
d f  N01êf

f 1-a

1 - a 0

W

 N01êf

W2-2 H

2 - 2 H
.

Assuming that the 1 ê fa  noise and the white noise should have the
same power in band W, the value for N01êf

 can be computed from: 

(14)N01êf


N0 W H2 - 2 HL

W2-2 H
 N0

2 - 2 H

W1-2 H
.

In  [12]  it  was  shown  that  Shannon’s  considerations  are  agreeable
only if important assumptions are made: the total power of noise hav-
ing the flat spectrum ISW N H f LM and the 1 ê f  spectrum HSF N H f LL should
be equal for each frequency f  in a band limited to Wmax, that is: 

(15)‡
0

Wmax
SW N H f L  ‡

 0

 Wmax
 SF NH f L.

This comes from Shannon’s observation that if Gaussian noise has
a  spectrum  S H f L that  is  different  from  white  noise,  then  its  entropy
power N1 equals [2, 3]: 

(16)N1  W exp
1

W
‡

0

W
log SH f L d f .
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For the white noise it will be: 

(17)
N1  W exp

1

W
‡

0

W
log N0 d f 

W exp
1

W
log N0 W  WN0  N,

thus if SHf L  const, then N1  N. 
For the 1 ê f  noise it will be: 

(18)

N1  W exp
1

W
‡

0

W
log

N01êf

fa
d f 

W exp
1

W
f JlogJN01êf

f-aN + aN
0

W


W expJlogJN01êf
W-aN + aN  N01êf

W1-a ea.

The entropy power,  in  the case  of  1 ê fa  noise  taking into account
equations (14) and (18), equals [12]: 

(19)N1  e2 H-1 W N0 H2 - 2 HL,

where N0  is the entropy power for white noise. From equation (19) it
can  be  seen  that  if  H  0.5  (the  white  noise  case),  then  N1  N;  in
other cases  N1 < N  (except the special  case when H  1).  The white
noise case is the worst one, giving the smallest channel capacity C (see
Figure 3). 
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Figure  3.  Channel  capacity  influenced by  noise  with  long-range  dependencies
via Shannon’s theorem with equation (15). White noise is the worst case.

But  when  the  assumption  that  both  white  noise  and  1 ê fa  noise
have an equal power (or 1 ê f  noise has a smaller power), it is possible
to imagine the situation that can be satisfied only for some f  Wmax,
that is, the power of 1 ê f  noise will be greater than white noise. This
situation  is  natural  if  1 ê fa  noise  is  considered  an  excess  noise  that
occurs when the dynamic behavior of  each g-r  process  starts  exhibit-
ing  long-range  dependencies.  In  other  words,  such  a  noise  occurs
dynamically as the excess noise due to the long-range dependent rela-
tions (governed by a power law) between the relaxation times of each
g-r process. In the case of a channel, this means that dynamic switch-
ing of paths with different noise levels will be governed by long-range
dependencies (e.g., due to traffic self-similarity or problems with queu-
ing).  In  such  cases  white  noise  cannot  totally  cover  the  excess  1 ê fa

noise.  Thus,  for  frequencies  smaller  than  Wmax,  the  power  of  1 ê fa

noise will dominate over the white noise and the capacity of a channel
disturbed by such a dynamically occurring noise will be even smaller.
It  can  be  said  that  a  degradation  of  capacity  appears  in  the  channel.
In such a case the capacity C equals [12]: 

(20)

C  W log

1 +
S

N1
 W log 1 +

S

e2 H-1 W N0 H2 - 2 HL
,
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where e2 H-1 W N0 H2 - 2 HL is the entropy power for 1 ê fa  noise and
N0 is the entropy power for white noise. 

Figure  4  shows  the  phenomenon  of  channel  capacity  degradation
for  values  W < Wmax.  This  is  due  to  the  existence  of  excess  1 ê fa

noise  that  covers  white  noise,  and  the  power  of  its  interference  is  a
few times larger than in the case of white noise. 

Figure  4.  Channel  capacity  degradation  resulting  from  the  existence  of 
dynamically appearing excess 1 ë fa noise.

4. Conclusions

As  has  been  observed,  the  classical  information  theory  that  comes
from  Shannon’s  theorems  cannot  fully  describe  all  phenomena  that
influence  channel  capacity.  The  existence  of  excess  1 ê f  noise  is  an
inherent feature of each complex system that is governed by processes
with  long-range  dependencies.  Their  existence  in  communication
systems, due to possible dynamics of path switching, leads to channel
capacity degradation, so a broader frequency band W  is needed, espe-
cially  when the  phenomenon of  traffic  self-similarity  occurs.  It  seems
that  the  current  transmission  channels  are  also  complex  systems  and
their  complex  properties  need  to  be  included  because  they  have  a
significant  influence  on  channel  capacity.  The  degradation  that
appears is a primary problem for quality of service. 
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