
Solving the Density Classification Task
Using Cellular Automaton 184 with
Memory

Christopher Stone *

Larry Bull †

Department of Computer Science
University of the West of England
Bristol, BS16 1QY, United Kingdom
*christopher3.stone@uwe.ac.uk
†larry.bull@uwe.ac.uk

A type of memory based on the least mean square algorithm is explored
on the density classification task, which is a well-known test problem
for two-state discrete dynamical systems. In the absence of memory,
there is no elementary cellular automaton that can solve this task.
However, when augmented with memory, the performance of elemen-
tary cellular automaton 184 approaches that of the best-known radius
three cellular automata found in the literature. It is found that rule 184
transforms spatial information about the neighborhood into temporal
information that memory is able to retain and present to the rule’s tran-
sition function. This causes the cell to transition to a different state
compared to the case when no memory is present, which extends
blocks of cells having a common state to facilitate a solution of the task.

1. Introduction

Typically, the behavior of a complex system cannot be predicted by
any means but numerical simulation. For this reason, computational
models are extremely important in modern biology, sociology, ad-
vanced engineering, ecology, agriculture, and urban studies.

A number of computational models have been presented with
which to study and/or exploit the aggregate behavior and self-organi-
zation of a number of simple interacting components. Among these
models, cellular automata (CAs) have been widely used to model com-
plex natural and artificial systems and are well-studied in their basic
form.

Typically, this study does not include memory, that is, previous
state information, at the component level. However, memory is an
essential feature of all living systems and a significant part of physical,
chemical, and engineering systems. We are undertaking systematic
studies in the use and effects of memory in the components of discrete
dynamical systems with the aim of identifying new underlying prin-
ciples of complex systems. An overview of CAs with memory is pre-
sented in [1].

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

Typically, this study does not include memory, that is, previous
state information, at the component level. However, memory is an
essential feature of all living systems and a significant part of physical,
chemical, and engineering systems. We are undertaking systematic
studies in the use and effects of memory in the components of discrete
dynamical systems with the aim of identifying new underlying prin-
ciples of complex systems. An overview of CAs with memory is pre-
sented in [1].

In this paper we explore the effect of a simple type of memory on
the density classification task, a well-known test problem for one-
dimensional CAs. We find that with memory, performance on the
task for an elementary CA approaches that of the best-known CAs
found by other researchers. Without memory there is no elementary
CA that can solve the task [2].

This paper is organized as follows. Section 2 provides an overview
of CAs and the density classification task. Section 3 describes the
memory scheme used and the results of experiments undertaken on
the density classification task. Section 4 gives a detailed description of
the operation of the CA with memory and Section 5 provides conclu-
sions.

2. Background

2.1 Cellular Automata

Cellular automata are a class of discrete dynamical system consisting
of a spatial lattice of N homogeneous automata (cells) that are
updated synchronously in discrete time steps t. At each time step t + 1
an automaton i œ N takes one of k possible states by considering its
own current state si and that of other spatially local automata com-
prising the cell’s neighborhood. The state update is performed accord-
ing to some transition function F. At start time t0 the states of the
automata are set according to some externally imposed initial configu-
ration (IC).

The CAs considered in this paper are one-dimensional N  149
with periodic boundary conditions, that is, the lattice forms a ring.
The automata neighborhood h consists of a cell i and all the cells lo-
cated within a radius r of that cell:

(1)h  9si-r, … , si-1, si, si+1, … , si+r=.

The automata are binary (k  2) with s œ 80, 1< and a neighbor-
hood of r  1. That is, the next state of a cell is determined by its cur-
rent state and that of the two immediately adjacent cells to its left and
right, h  9si-1, si, si+1=. Such a CA is known as an elementary CA
(ECA) [3]. ECAs have a transition function of 256 possible states, a
number amenable to study. For this reason, ECAs have been the sub-
ject of much research effort in the last 20 or so years.

The transition function F takes the form of a rule, usually repre-
sented as a binary truth table, containing all possible neighborhood
configurations and a corresponding new state st+1.

 330 C. Stone and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

2.2 The Density Classification Task

The density classification task has been studied for many years. In this
task, a one-dimensional binary CA is initialized with a random IC
and iterated for a maximum number of steps I or until a fixed point is
reached. If the IC contains more ones than zeros, the CA is deemed to
have solved the task if a fixed point of all ones is reached and vice
versa. The fraction of ones in a CA configuration is denoted as r, so
the problem solution rf for an IC of r0 is

(2)rf =
0 : r0 < 0.5

1 : r0 > 0.5.

The situation where the IC contains an equal number of ones and ze-
ros (r  0.5) is normally avoided by using an odd number of cells.

This is a difficult task for a CA because a solution requires coordi-
nating the global state of the system while using only local communi-
cation between cells provided by the neighborhood. For this reason,
the density classification task is widely used as a standard test
function to explore CA behavior.

The ability of a particular ECA to solve the density classification
task depends on the IC. Intuitively, ICs containing many ones or zeros
are closer in Hamming distance to one of the solution fixed points,
making it easier for a CA to iterate to the correct fixed point com-
pared to an IC containing a more or less equal mix of ones and zeros.
For this reason, performance of a CA on the density classification
task is estimated by sampling many ICs generated from a known dis-
tribution. Performance is then the fractional number of times the CA
achieves the correct fixed point. It has been proven [4] that no binary
CA exists that solves the density classification task for all possible
ICs. Thus, a binary CA can only solve the problem for specific ICs or
to a particular degree over multiple ICs.

Generating ICs using an equal probability of each cell being in the
one or zero state creates a binomial distribution. There are more ways
to create ICs with r º 0.5 than the extreme values of r  0 and
r  1. Mean performance with ICs created using a binomial distribu-
tion is thus typically lower than that obtained when ICs are created us-
ing a distribution where values of r are sampled uniformly in the
range @0, 1D.

The stochastic variation occurring when sampling ICs is such that,
depending on available computational resources, a rule is evaluated
using a minimum of 100 random ICs. For the exhaustive search data
presented in Section 3.2, we use 104 ICs for each datum. Other re-
searchers interested in determining the best possible performance ob-
tainable from a CA on the density classification task commonly use
105 or more trials each of a maximum of I  300 iterations [5].

 Solving the Density Classification Task 331

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

3. The Effects of Memory

3.1 Memory

A simple way of implementing memory is for the CA transition
function to consider the neighborhood h of a cell i supplemented with

the state si
t-1 of the cell on the previous cycle:

(3)si
t+1  FIsj

t œ hi, si
t-1M.

However, this means that the size of the transition function must
increase to incorporate the extra state, doubling the size of the state
space. Moreover, such a memory mechanism makes it difficult to com-
pare directly the effects of adding memory to a CA, since the transi-
tion function is different with and without memory.

To overcome these limitations, memory must be included in a CA
without affecting the transition function F. An approach to solving
the density classification task with memory was made in [6, 7] by
means of a memory implementation considering the majority of the
last three state values (t  3):

(4)
si
t = majorityIsi

t-2, si
t-1, si

tM

si
t+1 = F Isj

t œ hiM.

In the simulation of a series of 105 different initial densities uni-
formly sampled over @0, 1D, 114 densities were misclassified under
rule 184 with N  400, I  1500, and t  3. All of the misclassifica-
tions occurred with initial densities close to the watershed r0  0.5.

Here we implement a form of memory using the well-known least
mean square (LMS) algorithm [8] with learning rate b. This provides
an exponentially weighted moving average memory with no transition
function overhead. For this type of memory:

(5)

mi
0 = 0.5

mi
t+1 = mi

t + b Isi
t - mi

tM

si
t =

0 : mi
t+1 § 0.5

1 : mi
t+1 > 0.5

si
t+1 = F Isj

t œ hiM.

The learning rate b controls the amount of memory with b  0
providing infinite memory and b ¥ 0.5 corresponding to no memory.
With this memory arrangement, the transition function is the same as
the case with no memory. However, the neighborhood presented to
the transition function may be different between the two cases
because of the action of memory. This aspect will be extensively
discussed in the following sections.

 332 C. Stone and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

The learning rate b controls the amount of memory with b  0
providing infinite memory and b ¥ 0.5 corresponding to no memory.
With this memory arrangement, the transition function is the same as
the case with no memory. However, the neighborhood presented to
the transition function may be different between the two cases
because of the action of memory. This aspect will be extensively
discussed in the following sections.

3.2 The Density Classification Task with Memory

The density classification task is usually undertaken using a binary
CA with radius r  3. This is because smaller neighborhoods do not
support the behavior necessary to provide sufficient performance on
the task [2]. In particular, with r  1 performance measured over 104

trials of ICs does not exceed much more than 0.5 for any of the 256
possible rules (Figure 1). In these runs each trial starts from a random
IC created using an unbiased (binomial) distribution. The CA is then
iterated for up to 300 configurations or until a fixed point is reached.

In contrast, CAs with radius r  3 routinely achieve performances
of around 0.65 or above [2, 9]. At the time of writing, the best r  3
CA found so far using machine learning techniques achieves a perfor-
mance of 0.8616 averaged over 105 trials, each of 300 iterations [5].

A CA may be supplemented with the exponentially weighted
moving average memory described in Section 3 without changing the
rule used by the CA to transition to the next state. Figure 2 shows the
performance of the 256 ECA rules with memory. The learning rate b
of the memory was sampled in the range @0, 0.5D in steps of 0.01.
Values of b greater than 0.5 provided performance equal to that of
the CA with no memory and for greater clarity are not shown. Due to
the total number of trials involved in producing this map, the
performance of each combination of CA rule and learning rate was
sampled over only 104 trials. Even so, Figure 2 shows clearly that two
rules are able to provide reasonable performance on the density classi-
fication task over a range of learning rates. For reference, these rules
are 184 and 226 using the standard ECA nomenclature [3] and they
achieve performance of up to approximately 0.65 with
b œ @0.45, 0.49D.

Figure 1. Performance of the 256 ECA rules on the density classification task
averaged over 104 trials of ICs created using an unbiased distribution.
N  149, I  300.

 Solving the Density Classification Task 333

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

Figure 2. Performance of the 256 ECA rules with memory on the density classi-
fication task averaged over 104 trials of ICs created using an unbiased distri-
bution. N  149, I  300.

Although the performance of ECAs 184 and 226 with memory is
respectable, it is not competitive with that obtained from the r  3
CA results appearing in the literature. One of the differences between
r  1 and r  3 CAs is that the latter support faster communication
across cells. This is because it is possible for a signal in the form of a
spatial pattern to move three cells per CA iteration in the case of an
r  3 CA compared to one cell for r  1. As this speed is slower for
the ECAs, it is to be expected that they might take longer to reach a
fixed point than would be the case for the r  3 CAs and therefore
may be handicapped by the limit of I  300 iterations per trial. To
determine if this was the case, we produced a further performance
map of the ECAs where the maximum number of iterations allowed
was 900, this being three times the previous limit. Results are shown
in Figure 3.

Figure 3. Performance of the 256 ECA rules with memory on the density classi-
fication task averaged over 104 trials of ICs created using an unbiased distri-
bution. N  149, I  900.

When allowed more iterations to reach a fixed point, rules 184 and
226 were able to provide performance exceeding 0.8 on the density
classification task. Moreover, the shape of the performance curves
seen in Figure 2 as the learning rate varies is now much flatter, sug-
gesting that the task is solvable over a wider range of possible learn-
ing rates. Figure 4 shows that, on average, it takes longer to reach a
fixed point with lower numerical values of b and that even with
higher values of b, the mean number of iterations to reach a fixed
point is roughly 220, which is close to the standard maximum of 300
iterations. This is the reason for the poorer performance when the
maximum number of iterations is limited to 300 and with low learn-
ing rates.

 334 C. Stone and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

When allowed more iterations to reach a fixed point, rules 184 and
226 were able to provide performance exceeding 0.8 on the density
classification task. Moreover, the shape of the performance curves
seen in Figure 2 as the learning rate varies is now much flatter, sug-
gesting that the task is solvable over a wider range of possible learn-
ing rates. Figure 4 shows that, on average, it takes longer to reach a
fixed point with lower numerical values of b and that even with
higher values of b, the mean number of iterations to reach a fixed
point is roughly 220, which is close to the standard maximum of 300
iterations. This is the reason for the poorer performance when the
maximum number of iterations is limited to 300 and with low learn-
ing rates.

When allowed a maximum of I  900 iterations and using
b  0.48, rules 184 and 226 with memory provide mean performance
of 0.82 averaged over 105 trials. This is competitive with that
obtained from r  3 rules over 300 iterations. The learning rate of
b  0.48 is used throughout this paper as it is a typical value
resulting in good performance on the density classification task.

Figure 4. Mean number of iterations to reach a fixed point against learning
rate. Rules 184 and 226 with memory on the density classification task aver-
aged over 104 trials of ICs created using an unbiased distribution. N  149,
I  900.

3.3 Memory and the Neighborhood

Rules 184 and 226 belong to the same equivalence class. If the neigh-
borhood is reflected around the center cell such that the orientation of
cells i - 1 and i + 1 are reversed, the two rules are identical. Alterna-
tively, one rule may be transformed into the other by inverting the
states in the transition rule so that a 0 becomes a 1 and vice versa.
These ECAs may thus be viewed as left- and right-handed versions of
the same transition rule or as a rule operating on complementary state
definitions. To focus the discussion, we will generally ignore the exis-
tence of rule 226 as a solution and concentrate only on rule 184.
However, all results and conclusions for rule 184 apply equally to
rule 226.

 Solving the Density Classification Task 335

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

Rules 184 and 226 belong to the same equivalence class. If the neigh-
borhood is reflected around the center cell such that the orientation of
cells i - 1 and i + 1 are reversed, the two rules are identical. Alterna-
tively, one rule may be transformed into the other by inverting the
states in the transition rule so that a 0 becomes a 1 and vice versa.
These ECAs may thus be viewed as left- and right-handed versions of
the same transition rule or as a rule operating on complementary state
definitions. To focus the discussion, we will generally ignore the exis-
tence of rule 226 as a solution and concentrate only on rule 184.
However, all results and conclusions for rule 184 apply equally to
rule 226.

The performance described in Section 3.2 was obtained with a tran-
sition function F operating on the memory function sj

t of all cells

j œ hi in the neighborhood, including the center cell i that is being up-
dated. To determine whether this architecture was strictly necessary
for successful operation on this task, we tested variations of this
scheme whereby: (i) the transition function used only the memory si

t

of the center cell i and used the states si-1
t , si+1

t of the left and right
neighbors as is the case for a CA without memory, and (ii) the oppo-
site scheme where the transition function considered only the memory
of the left and right neighbors and not that of the center cell. These
memory schemes are detailed in equations (6) and (7), respectively:

(6)si
t+1  FIsi-1

t , si
t, si+1

t M

(7)si
t+1  FIsi-1

t , si
t, si+1

t M.

To minimize variation due to the effects explained in Section 3.2
caused by the finite number of iterations allowed, all trials were run
with a maximum of I  1500 iterations. Results for the memory
scheme in equation (6) were no better than those obtained without
memory for the same number of iterations, suggesting that memory
was needed for one or more of the left and right neighbors. In con-
trast, results (not shown) obtained for the memory scheme in equa-
tion (7) matched those obtained from the original memory scheme de-
scribed in equation (5). These results suggest that it is the memory in
the left and right neighbors that supports performance and that use of
memory in the center cell is not necessary.

As rules 184 and 226 are handed, it is possible that, for a given
rule, memory is needed in only the left or right neighbor and not
both. To assess this possibility, we implemented memory according to
equation (8) whereby only the memory state of the left neighbor was
considered (results are shown in Figure 5):

(8)si
t+1  FIsi-1

t , si
t, si+1

t M.

Perhaps surprisingly, when memory is only used with the left neigh-
bor, neither rule 184 nor rule 226 operates successfully on the density
classification task. It would thus appear that memory is needed on
both left and right neighbors for rules 184 and 226, despite the hand-
edness of these rules.

 336 C. Stone and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

Figure 5. Performance of the 256 ECA rules with asymmetric memory
(equation (8)) on the density classification task averaged over 104 trials of ICs
created using an unbiased distribution. N  149, I  1500.

4. The Operation of Memory

4.1 Rule 184

The truth table for rule 184 is shown in Table 1. The operation of the
rule is easily summarized as: “if the center cell is at state zero, shift
the state of the left neighbor into the center cell, else shift the state of
the right neighbor into the center cell” (equation (9)). This operation
implements a switch or multiplexer, but can also be interpreted as
being annihilating particles traveling in opposite directions [10|12]:

(9)si
t+1 

si-1
t : si

t  0

si+1
t : si

t  1.

si-1
t si

t si+1
t si

t+1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 1. Operation of rule 184. The first three columns are the neighborhood
and the rightmost column is the state of the center cell that results from apply-
ing the transition function on the neighborhood.

Rule 184 is conservative, that is, the number of one states in the
lattice is invariant across CA configurations. The rule can only alter
the distribution of density across the lattice, but it cannot alter the
overall density of the lattice. Rule 184 therefore cannot solve the
density classification task as it is formulated in Section 2.2. However,
it can be used to solve a modified version of the problem where the
final configuration consists of one or more blocks of consecutive ones
or zeros depending on the initial density [13]. Other authors have
shown that it is possible to use rule 184 followed by a different rule
to solve the density classification task in its standard formulation [12,
14, 15].

 Solving the Density Classification Task 337

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

Rule 184 is conservative, that is, the number of one states in the
lattice is invariant across CA configurations. The rule can only alter
the distribution of density across the lattice, but it cannot alter the
overall density of the lattice. Rule 184 therefore cannot solve the
density classification task as it is formulated in Section 2.2. However,
it can be used to solve a modified version of the problem where the
final configuration consists of one or more blocks of consecutive ones
or zeros depending on the initial density [13]. Other authors have
shown that it is possible to use rule 184 followed by a different rule
to solve the density classification task in its standard formulation [12,
14, 15].

Figure 6(a) demonstrates the operation of rule 184 on a sample lat-
tice. In this example, the IC consists of five black cells (state one) and
six white cells (state zero). Much of the final configuration in Figure
6(a) is made up of alternating black and white cells that is the peri-
odic background state characteristic of rule 184. However, note the
presence of two consecutive white cells representing the solution to
the modified version of the task. The final configuration for a solu-
tion to the formulated version of the density classification task for
this IC should be a lattice consisting of only white cells. It is clear that
this has not been achieved, even for this simple example.

Figure 6. (a) Rule 184 without memory fails to solve the density classification
task as formulated. (b) Rule 184 with memory solves the density classification
task using the same IC, the transformation of spatial information into tempo-
ral information that is used to solve the task is highlighted with dotted rectan-
gles. b  0.48.

4.2 Memory State

The memory system used here stores its condition as a real value,
which is thresholded and discretized to generate the binary state used
as input to the transition function. The results in Section 2 show that
supplementing rule 184 with such memory allows it to solve the den-
sity classification task. To gain some intuition about how this is
achieved we consider the internal condition of the memory mi

t

(equation (5)) as representing its long-term value and see how the ap-
plication of specific temporal sequences of cell states si

t+n affects the

memory state si
t+n used for the transition function n iterations later.

 338 C. Stone and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

The memory system used here stores its condition as a real value,
which is thresholded and discretized to generate the binary state used
as input to the transition function. The results in Section 2 show that
supplementing rule 184 with such memory allows it to solve the den-
sity classification task. To gain some intuition about how this is
achieved we consider the internal condition of the memory mi

t

(equation (5)) as representing its long-term value and see how the ap-
plication of specific temporal sequences of cell states si

t+n affects the

memory state si
t+n used for the transition function n iterations later.

Table 2 shows the truth table for the memory state si
t+4 for all pos-

sible combinations of four successive cell states si
t+n, n œ @0, 3D ap-

plied to a range of long-term memory conditions mi
t with b  0.48.

Cell States Initial Internal Memory Condition mi
t

si
0 si

1 si
2 si

3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2. Truth table showing the memory state si
t+4 resulting from four succes-

sive cell states si
t+n, n œ @0, 3D with various initial internal memory condi-

tions mi
t and b  0.48. The resulting memory state varies only in the presence

of temporal cell states 0001 and 1110 (bold numbers).

The table shows that memory state si
t+4 resulting from a sequence

of four successive cell states does not depend on the long-term mem-
ory condition mi

t except in the case of temporal patterns 0001 and

1110. Except for these two cases with certain values of mi
t, the mem-

ory state si
t+4 is identical to si

3 and memory has no effect. Similar re-
sults were obtained for other temporal sequence lengths (not shown).
The success of rule 184 with memory therefore must be attributable
to the changed behavior seen with temporal sequences of the form
0* 1 and 1* 0, that is, those where a one state occurs after a series of
zero states or vice versa. Once again, we will ignore symmetries and
consider only input sequences of the form 0* 1, noting that all results
apply equally to the temporal pattern 1* 0.

 Solving the Density Classification Task 339

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

The table shows that memory state si
t+4 resulting from a sequence

of four successive cell states does not depend on the long-term mem-
ory condition mi

t except in the case of temporal patterns 0001 and

1110. Except for these two cases with certain values of mi
t, the mem-

ory state si
t+4 is identical to si

3 and memory has no effect. Similar re-
sults were obtained for other temporal sequence lengths (not shown).
The success of rule 184 with memory therefore must be attributable
to the changed behavior seen with temporal sequences of the form
0* 1 and 1* 0, that is, those where a one state occurs after a series of
zero states or vice versa. Once again, we will ignore symmetries and
consider only input sequences of the form 0* 1, noting that all results
apply equally to the temporal pattern 1* 0.

It is apparent from Table 2 that the long-term condition of mem-
ory affects whether an input pattern of the form 0* 1 is able to affect
the resulting memory state compared to the case with no memory.
But just how many repeated zeros are necessary for this to happen?

For a given long-term memory condition mi
t, the memory condition

mi
t+n resulting from a sequence si

t …si
t+n-1 of n zeros is given by

(10)mi
t+n  H1 - bLn mi

t.

If state si
t+n  1 is appended to the sequence

(11)mi
t+n+1  mi

t+n + bI1 - mi
t+nM.

Without memory, a temporal sequence of the form 0* 1 will always
result in state si

t+n  1. For memory to create the opposite state

si
t+n  0, mi

t+n+1 must threshold to zero. So,

(12)

mi
t+n + b I1 - mi

t+nM § 0.5

mi
t+n § 1 - 1

2 H1-bL

n § log1-b

1-
1

2 H1-bL

mi
t .

For b  0.48 there must be a sequence of up to five consecutive
zeros Hn § 4.98L for memory to threshold to the opposite state to that
occurring with no memory. Figure 7 shows the surface resulting from
equation (12) for various values of long-term memory condition mt

and learning rate b. Given that a low value of mi
t means that the cell

already has a history of zeros, by cross referencing Figure 3 with
Figure 7 it is evident that typically three or four zeros are needed to
allow memory to create the opposite state compared to that obtained
with no memory. This action enables subsequent solution of the
density classification task.

 340 C. Stone and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

Figure 7. Number of consecutive zeros (block size) required to modify the
state of a cell’s neighborhood for various values of long-term memory condi-
tion mt and learning rate b.

4.3 Interaction with Rule 184

Section 4.2 showed that the succession of consecutive zeros that is
input into memory is critical to successful performance. These zeros
are a result of the shifting action of rule 184. Recall that with a center
cell of state zero, rule 184 shifts the state of the left neighbor into the
center cell. This operation is repeated for successive consecutive zeros
over multiple CA iterations, transforming spatial information into
temporal information. Similarly, with a center cell of state one, the
state of the right neighbor is taken. This symmetry explains the
finding in Section 3 that memory is needed on both left and right
neighbors for successful operation.

Figure 6(b) shows an example of rule 184 with memory solving the
density classification task and highlights this spatiotemporal transfor-
mation. In this case, a block of four consecutive white cells occurring
in the IC is transformed by the rule into a temporal sequence of four
zeros across successive CA configurations. At the time of the IC,
mi

t  mi
0  0.5. Under these internal memory conditions n § 3.92

(equation (12)) for b  0.48, so four zeros are all that is necessary to
allow this to occur. This is seen in Figure 6(b) as the highlighted block
of four white cells. As already discussed, Figure 6(a) shows the same
example without memory, where the system dynamics are controlled
by a periodic attractor resulting in the alternating background pattern
characteristic of rule 184.

The neighboring cells to the immediate left and right of the center
cell can be considered to be sensors detecting the environment. The
multiplexing action of rule 184 samples this environment and takes in
a copy of the state of the environment to the cell’s left or right, de-
pending on the value of the center cell. The center cell’s memory is
able to retain aspects of the information passing through the center
cell. Due to the action of rule 184 transforming spatial information
into temporal information, the temporal history of the center cell pro-
vides information about the spatial state of the environment outside
the immediate r  1 sensory area of the cell’s neighborhood. As
demonstrated in Section 4, for b  0.48 memory provides informa-
tion up to five time steps back and hence up to five cells away from
the center cell, albeit that this information is delayed in time. In this
way, memory extends the sensory capabilities of the CA and provides
information that is otherwise inaccessible to a standard r  1 CA.

 Solving the Density Classification Task 341

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

The neighboring cells to the immediate left and right of the center
cell can be considered to be sensors detecting the environment. The
multiplexing action of rule 184 samples this environment and takes in
a copy of the state of the environment to the cell’s left or right, de-
pending on the value of the center cell. The center cell’s memory is
able to retain aspects of the information passing through the center
cell. Due to the action of rule 184 transforming spatial information
into temporal information, the temporal history of the center cell pro-
vides information about the spatial state of the environment outside
the immediate r  1 sensory area of the cell’s neighborhood. As
demonstrated in Section 4, for b  0.48 memory provides informa-
tion up to five time steps back and hence up to five cells away from
the center cell, albeit that this information is delayed in time. In this
way, memory extends the sensory capabilities of the CA and provides
information that is otherwise inaccessible to a standard r  1 CA.

In the example in Figure 6(b), a block of four zero-value (white)
cells provides the seed for memory to create a cell state that enables
white cells to take over the lattice. Modification of cell state by the ac-
tion of memory has already been discussed in Section 4.2, but there is
a further effect that allows the density classification task to be solved.
Without memory, a spatial pattern of the form 0* 1 results in the cen-
ter cell having state one after the pattern has been consumed and the
center cell will transition to the state of the right neighbor. In other
words, it will sense the environment to its right. However, with mem-
ory, if the above conditions are satisfied, the center cell will have state
zero at the next iteration. This in turn affects the subsequent evolu-
tion of the lattice because this state means that at the next iteration
the center cell will transition to the state of the left neighbor once
again. This provides a mechanism for growing contiguous blocks
of cells with state zero. Once one of these blocks starts growing, the
memory conditions mi

t rapidly become polarized in cells where the
block is located and it becomes increasingly difficult for cells with
state one to disrupt the growth of the block.

5. Conclusion

In its standard formulation the density classification task cannot be
solved by an r  1 CA. However, we have shown that by augmenting
a well-known ECA, rule 184 (or rule 226), with a simple form of
memory, performance approaching that of the best-known r  3 CAs
is possible. This performance is achieved using only local communica-
tion, that is, with the neighbors immediately adjacent to a cell. Such
communication topology is important for parallel computing architec-
tures embedded in traditional silicon hardware devices or for future
nanoscale devices.

Investigation of rule 184 with the chosen memory scheme revealed
three key differences compared to operation of the CA without
memory. (i) Rule 184 allows spatial information encoded in the
lattice to be transformed into temporal information. In the standard
CA this offers no benefit, but memory is able to retain aspects of this
information that are useful in solving the problem. (ii) The memory
scheme investigated can detect the existence of a block of cells having
a common state. When this occurs, information is signaled to the tran-
sition function as a changed state. (iii) Thus, the cell is able to tran-
sition to a different state compared to the case with no memory and
increase the size of the block of cells having a common state.

 342 C. Stone and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

Investigation of rule 184 with the chosen memory scheme revealed
three key differences compared to operation of the CA without
memory. (i) Rule 184 allows spatial information encoded in the
lattice to be transformed into temporal information. In the standard
CA this offers no benefit, but memory is able to retain aspects of this
information that are useful in solving the problem. (ii) The memory
scheme investigated can detect the existence of a block of cells having
a common state. When this occurs, information is signaled to the tran-
sition function as a changed state. (iii) Thus, the cell is able to tran-
sition to a different state compared to the case with no memory and
increase the size of the block of cells having a common state.

Although the discussion has focused on blocks of zeros, symmetries
in both the rule and memory mean that blocks of ones are similarly
affected. Globally, this allows the ECA to break its usual conservative-
ness and allow lattice density to change, a requirement for solving this
task.

Other aspects of the operation of the memory scheme are also inter-
esting. The memory scheme is quite robust on this task and successful
operation is possible over a wide range of learning rates. It is very spe-
cific in operation and presents the same neighborhood to a cell as for
the case with no memory, except under the specific circumstances
when a block is detected. Furthermore, the transition function and
memory are symbiotic, each providing mechanisms and information
that is used by the other to solve the problem. These aspects warrant
further study to see if they are general phenomena exhibited by other
successful natural and artificial systems with memory.

Following the success of solving the density classification task with
rule 184 and memory, we have extended this work to see how mem-
ory affects other emergent systems [16].

Acknowledgments

This work was supported under EPSRC grant number EP/E049281/1.

References

[1] R. Alonso-Sanz, “Cellular Automata with Memory,” Encyclopedia
of Complexity and System Science (R. A. Meyers, ed.), New York:
Springer-Verlag, 2009.

[2] J. P. Crutchfield, M. Mitchell, and R. Das, “The Evolutionary Design of
Collective Computation in Cellular Automata,” Evolutionary Dynam-
ics~Exploring the Interplay of Selection, Neutrality, Accident, and
Function (J. P. Crutchfield and P. K. Schuster, eds.), New York: Oxford
University Press, 2003 pp. 361|411.

[3] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[4] M. Land and R. K. Belew, “No Perfect Two-State Cellular Automata
for Density Classification Exists,” Physical Review Letters, 74(25),
1995 pp. 5148|5150.

[5] P. P. B. de Oliveira, J. C. Bortot, and G. M. B. Oliveira, “The Best
Known Class of Dynamically Equivalent Cellular Automata Rules for
Density Classification,” Neurocomputing, 70(1-3), 2006 pp. 35|43.
doi.10.1016/j.neucom.2006.07.003.

 Solving the Density Classification Task 343

Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

[6] R. Alonso-Sanz and L. Bull, “Elementary Coupled Cellular Automata
with Memory,” Automata 2008: Theory and Applications of Cellular
Automata (A. Adamatzky, R. Alonso-Sanz, A. Lawniczak, G. J. Mar-
tinez, K. Morita, and T. Worsch, eds.), Frome, UK: Luniver Press, 2008
pp. 72|99.

[7] R. Alonso-Sanz and L. Bull, “One-Dimensional Coupled Cellular
Automata with Memory: Initial Investigations,” Journal of Cellular
Automata, in press.

[8] B. Widrow and M. E. Hoff, “Adaptive Switching Circuits,” IRE
WESCON Convention Record, 4, 1960 pp. 96|104.

[9] H. Juillé and J. B. Pollack, “Coevolving the ‘Ideal’ Trainer: Application
to the Discovery of Cellular Automata Rules,” in Genetic Programming
1998, Proceedings of the Third Annual Programming Conference
(GP’98), Madison, WI (J. R. Koza, W. Banzhaf, K. Chellapilla,
M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and
R. L. Riolo, eds.), San Francisco: Morgan Kaufmann, 1998 pp. 519|527.

[10] V. Belitsky and P. A. Ferrari, “Ballistic Annihilation and Deterministic
Surface Growth,” Journal of Statistical Physics, 80(3-4), 1995
pp. 517|543. doi.10.107/BF02178546.

[11] V. Belitsky and P. A. Ferrari, “Invariant Measures and Convergence
Properties for Cellular Automaton 184 and Related Processes,” Journal
of Statistical Physics, 118(3-4), 2005 pp. 589|623.

[12] H. Fuks
ç
, “Solution of the Density Classification Problem with

Two Cellular Automata Rules,” Physical Review E, 55(3), 1997
pp. 2081|2084.

[13] M. S. Capcarrère, M. Sipper, and M. Tomassini, “Two-State, r  1
Cellular Automaton that Classifies Density,” Physical Review Letters,
77(24), 1996 pp. 4969|4971.

[14] H. Kanoh and Y. Wu, “Evolutionary Design of Rule Changing Cellular
Automata,” in Knowledge-Based Intelligent Information and Engineer-
ing Systems, Proceedings of the Seventh International Conference
(Part 1) (KES’03), Oxford, UK, Lecture Notes in Computer Science,
2773, Berlin: Springer, 2003 pp. 258|264. doi.10.1007/b12002.

[15] C. L. M. Martins and P. P. B de Oliveira, “Evolving Sequential Combina-
tions of Elementary Cellular Automata Rules,” in Advances in Artificial
Life, Proceedings of the Eighth European Conference (ECAL’05), Can-
terbury, UK (M. S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G. John-
son, and J. Timmis, eds.), Lecture Notes in Artificial Intelligence, 3630,
Berlin: Springer, 2005 pp. 461|470. doi.10.1007/11553090_ 47.

[16] C. Stone, R. Toth, B. De Lacy Costello, L. Bull, and A. Adamatzky,
“Coevolving Cellular Automata with Memory for Chemical Computing:
Boolean Logic Gates in the BZ Reaction,” in Proceedings of the Tenth
International Conference on Parallel Problem Solving from Nature
(PPSN X), Dortmund, Germany (G. Rudolph, T. Jansen, S. Lucas,
C. Poloni, and N. Beume, eds.), Lecture Notes in Computer Science,
5199, Berlin: Springer, 2008 pp. 579|588.
doi.10.1007/978-3-540-87700-4_ 58.

 344 C. Stone and L. Bull

 Complex Systems, 18 © 2009 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.3.329

