
Acceptable Complexity Measures of
Theorems

Bruno Grenet

Laboratoire de l’Informatique du Parallélisme
École Normale supérieure de Lyon
46, allée d’Italie
69 364 Lyon Cedex 07, France
bruno.grenet@ens-lyon.fr

In 1931 Gödel [1] presented his famous incompleteness theorem in
Königsberg, stating that some true mathematical statements are un-
provable. Yet, this result gives us no idea about those independent (i.e.,
true and unprovable) statements, about their frequency, the reason they
are unprovable, and so on. In 2005 Calude and Jürgensen [2] proved
Chaitin’s “heuristic principle” for an appropriate measure: the the-
orems of a finitely specified theory cannot be significantly more
complex than the theory itself [3]. In this paper, we investigate the exis-
tence of other measures, different from the original, that satisfy this
heuristic principle. Toward this end, we introduce a definition for ac-
ceptable complexity measures of theorems.

1. Introduction

In 1931 Gödel [1] presented his famous (first) incompleteness theo-
rem, stating that some true mathematical statements are unprovable.
More formally and in modern terms, it can be stated as:

Every computably enumerable, consistent axiomatic system con-
taining elementary arithmetic is incomplete, that is, there exist
true sentences unprovable by the system.

The truth is here defined by the standard model of the theory we con-
sider. Yet, this result gives us no idea about those independent (i.e.,
true and unprovable) statements, about their frequency, the reason
they are unprovable, and so on. Those questions of quantitative re-
sults about the independent statements were initially investigated by
Chaitin [3], and then by Calude, Jürgensen, and Zimand [4], and
Calude and Jürgensen [2]. A state of the art is given in [5]. Those ear-
lier works state that in both topological and probabilistic terms,
incompleteness is a widespread phenomenon. Indeed, unprovability
appears as the norm for true statements while provability appears to
be rare. This interesting result brings two more questions. Which true
statements are provable, and why are they provable when others
are not?

Chaitin [3] proposed an “heuristic principle” to answer the second
question: the theorems of a finitely specified theory cannot be signifi-
cantly more complex than the theory itself. In [2] Chaitin’s heuristic
principle is proved to be valid for an appropriate measure. This
measure is based on the program-size complexity: the complexity HHsL
of a binary string s is the length of the shortest program for a self-
delimiting Turing machine (to be defined in Section 2) to calculate s
[6|9]. We consider the following computable variation of the
program-size complexity:

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Chaitin [3] proposed an “heuristic principle” to answer the second
question: the theorems of a finitely specified theory cannot be signifi-
cantly more complex than the theory itself. In [2] Chaitin’s heuristic
principle is proved to be valid for an appropriate measure. This
measure is based on the program-size complexity: the complexity HHsL
of a binary string s is the length of the shortest program for a self-
delimiting Turing machine (to be defined in Section 2) to calculate s
[6|9]. We consider the following computable variation of the
program-size complexity:

d HxL  HHxL - †x§.

This measure gives us some indication about the reasons certain
statements are unprovable. It would be very interesting to have other
results in order to understand the incompleteness theorem. Among
them would be proving a kind of reverse of the theorem proved in [2].
Their theorem states that there exists a constant N such that any the-
ory that satisfies the hypothesis of Gödel’s theorem cannot prove any
statements x with dHxL > N. Another question of interest could be the
following: do any independent statements exist with a low d-com-
plexity?

Those results are some examples of what can be investigated in this
domain. Yet, such results seem to be hard to prove with the d-com-
plexity. The aim of our work is to find other complexities that satisfy
this heuristic principle to enable proving the remaining results. To-
ward this end we introduce the notion of acceptable complexity mea-
sures of theorems to capture the important properties of d. After
studying the results about d in [2], we define acceptable complexity
measures, study their properties, and try to find other acceptable com-
plexity measures that are different from d.

This paper is organized as follows. We begin in Section 2 with
some notations and useful definitions. In Section 3 we present the re-
sults of [2] with some corrections. Section 4 is devoted to the defini-
tion of acceptable complexity measures of theorems, and some
counter-examples are given in Section 5. Section 5 also contains a
proof of the independence of the conditions that are imposed on a
complexity measure to be acceptable. In Section 6, we are interested
in the possible forms of those acceptable complexity measures.

2. Prerequisites and Notations

Throughout,  and  respectively denote the sets of natural integers
and rational numbers. For an integer i ¥ 2, logi is the base i loga-
rithm. We use the notations dat and `ap respectively for the floor and
the ceiling of a real a. The cardinality of a set S is denoted by cardHSL.
For every integer i ¥ 2, we fix an alphabet Xi with i elements, Xi

*

being the set of finite strings on Xi, including the empty string l, and
†w§i being the length of the string w œ Xi.

 404 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Throughout,  and  respectively denote the sets of natural integers
and rational numbers. For an integer i ¥ 2, logi is the base i loga-
rithm. We use the notations dat and `ap respectively for the floor and
the ceiling of a real a. The cardinality of a set S is denoted by cardHSL.
For every integer i ¥ 2, we fix an alphabet Xi with i elements, Xi

*

being the set of finite strings on Xi, including the empty string l, and
†w§i being the length of the string w œ Xi.

We assume the reader is familiar with how Turing machines pro-
cess strings [10] and with the basic notions of computability theory
[11|13]. We recall that a set is said to be computably enumerable
(abbreviated c.e.) if it is the domain of a Turing machine, or equiva-
lently, if it can be algorithmically listed.

The complexity measure we study is the computable variation of
the program-size complexity. In order to define it, we first define self-
delimiting Turing machines, shortly machines, that are Turing
machines with a prefix-free set as their domain: a set S Õ Xi

* is said to
be prefix-free if no string of S is a proper extension of another one. In
other words, if x, y œ S and if there exists z such that y  xz, then
z  l. We denote by ProgT  9x œ Xi

* : T halts on x= the program set
of the Turing machine T. We recall two important results on prefix-
free sets. If S Õ Xi

* is a prefix-free set, then Kraft’s inequality holds:

⁄k1
¶ rk ÿ i-k § 1, where rk  9x œ S : †x§i  k=. The second result is

called the Kraft|Chaitin theorem and states the following: let InkMkœ
be a computable sequence of non-negative integers such that

‚

k1

¶

i-nk § 1,

then we can effectively construct a prefix-free sequence of strings
IwkMkœ such that for each k ¥ 1, °wk•i  nk.

The program-size complexity of a string x œ XQ
* , relative to the ma-

chine T, is defined by

Hi,T  min 9†y§i : y œ Xi
* and T HyL  x=.

In this definition, we assume that minH«L  ¶. The invariance theo-
rem ensures the effective existence of a so-called “universal” machine
Ui that minimizes the program-size complexity of the strings. For ev-
ery T, there exists a constant c > 0 such that for all x œ Xi

*,
Hi,Ui

HxL § Hi,THxL + c. In the following, we will fix Ui and denote by

Hi the complexity Hi,Ui
 relative to Ui.

A Gödel numbering for a formal language L Œ Xi
* is a computable,

one-to-one function g : L Ø X2
* . By Gi, or G if there is no possible con-

fusion, we denote the set of all the Gödel numberings for a fixed lan-
guage. In what follows, we consider theories that satisfy the hypothe-
sis of Gödel’s incompleteness theorem, that is, finitely specified,
sound, and consistent theories that are strong enough to formalize
arithmetic. The first condition means that the set of axioms of the the-
ory is c.e., soundness is the property that the theory only proves true
sentences, and consistency states that the theory is free of contradic-
tions. We will generally denote such a theory by  and use  for the
set of theorems that  proves.

 Acceptable Complexity Measures of Theorems 405

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

A Gödel numbering for a formal language L Œ Xi
* is a computable,

one-to-one function g : L Ø X2
* . By Gi, or G if there is no possible con-

fusion, we denote the set of all the Gödel numberings for a fixed lan-
guage. In what follows, we consider theories that satisfy the hypothe-
sis of Gödel’s incompleteness theorem, that is, finitely specified,
sound, and consistent theories that are strong enough to formalize
arithmetic. The first condition means that the set of axioms of the the-
ory is c.e., soundness is the property that the theory only proves true
sentences, and consistency states that the theory is free of contradic-
tions. We will generally denote such a theory by  and use  for the
set of theorems that  proves.

3. The Function dg

In this section we present the function dg and discuss some results.
The function was defined in [2] and almost all of the results come
from that paper. Hence, complete proofs of the results can be found
in [2]. Yet, there was a mistake in that paper, and we need to modify
the definition of dg and adapt the proofs with the new definition. The
transformations are essentially cosmetic in almost all of the proofs so
we give only sketches of them. For Theorem 3, there are a bit more
than details to change, so a complete proof is provided. Furthermore,
we formally prove an assertion used in the proof of Theorem 3.

We first define, for every integer i ¥ 2, the function di by

di HxL  HiHxL - †x§i.

Now, in order to ensure that the complexity studied is not dependent
on the way we write the theorems, we define the d-complexity in-
duced by a Gödel numbering g by

dgHxL  H2HgHxLL - alog2HiL ÿ †x§iq,

where g is a Gödel numbering with a domain in Xi
*.

The definition in [2] was dgHxL  H2HgHxLL - alog2 iq ÿ †x§i.
The first result comes in fact from [8], and the theorem presented

here is one of its direct corollaries.

Theorem 1. [2, Corollary 4.3] For every t ¥ 0, the set
9x œ Xi

* : diHxL § t= is infinite.

Proof. Following [8, Theorem 5.31], for every t ¥ 0, the set
Ci,t  9x œ Xi

* : diHxL > - t= is immune (a set is said to be immune
when it is infinite and contains no infinite c.e. subset). Hence, as
Complexi,t  9x œ Xi

* : diHxL > t= is an infinite subset of an immune

set, it is immune itself. Because the set in the statement is the
complement of the immune set Complexi,t, it is not computable, and

in particular infinite. ·

Theorem 2 states that the definitions via a Gödel numbering or
without this device are not far from each other. It allows us to work
with the function di instead of dg and thus simplify the proof due to
the elimination of some technical details. Nevertheless, those details
are present in our proof of Theorem 2.

 406 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Theorem 2 states that the definitions via a Gödel numbering or
without this device are not far from each other. It allows us to work
with the function di instead of dg and thus simplify the proof due to
the elimination of some technical details. Nevertheless, those details
are present in our proof of Theorem 2.

Theorem 2. [2, Theorem 4.4] Let A Œ Xi
* be c.e. and g : A Ø B* be a

Gödel numbering. Then, there effectively exists a constant c
(depending upon Ui, U2, and g) such that for all u œ A we have

(1)°H2Hg HuLL - log2HiL ÿ HiHuL• § c.

Proof. We will in fact prove the existence of two constants c1 and c2
such that on one hand

(2)H2Hg HuLL § log2HiL ÿ HiHuL + c1

and on the other hand

(3)log2HiL ÿ HiHuL § H2Hg HuLL + c2.

For each string w œ ProgUi
, we define nw  alog2HiL ÿ †w§iq. This

integer verifies that

‚

wœProgUi

2-nw  ‚

wœProgUi

2-alog2HiLÿ†w§iq § ‚

wœProgUi

i-†w§i § 1,

because ProgUi
 is prefix-free. This inequality shows that the sequence

HnwL satisfies the conditions of the Kraft|Chaitin theorem. Conse-
quently, we can construct, for every w œ ProgUi

, a binary string sw of

length nw such that the set :sw : w œ ProgUi
> is c.e. and prefix-free.

Accordingly, we can construct a machine M whose domain is this set,
such that for every w œ ProgUi

,

M HswL  g IUi HwLM.

If we denote, for a string x œ Xi
, x the lexicographically first string

of length HiHxL such that Ui Hx*L  x, we now have
M Isw* M  g IUi Hw*LM  g HwL, and hence

HMHgHwLL § °sw* •2  alog2HiL ÿ †w
*§iq 

alog2HiL ÿ HiHwLq § log2HiL ÿ HiHwL + 1.

By the invariance theorem, we get the constant c1 such that equa-
tion (2) holds true.

We now prove the existence of c2 such that equation (3) holds
true. The proof is quite similar. For each string w œ ProgU2

, we define

mw  alogiH2L ÿ †w§2q. As for the nw, the integers mw satisfy

 Acceptable Complexity Measures of Theorems 407

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

mw  alogiH2L ÿ †w§2q. As for the nw, the integers mw satisfy

‚

wœProgU2

i-mw § ‚

wœProgU2

2-†w§2 § 1.

We can also apply the Kraft|Chaitin theorem to effectively construct,
for every w œ ProgU2

, a string tw œ Xi
* of length mw such that the set

:tw : w œ ProgU2
> is c.e. and prefix-free. As g is a Gödel numbering

and hence one-to-one, we can construct a machine D whose domain
is the previous set such that D HtwL  u if U2 HwL  g HuL. Now, if
U2 HwL  g HuL, then

HDHuL § alogiH2L ÿ †w§2q §
logiH2L ÿ †w§2 + 1 § logiH2L ÿ H2Hg HuLL + d.

So we apply the invariance theorem to get a constant d£ such that
log2HiL ÿ HiHuL § log2HiL ÿ HDHuL + d£, hence

log2HiL ÿ HiHuL § H2Hg HuLL + d + d£.

The constant c2  d + d£ satisfies equation (3). ·

In [2], equation (1) was given as °dgHuL - alog2 iq ÿ diHuL• § d. Theo-
rem 2 gives a similar result for d, hence °dgHuL - log2HiL ÿ diHuL• § c + 1,
where c is the constant of the theorem. In the proof, we supposed that
A  Xi

* but it is still valid with a proper subset of Xi
*.

Corollary 1 is important for the generalization of dg that is pre-
sented in Section 4. It is the same kind of result as Theorem 2, but ap-
plied to two Gödel numberings.

Corollary 1. [2, Corollary 4.5] Let A Œ Xi
* be c.e. and g, g£ : A Ø B* be

two Gödel numberings. Then, there effectively exists a constant c
(dependent upon U2, g, and g£) such that for all u œ A we have

(4)†H2Hg HuLL - H2Hg
£HuLL§ § c.

In order to have a complete formal proof of Theorem 3, we need to
bound the complexity of the set of theorems  that a theory 
proves. Such is the aim of Lemma 1.
Lemma 1. Let  be a finitely specified, arithmetically sound (i.e., each
proven sentence is true), consistent theory strong enough to formalize
arithmetic, and denote by  its set of theorems written in the alpha-
bet Xi. Then for every x œ  ,

1

2
ÿ †x§i +H1L § HiHxL § †x§i +H1L.

Proof. For the upper bound, it is sufficient to give a way to describe
those theorems using descriptions not greater than their lengths, and
which ensure that the computer used is self-delimiting. We first note
that a theorem in  is a special well-formed formula. The bound we
give is valid for the set of all the well-formed formulas. Consider the
following program C: on its input x, C tests if x is a well-formed
formula. C outputs x if it is well-formed, or enters an infinite loop if
it is not.

 408 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Proof. For the upper bound, it is sufficient to give a way to describe
those theorems using descriptions not greater than their lengths, and
which ensure that the computer used is self-delimiting. We first note
that a theorem in  is a special well-formed formula. The bound we
give is valid for the set of all the well-formed formulas. Consider the
following program C: on its input x, C tests if x is a well-formed
formula. C outputs x if it is well-formed, or enters an infinite loop if
it is not.

This program has to be modified because its domain is not prefix-
free. The idea here is to append a marker at the end of the input that
appears only at the end of the words. In that way, if x is a prefix of y,
then the end marker has to appear in y. As the marker can only ap-
pear at the end of y, then x  y to ensure that the domain is prefix-
free. We now have to define an end marker. It is sufficient to take an
ill-formed formula. More precisely, we need a formula y such that for
every well-formed formula x, x y is ill-formed, and for every z œ Xi

*,
x y z is also ill-formed. For instance, we can take y  ++, where the
symbol + is interpreted as the addition of natural numbers. There are
in all formal systems plenty of possibilities for this y (another choice
could be H+ , for instance, or any ill-formed formula with parentheses
around). In the following, y represents such a fixed ill-formed for-
mula.

The new machine C works as follows: on an input z, C checks if
z  x y with a certain x. If the case arises, C checks if x is a well-
formed formula, and if it is then outputs x. In all other cases, C di-
verges. Now we have a new machine C whose domain is prefix-free,
such that HCHxL § †x§i + †y§i. By the invariance theorem, we get a con-
stant c such that HiHxL § †x§i + c.

We now prove the lower bound; that is, that the complexity of a
theorem has to be greater than one half of its length, up to a constant.
The idea is the following: If we consider a sentence x of the set of the-
orems  , then it may contain some variables that cannot be com-
pressed. More precisely, because we can work with many variables, it
is not possible for each variable to be represented by a word that has
a small complexity. To formalize the idea, we have to define what the
variables are in our formal language. Consider that the variables are
created as follows. A variable is denoted by a special character, say v,
indicating that it is a variable, and then a binary number is written to
identify each variable. This number is called the identifier of the vari-
able. In the following, we denote by vn the variable identified by the
integer n.

Now, we have to consider the formulas defined by

j Hm, nL ª $ vm $ vn Hvm  vnL.

We suppose that m and n are random strings, that is,
HiHmL ¥ †m§i +H1L and HiHnL ¥ †n§i +H1L. Furthermore, we suppose
that HHm, nL ¥ †m§i + †n§i +H1L, in other words that m and n together
are random. We can suppose that such words do exist. Then

 Acceptable Complexity Measures of Theorems 409

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

We suppose that m and n are random strings, that is,
HiHmL ¥ †m§i +H1L and HiHnL ¥ †n§i +H1L. Furthermore, we suppose
that HHm, nL ¥ †m§i + †n§i +H1L, in other words that m and n together
are random. We can suppose that such words do exist. Then

HiHj Hm, nLL ¥ HiHmL + HiHnL +H1L ¥

†m§i + †n§i +H1L ¥
1

2
ÿ †jHm, nL§i +H1L.

Thus, we obtained the lower bound. ·

Improving the bounds in Lemma 1 seems to be difficult. A prelimi-
nary work would be to define exactly what is accepted as a formal lan-
guage.

Theorem 3 is the formal version of Chaitin’s heuristic principle.
The substance of the proof comes from previous results.

Theorem 3. [2, Theorem 4.6] Consider a finitely specified, arithmeti-
cally sound (i.e., each proven sentence is true), consistent theory that
is strong enough to formalize arithmetic, and denote by  its set of the-
orems written in the alphabet Xi. Let g be a Gödel numbering for  .
Then, there exists a constant N, which depends upon Ui, U2, and 
such that  contains no x with dg HxL > N.

Proof. By Lemma 1, for every x œ  , di HxL § c. Using Theorem 2,
there exists a constant N such that for every x œ  , dg HxL § N. ·

The dg measure is also useful for proving a probabilistic result
about independent statements. Indeed, we can prove that the probabil-
ity of a true statement of length n to be provable tends to zero when n
tends to infinity.

Proposition 1. [2, Proposition 5.1] Let N > 0 be a fixed integer,  Õ Xi
*

be c.e., and g :  Ø B* be a Gödel numbering. Then,

(5)lim
nØ¶

i-n ÿ card 9x œ Xi
* : †x§i  n, dgHxL § N=  0.

We do not give a proof of Proposition 1 because it is essentially
technical and can be found in [2]. In Section 5, the proof of Proposi-
tion 5 uses the same arguments and differs only by details. Now we
can express the probabilistic result about independent statements.

Theorem 4. [2, Theorem 5.2] Consider a consistent, sound, finitely spec-
ified theory strong enough to formalize arithmetic. The probability
that a true sentence of length n is provable in the theory tends to zero
when n tends to infinity.

The proof of Theorem 4 can be found in [2, p. 11].

 410 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

4. Acceptable Complexity Measures

The function dg is our model for building the notion of acceptable
complexity measures of theorems. Toward this end, we first define
what a builder is, and then the properties it has to verify in order to
be called “acceptable”. An acceptable complexity measure of theo-
rems will then be a complexity measure built via an acceptable
builder.

Definition 1. For a computable function r̀i : ä Ø , we define the
complexity measure builder r by

r : G Ø AXi
* Ø E

g # Au # r̀i IH2 Hg HuLL, †u§iME.

The function r̀i is called the witness of the builder. In the following,
we will use rg HuL instead of r HgL HuL.

Now we define three properties that a builder has to verify in order
to be acceptable. We recall that  denotes a theory that satisfies the
hypothesis of Gödel’s incompleteness theorem, and  its set of theo-
rems.

Definition 2. A builder r is said to be acceptable if for every g, the
measure rg verifies the three following conditions:

1. For every theory  , there exists an integer N such that if  ¢ x, then
rg HxL < N .

2. For every integer N,

lim
nØ¶

i-n ÿ card 9x œ Xi
* : †x§i  n and rgHxL § N=  0.

3. For every Gödel numbering g£, there exists a constant c such that for ev-
ery string u œ Xi

*, °rgHuL - rg£ HuL• § c.

Condition 1 is simply the formal version of Chaitin’s heuristic prin-
ciple. Condition 2 corresponds to Proposition 1 and eliminates trivial
measures. Finally, condition 3 ensures the independence on the way
the theorems are written. In other words, conditions 1, 2, and 3 en-
sure that an acceptable complexity measure satisfies Theorem 3,
Proposition 1, and Corollary 1, respectively.

Proposition 2 will be useful in the following. It is a weaker version
of condition 1 and is used to prove that a measure is not acceptable,
and more precisely that it does not satisfy this first property.

 Acceptable Complexity Measures of Theorems 411

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Proposition 2. Let rg be an acceptable complexity measure. Then there
exists an integer N such that for every integer M ¥ N, the set

(6)9x œ Xi
* : rgHxL § M=

is infinite.

Proof. We consider a theory  and the integer N given by condition
1 in Definition 2. Clearly,  can prove an infinite number of theo-
rems, such as “n  n” for all integer n. All of them have by condition
1 a complexity bounded by N . If  is the set of theorems that 
proves, then

 Õ 9x œ Xi
* : rgHxL § N =.

As  is infinite, so is the set in the proposition, and it remains true for
every M ¥ N . ·

We now prove that the dg complexity is an acceptable complexity
measure. This result is natural because the notion of an acceptable
complexity measure was built to generalize dg.

Proposition 3. The function dg is an acceptable complexity measure.

Proof. The dg function we defined plays the role of rg. We have to
provide an acceptable builder. We define

d
`
i Hx, yL  x - alog2 HiL ÿ yq

to play the role of r̀i. Then dg HxL  d
`
i IH2 Hg HxLL, †x§iM.

In fact, the properties of dg proved in [2] are exactly what we need
here. One can easily check that condition 1 is ensured by Theorem 3,
condition 2 by Proposition 1, and condition 3 by Corollary 1. ·

The goal of defining an acceptable builder and an acceptable mea-
sure is to study complexities other than dg. Example 1 proves that the
program-size complexity is not acceptable. This result, even though it
is plain, is very important. Indeed, it justifies the need to define other
complexity measures.

Example 1. A first natural complexity to study is the program-size com-
plexity. There is no difficulty in verifying that H is a complexity mea-
sure. Formally, we have to define r̀i Hx, yL  x such that
H2 Hg HxLL  r̀iIx, †x§iM. We study the properties of the builder
g # @x # H2 Hg HxLLD. Here is how it behaves with the three conditions
from Definition 2.

 412 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

1. Condition 1 cannot be verified. Indeed, we note that

card 9x œ Xi
* : H2IgHxLM § N= § card 9y œ X2

* : H2IyM § N= § 2N.

If the condition was verified, the set of theorems  proved by  would
be bounded by 2N, which is a contradiction.

2. On the contrary, condition 2 is obviously verified. Indeed, as

card 9x œ Xi
* : H2Ig HxLM § N= § 2N,

9x œ Xi
* : †x§i  n and H2Ig HxLM § N=  « for large enough n.

3. Condition 3 corresponds exactly to Corollary 3, and is verified.

As the program-size complexity cannot be used, we try to find
other ways to better reflect the intrinsic complexity. That is why we
use the length of the strings to alter the complexity. It seems natural
that the longest strings are also the most difficult to describe (we have
to be very careful with this statement because it is not really true). In
Section 5, we give two more examples of unacceptable builders.

5. Independence of the Three Conditions

The aim of this section is to prove that the conditions 1, 2, and 3 in
Definition 2 are independent from each other. Toward this end, we
give two new examples of unacceptable builders, each of which ex-
actly satisfy two conditions in Definition 2. Furthermore, they give us
an idea of the ingredients needed to build an acceptable complexity
builder. In particular, they show us that a builder shall neither be too
small nor too big.

Example 2. Let r̀i
1 be the function defined by r̀i

1 Hx, yL  x ê y if y ≠ 0

and 0 otherwise. It defines a builder r1 and for every Gödel number-
ing g, we can define rg

1 by

rg
1 HxL 

H2 Hg HxLL

†x§i
, if x ≠ l,

 0, otherwise.

We show later that r1 is too small of a complexity measure. In
fact, it is even bounded. In order to avoid this problem, we define r2

by dividing the program-size complexity by the logarithm of the
length.

 Acceptable Complexity Measures of Theorems 413

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Example 3. We consider r̀i
2 defined by

r̀i
2 Hx, yL 

x

alogi yq
, if y > 1,

 0, otherwise.

The corresponding builder applied with a Gödel numbering g defines
the function

rg
2 HxL 

H2 Hg HxLL

alogi †x§iq
, if †x§i > 1,

 0, otherwise.

In order to make the proofs easier, we introduce a new function for
each builder that has been defined. Those functions make no use of
Gödel numberings and are the equivalents of di for r1 and r2. They
can help us in the proofs because we prove first that they are equal to
the complexity measures, up to a constant. For r1, we define ri

1 by

ri
1 HxL  HiHxL ë †x§i if x ≠ l and 0 otherwise. And similarly, for r2,

we define ri
2 HxL  Hi HxL ë alogi †x§iq if †x§i > 1 and 0 otherwise.

Lemma 2. Let A Œ Xi
* be c.e. and g : A Ø B* be a Gödel numbering.

Then, there effectively exists a constant c (dependent upon Ui, U2,
and g) such that for all u œ A, we have

(7)¢rg
j
HuL - log2HiL ÿ ri

j
HuL¶ § c,

j  1, 2.

Proof. We first note that this difference is null for u  l in the case
j  1, and for †u§i § 1 in the case j  2. In the following, we suppose
that †u§i > 0 (for j  1) or †u§i > 1 (for j  2).

Theorem 2 states that

°H2Hg HuLL - log2HiL ÿ HiHuL• § c.

We now just have to divide the whole inequality by †u§i ¥ 1 to obtain
equation (7) with j  1 and by alogi †u§iq, which is not less than one

but for finitely many u to obtain the result with j  2. ·

This result allows us to work with much easier forms of the com-
plexity functions. We now study the properties that rg

1 and rg
2 satisfy.

As a corollary of Lemma 2, we can note that both of the measures sat-
isfy condition 3.

 414 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Proposition 4. The function rg
1 verifies condition 1 in Definition 2, but

does not verify condition 2.
Lemma 3. There exists a constant M such that for all x œ Xi

*,

rg
1 HxL § M.

Proof. The result is plain for x  l. We now suppose that †x§i > 0. In
view of [8, Theorem 3.22], there exist two constants a and b such
that for all x œ Xi

*,

HiHxL § †x§i + a ÿ logi †x§i + b,

so, for x ≠ l,

ri
1 HxL § 1 + a ÿ

logi †x§i

†x§i
+ b ÿ

1

†x§i
ÿ

Because logiI†x§iM ë †x§i § 1 for every x ≠ l, then

ri
1 HxL § 1 + a + b.

Furthermore, Lemma 2 states that for every x, we have

rg
1HxL § c + log2HiL ÿ ri

1HxL § c + log2HiL ÿ H1 + a + bL.

Accordingly, M  ac + log2 HiL ÿ H1 + a + bLq satisfies the statement of
the lemma. ·

Proof. [Proof of Proposition 4] Condition 1 is obvious since Lemma 3
tells us that the bound is valid for every sentence x, not only provable
ones. On the contrary, the fact that rg

1 is bounded by M implies that

for N ¥ M, the set 9x œ Xi
* : †x§i  n and rg

1HxL § N= is the set Xi
n.

Hence the limit of condition 2 is 1 instead of 0. ·

This proof shows us that an acceptable complexity measure cannot
be too small (r1 is even bounded). We now show, thanks to the com-
plexity measure r2, that an acceptable complexity measure cannot be
too big, either.

Proposition 5. The function rg
2 verifies condition 2 in Definition 2, but

does not verify condition 1.

 Acceptable Complexity Measures of Theorems 415

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Proof. We begin with the proof of condition 2 for r2. Theorem 2 al-
lows us to consider ri

2 instead of rg
2, with a new constant

aHN + cL ë log2 HiLq. Indeed, it states that rg
2 HxL ¥ log2 HiL ÿ ri

2 HxL - c,
and consequently

9x œ Xi
n : rg

2HxL § N= Œ x œ Xi
n : ri

2 §
N + c

log2 HiL
.

In order to avoid too many notations, we still denote this constant
by N.

First, we note that

9x œ Xi
n : ri

2HxL § N= 

;x œ Xi
n : $ y œ Xi

§Nÿalogi nq
, Ui HyL  x?.

Translating in terms of cardinals, we obtain

card 9x œ Xi
n : ri

2HxL § N= §

card ;x œ Xi
n : $ y œ Xi

§Nÿalogi nq
, Ui HyL  x? §

card ;y œ Xi
§Nÿalogi nq

: UiHyL  n? §

card ;y œ Xi
§Nÿalogi nq

: UiHyL halts.? §

‚

k1

Nÿalogi nq

card :y œ Xi
k : UiHyL halts.>

rk

We extend these inequalities to the limit when n tends to infinity:

lim
nØ¶

i-n ÿ card 9x œ Xi
n : rg

2HxL § N= § lim
nØ¶

‚

k1

Nÿalogi nq

i-n ÿ rk §

lim
nØ¶

iNÿalogi nq-n ÿ ‚

k1

Nÿalogi nq

i-Nÿalogi nq ÿ rk.

We note that

lim
nØ¶

‚

k1

Nÿalogi nq

i-Nÿalogi nq ÿ rk  lim
mØ¶

‚

k1

m

i-m ÿ rk.

 416 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Now,

lim
mØ¶

⁄
k1

m+1
rk - ⁄

k1

m
rk

im+1 - im


i

i - 1
ÿ lim
mØ¶

i-m ÿ rm  0.

The last inequality comes from Kraft’s inequality:

‚

m1

¶

i-m ÿ rm § 1.

So we can apply the Stolz-Cesàro theorem to ensure that

(8)lim
nØ¶

‚

k1

Nÿalogi nq

i-Nÿalogi nq ÿ rk  0.

On the other hand,

(9)iNÿalogi nq-n  0.
We just have to combine equations (8) and (9) to obtain condi-

tion 2.
Now, it remains to prove that condition 1 is not verified. Toward

this end, we suppose that condition 1 holds. We denote with  the set
of theorems that  proves. Note first that

(10)

card 9x œ Xi
* : †x§i  n and H2HgHxLL § N ÿ alogi nq= §

card 9y œ B* : H2HyL § N ÿ alogi nq= §

2Nÿalogi nq § 2NÿIlogi n+1M § 2N ÿ nNÿlogi 2.

So, if condition 1 holds for all x œ  , we have

(11)card 8x œ  : x œ  †x§  n< § a nbN,
for every integer n, where a and b come from equation (10).

Now consider this set of formulas:

Fk  Q0 x0 Q1 x1 … Qk xk Ô
l0

k
Ixl  xlM : Ql œ 8" , $< .

Each formula j œ Fk is true, and all formulas have the same length

nk  HkL. Furthermore, cardFk  2k.
All of those formulas belong to the predicate logic, so all of them

are provable in  , that is to say, they belong to  . As we can take k
as big as wanted, we can also have nk as big as wanted.

Now we have, for arbitrarily large n, 2HnL formulas of length n
that belong to  . That contradicts equation (11), and so, condition 1
is false. ·

We can now prove that conditions 1, 2, and 3 in Definition 2 are
independent from each other. We already know that an acceptable
complexity builder does exist for dg. Thus it is sufficient to prove that
for each condition a builder exists that does not satisfy it but does sat-
isfy both other conditions.

 Acceptable Complexity Measures of Theorems 417

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

We can now prove that conditions 1, 2, and 3 in Definition 2 are
independent from each other. We already know that an acceptable
complexity builder does exist for dg. Thus it is sufficient to prove that
for each condition a builder exists that does not satisfy it but does sat-
isfy both other conditions.

Theorem 5. Each condition in Definition 2 is independent from the
other ones.

Proof. The measure builder r1 is an example measure that satisfies
both conditions 1 and 3 but not 2 while r2 does not satisfy 1 but does
satisfy 2 and 3. To prove the complete independence of the three con-
ditions, it remains to prove that a complexity measure builder can
satisfy both conditions 1 and 2 without satisfying 3.

In fact, our proof does not exactly follow the given scheme. It is
still not known if all the complexity measure builders satisfy condi-
tion 3, or if some exist that do not satisfy it. Thus, the proof is built
as follows. We prove that either all complexity builders satisfy condi-
tion 3, or there exists at least one complexity builder satisfying 1 and
2 without satisfying 3. We also give the exact question the answer of
which would make the choice between both the possibilities.

Let g and g£ be two Gödel numberings from Xi
* to X2

* , and rg and
rg£ two complexity measures built with the same builder. The ques-
tion is whether H2 Hg HxLL  H2 Hg£ HxLL for all but finitely many
x œ Xi

* or if there exists an infinite sequence HxnLnœ such that
H2 Hg HxnLL ≠ H2 Hg£ HxnLL for all n. Suppose that the first case holds;
then for all but finitely many x œ Xi

*,

rgHxL  r̀iIH2HgHxLL, †x§iM  r̀iIH2Hg
£HxLL, †x§iM  rg£ HxL.

Consequently,

c  max 9†H2HgHxLL - H2Hg
£HxLL§ : x œ Xi

*= < ¶,

and the builder r does satisfy condition 3.
We suppose now that the second case holds, meaning that in-

finitely many strings exist x œ Xi
* such that H2HgHxLL ≠ H2Hg£HxLL. We

consider the acceptable complexity measure dg and define the mea-

sure rg by x # dg HxL2. More formally, if we denote by d
`
i the witness

of the builder d, we define the builder r via the witness r̀i  d
`
i
2
. We

now consider the behavior of this function with the three conditions:

 418 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

1. Because dg is acceptable, there exists N such that if  ¢ x, then

dg HxL § N . Then it is clear that rg HxL § N
2 . So condition 1 is

verified.

2. For an integer N ¥ 1, if rg HxL § N, then we also have dg HxL § N and
get the following:

9x œ Xi
* : †x§i  n and rgHxL § N= Õ 9x œ Xi

* : †x§i  n and dgHxL § N=.

Consequently,

lim
nØ¶

i-n ÿ card 9x œ Xi
* : †x§i = n and rgHxL § N= §

lim
nØ¶

i-n ÿ card 9x œ Xi
* : †x§i = n and dgHxL § N= = 0.

So condition 2 is also verified.

3. We first note that

rgHxL - rg£ HxL  dg HxL2 - dg£ HxL
2 

IH2 Ig HxLM - alog2HiL ÿ †x§iqM
2 - IH2 Ig£ HxLM - alog2HiL ÿ †x§iqM

2 

JH2 Ig HxLM2 - H2 Ig£ HxLM2N - 2 ÿ alog2HiL ÿ †x§iq IH2IgHxLM - H2Ig
£HxLMM.

We know from Corollary 1 that IH2 Ig HxLM - H2 Ig£ HxLMM is bounded.

Thus, we only need to prove that ¢H2Ig HxLM2 - H2 Ig£ HxLM2¶ is un-
bounded, and we will be able to conclude that condition 3 is not satis-
fied by r. Suppose that it is bounded by an integer N. As we have sup-
posed that there exist infinitely many x œ Xi

* such that
H2IgHxLM ≠ H2Ig

£HxLM, then there exists for every integer M a string x
such that H2 Ig HxLM > H2 Ig£ HxLM > M. Then

H2 Ig HxLM2 - H2 Ig£ HxLM2 
IH2IgHxLM - H2Ig

£HxLMM ÿ IH2IgHxLM + H2Ig
£HxLMM > 1 ÿ H2 ÿ ML  2 M.

We can impose here without any loss of generality that
H2 Ig HxLM > H2 Ig£ HxLM because the converse situation would be equiva-
lent. We can also conclude, using an integer M > N ê 2, that this bound
cannot exist, meaning that condition 3 is not satisfied. ·

6. Form of the Acceptable Complexity Measures

The aim of this section is to give some conditions that a complexity
measure has to verify to be acceptable. More precisely, we study some
conditions that a builder, and in particular its witness, has to verify
such that the complexity measures it builds are acceptable. We restrict
our study to particular witnesses, such as linear functions in both vari-
ables, or functions defined by

 Acceptable Complexity Measures of Theorems 419

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

The aim of this section is to give some conditions that a complexity
measure has to verify to be acceptable. More precisely, we study some
conditions that a builder, and in particular its witness, has to verify
such that the complexity measures it builds are acceptable. We restrict
our study to particular witnesses, such as linear functions in both vari-
ables, or functions defined by

r̀i Hx, yL 
x

f HyL

where f is a computable function.
Our first result shows a kind of stability of the acceptable complex-

ity measures and makes the following proofs easier.

Proposition 6. Let rg be an acceptable complexity measure, and
a, b œ  such that a > 0. Then a ÿ rg + b is also an acceptable
complexity measure.

Proof. Condition 1 in Definition 2 remains true with a new constant
a ÿ N + b instead of N. In the same way,

9x œ Xi
* : †x§i  n and a ÿ rg HxL + b § N= Œ

x œ Xi
* : †x§i  n and rgHxL §

N - b

a
,

hence condition 2 is verified. Now, if we consider two Gödel number-
ings g and g£,

°Ia ÿ rgHxL + bM - Ia ÿ rg£ HxL + bM•  a ÿ °rgHxL - rg£ HxL• § a ÿ c,

which proves that condition 3 is retained. ·

We start by studying the witnesses that are bilinear functions and
obtain a partial result. However, as discussed after Lemma 1, this re-
sult is not likely to be improved without a complete study of the defi-
nition of the formal languages.

Proposition 7. Let f be a bilinear function of two variables such that r̀i
defined by r̀i HxL  df HxLt is computable. If r̀i defines an acceptable
complexity measure, then there exist a, b, and e, a > 0 and
1 ê 2 § e § 1, such that

r̀i Hx, yL  ea ÿ Ix - e ÿ log2 HiL ÿ yM + bu.

Proof. We consider any function that satisfies the hypothesis. Then
there exist a, b, and g such that

r̀i Hx, yL  da x - b y + g x yt.

Proposition 6 allows us to fix r̀i H0, 0L  0. Of course, it would be
equivalent to consider a x + b y + g x y, but the chosen version simpli-
fies the notation. Let b£ be such that b  b£ ÿ log2 HiL. The proof is
done in several steps. We start by showing that at least one of a and g
has to be different from zero, then that g  0. After that, we prove
that a ê 2 § b£ § a.

 420 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

Proposition 6 allows us to fix r̀i H0, 0L  0. Of course, it would be
equivalent to consider a x + b y + g x y, but the chosen version simpli-
fies the notation. Let b£ be such that b  b£ ÿ log2 HiL. The proof is
done in several steps. We start by showing that at least one of a and g
has to be different from zero, then that g  0. After that, we prove
that a ê 2 § b£ § a.

Suppose that a  g  0. Then rg HxL  -ab †x§iq. If b § 0, then
Proposition 2 is not verified by our complexity measure, and hence
neither is condition 1. If b ¥ 0, it is obvious that condition 2 cannot
hold true.

Then, we use condition 1 and consider the set

9x œ Xi
* : †x§i  n and rgHxL § N= Œ

x œ Xi
* : †x§i  n and H2Hg HxLL §

b n + N + 1

g n + a
.

Furthermore,

lim
nØ¶

b n + N + 1

g n + a


b
g

, if g ≠ 0;

N + 1

a
, if g  b  0;

±¶, if g  0 and b ≠ 0.

The only solution is the third one because in order to satisfy condition
1, this limit has to be infinite. Indeed, if it is finite, we can use the
same proof as in Proposition 5 and conclude with a contradiction. So
we know that g  0, and hence that a ≠ 0. We can now say that a
and b have the same sign, because the limit cannot be -¶. Using
Proposition 6, we can assume that a  1. Indeed, a < 0 is not
possible because of condition 2.

To make the remainder of the proof easier, we define an auxiliary
measure as done in Sections 3 and 5 for d, r1, and r2. Let ri be de-
fined by

ri HxL  eHi HxL - b£ ÿ †x§iu.

Applying Theorem 2, we get a constant c such that for every x,

°rgHxL - log2HiL ÿ riHxL• § c.

We now use condition 2 to get more information on b£, and hence
b. We only know that b£ > 0. We consider the set

9x œ Xi
* : †x§i  n and rgHxL § N= Œ

9x œ Xi
* : †x§i  n and HiHxL § b£ ÿ n + N + c + 1=.

If b£ > 1, then for every constant d, if we choose n large enough, we
have b£ ÿ n > n + d ÿ log n. And we can use the inequality
HiHxL § †x§i +Ilogi †x§iM (see [8, Theorem 3.22]) to conclude that the
given set is Xi

n. And so, condition 3 is not verified, because the limit
is 1.

 Acceptable Complexity Measures of Theorems 421

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

If b£ > 1, then for every constant d, if we choose n large enough, we
have b£ ÿ n > n + d ÿ log n. And we can use the inequality
HiHxL § †x§i +Ilogi †x§iM (see [8, Theorem 3.22]) to conclude that the
given set is Xi

n. And so, condition 3 is not verified, because the limit
is 1.

Using the lower bound in Lemma 1, we know that for every
proven sentence x,

Hi HxL ¥
1

2
ÿ †x§i.

Suppose that b£ < 1 ê 2. Then for every x such that  ¢ x,

ri HxL  Hi HxL -
1

2
ÿ †x§i +

1

2
- b£ ÿ †x§i ¥

1

2
- b£ ÿ †x§i.

Thus, condition 1 cannot be verified. ·

We study another kind of witness. Functions defined by

r̀i Hx, yL 
x

f HyL

where f is a computable function may be interesting because they are
the only reasonable candidates for being witnesses of multiplicative
complexity measures. Indeed, a complexity of the form H2HgHxLL ÿ †x§i
has no chance of satisfying the desired properties. Unfortunately, such
functions never define acceptable measures.

Proposition 8. Let f be a computable function, and r̀i defined by

r̀i Hx, yL 
x

f HyL
ÿ

Then the complexity measure builder with the witness r̀i cannot sat-
isfy conditions 1 and 2 at the same time.

Proof. Suppose that rg HxL  r̀i IH2 Hg HxLL, †x§iM satisfy condition 1.
Then consider the set

9x œ X* : †x§i  n and H2Hg HxLL § N ÿ f HnL=.

Its cardinal is at most 2Nÿf HnL. Furthermore, this set contains the set of
all sentences in  with length n. Hence,

(12)card 9x œ  : †x§i  n= § 2Nÿf HnL.

Now we give a lower bound to this cardinal. The proof of Proposi-
tion 5 shows that this cardinal is greater than 2HnL. Accordingly,
there exists a constant c such that

(13)card 9x œ  : †x§i  n= ¥ 2cÿn.

We also obtain that 2cÿn § 2Nÿf HnL and conclude that

 422 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

We also obtain that 2cÿn § 2Nÿf HnL and conclude that

(14)f HnL ¥
c

N
ÿ n.

We now follow the proof made earlier to show that rg
1 does not sat-

isfy condition 2. We can define

ri HxL 
Hi HxL

f I†x§iM
,

and prove as for r1 and r2 that there exists a constant d such that

°rgHxL - log2HiL ÿ riHxL• § d.

The proof of Lemma 2 is still valid here. In the same way, we ex-
tend Lemma 3 to rg, namely there exists a constant M such that rg is
bounded by M. Considering rg instead of rg

1 has just such an influ-
ence on the value of the constant M.

Now, we have to note that for N ¥ M, the set
9x œ Xi

* : †x§i  n and rgHxL § N= is the set Xi
n to conclude that condi-

tion 2 is not verified. ·

7. Concluding Remarks

In this paper we studied the dg complexity function defined by Calude
and Jürgensen in [2]. This study led us to modify the definition of dg
in order to correct some of the proofs. Then, we have been able to
propose a definition for acceptable complexity measures for theorems
that capture the main properties of dg. After studying some complex-
ity measures, we showed that the conditions of acceptability are quite
hard to complete. Yet, the definition seems to be robust enough to al-
low some investigations to find other natural acceptable complexity
measures.

Here are some remaining open questions.

† Can we improve the bounds of Lemma 1? This question is interesting
not only for improving Proposition 7 but also for itself. How simple are
the well-formed formulas, and in other words, to what extent can we
use their great regularities to compress them? Yet, as already discussed,
this question needs to be better defined. In particular, the definition of
the formal languages has to be investigated. The answer seems to be
very dependent on the considered language.

 Acceptable Complexity Measures of Theorems 423

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

† Do there exist some acceptable complexity measures that are very differ-
ent from dg? The idea here is to find some measures that go further in
investigating the roots of unprovability.

† In view of the proof of Theorem 5, if we have two Gödel numberings g
and g£, does the equality H2 Ig HxLM  H2 Ig£ HxLM hold for all but finitely
many x or are those two quantities infinitely often different from each
other?

Those few questions are added to the ones expressed in [2]. The
goal of finding new acceptable complexity measures is to have more
tools for trying to answer their questions, as the existence of indepen-
dent sentences of small complexity.

Acknowledgments

Special thanks are due to Cristian Calude without whom this paper
would have never existed. His very helpful comments, corrections,
and improvements, as well as his hospitality, made my stay in Auck-
land much nicer than I could have hoped for. Thanks are also due to
André Nies for his comments and ideas. In particular, he gave us the
lower bound in Lemma 1.

References

[1] K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I,” Monatshefte für Mathematik, 38(1),
1931 pp. 173|198.

[2] C. Calude and H. Jürgensen, “Is Complexity a Source of Incomplete-
ness?” Advances in Applied Mathematics, 35(1), 2005 pp. 1|15.

[3] G. Chaitin, “Information-Theoretic Limitations of Formal Systems,”
Journal of the ACM, 21(3), 1974 pp. 403|424.

[4] C. Calude, H. Jürgensen, and M. Zimand, “Is Independence an Excep-
tion?” Applied Mathematics and Computation, 66(1), 1994 pp. 63|76.

[5] C. Calude, “Incompleteness: A Personal Perspective,” CDMTCS Re-
search Report 324, 2008, pp. 14.

[6] A. Kolmogorov, “Three Approaches to the Quantitative Definition of In-
formation,” International Journal of Computer Mathematics, 2(1-4),
1968 pp. 157|168.

[7] G. Chaitin, “A Theory of Program Size Formally Identical to Informa-
tion Theory,” Journal of the ACM, 22(3), 1975 pp. 329|340.

[8] C. Calude, Information and Randomness: An Algorithmic Perspective,
2nd ed., New York: Springer-Verlag, 2002.

[9] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and
Its Applications, New York: Springer-Verlag, 1997.

 424 B. Grenet

 Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

[10] A. Turing, “On Computable Numbers, With an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, 42, 1936 pp. 230|265.

[11] M. Sipser, Introduction to the Theory of Computation, 2nd ed., Boston:
Thomson Course Technology, 2006.

[12] C. Papadimitriou, Computational Complexity, Reading, MA: Addison-
Wesley 1994.

[13] P. Odifreddi, Classical Recursion Theory: The Theory of Functions and
Sets of Natural Numbers, Amsterdam: North-Holland, Vol. 1, 1989,
Vol. 2, 1999.

 Acceptable Complexity Measures of Theorems 425

Complex Systems, 18 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.18.4.403

