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A type of memory based on the least mean square algorithm is explored
on  the  density  classification  task,  which  is  a  well-known  test  problem
for  two-state  discrete  dynamical  systems.  In  the  absence  of  memory,
there  is  no  elementary  cellular  automaton  that  can  solve  this  task.
However,  when  augmented  with  memory,  the  performance  of  elemen-
tary cellular  automaton 184 approaches  that  of  the  best-known radius
three cellular automata found in the literature. It is found that rule 184
transforms  spatial  information  about  the  neighborhood  into  temporal
information that memory is able to retain and present to the rule’s tran-
sition  function.  This  causes  the  cell  to  transition  to  a  different  state
compared  to  the  case  when  no  memory  is  present,  which  extends
blocks of cells having a common state to facilitate a solution of the task.

1. Introduction

Typically,  the  behavior  of  a  complex  system  cannot  be  predicted  by
any  means  but  numerical  simulation.  For  this  reason,  computational
models  are  extremely  important  in  modern  biology,  sociology,  ad-
vanced engineering, ecology, agriculture, and urban studies. 

A  number  of  computational  models  have  been  presented  with
which to study and/or exploit the aggregate behavior and self-organi-
zation  of  a  number  of  simple  interacting  components.  Among  these
models, cellular automata (CAs) have been widely used to model com-
plex  natural  and  artificial  systems  and  are  well-studied  in  their  basic
form. 

Typically,  this  study  does  not  include  memory,  that  is,  previous
state  information,  at  the  component  level.  However,  memory  is  an
essential feature of all living systems and a significant part of physical,
chemical,  and  engineering  systems.  We  are  undertaking  systematic
studies in the use and effects of memory in the components of discrete
dynamical  systems  with  the  aim  of  identifying new  underlying  prin-
ciples  of  complex systems.  An overview of  CAs with  memory is  pre-
sented in [1]. 
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Typically,  this  study  does  not  include  memory,  that  is,  previous
state  information,  at  the  component  level.  However,  memory  is  an
essential feature of all living systems and a significant part of physical,
chemical,  and  engineering  systems.  We  are  undertaking  systematic
studies in the use and effects of memory in the components of discrete
dynamical  systems  with  the  aim  of  identifying new  underlying  prin-
ciples  of  complex systems.  An overview of  CAs with  memory is  pre-
sented in [1]. 

In this paper we explore the effect of a simple type of memory on
the  density  classification  task,  a  well-known  test  problem  for  one-
dimensional  CAs.  We  find  that  with  memory,  performance  on  the
task  for  an  elementary  CA  approaches  that  of  the  best-known  CAs
found  by  other  researchers.  Without  memory  there  is  no  elementary
CA that can solve the task [2]. 

This paper is organized as follows. Section 2 provides an overview
of  CAs  and  the  density  classification  task.  Section  3  describes  the
memory  scheme  used  and  the  results  of  experiments  undertaken  on
the density classification task. Section 4 gives a detailed description of
the operation of the CA with memory and Section 5 provides conclu-
sions. 

2. Background

2.1 Cellular Automata

Cellular  automata are a class  of  discrete  dynamical  system consisting
of  a  spatial  lattice  of  N  homogeneous  automata  (cells)  that  are
updated synchronously in discrete time steps t. At each time step t + 1
an automaton i œ N  takes  one  of  k  possible  states  by  considering  its
own current  state  si  and that  of  other spatially  local  automata com-
prising the cell’s neighborhood. The state update is performed accord-
ing  to  some  transition  function  F.  At  start  time  t0  the  states  of  the
automata are set according to some externally imposed initial configu-
ration (IC). 

The  CAs  considered  in  this  paper  are  one-dimensional  N  149
with  periodic  boundary  conditions,  that  is,  the  lattice  forms  a  ring.
The automata neighborhood h  consists of a cell  i  and all  the cells lo-
cated within a radius r of that cell: 

(1)h  9si-r, … , si-1, si, si+1, … , si+r=.

The  automata  are  binary  (k  2)  with  s œ 80, 1<  and  a  neighbor-
hood of r  1. That is, the next state of a cell is determined by its cur-
rent state and that of the two immediately adjacent cells to its left and
right, h  9si-1, si, si+1=.  Such a CA is known as an elementary CA
(ECA)  [3].  ECAs  have  a  transition  function  of  256  possible  states,  a
number amenable to study. For this reason, ECAs have been the sub-
ject of much research effort in the last 20 or so years. 

The  transition  function  F  takes  the  form  of  a  rule,  usually  repre-
sented  as  a  binary  truth  table,  containing  all  possible  neighborhood
configurations and a corresponding new state st+1. 
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2.2 The Density Classification Task

The density classification task has been studied for many years. In this
task,  a  one-dimensional  binary  CA  is  initialized  with  a  random  IC
and iterated for a maximum number of steps I or until a fixed point is
reached. If the IC contains more ones than zeros, the CA is deemed to
have  solved  the  task  if  a  fixed  point  of  all  ones  is  reached  and  vice
versa. The fraction of ones in a CA configuration is denoted as r,  so
the problem solution rf  for an IC of r0 is

(2)rf =
0 : r0 < 0.5

1 : r0 > 0.5.

The situation where the IC contains an equal number of ones and ze-
ros (r  0.5) is normally avoided by using an odd number of cells.

This is a difficult task for a CA because a solution requires coordi-
nating the global state of the system while using only local communi-
cation  between  cells  provided  by  the  neighborhood.  For  this  reason,
the  density  classification  task  is  widely  used  as  a  standard  test
function to explore CA behavior. 

The  ability  of  a  particular  ECA  to  solve  the  density  classification
task depends on the IC. Intuitively, ICs containing many ones or zeros
are  closer  in  Hamming  distance  to  one  of  the  solution  fixed  points,
making  it  easier  for  a  CA  to  iterate  to  the  correct  fixed  point  com-
pared to an IC containing a more or less equal mix of ones and zeros.
For  this  reason,  performance  of  a  CA  on  the  density  classification
task is estimated by sampling many ICs generated from a known dis-
tribution. Performance is then the fractional number of times the CA
achieves the correct fixed point. It has been proven [4] that no binary
CA  exists  that  solves  the  density  classification  task  for  all  possible
ICs. Thus, a binary CA can only solve the problem for specific ICs or
to a particular degree over multiple ICs. 

Generating ICs using an equal probability of each cell being in the
one or zero state creates a binomial distribution. There are more ways
to  create  ICs  with  r º 0.5  than  the  extreme  values  of  r  0  and
r  1. Mean performance with ICs created using a binomial distribu-
tion is thus typically lower than that obtained when ICs are created us-
ing  a  distribution  where  values  of  r  are  sampled  uniformly  in  the
range @0, 1D. 

The stochastic variation occurring when sampling ICs is such that,
depending  on  available  computational  resources,  a  rule  is  evaluated
using a minimum of 100 random ICs. For the exhaustive search data
presented  in  Section  3.2,  we  use  104  ICs  for  each  datum.  Other  re-
searchers  interested in  determining the  best  possible  performance ob-
tainable  from  a  CA  on  the  density  classification  task  commonly  use
105 or more trials each of a maximum of I  300 iterations [5].
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3. The Effects of Memory

3.1 Memory

A  simple  way  of  implementing  memory  is  for  the  CA  transition
function to consider the neighborhood h of a cell i supplemented with

the state si
t-1 of the cell on the previous cycle: 

(3)si
t+1  FIsj

t œ hi, si
t-1M.

However,  this  means  that  the  size  of  the  transition  function  must
increase  to  incorporate  the  extra  state,  doubling  the  size  of  the  state
space. Moreover, such a memory mechanism makes it difficult to com-
pare  directly  the  effects  of  adding memory to  a  CA,  since  the  transi-
tion function is different with and without memory. 

To overcome these  limitations,  memory must  be included in a  CA
without  affecting  the  transition  function  F.  An  approach  to  solving
the  density  classification  task  with  memory  was  made  in  [6,  7]  by
means  of  a  memory  implementation  considering  the  majority  of  the
last three state values (t  3): 

(4)
si
t = majorityIsi

t-2, si
t-1, si

tM

si
t+1 = F Isj

t œ hiM.

In  the  simulation  of  a  series  of  105  different  initial  densities  uni-
formly  sampled  over  @0, 1D,  114  densities  were  misclassified  under
rule 184 with N  400, I  1500, and t  3. All of the misclassifica-
tions occurred with initial densities close to the watershed r0  0.5. 

Here we implement a form of memory using the well-known least
mean square (LMS) algorithm [8] with learning rate b.  This provides
an exponentially weighted moving average memory with no transition
function overhead. For this type of memory: 

(5)

mi
0 = 0.5

mi
t+1 = mi

t + b Isi
t - mi

tM

si
t =

0 : mi
t+1 § 0.5

1 : mi
t+1 > 0.5

si
t+1 = F Isj

t œ hiM.

The  learning  rate  b  controls  the  amount  of  memory  with  b  0
providing infinite memory and b ¥ 0.5 corresponding to no memory.
With this memory arrangement, the transition function is the same as
the  case  with  no  memory.  However,  the  neighborhood  presented  to
the  transition  function  may  be  different  between the  two  cases
because  of  the  action  of  memory.  This  aspect  will  be  extensively
discussed in the following sections. 
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The  learning  rate  b  controls  the  amount  of  memory  with  b  0
providing infinite memory and b ¥ 0.5 corresponding to no memory.
With this memory arrangement, the transition function is the same as
the  case  with  no  memory.  However,  the  neighborhood  presented  to
the  transition  function  may  be  different  between the  two  cases
because  of  the  action  of  memory.  This  aspect  will  be  extensively
discussed in the following sections. 

3.2 The Density Classification Task with Memory

The  density  classification  task  is  usually  undertaken  using  a  binary
CA with  radius  r  3.  This  is  because  smaller  neighborhoods  do not
support  the  behavior  necessary  to  provide  sufficient  performance  on
the task [2]. In particular, with r  1 performance measured over 104

trials of ICs does not exceed much more than 0.5 for any of the 256
possible rules (Figure 1). In these runs each trial starts from a random
IC created using an unbiased (binomial)  distribution. The CA is  then
iterated for up to 300 configurations or until a fixed point is reached. 

In contrast,  CAs with radius r  3 routinely achieve performances
of around 0.65 or above [2, 9]. At the time of writing, the best r  3
CA found so far using machine learning techniques achieves a perfor-
mance of 0.8616 averaged over 105 trials, each of 300 iterations [5]. 

A  CA  may  be  supplemented  with  the  exponentially  weighted
moving average memory described in Section 3 without changing the
rule used by the CA to transition to the next state. Figure 2 shows the
performance of the 256 ECA rules with memory. The learning rate b
of  the  memory  was  sampled  in  the  range  @0, 0.5D  in  steps  of  0.01.
Values  of  b  greater  than  0.5  provided  performance  equal  to  that  of
the CA with no memory and for greater clarity are not shown. Due to
the  total  number  of  trials  involved  in  producing  this  map,  the
performance  of  each  combination  of  CA  rule  and  learning  rate  was
sampled over only 104 trials. Even so, Figure 2 shows clearly that two
rules are able to provide reasonable performance on the density classi-
fication task over a range of learning rates.  For reference,  these rules
are  184 and 226 using  the  standard ECA nomenclature  [3]  and they
achieve  performance  of  up  to  approximately  0.65  with
b œ @0.45, 0.49D. 

Figure 1. Performance of the 256 ECA rules on the density classification task
averaged  over  104  trials  of  ICs  created  using  an  unbiased  distribution.
N  149, I  300.
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Figure 2. Performance of the 256 ECA rules with memory on the density classi-
fication task averaged over 104  trials of ICs created using an unbiased distri-
bution. N  149, I  300.

Although  the  performance  of  ECAs  184  and  226  with  memory  is
respectable,  it  is  not  competitive  with  that  obtained  from  the  r  3
CA results appearing in the literature. One of the differences between
r  1  and  r  3  CAs  is  that  the  latter  support  faster  communication
across cells. This is because it is possible for a signal in the form of a
spatial  pattern to move three  cells  per  CA iteration in  the  case  of  an
r  3 CA compared to one cell  for r  1. As this  speed is  slower for
the ECAs, it  is  to be expected that they might take longer to reach a
fixed  point  than  would  be  the  case  for  the  r  3  CAs  and  therefore
may  be  handicapped  by  the  limit  of  I  300  iterations  per  trial.  To
determine  if  this  was  the  case,  we  produced  a  further  performance
map  of  the  ECAs  where  the  maximum number  of  iterations  allowed
was 900, this being three times the previous limit.  Results are shown
in Figure 3. 

Figure 3. Performance of the 256 ECA rules with memory on the density classi-
fication task averaged over 104  trials of ICs created using an unbiased distri-
bution. N  149, I  900.

When allowed more iterations to reach a fixed point, rules 184 and
226  were  able  to  provide  performance  exceeding  0.8  on  the  density
classification  task.  Moreover,  the  shape  of  the  performance  curves
seen  in  Figure  2  as  the  learning  rate  varies  is  now much flatter,  sug-
gesting that the task is  solvable over a wider range of possible learn-
ing rates.  Figure  4 shows that,  on average,  it  takes  longer  to  reach a
fixed  point  with  lower  numerical  values  of  b  and  that  even  with
higher  values  of  b,  the  mean  number  of  iterations  to  reach  a  fixed
point is roughly 220, which is close to the standard maximum of 300
iterations.  This  is  the  reason  for  the  poorer  performance  when  the
maximum number of iterations is limited to 300 and with low learn-
ing rates. 
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When allowed more iterations to reach a fixed point, rules 184 and
226  were  able  to  provide  performance  exceeding  0.8  on  the  density
classification  task.  Moreover,  the  shape  of  the  performance  curves
seen  in  Figure  2  as  the  learning  rate  varies  is  now much flatter,  sug-
gesting that the task is  solvable over a wider range of possible learn-
ing rates.  Figure  4 shows that,  on average,  it  takes  longer  to  reach a
fixed  point  with  lower  numerical  values  of  b  and  that  even  with
higher  values  of  b,  the  mean  number  of  iterations  to  reach  a  fixed
point is roughly 220, which is close to the standard maximum of 300
iterations.  This  is  the  reason  for  the  poorer  performance  when  the
maximum number of iterations is limited to 300 and with low learn-
ing rates. 

When  allowed  a  maximum  of  I  900  iterations  and  using
b  0.48, rules 184 and 226 with memory provide mean performance
of  0.82  averaged  over  105  trials.  This  is  competitive  with  that
obtained  from  r  3  rules  over  300  iterations.  The  learning  rate  of
b  0.48  is  used  throughout  this  paper  as  it  is  a  typical  value
resulting in good performance on the density classification task. 

Figure  4.  Mean  number  of  iterations  to  reach  a  fixed  point  against  learning
rate. Rules 184 and 226 with memory on the density classification task aver-
aged over 104  trials  of ICs created using an unbiased distribution. N  149,
I  900.

3.3 Memory and the Neighborhood

Rules 184 and 226 belong to the same equivalence class. If the neigh-
borhood is reflected around the center cell such that the orientation of
cells  i - 1 and i + 1 are  reversed,  the  two rules  are  identical.  Alterna-
tively,  one  rule  may  be  transformed  into  the  other  by  inverting  the
states  in  the  transition  rule  so  that  a  0  becomes  a  1  and  vice  versa.
These ECAs may thus be viewed as left- and right-handed versions of
the same transition rule or as a rule operating on complementary state
definitions. To focus the discussion, we will generally ignore the exis-
tence  of  rule  226  as  a  solution  and  concentrate  only  on  rule  184.
However,  all  results  and  conclusions  for  rule  184  apply  equally  to
rule 226. 
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Rules 184 and 226 belong to the same equivalence class. If the neigh-
borhood is reflected around the center cell such that the orientation of
cells  i - 1 and i + 1 are  reversed,  the  two rules  are  identical.  Alterna-
tively,  one  rule  may  be  transformed  into  the  other  by  inverting  the
states  in  the  transition  rule  so  that  a  0  becomes  a  1  and  vice  versa.
These ECAs may thus be viewed as left- and right-handed versions of
the same transition rule or as a rule operating on complementary state
definitions. To focus the discussion, we will generally ignore the exis-
tence  of  rule  226  as  a  solution  and  concentrate  only  on  rule  184.
However,  all  results  and  conclusions  for  rule  184  apply  equally  to
rule 226. 

The performance described in Section 3.2 was obtained with a tran-
sition  function  F  operating  on  the  memory  function  sj

t  of  all  cells

j œ hi  in the neighborhood, including the center cell i that is being up-
dated.  To  determine  whether  this  architecture  was  strictly  necessary
for  successful  operation  on  this  task,  we  tested  variations  of  this
scheme  whereby:  (i)  the  transition  function  used  only  the  memory  si

t

of the center cell i  and used the states si-1
t , si+1

t  of the left and right
neighbors as is the case for a CA without memory, and (ii) the oppo-
site scheme where the transition function considered only the memory
of  the  left  and  right  neighbors  and  not  that  of  the  center  cell.  These
memory schemes are detailed in equations (6) and (7), respectively: 

(6)si
t+1  FIsi-1

t , si
t, si+1

t M

(7)si
t+1  FIsi-1

t , si
t, si+1

t M.

To  minimize  variation  due  to  the  effects  explained  in  Section  3.2
caused  by  the  finite  number  of  iterations  allowed,  all  trials  were  run
with  a  maximum  of  I  1500  iterations.  Results  for  the  memory
scheme  in  equation  (6)  were  no  better  than  those  obtained  without
memory  for  the  same  number  of  iterations,  suggesting  that  memory
was  needed  for  one  or  more  of  the  left  and  right  neighbors.  In  con-
trast,  results  (not  shown)  obtained  for  the  memory  scheme  in  equa-
tion (7) matched those obtained from the original memory scheme de-
scribed in equation (5). These results suggest that it is the memory in
the left and right neighbors that supports performance and that use of
memory in the center cell is not necessary. 

As  rules  184  and  226  are  handed,  it  is  possible  that,  for  a  given
rule,  memory  is  needed  in  only  the  left  or  right  neighbor  and  not
both. To assess this possibility, we implemented memory according to
equation (8) whereby only the memory state of the left neighbor was
considered (results are shown in Figure 5):

(8)si
t+1  FIsi-1

t , si
t, si+1

t M.

Perhaps surprisingly, when memory is only used with the left neigh-
bor, neither rule 184 nor rule 226 operates successfully on the density
classification  task.  It  would  thus  appear  that  memory  is  needed  on
both left and right neighbors for rules 184 and 226, despite the hand-
edness of these rules. 
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Figure  5.  Performance  of  the  256  ECA  rules  with  asymmetric  memory
(equation (8)) on the density classification task averaged over 104 trials of ICs
created using an unbiased distribution. N  149, I  1500.

4. The Operation of Memory

4.1 Rule 184

The truth table for rule 184 is shown in Table 1. The operation of the
rule  is  easily  summarized  as:  “if  the  center  cell  is  at  state  zero,  shift
the state of the left neighbor into the center cell, else shift the state of
the right neighbor into the center cell” (equation (9)).  This operation
implements  a  switch  or  multiplexer,  but  can  also  be  interpreted  as
being annihilating particles traveling in opposite directions [10|12]:

(9)si
t+1 

si-1
t : si

t  0

si+1
t : si

t  1.

si-1
t  si

t si+1
t  si

t+1

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

Table 1. Operation of rule 184. The first three columns are the neighborhood
and the rightmost column is the state of the center cell that results from apply-
ing the transition function on the neighborhood.

Rule  184  is  conservative,  that  is,  the  number  of  one  states  in  the
lattice  is  invariant  across  CA  configurations.  The  rule  can  only  alter
the  distribution  of  density  across  the  lattice,  but  it  cannot  alter  the
overall  density  of  the  lattice.  Rule  184  therefore  cannot  solve  the
density classification task as it is formulated in Section 2.2. However,
it  can  be  used  to  solve  a  modified  version  of  the  problem where  the
final configuration consists of one or more blocks of consecutive ones
or  zeros  depending  on  the  initial  density  [13].  Other  authors  have
shown that  it  is  possible  to  use  rule  184 followed by a  different  rule
to solve the density classification task in its standard formulation [12,
14, 15]. 
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Rule  184  is  conservative,  that  is,  the  number  of  one  states  in  the
lattice  is  invariant  across  CA  configurations.  The  rule  can  only  alter
the  distribution  of  density  across  the  lattice,  but  it  cannot  alter  the
overall  density  of  the  lattice.  Rule  184  therefore  cannot  solve  the
density classification task as it is formulated in Section 2.2. However,
it  can  be  used  to  solve  a  modified  version  of  the  problem where  the
final configuration consists of one or more blocks of consecutive ones
or  zeros  depending  on  the  initial  density  [13].  Other  authors  have
shown that  it  is  possible  to  use  rule  184 followed by a  different  rule
to solve the density classification task in its standard formulation [12,
14, 15]. 

Figure 6(a) demonstrates the operation of rule 184 on a sample lat-
tice. In this example, the IC consists of five black cells (state one) and
six white  cells  (state  zero).  Much of  the  final  configuration in  Figure
6(a)  is  made  up  of  alternating  black  and  white  cells  that  is  the  peri-
odic  background  state  characteristic  of  rule  184.  However,  note  the
presence  of  two  consecutive  white  cells  representing  the  solution  to
the  modified  version  of  the  task.  The  final  configuration  for  a  solu-
tion  to  the  formulated  version  of  the  density  classification  task  for
this IC should be a lattice consisting of only white cells. It is clear that
this has not been achieved, even for this simple example.  

Figure 6. (a) Rule 184 without memory fails to solve the density classification
task as formulated. (b) Rule 184 with memory solves the density classification
task using the same IC, the transformation of spatial information into tempo-
ral information that is used to solve the task is highlighted with dotted rectan-
gles. b  0.48.

4.2 Memory State

The  memory  system  used  here  stores  its  condition  as  a  real  value,
which is thresholded and discretized to generate the binary state used
as input to the transition function. The results in Section 2 show that
supplementing rule 184 with such memory allows it to solve the den-
sity  classification  task. To  gain  some  intuition  about  how  this  is
achieved  we  consider  the  internal  condition  of  the  memory  mi

t

(equation (5)) as representing its long-term value and see how the ap-
plication of  specific  temporal  sequences  of  cell  states  si

t+n  affects  the

memory state si
t+n used for the transition function n iterations later. 
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The  memory  system  used  here  stores  its  condition  as  a  real  value,
which is thresholded and discretized to generate the binary state used
as input to the transition function. The results in Section 2 show that
supplementing rule 184 with such memory allows it to solve the den-
sity  classification  task. To  gain  some  intuition  about  how  this  is
achieved  we  consider  the  internal  condition  of  the  memory  mi

t

(equation (5)) as representing its long-term value and see how the ap-
plication of  specific  temporal  sequences  of  cell  states  si

t+n  affects  the

memory state si
t+n used for the transition function n iterations later. 

Table 2 shows the truth table for the memory state si
t+4  for all pos-

sible  combinations  of  four  successive  cell  states  si
t+n, n œ @0, 3D  ap-

plied to a range of long-term memory conditions mi
t with b  0.48. 

Cell States Initial Internal Memory Condition mi
t

si
0 si

1 si
2 si

3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2. Truth table showing the memory state si
t+4 resulting from four succes-

sive  cell  states  si
t+n, n œ @0, 3D  with  various  initial  internal  memory  condi-

tions mi
t  and b  0.48. The resulting memory state varies only in the presence

of temporal cell states 0001 and 1110 (bold numbers).

The table  shows that  memory state  si
t+4  resulting from a sequence

of four successive cell  states does not depend on the long-term mem-
ory  condition  mi

t  except  in  the  case  of  temporal  patterns  0001  and

1110. Except for these two cases with certain values of mi
t, the mem-

ory state si
t+4  is identical to si

3  and memory has no effect. Similar re-
sults were obtained for other temporal sequence lengths (not shown).
The  success  of  rule  184  with  memory  therefore  must  be  attributable
to  the  changed  behavior  seen  with  temporal  sequences  of  the  form
0* 1 and 1* 0, that is,  those where a one state occurs after a series of
zero  states  or  vice  versa.  Once  again, we  will  ignore  symmetries  and
consider only input sequences of the form 0* 1, noting that all results
apply equally to the temporal pattern 1* 0. 
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The table  shows that  memory state  si
t+4  resulting from a sequence

of four successive cell  states does not depend on the long-term mem-
ory  condition  mi

t  except  in  the  case  of  temporal  patterns  0001  and

1110. Except for these two cases with certain values of mi
t, the mem-

ory state si
t+4  is identical to si

3  and memory has no effect. Similar re-
sults were obtained for other temporal sequence lengths (not shown).
The  success  of  rule  184  with  memory  therefore  must  be  attributable
to  the  changed  behavior  seen  with  temporal  sequences  of  the  form
0* 1 and 1* 0, that is,  those where a one state occurs after a series of
zero  states  or  vice  versa.  Once  again, we  will  ignore  symmetries  and
consider only input sequences of the form 0* 1, noting that all results
apply equally to the temporal pattern 1* 0. 

It  is  apparent  from Table  2  that  the  long-term condition  of  mem-
ory affects whether an input pattern of the form 0* 1 is able to affect
the  resulting  memory  state  compared  to  the  case  with  no  memory.
But just how many repeated zeros are necessary for this to happen? 

For a given long-term memory condition mi
t, the memory condition

mi
t+n resulting from a sequence si

t …si
t+n-1 of n zeros is given by

(10)mi
t+n  H1 - bLn mi

t.

If state si
t+n  1 is appended to the sequence

(11)mi
t+n+1  mi

t+n + bI1 - mi
t+nM.

Without memory, a temporal sequence of the form 0* 1 will always
result  in  state  si

t+n  1.  For  memory  to  create  the  opposite  state

si
t+n  0, mi

t+n+1 must threshold to zero. So, 

(12)

mi
t+n + b I1 - mi

t+nM § 0.5

mi
t+n § 1 - 1

2 H1-bL

n § log1-b

1-
1

2 H1-bL

mi
t .

For  b  0.48  there  must  be  a  sequence  of  up  to  five  consecutive
zeros Hn § 4.98L for memory to threshold to the opposite state to that
occurring with no memory. Figure 7 shows the surface resulting from
equation  (12)  for  various  values  of  long-term  memory  condition  mt

and learning rate b. Given that a low value of mi
t  means that the cell

already  has  a  history  of  zeros,  by  cross  referencing  Figure  3  with
Figure  7  it  is  evident  that  typically  three  or  four  zeros  are  needed to
allow memory to create the opposite state compared to that obtained
with  no  memory.  This  action  enables  subsequent  solution  of  the
density classification task. 
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Figure  7.  Number  of  consecutive  zeros  (block  size)  required  to  modify  the
state of a cell’s neighborhood for various values of long-term memory condi-
tion mt and learning rate b. 

4.3 Interaction with Rule 184

Section  4.2  showed  that  the  succession  of  consecutive  zeros  that  is
input  into  memory  is  critical  to  successful  performance.  These  zeros
are a result of the shifting action of rule 184. Recall that with a center
cell of state zero, rule 184 shifts the state of the left neighbor into the
center cell. This operation is repeated for successive consecutive zeros
over  multiple  CA  iterations,  transforming  spatial information  into
temporal  information.  Similarly,  with  a  center  cell  of  state  one,  the
state  of  the  right  neighbor  is  taken.  This  symmetry  explains  the
finding  in  Section  3  that  memory  is  needed  on  both  left  and  right
neighbors for successful operation. 

Figure 6(b) shows an example of rule 184 with memory solving the
density classification task and highlights this spatiotemporal transfor-
mation. In this case, a block of four consecutive white cells occurring
in the IC is transformed by the rule into a temporal sequence of four
zeros  across  successive  CA  configurations.  At  the  time  of  the  IC,
mi

t  mi
0  0.5.  Under  these  internal  memory  conditions  n § 3.92

(equation (12)) for b  0.48, so four zeros are all that is necessary to
allow this to occur. This is seen in Figure 6(b) as the highlighted block
of four white  cells.  As already discussed,  Figure 6(a)  shows the same
example  without  memory,  where  the  system dynamics  are  controlled
by a periodic attractor resulting in the alternating background pattern
characteristic of rule 184. 

The neighboring cells  to the immediate left  and right of the center
cell  can  be  considered  to  be  sensors  detecting  the  environment.  The
multiplexing action of rule 184 samples this environment and takes in
a  copy  of  the  state  of  the  environment  to  the  cell’s  left  or  right,  de-
pending  on  the  value  of  the  center  cell.  The  center  cell’s  memory  is
able  to  retain  aspects  of  the  information  passing  through  the  center
cell.  Due  to the  action  of  rule  184  transforming  spatial  information
into temporal information, the temporal history of the center cell pro-
vides  information  about  the  spatial  state  of  the  environment  outside
the  immediate  r  1  sensory  area  of  the  cell’s  neighborhood.  As
demonstrated  in  Section  4,  for  b  0.48  memory  provides  informa-
tion up to five  time steps  back and hence up to five  cells  away from
the  center  cell,  albeit  that  this  information is  delayed in  time.  In  this
way, memory extends the sensory capabilities of the CA and provides
information that is otherwise inaccessible to a standard r  1 CA. 
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The neighboring cells  to the immediate left  and right of the center
cell  can  be  considered  to  be  sensors  detecting  the  environment.  The
multiplexing action of rule 184 samples this environment and takes in
a  copy  of  the  state  of  the  environment  to  the  cell’s  left  or  right,  de-
pending  on  the  value  of  the  center  cell.  The  center  cell’s  memory  is
able  to  retain  aspects  of  the  information  passing  through  the  center
cell.  Due  to the  action  of  rule  184  transforming  spatial  information
into temporal information, the temporal history of the center cell pro-
vides  information  about  the  spatial  state  of  the  environment  outside
the  immediate  r  1  sensory  area  of  the  cell’s  neighborhood.  As
demonstrated  in  Section  4,  for  b  0.48  memory  provides  informa-
tion up to five  time steps  back and hence up to five  cells  away from
the  center  cell,  albeit  that  this  information is  delayed in  time.  In  this
way, memory extends the sensory capabilities of the CA and provides
information that is otherwise inaccessible to a standard r  1 CA. 

In  the  example  in  Figure  6(b),  a  block  of  four  zero-value  (white)
cells  provides  the  seed  for  memory  to  create  a  cell  state  that  enables
white cells to take over the lattice. Modification of cell state by the ac-
tion of memory has already been discussed in Section 4.2, but there is
a further effect that allows the density classification task to be solved.
Without memory, a spatial pattern of the form 0* 1 results in the cen-
ter cell having state one after the pattern has been consumed and the
center  cell  will  transition  to  the  state  of  the  right  neighbor.  In  other
words, it will sense the environment to its right. However, with mem-
ory, if the above conditions are satisfied, the center cell will have state
zero  at  the  next  iteration.  This  in  turn  affects  the  subsequent  evolu-
tion  of  the  lattice  because  this  state  means  that  at  the  next  iteration
the  center  cell  will  transition  to  the  state  of  the  left  neighbor  once
again.  This  provides  a  mechanism  for  growing  contiguous  blocks
of  cells  with state  zero.  Once one of  these  blocks  starts  growing, the
memory  conditions  mi

t  rapidly  become  polarized  in  cells  where  the
block  is  located  and  it  becomes  increasingly  difficult  for  cells  with
state one to disrupt the growth of the block. 

5. Conclusion

In  its  standard  formulation  the  density  classification  task  cannot  be
solved by an r  1 CA. However, we have shown that by augmenting
a  well-known  ECA,  rule  184  (or  rule  226),  with  a  simple  form  of
memory, performance approaching that of the best-known r  3 CAs
is possible. This performance is achieved using only local communica-
tion,  that  is,  with  the  neighbors  immediately  adjacent  to  a  cell.  Such
communication topology is important for parallel computing architec-
tures  embedded  in  traditional  silicon  hardware  devices  or  for  future
nanoscale devices. 

Investigation of rule 184 with the chosen memory scheme revealed
three  key  differences  compared  to  operation  of  the  CA  without
memory.  (i)  Rule  184  allows  spatial  information  encoded  in  the
lattice  to  be  transformed  into  temporal  information.  In  the  standard
CA this offers no benefit, but memory is able to retain aspects of this
information  that  are  useful  in  solving  the  problem.  (ii)  The  memory
scheme investigated can detect the existence of a block of cells having
a common state. When this occurs, information is signaled to the tran-
sition  function  as  a  changed  state.  (iii)  Thus,  the  cell  is  able  to  tran-
sition to a  different  state  compared to the  case  with no memory and
increase the size of the block of cells having a common state. 
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Investigation of rule 184 with the chosen memory scheme revealed
three  key  differences  compared  to  operation  of  the  CA  without
memory.  (i)  Rule  184  allows  spatial  information  encoded  in  the
lattice  to  be  transformed  into  temporal  information.  In  the  standard
CA this offers no benefit, but memory is able to retain aspects of this
information  that  are  useful  in  solving  the  problem.  (ii)  The  memory
scheme investigated can detect the existence of a block of cells having
a common state. When this occurs, information is signaled to the tran-
sition  function  as  a  changed  state.  (iii)  Thus,  the  cell  is  able  to  tran-
sition to a  different  state  compared to the  case  with no memory and
increase the size of the block of cells having a common state. 

Although the discussion has focused on blocks of zeros, symmetries
in  both  the  rule  and  memory  mean  that  blocks  of  ones  are  similarly
affected. Globally, this allows the ECA to break its usual conservative-
ness and allow lattice density to change, a requirement for solving this
task. 

Other aspects of the operation of the memory scheme are also inter-
esting. The memory scheme is quite robust on this task and successful
operation is possible over a wide range of learning rates. It is very spe-
cific in operation and presents the same neighborhood to a cell as for
the  case  with  no  memory,  except  under  the  specific  circumstances
when  a  block  is  detected.  Furthermore,  the  transition  function  and
memory  are  symbiotic,  each  providing  mechanisms  and  information
that is used by the other to solve the problem. These aspects warrant
further study to see if they are general phenomena exhibited by other
successful natural and artificial systems with memory. 

Following the success of solving the density classification task with
rule 184 and memory, we have extended this work to see how mem-
ory affects other emergent systems [16]. 
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