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In  1931  Gödel  [1]  presented  his  famous  incompleteness  theorem  in
Königsberg,  stating  that  some  true  mathematical  statements  are  un-
provable. Yet, this result gives us no idea about those independent (i.e.,
true and unprovable) statements, about their frequency, the reason they
are  unprovable,  and  so  on.  In  2005  Calude  and  Jürgensen  [2]  proved
Chaitin’s  “heuristic  principle”  for  an  appropriate  measure:  the  the-
orems  of  a  finitely  specified  theory  cannot  be  significantly  more
complex than the theory itself [3]. In this paper, we investigate the exis-
tence  of  other  measures,  different  from  the  original,  that  satisfy  this
heuristic  principle.  Toward  this  end,  we  introduce  a  definition  for  ac-
ceptable complexity measures of theorems. 

1. Introduction

In  1931  Gödel  [1]  presented  his  famous  (first)  incompleteness  theo-
rem,  stating  that  some  true  mathematical  statements  are  unprovable.
More formally and in modern terms, it can be stated as: 

Every computably enumerable, consistent axiomatic system con-
taining  elementary  arithmetic  is  incomplete,  that  is,  there  exist
true sentences unprovable by the system. 

The truth is here defined by the standard model of the theory we con-
sider.  Yet,  this  result  gives  us  no  idea  about  those  independent  (i.e.,
true  and  unprovable)  statements,  about  their  frequency,  the  reason
they  are  unprovable,  and  so  on.  Those  questions  of  quantitative  re-
sults  about  the  independent  statements  were  initially  investigated  by
Chaitin  [3],  and  then  by  Calude,  Jürgensen,  and  Zimand  [4],  and
Calude and Jürgensen [2]. A state of the art is given in [5]. Those ear-
lier  works  state  that  in  both  topological  and  probabilistic  terms,
incompleteness  is  a  widespread  phenomenon.  Indeed,  unprovability
appears  as  the  norm for  true  statements  while  provability  appears  to
be rare. This interesting result brings two more questions. Which true
statements  are  provable,  and  why  are  they  provable  when  others
are not? 

Chaitin [3] proposed an “heuristic principle” to answer the second
question: the theorems of a finitely specified theory cannot be signifi-
cantly  more  complex  than  the  theory  itself.  In  [2]  Chaitin’s  heuristic
principle  is  proved  to  be  valid  for  an  appropriate  measure.  This
measure is based on the program-size complexity: the complexity HHsL
of  a  binary  string  s  is  the  length  of  the  shortest  program  for  a  self-
delimiting  Turing  machine  (to  be  defined  in  Section  2)  to  calculate  s
[6|9].  We  consider  the  following  computable  variation  of  the
program-size complexity: 
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Chaitin [3] proposed an “heuristic principle” to answer the second
question: the theorems of a finitely specified theory cannot be signifi-
cantly  more  complex  than  the  theory  itself.  In  [2]  Chaitin’s  heuristic
principle  is  proved  to  be  valid  for  an  appropriate  measure.  This
measure is based on the program-size complexity: the complexity HHsL
of  a  binary  string  s  is  the  length  of  the  shortest  program  for  a  self-
delimiting  Turing  machine  (to  be  defined  in  Section  2)  to  calculate  s
[6|9].  We  consider  the  following  computable  variation  of  the
program-size complexity: 

d HxL  HHxL - †x§.

This  measure  gives  us  some  indication  about  the  reasons  certain
statements are unprovable. It would be very interesting to have other
results  in  order  to  understand  the  incompleteness  theorem.  Among
them would be proving a kind of reverse of the theorem proved in [2].
Their theorem states that there exists a constant N  such that any the-
ory that satisfies the hypothesis of Gödel’s theorem cannot prove any
statements x with dHxL > N. Another question of interest could be the
following:  do  any  independent  statements  exist  with  a  low  d-com-
plexity? 

Those results are some examples of what can be investigated in this
domain.  Yet,  such  results  seem  to  be  hard  to  prove  with  the  d-com-
plexity. The aim of our work is to find other complexities that satisfy
this  heuristic  principle  to  enable  proving  the  remaining  results.  To-
ward this end we introduce the notion of acceptable complexity mea-
sures  of  theorems  to  capture  the  important  properties  of  d.  After
studying  the  results  about  d  in  [2],  we  define  acceptable  complexity
measures, study their properties, and try to find other acceptable com-
plexity measures that are different from d. 

This  paper  is  organized  as  follows.  We  begin  in  Section  2  with
some notations and useful definitions. In Section 3 we present the re-
sults  of  [2]  with some corrections.  Section 4 is  devoted to the defini-
tion  of  acceptable  complexity  measures  of  theorems,  and  some
counter-examples  are  given  in  Section  5.  Section  5  also  contains  a
proof  of  the  independence  of  the  conditions  that  are  imposed  on  a
complexity  measure  to  be  acceptable.  In  Section  6,  we  are  interested
in the possible forms of those acceptable complexity measures. 

2. Prerequisites and Notations

Throughout,    and    respectively  denote  the  sets  of  natural  integers
and  rational  numbers.  For  an  integer  i ¥ 2,  logi  is  the  base  i  loga-
rithm. We use the notations dat and `ap respectively for the floor and
the ceiling of a real a. The cardinality of a set S is denoted by cardHSL.
For  every  integer  i ¥ 2,  we  fix  an  alphabet  Xi  with  i  elements,  Xi

*

being the set of finite strings on Xi, including the empty string l, and
†w§i being the length of the string w œ Xi. 
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Throughout,    and    respectively  denote  the  sets  of  natural  integers
and  rational  numbers.  For  an  integer  i ¥ 2,  logi  is  the  base  i  loga-
rithm. We use the notations dat and `ap respectively for the floor and
the ceiling of a real a. The cardinality of a set S is denoted by cardHSL.
For  every  integer  i ¥ 2,  we  fix  an  alphabet  Xi  with  i  elements,  Xi

*

being the set of finite strings on Xi, including the empty string l, and
†w§i being the length of the string w œ Xi. 

We  assume  the  reader  is  familiar  with  how Turing  machines  pro-
cess  strings  [10]  and  with  the  basic  notions  of  computability  theory
[11|13].  We  recall  that  a  set  is  said  to  be  computably  enumerable
(abbreviated c.e.)  if  it  is  the domain of  a  Turing machine,  or  equiva-
lently, if it can be algorithmically listed. 

The  complexity  measure  we  study  is  the  computable  variation  of
the program-size complexity. In order to define it, we first define self-
delimiting  Turing  machines,  shortly  machines,  that  are  Turing
machines with a prefix-free set as their domain: a set S Õ Xi

*  is said to
be prefix-free if no string of S is a proper extension of another one. In
other  words,  if  x, y œ S  and  if  there  exists  z  such  that  y  xz,  then
z  l.  We  denote  by  ProgT  9x œ Xi

* : T halts on x=  the  program  set
of  the  Turing machine T.  We recall  two important  results  on prefix-
free  sets.  If  S Õ Xi

*  is  a  prefix-free  set,  then  Kraft’s  inequality  holds:

⁄k1
¶ rk ÿ i-k § 1,  where  rk  9x œ S : †x§i  k=.  The  second  result  is

called the Kraft|Chaitin theorem and states the following: let  InkMkœ
be a computable sequence of non-negative integers such that 

‚

k1

¶

i-nk § 1,

then  we  can  effectively  construct  a  prefix-free  sequence  of  strings
IwkMkœ such that for each k ¥ 1, °wk•i  nk. 

The program-size complexity of a string x œ XQ
* , relative to the ma-

chine T, is defined by 

Hi,T  min 9†y§i : y œ Xi
* and T HyL  x=.

In  this  definition,  we  assume  that  minH«L  ¶.  The  invariance  theo-
rem ensures the effective existence of a so-called “universal” machine
Ui  that minimizes the program-size complexity of the strings. For ev-
ery  T,  there  exists  a  constant  c > 0  such  that  for  all  x œ Xi

*,
Hi,Ui

HxL § Hi,THxL + c.  In  the  following,  we will  fix  Ui  and denote  by

Hi the complexity Hi,Ui
 relative to Ui. 

A Gödel numbering for a formal language L Œ Xi
*  is a computable,

one-to-one function g : L Ø X2
* . By Gi, or G if there is no possible con-

fusion, we denote the set of all the Gödel numberings for a fixed lan-
guage. In what follows, we consider theories that satisfy the hypothe-
sis  of  Gödel’s  incompleteness  theorem,  that  is,  finitely  specified,
sound,  and  consistent  theories  that  are  strong  enough  to  formalize
arithmetic. The first condition means that the set of axioms of the the-
ory is c.e., soundness is the property that the theory only proves true
sentences,  and  consistency  states  that  the  theory  is  free  of  contradic-
tions. We will generally denote such a theory by   and use   for the
set of theorems that   proves. 

 Acceptable Complexity Measures of Theorems 405 

Complex Systems, 18 © 2010 Complex Systems Publications, Inc. 
 

https://doi.org/10.25088/ComplexSystems.18.4.403



A Gödel numbering for a formal language L Œ Xi
*  is a computable,

one-to-one function g : L Ø X2
* . By Gi, or G if there is no possible con-

fusion, we denote the set of all the Gödel numberings for a fixed lan-
guage. In what follows, we consider theories that satisfy the hypothe-
sis  of  Gödel’s  incompleteness  theorem,  that  is,  finitely  specified,
sound,  and  consistent  theories  that  are  strong  enough  to  formalize
arithmetic. The first condition means that the set of axioms of the the-
ory is c.e., soundness is the property that the theory only proves true
sentences,  and  consistency  states  that  the  theory  is  free  of  contradic-
tions. We will generally denote such a theory by   and use   for the
set of theorems that   proves. 

3. The Function dg  

In  this  section  we  present  the  function  dg  and  discuss  some  results.
The  function  was  defined  in  [2]  and  almost  all  of  the  results  come
from that  paper.  Hence,  complete  proofs  of  the  results  can be  found
in [2]. Yet, there was a mistake in that paper, and we need to modify
the definition of dg  and adapt the proofs with the new definition. The
transformations are essentially cosmetic in almost all of the proofs so
we  give  only  sketches  of  them.  For  Theorem 3,  there  are  a  bit  more
than details to change, so a complete proof is provided. Furthermore,
we formally prove an assertion used in the proof of Theorem 3. 

We first define, for every integer i ¥ 2, the function di by 

di HxL  HiHxL - †x§i.

Now, in order to ensure that the complexity studied is not dependent
on  the  way  we  write  the  theorems,  we  define  the  d-complexity  in-
duced by a Gödel numbering g by

dgHxL  H2HgHxLL - alog2HiL ÿ †x§iq,

where g is a Gödel numbering with a domain in Xi
*. 

The definition in [2] was dgHxL  H2HgHxLL - alog2 iq ÿ †x§i.
The first  result  comes  in  fact  from [8],  and the  theorem presented

here is one of its direct corollaries. 

Theorem 1.  [2,  Corollary  4.3]  For  every  t ¥ 0,  the  set
9x œ Xi

* : diHxL § t= is infinite. 

Proof.  Following  [8,  Theorem  5.31],  for  every  t ¥ 0,  the  set
Ci,t  9x œ Xi

* : diHxL > - t=  is  immune  (a  set  is  said  to  be  immune
when  it  is  infinite  and  contains  no  infinite  c.e.  subset).  Hence,  as
Complexi,t  9x œ Xi

* : diHxL > t=  is  an  infinite  subset  of  an  immune

set,  it  is  immune  itself.  Because  the  set  in  the  statement  is  the
complement of the immune set  Complexi,t,  it  is  not computable,  and

in particular infinite. ·

Theorem  2  states  that  the  definitions  via  a  Gödel  numbering  or
without this device are not far from each other. It  allows us to work
with the function di  instead of  dg  and thus  simplify  the  proof  due to
the  elimination  of  some  technical  details.  Nevertheless,  those  details
are present in our proof of Theorem 2. 
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Theorem  2  states  that  the  definitions  via  a  Gödel  numbering  or
without this device are not far from each other. It  allows us to work
with the function di  instead of  dg  and thus  simplify  the  proof  due to
the  elimination  of  some  technical  details.  Nevertheless,  those  details
are present in our proof of Theorem 2. 

Theorem 2.  [2,  Theorem  4.4]  Let  A Œ Xi
*  be  c.e.  and  g : A Ø B*  be  a

Gödel  numbering.  Then,  there  effectively  exists  a  constant  c
(depending upon Ui, U2, and g) such that for all u œ A we have

(1)°H2Hg HuLL - log2HiL ÿ HiHuL• § c.

Proof. We will in fact prove the existence of two constants c1  and c2
such that on one hand 

(2)H2Hg HuLL § log2HiL ÿ HiHuL + c1

and on the other hand 

(3)log2HiL ÿ HiHuL § H2Hg HuLL + c2.

For  each  string  w œ ProgUi
,  we  define  nw  alog2HiL ÿ †w§iq.  This

integer verifies that

‚

wœProgUi

2-nw  ‚

wœProgUi

2-alog2HiLÿ†w§iq § ‚

wœProgUi

i-†w§i § 1,

because ProgUi
 is prefix-free. This inequality shows that the sequence

HnwL  satisfies  the  conditions  of  the  Kraft|Chaitin  theorem.  Conse-
quently, we can construct, for every w œ ProgUi

, a binary string sw  of

length  nw  such  that  the  set  :sw : w œ ProgUi
>  is  c.e.  and  prefix-free.

Accordingly, we can construct a machine M whose domain is this set,
such that for every w œ ProgUi

, 

M HswL  g IUi HwLM.

If  we denote,  for  a string x œ Xi
*,  x*  the lexicographically  first  string

of  length  HiHxL  such  that  Ui Hx*L  x,  we  now  have
M Isw* M  g IUi Hw*LM  g HwL, and hence 

HMHgHwLL § °sw* •2  alog2HiL ÿ †w
*§iq 

alog2HiL ÿ HiHwLq § log2HiL ÿ HiHwL + 1.

By  the  invariance  theorem,  we  get  the  constant  c1  such  that  equa-
tion (2) holds true. 

We  now  prove  the  existence  of  c2  such  that  equation  (3)  holds
true. The proof is quite similar. For each string w œ ProgU2

, we define

mw  alogiH2L ÿ †w§2q. As for the nw, the integers mw satisfy 
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mw  alogiH2L ÿ †w§2q. As for the nw, the integers mw satisfy 

‚

wœProgU2

i-mw § ‚

wœProgU2

2-†w§2 § 1.

We can also apply the Kraft|Chaitin theorem to effectively construct,
for every w œ ProgU2

, a string tw œ Xi
*  of length mw  such that the set

:tw : w œ ProgU2
>  is  c.e.  and  prefix-free.  As  g  is  a  Gödel  numbering

and hence  one-to-one,  we can construct  a  machine  D  whose  domain
is  the  previous  set  such  that  D HtwL  u if U2 HwL  g HuL.  Now,  if
U2 HwL  g HuL, then 

HDHuL § alogiH2L ÿ †w§2q §
logiH2L ÿ †w§2 + 1 § logiH2L ÿ H2Hg HuLL + d.

So  we  apply  the  invariance  theorem  to  get  a  constant  d£  such  that
log2HiL ÿ HiHuL § log2HiL ÿ HDHuL + d£, hence 

log2HiL ÿ HiHuL § H2Hg HuLL + d + d£.

The constant c2  d + d£ satisfies equation (3). ·

In  [2],  equation  (1)  was  given  as  °dgHuL - alog2 iq ÿ diHuL• § d.  Theo-
rem 2 gives  a similar  result  for  d,  hence °dgHuL - log2HiL ÿ diHuL• § c + 1,
where c is the constant of the theorem. In the proof, we supposed that
A  Xi

* but it is still valid with a proper subset of Xi
*. 

Corollary  1  is  important  for  the  generalization  of  dg  that  is  pre-
sented in Section 4. It is the same kind of result as Theorem 2, but ap-
plied to two Gödel numberings. 

Corollary 1.  [2, Corollary 4.5] Let A Œ Xi
*  be c.e. and g, g£ : A Ø B*  be

two  Gödel  numberings.  Then,  there  effectively  exists  a  constant  c
(dependent upon U2, g, and g£) such that for all u œ A we have 

(4)†H2Hg HuLL - H2Hg
£HuLL§ § c.

In order to have a complete formal proof of Theorem 3, we need to
bound  the  complexity  of  the  set  of  theorems    that  a  theory  
proves. Such is the aim of Lemma 1. 
Lemma 1.  Let   be a finitely specified, arithmetically sound (i.e.,  each
proven sentence is true), consistent theory strong enough to formalize
arithmetic,  and denote by   its  set  of  theorems written in the alpha-
bet Xi. Then for every x œ  , 

1

2
ÿ †x§i +H1L § HiHxL § †x§i +H1L.

Proof.  For the upper bound,  it  is  sufficient  to give a way to describe
those  theorems  using  descriptions  not  greater  than  their  lengths,  and
which  ensure  that  the  computer  used  is  self-delimiting.  We first  note
that a theorem in   is  a special  well-formed formula. The bound we
give is  valid for the set of all  the well-formed formulas.  Consider the
following  program  C:  on  its  input  x,  C  tests  if  x  is  a  well-formed
formula. C  outputs x  if  it is well-formed, or enters an infinite loop if
it is not. 

 408 B. Grenet 

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.
 
https://doi.org/10.25088/ComplexSystems.18.4.403



Proof.  For the upper bound,  it  is  sufficient  to give a way to describe
those  theorems  using  descriptions  not  greater  than  their  lengths,  and
which  ensure  that  the  computer  used  is  self-delimiting.  We first  note
that a theorem in   is  a special  well-formed formula. The bound we
give is  valid for the set of all  the well-formed formulas.  Consider the
following  program  C:  on  its  input  x,  C  tests  if  x  is  a  well-formed
formula. C  outputs x  if  it is well-formed, or enters an infinite loop if
it is not. 

This program has to be modified because its domain is not prefix-
free. The idea here is to append a marker at the end of the input that
appears only at the end of the words. In that way, if x is a prefix of y,
then the  end marker  has  to  appear  in  y.  As  the  marker  can only  ap-
pear  at  the  end of  y,  then x  y  to  ensure  that  the  domain is  prefix-
free. We now have to define an end marker. It is sufficient to take an
ill-formed formula. More precisely, we need a formula y such that for
every  well-formed formula  x,  x y  is  ill-formed,  and  for  every  z œ Xi

*,
x y z  is  also  ill-formed.  For  instance,  we  can  take  y  ++,  where  the
symbol + is interpreted as the addition of natural numbers. There are
in  all  formal  systems plenty  of  possibilities  for  this  y  (another  choice
could be H+ ,  for instance, or any ill-formed formula with parentheses
around).  In  the  following,  y  represents  such  a  fixed  ill-formed  for-
mula. 

The  new machine  C  works  as  follows:  on  an  input  z,  C  checks  if
z  x y  with  a  certain  x.  If  the  case  arises,  C  checks  if  x  is  a  well-
formed  formula,  and  if  it  is  then  outputs  x.  In  all  other  cases,  C  di-
verges.  Now we have a new machine C  whose domain is  prefix-free,
such that HCHxL § †x§i + †y§i. By the invariance theorem, we get a con-
stant c such that HiHxL § †x§i + c. 

We  now prove  the  lower  bound;  that  is,  that  the  complexity  of  a
theorem has to be greater than one half of its length, up to a constant.
The idea is the following: If we consider a sentence x of the set of the-
orems   ,  then  it  may  contain  some  variables  that  cannot  be  com-
pressed. More precisely, because we can work with many variables, it
is not possible for each variable to be represented by a word that has
a small complexity. To formalize the idea, we have to define what the
variables  are  in  our  formal  language.  Consider  that  the  variables  are
created as follows. A variable is denoted by a special character, say v,
indicating that it is a variable, and then a binary number is written to
identify each variable. This number is called the identifier of the vari-
able.  In the following,  we denote by vn  the variable identified by the
integer n. 

Now, we have to consider the formulas defined by 

j Hm, nL ª $ vm $ vn Hvm  vnL.

We  suppose  that  m  and  n  are  random  strings,  that  is,
HiHmL ¥ †m§i +H1L  and  HiHnL ¥ †n§i +H1L.  Furthermore,  we  suppose
that HHm, nL ¥ †m§i + †n§i +H1L, in other words that m and n together
are random. We can suppose that such words do exist. Then 
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We  suppose  that  m  and  n  are  random  strings,  that  is,
HiHmL ¥ †m§i +H1L  and  HiHnL ¥ †n§i +H1L.  Furthermore,  we  suppose
that HHm, nL ¥ †m§i + †n§i +H1L, in other words that m and n together
are random. We can suppose that such words do exist. Then 

HiHj Hm, nLL ¥ HiHmL + HiHnL +H1L ¥

†m§i + †n§i +H1L ¥
1

2
ÿ †jHm, nL§i +H1L.

Thus, we obtained the lower bound. ·

Improving the bounds in Lemma 1 seems to be difficult. A prelimi-
nary work would be to define exactly what is accepted as a formal lan-
guage. 

Theorem  3  is  the  formal  version  of  Chaitin’s  heuristic  principle.
The substance of the proof comes from previous results. 

Theorem 3.  [2,  Theorem  4.6]  Consider  a  finitely  specified,  arithmeti-
cally sound (i.e.,  each proven sentence is  true),  consistent theory that
is strong enough to formalize arithmetic, and denote by   its set of the-
orems written in the alphabet Xi. Let g be a Gödel numbering for  .
Then,  there  exists  a  constant  N,  which depends  upon Ui, U2,  and 
such that   contains no x with dg HxL > N.

Proof.  By  Lemma  1,  for  every  x œ  ,  di HxL § c.  Using  Theorem  2,
there exists a constant N such that for every x œ  , dg HxL § N. ·

The  dg  measure  is  also  useful  for  proving  a  probabilistic  result
about independent statements. Indeed, we can prove that the probabil-
ity of a true statement of length n to be provable tends to zero when n
tends to infinity. 

Proposition 1. [2, Proposition 5.1] Let N > 0 be a fixed integer,  Õ Xi
*

be c.e., and g :  Ø B* be a Gödel numbering. Then,

(5)lim
nØ¶

i-n ÿ card 9x œ Xi
* : †x§i  n, dgHxL § N=  0.

We  do  not  give  a  proof  of  Proposition  1  because  it  is  essentially
technical and can be found in [2]. In Section 5, the proof of Proposi-
tion  5  uses  the  same  arguments  and  differs  only  by  details.  Now we
can express the probabilistic result about independent statements.

Theorem 4. [2, Theorem 5.2] Consider a consistent, sound, finitely spec-
ified  theory  strong  enough  to  formalize  arithmetic.  The  probability
that a true sentence of length n is provable in the theory tends to zero
when n tends to infinity. 

The proof of Theorem 4 can be found in [2, p. 11]. 
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4. Acceptable Complexity Measures 

The  function  dg  is  our  model  for  building  the  notion  of  acceptable
complexity  measures  of  theorems.  Toward  this  end,  we  first  define
what a builder  is,  and then the properties  it  has to verify in order to
be  called  “acceptable”.  An  acceptable  complexity  measure  of  theo-
rems  will  then  be  a  complexity  measure  built  via  an  acceptable
builder. 

Definition 1.  For  a  computable  function  r̀i : ä Ø ,  we  define  the
complexity measure builder r by 

r : G Ø AXi
* Ø E

g # Au # r̀i IH2 Hg HuLL, †u§iME.

The function r̀i  is  called the witness  of  the  builder.  In  the  following,
we will use rg HuL instead of r HgL HuL. 

Now we define three properties that a builder has to verify in order
to be acceptable.  We recall  that    denotes  a  theory that  satisfies  the
hypothesis  of  Gödel’s  incompleteness  theorem, and   its  set  of  theo-
rems. 

Definition 2.  A  builder  r  is  said  to  be  acceptable  if  for  every  g,  the
measure rg verifies the three following conditions: 

1. For every theory  ,  there exists an integer N  such that if  ¢ x,  then
rg HxL < N . 

2. For every integer N, 

lim
nØ¶

i-n ÿ card 9x œ Xi
* : †x§i  n and rgHxL § N=  0.

3. For every Gödel numbering g£, there exists a constant c such that for ev-
ery string u œ Xi

*, °rgHuL - rg£ HuL• § c. 

Condition 1 is simply the formal version of Chaitin’s heuristic prin-
ciple. Condition 2 corresponds to Proposition 1 and eliminates trivial
measures.  Finally,  condition  3  ensures  the  independence  on  the  way
the  theorems  are  written.  In  other  words,  conditions  1,  2,  and  3  en-
sure  that  an  acceptable  complexity  measure  satisfies  Theorem  3,
Proposition 1, and Corollary 1, respectively. 

Proposition 2 will be useful in the following. It is a weaker version
of condition 1 and is used to prove that a measure is not acceptable,
and more precisely that it does not satisfy this first property. 
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Proposition 2.  Let rg  be an acceptable complexity measure. Then there
exists an integer N such that for every integer M ¥ N, the set 

(6)9x œ Xi
* : rgHxL § M=

is infinite. 

Proof. We consider a theory   and the integer N  given by condition
1  in  Definition  2.  Clearly,    can  prove  an  infinite  number  of  theo-
rems, such as “n  n” for all integer n. All of them have by condition
1  a  complexity  bounded  by  N .  If    is  the  set  of  theorems  that  
proves, then

 Õ 9x œ Xi
* : rgHxL § N =.

As   is infinite, so is the set in the proposition, and it remains true for
every M ¥ N . ·

We now prove that  the dg  complexity  is  an acceptable  complexity
measure.  This  result  is  natural  because  the  notion  of  an  acceptable
complexity measure was built to generalize dg. 

Proposition 3. The function dg is an acceptable complexity measure. 

Proof.  The  dg  function  we  defined  plays  the  role  of  rg.  We  have  to
provide an acceptable builder. We define

d
`
i Hx, yL  x - alog2 HiL ÿ yq

to play the role of r̀i. Then dg HxL  d
`
i IH2 Hg HxLL, †x§iM. 

In fact, the properties of dg  proved in [2] are exactly what we need
here. One can easily check that condition 1 is ensured by Theorem 3,
condition 2 by Proposition 1, and condition 3 by Corollary 1. ·

The goal of defining an acceptable builder and an acceptable mea-
sure is to study complexities other than dg. Example 1 proves that the
program-size complexity is not acceptable. This result, even though it
is plain, is very important. Indeed, it justifies the need to define other
complexity measures. 

Example 1. A first natural complexity to study is the program-size com-
plexity. There is no difficulty in verifying that H is a complexity mea-
sure.  Formally,  we  have  to  define  r̀i Hx, yL  x  such  that
H2 Hg HxLL  r̀iIx, †x§iM.  We  study  the  properties  of  the  builder
g # @x # H2 Hg HxLLD. Here is how it behaves with the three conditions
from Definition 2. 
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1. Condition 1 cannot be verified. Indeed, we note that 

card 9x œ Xi
* : H2IgHxLM § N= § card 9y œ X2

* : H2IyM § N= § 2N.

If the condition was verified, the set of theorems   proved by   would
be bounded by 2N, which is a contradiction. 

2. On the contrary, condition 2 is obviously verified. Indeed, as 

card 9x œ Xi
* : H2Ig HxLM § N= § 2N, 

9x œ Xi
* : †x§i  n and H2Ig HxLM § N=  « for large enough n. 

3. Condition 3 corresponds exactly to Corollary 3, and is verified. 

As  the  program-size  complexity  cannot  be  used,  we  try  to  find
other  ways  to  better  reflect  the  intrinsic  complexity.  That  is  why  we
use  the  length of  the  strings  to  alter  the  complexity.  It  seems natural
that the longest strings are also the most difficult to describe (we have
to be very careful with this statement because it is not really true). In
Section 5, we give two more examples of unacceptable builders. 

5. Independence of the Three Conditions 

The aim of this  section is  to prove that the conditions 1,  2,  and 3 in
Definition  2  are  independent  from  each  other.  Toward  this  end,  we
give  two  new  examples  of  unacceptable  builders,  each  of  which  ex-
actly satisfy two conditions in Definition 2. Furthermore, they give us
an  idea  of  the  ingredients  needed  to  build  an  acceptable  complexity
builder. In particular, they show us that a builder shall neither be too
small nor too big. 

Example 2.  Let  r̀i
1  be  the  function  defined  by  r̀i

1 Hx, yL  x ê y  if  y ≠ 0

and 0 otherwise. It defines a builder r1  and for every Gödel number-
ing g, we can define rg

1 by 

rg
1 HxL 

 
H2 Hg HxLL

†x§i
,  if x ≠ l, 

 0,  otherwise. 

We  show  later  that  r1  is  too  small  of  a  complexity  measure.  In
fact, it is even bounded. In order to avoid this problem, we define r2

by  dividing  the  program-size  complexity  by  the  logarithm  of  the
length. 
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Example 3. We consider r̀i
2 defined by 

r̀i
2 Hx, yL 

 
x

alogi yq
,  if y > 1, 

 0,  otherwise. 

The corresponding builder applied with a Gödel numbering g  defines
the function 

rg
2 HxL 

 
H2 Hg HxLL

alogi †x§iq
,  if †x§i > 1, 

 0,  otherwise. 

In order to make the proofs easier, we introduce a new function for
each  builder  that  has  been  defined.  Those  functions  make  no  use  of
Gödel  numberings  and are  the  equivalents  of  di  for  r1  and r2.  They
can help us in the proofs because we prove first that they are equal to
the  complexity  measures,  up  to  a  constant.  For  r1,  we  define  ri

1  by

ri
1 HxL  HiHxL ë †x§i  if  x ≠ l  and  0  otherwise.  And  similarly,  for  r2,

we define ri
2 HxL  Hi HxL ë alogi †x§iq if †x§i > 1 and 0 otherwise. 

Lemma 2.  Let  A Œ Xi
*  be  c.e.  and  g : A Ø B*  be  a  Gödel  numbering.

Then,  there  effectively  exists  a  constant  c  (dependent  upon  Ui,  U2,
and g) such that for all u œ A, we have 

(7)¢rg
j
HuL - log2HiL ÿ ri

j
HuL¶ § c,

j  1, 2. 

Proof.  We first  note  that  this  difference  is  null  for  u  l  in  the  case
j  1, and for †u§i § 1 in the case j  2. In the following, we suppose
that †u§i > 0 (for j  1) or †u§i > 1 (for j  2). 

Theorem 2 states that 

°H2Hg HuLL - log2HiL ÿ HiHuL• § c.

We now just have to divide the whole inequality by †u§i ¥ 1 to obtain
equation  (7)  with  j  1  and  by  alogi †u§iq,  which  is  not  less  than  one

but for finitely many u to obtain the result with j  2. ·

This result  allows us to work with much easier  forms of  the com-
plexity functions. We now study the properties that rg

1  and rg
2  satisfy.

As a corollary of Lemma 2, we can note that both of the measures sat-
isfy condition 3. 
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Proposition 4.  The function rg
1  verifies condition 1 in Definition 2, but

does not verify condition 2. 
Lemma 3.  There  exists  a  constant  M  such  that  for  all  x œ Xi

*,

rg
1 HxL § M. 

Proof. The result is plain for x  l. We now suppose that †x§i > 0. In
view  of  [8,  Theorem  3.22],  there  exist  two  constants  a  and  b  such
that for all x œ Xi

*, 

HiHxL § †x§i + a ÿ logi †x§i + b,

so, for x ≠ l, 

ri
1 HxL § 1 + a ÿ

logi †x§i

†x§i
+ b ÿ

1

†x§i
ÿ

Because logiI†x§iM ë †x§i § 1 for every x ≠ l, then 

ri
1 HxL § 1 + a + b.

Furthermore, Lemma 2 states that for every x, we have 

rg
1HxL § c + log2HiL ÿ ri

1HxL § c + log2HiL ÿ H1 + a + bL.

Accordingly,  M  ac + log2 HiL ÿ H1 + a + bLq  satisfies  the  statement  of
the lemma. ·

Proof. [Proof of Proposition 4] Condition 1 is obvious since Lemma 3
tells us that the bound is valid for every sentence x, not only provable
ones. On the contrary, the fact that rg

1  is bounded by M  implies that

for  N ¥ M,  the  set  9x œ Xi
* : †x§i  n and rg

1HxL § N=  is  the  set  Xi
n.

Hence the limit of condition 2 is 1 instead of 0. ·

This proof shows us that an acceptable complexity measure cannot
be too small (r1  is even bounded). We now show, thanks to the com-
plexity measure r2, that an acceptable complexity measure cannot be
too big, either. 

Proposition 5.  The function rg
2  verifies condition 2 in Definition 2, but

does not verify condition 1. 
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Proof. We begin with the proof of condition 2 for r2. Theorem 2 al-
lows  us  to  consider  ri

2  instead  of  rg
2,  with  a  new  constant

aHN + cL ë log2 HiLq.  Indeed,  it  states  that  rg
2 HxL ¥ log2 HiL ÿ ri

2 HxL - c,
and consequently

9x œ Xi
n : rg

2HxL § N= Œ x œ Xi
n : ri

2 §
N + c

log2 HiL
.

In  order  to  avoid  too  many  notations,  we  still  denote  this  constant
by N. 

First, we note that 

9x œ Xi
n : ri

2HxL § N= 

;x œ Xi
n : $ y œ Xi

§Nÿalogi nq
, Ui HyL  x?.

Translating in terms of cardinals, we obtain 

card 9x œ Xi
n : ri

2HxL § N= §

card ;x œ Xi
n : $ y œ Xi

§Nÿalogi nq
, Ui HyL  x? §

card ;y œ Xi
§Nÿalogi nq

: UiHyL  n? §

card ;y œ Xi
§Nÿalogi nq

: UiHyL halts.? §

‚

k1

Nÿalogi nq

card :y œ Xi
k : UiHyL halts.>

rk

We extend these inequalities to the limit when n tends to infinity: 

lim
nØ¶

i-n ÿ card 9x œ Xi
n : rg

2HxL § N= § lim
nØ¶

‚

k1

Nÿalogi nq

i-n ÿ rk §

lim
nØ¶

iNÿalogi nq-n ÿ ‚

k1

Nÿalogi nq

i-Nÿalogi nq ÿ rk.

We note that 

lim
nØ¶

‚

k1

Nÿalogi nq

i-Nÿalogi nq ÿ rk  lim
mØ¶

‚

k1

m

i-m ÿ rk.

 416 B. Grenet 

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.
 
https://doi.org/10.25088/ComplexSystems.18.4.403



Now, 

lim
mØ¶

⁄
k1

m+1
rk - ⁄

k1

m
rk

im+1 - im


i

i - 1
ÿ lim
mØ¶

i-m ÿ rm  0.

The last inequality comes from Kraft’s inequality: 

‚

m1

¶

i-m ÿ rm § 1.

So we can apply the Stolz-Cesàro theorem to ensure that 

(8)lim
nØ¶

‚

k1

Nÿalogi nq

i-Nÿalogi nq ÿ rk  0.

On the other hand, 

(9)iNÿalogi nq-n  0.
We  just  have  to  combine  equations  (8)  and  (9)  to  obtain  condi-

tion 2. 
Now, it  remains to prove that condition 1 is  not verified.  Toward

this end, we suppose that condition 1 holds. We denote with   the set
of theorems that   proves. Note first that

(10)

card 9x œ Xi
* : †x§i  n and H2HgHxLL § N ÿ alogi nq= §

card 9y œ B* : H2HyL § N ÿ alogi nq= §

2Nÿalogi nq § 2NÿIlogi n+1M § 2N ÿ nNÿlogi 2.

So, if condition 1 holds for all x œ  , we have 

(11)card 8x œ  : x œ  †x§  n< § a nbN,
for every integer n, where a and b come from equation (10). 

Now consider this set of formulas: 

Fk  Q0 x0 Q1 x1 … Qk xk Ô
l0

k
Ixl  xlM : Ql œ 8" , $< .

Each  formula  j œ Fk  is  true,  and  all  formulas  have  the  same  length

nk  HkL. Furthermore, cardFk  2k. 
All  of  those  formulas  belong to  the  predicate  logic,  so  all  of  them

are provable in  , that is to say, they belong to  . As we can take k
as big as wanted, we can also have nk as big as wanted. 

Now  we  have,  for  arbitrarily  large  n,  2HnL  formulas  of  length  n
that belong to  . That contradicts equation (11), and so, condition 1
is false. ·

We can now prove that  conditions 1,  2,  and 3 in Definition 2 are
independent  from  each  other.  We  already  know  that  an  acceptable
complexity builder does exist for dg. Thus it is sufficient to prove that
for each condition a builder exists that does not satisfy it but does sat-
isfy both other conditions. 
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We can now prove that  conditions 1,  2,  and 3 in Definition 2 are
independent  from  each  other.  We  already  know  that  an  acceptable
complexity builder does exist for dg. Thus it is sufficient to prove that
for each condition a builder exists that does not satisfy it but does sat-
isfy both other conditions. 

Theorem 5.  Each  condition  in  Definition  2  is  independent  from  the
other ones.

Proof.  The  measure  builder  r1  is  an  example  measure  that  satisfies
both conditions 1 and 3 but not 2 while r2 does not satisfy 1 but does
satisfy 2 and 3. To prove the complete independence of the three con-
ditions,  it  remains  to  prove  that  a  complexity  measure  builder  can
satisfy both conditions 1 and 2 without satisfying 3. 

In  fact,  our  proof  does  not  exactly  follow  the  given  scheme.  It  is
still  not  known  if  all  the  complexity  measure  builders  satisfy  condi-
tion 3, or if  some exist that do not satisfy it.  Thus, the proof is built
as follows. We prove that either all complexity builders satisfy condi-
tion 3, or there exists at least one complexity builder satisfying 1 and
2 without satisfying 3. We also give the exact question the answer of
which would make the choice between both the possibilities. 

Let g and g£  be two Gödel numberings from Xi
*  to X2

* , and rg  and
rg£  two  complexity  measures  built  with  the  same  builder.  The  ques-
tion  is  whether  H2 Hg HxLL  H2 Hg£ HxLL  for  all  but  finitely  many
x œ Xi

*  or  if  there  exists  an  infinite  sequence  HxnLnœ  such  that
H2 Hg HxnLL ≠ H2 Hg£ HxnLL  for  all  n.  Suppose  that  the  first  case  holds;
then for all but finitely many x œ Xi

*,

rgHxL  r̀iIH2HgHxLL, †x§iM  r̀iIH2Hg
£HxLL, †x§iM  rg£ HxL.

Consequently,

c  max 9†H2HgHxLL - H2Hg
£HxLL§ : x œ Xi

*= < ¶,

and the builder r does satisfy condition 3. 
We  suppose  now  that  the  second  case  holds,  meaning  that  in-

finitely many strings exist  x œ Xi
*  such that H2HgHxLL ≠ H2Hg£HxLL.  We

consider  the  acceptable  complexity  measure  dg  and  define  the  mea-

sure rg  by x # dg HxL2. More formally, if we denote by d
`
i  the witness

of  the  builder  d,  we define  the  builder  r  via  the  witness  r̀i  d
`
i
2
.  We

now consider the behavior of this function with the three conditions: 
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1. Because  dg  is  acceptable,  there  exists  N  such  that  if   ¢ x,  then

dg HxL § N .  Then  it  is  clear  that  rg HxL § N
2 .  So  condition  1  is

verified. 

2. For  an  integer  N ¥ 1,  if  rg HxL § N,  then  we  also  have  dg HxL § N  and
get the following: 

9x œ Xi
* : †x§i  n and rgHxL § N= Õ 9x œ Xi

* : †x§i  n and dgHxL § N=.

Consequently, 

lim
nØ¶

i-n ÿ card 9x œ Xi
* : †x§i = n and rgHxL § N= §

lim
nØ¶

i-n ÿ card 9x œ Xi
* : †x§i = n and dgHxL § N= = 0.

So condition 2 is also verified. 

3. We first note that 

rgHxL - rg£ HxL  dg HxL2 - dg£ HxL
2 

IH2 Ig HxLM - alog2HiL ÿ †x§iqM
2 - IH2 Ig£ HxLM - alog2HiL ÿ †x§iqM

2 

JH2 Ig HxLM2 - H2 Ig£ HxLM2N - 2 ÿ alog2HiL ÿ †x§iq IH2IgHxLM - H2Ig
£HxLMM.

We  know  from  Corollary  1  that  IH2 Ig HxLM - H2 Ig£ HxLMM  is  bounded.

Thus,  we  only  need  to  prove  that  ¢H2Ig HxLM2 - H2 Ig£ HxLM2¶  is  un-
bounded, and we will be able to conclude that condition 3 is not satis-
fied by r. Suppose that it is bounded by an integer N. As we have sup-
posed  that  there  exist  infinitely  many  x œ Xi

*  such  that
H2IgHxLM ≠ H2Ig

£HxLM,  then  there  exists  for  every  integer  M  a  string  x
such that H2 Ig HxLM > H2 Ig£ HxLM > M. Then

H2 Ig HxLM2 - H2 Ig£ HxLM2 
IH2IgHxLM - H2Ig

£HxLMM ÿ IH2IgHxLM + H2Ig
£HxLMM > 1 ÿ H2 ÿ ML  2 M.

We  can  impose  here  without  any  loss  of  generality  that
H2 Ig HxLM > H2 Ig£ HxLM because the converse situation would be equiva-
lent. We can also conclude, using an integer M > N ê 2, that this bound
cannot exist, meaning that condition 3 is not satisfied. ·

6. Form of the Acceptable Complexity Measures

The  aim of  this  section  is  to  give  some  conditions  that  a  complexity
measure has to verify to be acceptable. More precisely, we study some
conditions  that  a  builder,  and  in  particular  its  witness,  has  to  verify
such that the complexity measures it builds are acceptable. We restrict
our study to particular witnesses, such as linear functions in both vari-
ables, or functions defined by 
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The  aim of  this  section  is  to  give  some  conditions  that  a  complexity
measure has to verify to be acceptable. More precisely, we study some
conditions  that  a  builder,  and  in  particular  its  witness,  has  to  verify
such that the complexity measures it builds are acceptable. We restrict
our study to particular witnesses, such as linear functions in both vari-
ables, or functions defined by 

r̀i Hx, yL 
x

f HyL

where f  is a computable function. 
Our first result shows a kind of stability of the acceptable complex-

ity measures and makes the following proofs easier. 

Proposition 6.  Let  rg  be  an  acceptable  complexity  measure,  and
a, b œ   such  that  a > 0.  Then  a ÿ rg + b  is  also  an  acceptable
complexity measure. 

Proof.  Condition 1 in Definition 2 remains true with a new constant
a ÿ N + b instead of N. In the same way, 

9x œ Xi
* : †x§i  n and a ÿ rg HxL + b § N= Œ

x œ Xi
* : †x§i  n and rgHxL §

N - b

a
,

hence condition 2 is verified. Now, if we consider two Gödel number-
ings g and g£, 

°Ia ÿ rgHxL + bM - Ia ÿ rg£ HxL + bM•  a ÿ °rgHxL - rg£ HxL• § a ÿ c,

which proves that condition 3 is retained. ·

We start  by  studying  the  witnesses  that  are  bilinear  functions  and
obtain a partial result. However, as discussed after Lemma 1, this re-
sult is not likely to be improved without a complete study of the defi-
nition of the formal languages. 

Proposition 7. Let f  be a bilinear function of two variables such that r̀i
defined  by  r̀i HxL  df HxLt  is  computable.  If  r̀i  defines  an  acceptable
complexity  measure,  then  there  exist  a, b,  and  e,  a > 0  and
1 ê 2 § e § 1, such that 

r̀i Hx, yL  ea ÿ Ix - e ÿ log2 HiL ÿ yM + bu.

Proof.  We  consider  any  function  that  satisfies  the  hypothesis.  Then
there exist a, b, and g such that 

r̀i Hx, yL  da x - b y + g x yt.

Proposition  6  allows  us  to  fix  r̀i H0, 0L  0.  Of  course,  it  would  be
equivalent to consider a x + b y + g x y,  but the chosen version simpli-
fies  the  notation.  Let  b£  be  such  that  b  b£ ÿ log2 HiL.  The  proof  is
done in several steps. We start by showing that at least one of a and g
has  to  be  different  from  zero,  then  that  g  0.  After  that,  we  prove
that a ê 2 § b£ § a. 
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Proposition  6  allows  us  to  fix  r̀i H0, 0L  0.  Of  course,  it  would  be
equivalent to consider a x + b y + g x y,  but the chosen version simpli-
fies  the  notation.  Let  b£  be  such  that  b  b£ ÿ log2 HiL.  The  proof  is
done in several steps. We start by showing that at least one of a and g
has  to  be  different  from  zero,  then  that  g  0.  After  that,  we  prove
that a ê 2 § b£ § a. 

Suppose  that  a  g  0.  Then  rg HxL  -ab †x§iq.  If  b § 0,  then
Proposition  2  is  not  verified  by  our  complexity  measure,  and  hence
neither  is  condition 1.  If  b ¥ 0,  it  is  obvious that  condition 2 cannot
hold true. 

Then, we use condition 1 and consider the set 

9x œ Xi
* : †x§i  n and rgHxL § N= Œ

x œ Xi
* : †x§i  n and H2Hg HxLL §

b n + N + 1

g n + a
.

Furthermore, 

lim
nØ¶

b n + N + 1

g n + a


b
g

, if g ≠ 0;

N + 1

a
, if g  b  0;

±¶, if g  0 and b ≠ 0.

The only solution is the third one because in order to satisfy condition
1,  this  limit  has  to  be  infinite.  Indeed,  if  it  is  finite,  we  can  use  the
same proof as in Proposition 5 and conclude with a contradiction. So
we  know  that  g  0,  and  hence  that  a ≠ 0.  We  can  now  say  that  a
and  b  have  the  same  sign,  because  the  limit  cannot  be  -¶.  Using
Proposition  6,  we  can  assume  that  a  1.  Indeed,  a < 0  is  not
possible because of condition 2. 

To make the remainder of the proof easier, we define an auxiliary
measure as done in Sections 3 and 5 for d,  r1,  and r2.  Let  ri  be de-
fined by 

ri HxL  eHi HxL - b£ ÿ †x§iu.

Applying Theorem 2, we get a constant c such that for every x, 

°rgHxL - log2HiL ÿ riHxL• § c.

We now use condition 2 to get more information on b£, and hence
b. We only know that b£ > 0. We consider the set 

9x œ Xi
* : †x§i  n and rgHxL § N= Œ

9x œ Xi
* : †x§i  n and HiHxL § b£ ÿ n + N + c + 1=.

If  b£ > 1, then for every constant d,  if  we choose n  large enough, we
have  b£ ÿ n > n + d ÿ log n.  And  we  can  use  the  inequality
HiHxL § †x§i +Ilogi †x§iM  (see [8,  Theorem  3.22])  to  conclude  that  the
given set  is  Xi

n.  And so,  condition 3 is  not verified,  because the limit
is 1. 

 Acceptable Complexity Measures of Theorems 421 

Complex Systems, 18 © 2010 Complex Systems Publications, Inc. 
 

https://doi.org/10.25088/ComplexSystems.18.4.403



If  b£ > 1, then for every constant d,  if  we choose n  large enough, we
have  b£ ÿ n > n + d ÿ log n.  And  we  can  use  the  inequality
HiHxL § †x§i +Ilogi †x§iM  (see [8,  Theorem  3.22])  to  conclude  that  the
given set  is  Xi

n.  And so,  condition 3 is  not verified,  because the limit
is 1. 

Using  the  lower  bound  in  Lemma  1,  we  know  that  for  every
proven sentence x, 

Hi HxL ¥
1

2
ÿ †x§i.

Suppose that b£ < 1 ê 2. Then for every x such that  ¢ x, 

ri HxL  Hi HxL -
1

2
ÿ †x§i +

1

2
- b£ ÿ †x§i ¥

1

2
- b£ ÿ †x§i.

Thus, condition 1 cannot be verified. ·

We study another kind of witness. Functions defined by 

r̀i Hx, yL 
x

f HyL

where f  is a computable function may be interesting because they are
the  only  reasonable  candidates  for  being  witnesses  of  multiplicative
complexity  measures.  Indeed,  a  complexity  of  the  form H2HgHxLL ÿ †x§i
has no chance of satisfying the desired properties. Unfortunately, such
functions never define acceptable measures. 

Proposition 8. Let f  be a computable function, and r̀i defined by 

r̀i Hx, yL 
x

f HyL
ÿ

Then the complexity  measure  builder  with the witness  r̀i  cannot  sat-
isfy conditions 1 and 2 at the same time. 

Proof.  Suppose  that  rg HxL  r̀i IH2 Hg HxLL, †x§iM  satisfy  condition  1.
Then consider the set

9x œ X* : †x§i  n and H2Hg HxLL § N ÿ f HnL=.

Its cardinal is at most 2Nÿf HnL. Furthermore, this set contains the set of
all sentences in   with length n. Hence, 

(12)card 9x œ  : †x§i  n= § 2Nÿf HnL.

Now we give a lower bound to this cardinal. The proof of Proposi-
tion  5  shows  that  this  cardinal  is  greater  than  2HnL.  Accordingly,
there exists a constant c such that 

(13)card 9x œ  : †x§i  n= ¥ 2cÿn.

We also obtain that 2cÿn § 2Nÿf HnL and conclude that 
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We also obtain that 2cÿn § 2Nÿf HnL and conclude that 

(14)f HnL ¥
c

N
ÿ n.

We now follow the proof made earlier to show that rg
1 does not sat-

isfy condition 2. We can define 

ri HxL 
Hi HxL

f I†x§iM
,

and prove as for r1 and r2 that there exists a constant d such that 

°rgHxL - log2HiL ÿ riHxL• § d.

The proof of Lemma 2 is  still  valid here.  In the same way, we ex-
tend Lemma 3 to rg, namely there exists a constant M such that rg  is
bounded  by  M.  Considering  rg  instead  of  rg

1  has  just  such  an  influ-
ence on the value of the constant M. 

Now,  we  have  to  note  that  for  N ¥ M,  the  set
9x œ Xi

* : †x§i  n and rgHxL § N=  is  the set  Xi
n  to conclude that condi-

tion 2 is not verified. ·

7. Concluding Remarks

In this paper we studied the dg  complexity function defined by Calude
and Jürgensen in [2]. This study led us to modify the definition of dg
in  order  to  correct  some  of  the  proofs.  Then,  we  have  been  able  to
propose a definition for acceptable complexity measures for theorems
that capture the main properties of dg. After studying some complex-
ity measures, we showed that the conditions of acceptability are quite
hard to complete. Yet, the definition seems to be robust enough to al-
low  some  investigations  to  find  other  natural  acceptable  complexity
measures. 

Here are some remaining open questions.

† Can we  improve  the  bounds  of  Lemma 1?  This  question  is  interesting
not only for improving Proposition 7 but also for itself. How simple are
the  well-formed  formulas,  and  in  other  words,  to  what  extent  can  we
use their great regularities to compress them? Yet, as already discussed,
this question needs to be better defined. In particular,  the definition of
the  formal  languages  has  to  be  investigated.  The  answer  seems  to  be
very dependent on the considered language. 
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† Do there exist some acceptable complexity measures that are very differ-
ent from dg? The idea here is to find some measures that go further in
investigating the roots of unprovability. 

† In view of the proof of Theorem 5, if we have two Gödel numberings g
and g£, does the equality H2 Ig HxLM  H2 Ig£ HxLM hold for all but finitely
many x  or are those two quantities  infinitely often different from each
other? 

Those  few  questions  are  added  to  the  ones  expressed  in  [2].  The
goal  of  finding  new acceptable  complexity  measures  is  to  have  more
tools for trying to answer their questions, as the existence of indepen-
dent sentences of small complexity. 
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