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The primary goal of digital physics research is to provide a description
of the physical universe in terms of simple programs. One approach to
attaining  this  goal  is  creating  a  toolbox  of  algorithms  that  reproduce
the behavior of basic quantum phenomena. As a step in this direction, a
simple pseudo-particle algorithm has been developed that exhibits rota-
tionally  invariant,  glider-like  motion  across  graphs  in  two  or  more
dimensions. This algorithm is applied to a range of lattice and irregular
graphs  from the  sparse  to  the  densely  connected,  and  it  is  shown that
rotationally  invariant  motion  can  be  easily  obtained  from  irregular
graphs  that  are  sufficiently  densely  connected.  Such  graphs  are  also
shown to be potentially compatible with spatial curvature and relativis-
tic  invariance.  This  work  points  the  way  toward  a  class  of  algorithms
that  can  be  used  to  tightly  approximate  the  basic  phenomena  encoun-
tered  in  particle  physics,  while  maintaining  the  desired  properties  of
discreteness, determinism, and algorithmic simplicity. 

1. Introduction

The study of particle physics is driven by a desire to seek out the hid-
den  symmetries  of  nature,  many  of  which  appear  to  have  smoothly
varying  values.  However,  theories  based  on  continuous  mathematics
have so far not provided a fully coherent picture of the natural world,
leading  some  theorists  working  in  particle  physics  to  wonder  if  dis-
crete models might one day yield a clearer,  more logical vision [1|3].
This  view echoes  one that  has  been under  consideration in  computer
science for some time [4|6]. 

One  approach  to  constructing  such  a  model  is  through  the  use  of
simple  algorithms.  This  technique has  the  advantages  of  unparalleled
computational  elegance  and  rich  descriptive  power,  but  has  had  lim-
ited success  in producing realistic  analogs of  natural  phenomena.  At-
tempts to approximate physical systems using simple algorithms have
so  far  broadly  concentrated  on  two  lines  of  research:  cellular  au-
tomata (CAs) [5, 7] and systems based on networks [3, 8]. 

Complex Systems, 18 © 2010 Complex Systems Publications, Inc. 
 

https://doi.org/10.25088/ComplexSystems.18.4.439



CAs exhibit a broad spectrum of complex behaviors that have been
well  researched.  This  versatility  has  been  employed  to  produce  re-
versible  patterns  that  show  some  of  the  properties  of  physical  parti-
cles  [3].  However,  CAs  produce  anisotropic  behavior  except  at  very
large scales and suffer from not being able to easily model spatial cur-
vature or spatial expansion. 

Network-based methods use graphs to provide an analog of physi-
cal  space  that  is  capable  of  modeling  both  spatial  curvature  and
expansion  with  ease.  However,  in  such  systems,  the  kinds  of  pre-
dictable  behavior  witnessed  in  CAs  have  been  harder  to  find.  One
such  behavior  is  straight-line  motion,  as  witnessed  in  CA  “gliders”.
So far,  the only known examples of straight-line pattern propagation
are confined to regular,  planar backgrounds and lack sufficient  flexi-
bility  to  model  natural  systems  [3].  Furthermore,  no  mechanism  has
been  discovered  that  will  permit  a  propagating  pattern  to  follow  a
geodesic  across  a graph that  has been constructed to mimic a curved
surface  [3].  Gliders  that  do not  reliably  follow geodesics  cannot  take
advantage of the modeling flexibility that graphs provide. 

In  this  paper,  we  describe  a  preliminary  investigation  into  a  new
method that utilizes densely connected graphs and algorithms operat-
ing  over  sets  of  nodes.  To  demonstrate  the  potential  of  this  scheme,
we  outline  an  algorithm  called  “Jellyfish”  that  produces  a  well-
behaved “pseudo-particle”. This pseudo-particle is capable of approxi-
mating  rotationally  invariant  straight-line  motion  across  irregular
graphs. 

We describe experiments undertaken to test the limits of our algo-
rithm’s  performance  on  graphs  designed  to  emulate  two-  and  three-
dimensional spaces at  large scales.  We also show the difference in its
behavior between regular and irregular environments. Evidence is pro-
vided that this system is rich enough to describe both geodesic motion
across  a  curved  space  and  relativistic  motion  conforming  to  the
Lorentz metric. 

In Section 2,  we describe the Jellyfish algorithm, the formula used
to  generate  test  graphs,  and  a  metric  for  straightness.  Section  3
outlines  the  details  of  our  simulations  and  their  findings.  Section  4
covers  two  extra  qualitative  investigations  conducted  to  test  the
further  potential  of  the  approach  on  orbital  and  relativistic  motion.
Section  5  contains  a  discussion  of  the  implications  of  this  research,
and Section 6 summarizes our conclusions. 

2. Algorithms

2.1 The Sample Graph Formula

This research seeks to aid in the development of background-indepen-
dent  models  of  nature.  In  such  models,  notions  of  distance,  orienta-
tion, and motion are intended to arise naturally out of more abstract
structures.  However,  testing  our  algorithm requires  that  we  quantify
straightness  of  motion  with  respect  to  some  external  measure.  We
therefore assess our pseudo-particle’s performance using basic geome-
try. 
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This research seeks to aid in the development of background-indepen-
dent  models  of  nature.  In  such  models,  notions  of  distance,  orienta-
tion, and motion are intended to arise naturally out of more abstract
structures.  However,  testing  our  algorithm requires  that  we  quantify
straightness  of  motion  with  respect  to  some  external  measure.  We
therefore assess our pseudo-particle’s performance using basic geome-
try. 

For  this  purpose,  we  construct  graphs  designed  to  approximate
smooth,  flat  manifolds  at  large  scales.  This  is  carried  out  by  placing
nodes  at  random  on  a  manifold  so  that  regions  of  equal  area  are
equally  likely  to  contain  a  node.  This  ensures  that  nodes  are  dis-
tributed  with  approximately  constant  density.  Then,  nodes  within  a
linking radius r of each other (where r is a constant) are connected. In
all cases described in this paper, unless otherwise noted, we use a flat
two-dimensional Euclidean surface that is glued at the edges to form a
torus. The following recipe outlines the process employed in this case. 

† Generate  a  large  number  of  nodes  with  randomly  chosen  x  and  y
coordinates between the limit values of zero and one. 

† For each pair of nodes, p and q, compute their Euclidean distance d for
a torus, as given by:

(1)
d 
-JIminIDXp q, 1 - DXp qMM

2 + IminIDYp q, 1 - IDYp qMMM
2N

where  DXp q  denotes  the  x-axis  distance  between  points  p  and  q,
(DXp q ª Xq - Xp). 

† Connect each node to all neighbors lying within the linking radius r. 

This  method  produces  graphs  that  vary  with  a  single  parameter,  the
linking radius r. We explore the dependence on this parameter in Sec-
tion 3.1. 

As  these  manifolds  have  zero  curvature,  the  required  calculations
for  testing  the  straightness  of  motion  are  straightforward.  Because
these  graphs  are  closed,  they  permit  unbroken  motion  in  a  straight
line for an arbitrary number of iterations. A pseudo-particle’s motion
always wraps, regardless of its orientation. 

2.2 The Straightness Metric

For irregular graphs of the sort described, changes in angle over short
distances are unavoidable, as there is only a finite number of arcs leav-
ing any given node. Such changes in angle are therefore a property of
the  medium  and  do  not  contribute  meaningfully  to  an  attempt  to
assess straightness of motion. Thus, the metric we use to measure our
results is designed to ignore changes of angle of travel over short dis-
tances. 

For a given time sequence of length t,  the vector from the pseudo-
particle position at time 0 to its position at time t ê 2 is measured. This
vector  is  then  compared  to  that  for  t ê 2  to  t  and  the  angle  between
them calculated. We call this value the angular deviation qd for that se-
quence. The position of the pseudo-particle is defined to be the mean
coordinates  of  all  nodes  contained  in  the  union  of  the  two  Jellyfish
sets. The nature and purpose of these sets is explained in Section 2.3.
We take care to determine the mean coordinates using functions com-
patible with measurements on a closed surface so as to avoid numeri-
cal errors caused by coordinate wrapping. Angular deviation is shown
here  in  degrees  for  ease  of  comprehension,  with  zero  representing
straight-line motion. We make no attempt here to generalize this met-
ric  to  curved  manifolds  as  this  lies  outside  the  scope  of  the  paper.
However, the use of such manifolds is briefly discussed in Section 4.1. 
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For a given time sequence of length t,  the vector from the pseudo-
particle position at time 0 to its position at time t ê 2 is measured. This
vector  is  then  compared  to  that  for  t ê 2  to  t  and  the  angle  between
them calculated. We call this value the angular deviation qd for that se-
quence. The position of the pseudo-particle is defined to be the mean
coordinates  of  all  nodes  contained  in  the  union  of  the  two  Jellyfish
sets. The nature and purpose of these sets is explained in Section 2.3.
We take care to determine the mean coordinates using functions com-
patible with measurements on a closed surface so as to avoid numeri-
cal errors caused by coordinate wrapping. Angular deviation is shown
here  in  degrees  for  ease  of  comprehension,  with  zero  representing
straight-line motion. We make no attempt here to generalize this met-
ric  to  curved  manifolds  as  this  lies  outside  the  scope  of  the  paper.
However, the use of such manifolds is briefly discussed in Section 4.1. 

2.3 The Jellyfish Algorithm

As  alluded  to  in  Section  2.2,  there  are  no  straight  lines  in  a  graph
except those of length one that point in a finite set of directions from
each  node.  It  is  perhaps  more  accurate,  then,  to  describe  the  motion
we  wish  our  algorithm  to  achieve  as  straightest  possible  motion,  or
forward motion. However, graphs have no inherent notion of orienta-
tion.  The  arcs  leaving  any  given  node  are  treated  identically.  Conse-
quently,  any  concept  of  forward  motion  is  necessarily  dependent  on
relationships between multiple nodes. 

To circumvent this problem, our algorithm defines forward motion
over sets of nodes rather than individual nodes. Using sets of nodes al-
lows defining position  as  a  function of  many nodes,  and straightness
to  be  defined  over  sets  of  arcs  that  have  more  reliable  properties  in
bulk than in isolation. 

Jellyfish operates on two sets of nodes, A and B, each containing n
nodes. The algorithm proceeds as follows. 

† Each  neighbor  x  to  the  set  of  nodes  A ‹ B  is  assigned  a  score.  The
value of this score is given by: 

(2)NeighborsHxL › A - NeighborsHxL › B

where NeighborsHxL denotes the nodes reachable from node x via a sin-
gle arc. 

† Set B is emptied and populated with the members of set A. 

† Set  A  is  emptied  and  updated  to  contain  the  n  highest-scoring  neigh-
bors. 

This  completes  a  single  step  forward.  The  algorithm  then  repeats  to
compute further steps. 

We can represent the Jellyfish algorithm as an iterative function us-
ing  the  following  formalism.  Set  S  of  size  m  has  members
x1, x2 ... xm.  The function NeighborsHSL  indicates  the  set  of  all  nodes
that  are  linked  to  by  any  member  of  S.  We  also  define  the  function
TopHn, S, f HxLL,  which  returns  the  n  top  scoring  members  of  S,  using
the metric f HxL to score each element x. 

The function can then be written as: 
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(3)
A£ = Top Hn, NeighborsHA ‹ BL,

NeighborsHxL › A - NeighborsHxL › B L

B£ = A.

This  function gives  us  a  single  parameter  to  test  against:  the  pseudo-
particle set size n. Figure 1 shows the algorithm in use for n  3. 

Figure  1.  Motion  formula  for  Jellyfish.  Neighbors  of  the  pseudo-particle  are
scored  according  to  the  number  of  members  of  set  A  they  are  adjacent  to,
minus the number of members of set B. The nodes marked A£  and B£  indicate
the position of the pseudo-particle elements after a single iteration of the algo-
rithm has been completed. 

It  is  possible,  even  likely,  that  multiple  candidate  nodes  examined
by the Jellyfish algorithm in a given iteration will have the same score.
However, the algorithm’s behavior under this condition is not explic-
itly  defined  by  this  formula.  The  reason  for  this  is  outlined  in  Sec-
tion 2.4. 

2.4 Factors Governing Algorithm Choice

One reason to use Jellyfish is that the definition of forward motion it
embodies  is  not  limited  to  a  particular  dimensionality  or  curvature.
We should expect  its  performance to be the same for any graph that
appears  locally  smooth.  Indeed,  we  briefly  investigate  curved  spaces
in section Section 4.1. Additionally, as Jellyfish utilizes node sets of ar-
bitrary size rather than individual nodes, our anticipation prior to ex-
perimentation was that  sets  could be grown indefinitely  to  obtain an
increasingly accurate conception of straightness. 

Another  reason  we  chose  to  use  Jellyfish  for  motion  experiments
was  the  property  of  spontaneous  localization  that  it  showed  during
preliminary  studies.  Because  the  pseudo-particle  selects  the  highest
scoring  neighbors  for  its  new  members,  the  slightest  over-density  of
positively scored nodes on a graph will  cause the sets to rapidly con-
verge onto adjacent nodes. Within a few iterations the pseudo-particle
fully  localizes  (coheres),  so  long  as  the  graph  conditions  are  suffi-
ciently dense to permit the algorithm to operate. 

It is easy to construct scenarios that one might imagine would sup-
press  this  effect.  For  example:  a  starting  state  for  the  algorithm  in
which every pseudo-particle element is separated from the others by a
minimum  path  length  greater  than  two.  In  this  case,  every  neighbor
examined  by  the  algorithm  has  a  score  of  either  plus  or  minus  one.
However,  the  pseudo-particle  still  coheres  under  these  conditions,
even for implementations where care is taken to treat the neighbors of
each  set  element  exactly  equally  and  to  select  randomly  between
them. 
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It is easy to construct scenarios that one might imagine would sup-
press  this  effect.  For  example:  a  starting  state  for  the  algorithm  in
which every pseudo-particle element is separated from the others by a
minimum  path  length  greater  than  two.  In  this  case,  every  neighbor
examined  by  the  algorithm  has  a  score  of  either  plus  or  minus  one.
However,  the  pseudo-particle  still  coheres  under  these  conditions,
even for implementations where care is taken to treat the neighbors of
each  set  element  exactly  equally  and  to  select  randomly  between
them. 

This is because the algorithm automatically introduces bias upon it-
eration. Even if the neighbors of every member of set A have identical
scores,  it  is  very  unlikely  that  exactly  one  neighbor  of  each  element
will  be selected in the next  iteration.  Thus,  one iteration of  the algo-
rithm  usually  produces  a  local  over-density.  For  all  implementations
examined during preliminary testing, the mechanism used to select be-
tween equally  scored neighbors  made no difference.  (For  this  reason,
an explicit  strategy  was  not  listed  with  the  algorithm definition.)  No
formal proof that this behavior will always occur has yet been sought.
However,  it  is  anticipated that it  should be relatively straightforward
to  show  that  the  probability  of  a  pseudo-particle  not  being  formed
should become vanishingly small with increased iterations. 

This localization effect provides an ideal experimental starting con-
dition  for  the  algorithm.  By  randomly  scattering  the  points  of  both
sets A and B across a graph, the risk of a selection effect in the resul-
tant  flight-paths  can  be  minimized.  Care  was  taken  when  examining
the  results  of  the  experiments  to  confirm  that  the  implementation
choice had not affected results. (See Section 3.3.) 

3. Simulations in Euclidean Space

We  used  our  graphs  and  motion  algorithm  to  carry  out  four  trial
simulations to explore the viability of our approach, as outlined in the
following  sections.  For  those  interested  in  an  animated  depiction  of
the  motion  described,  video  shorts  generated  for  the  2008  Midwest
NKS  Conference  can  be  found  online.  URLs  are  listed  in  the  ap-
pendix. 

3.1 Simulation One: Exploration of Parameter Space

In order to test the basic capacity of Jellyfish for straight-line motion,
a  range of  studies  were  conducted for  pseudo-particle  set  size  n  with
2 < n < 1024,  and  for  graph  linking  radius  r  for  0.012 < r < 0.036.
These were carried out on two-dimensional graphs of 105 nodes. 

Simulations began with the elements of sets A and B randomly dis-
tributed  throughout  the  graph  as  described  in  Section  2.4.  Each  run
was comprised of  a 20-step delay to ensure pseudo-particle  cohesion,
followed by a measurement sequence of t  20 steps. Each angular de-
viation result was then averaged over a set of 20 runs. 
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Simulations began with the elements of sets A and B randomly dis-
tributed  throughout  the  graph  as  described  in  Section  2.4.  Each  run
was comprised of  a 20-step delay to ensure pseudo-particle  cohesion,
followed by a measurement sequence of t  20 steps. Each angular de-
viation result was then averaged over a set of 20 runs. 

The  resulting  measurements  of  angular  deviation  qd  are  shown  in
Figure  2.  Lines  indicate  runs  with  differing  values  of  set  size  n.  For
clarity,  runs  with  n § 32  are  shown  in  panel  (a),  while  those  with
n ¥ 32  are  in  panel  (b).  We  also  show  a  best-case  control  (labeled
“ctrl”) for comparison. The control particle determined its next posi-
tion by examining the coordinates of each neighbor and selecting the
node lying closest to the geometric ideal for straight-line motion. 

Figure  2.  Change  in  angular  deviation  qd  with  linking  radius  r  for  various
pseudo-particle set sizes n. For low values of n (a), the linking radius has little
impact. For high n (b), performance asymptotically improves for high r, while
worsening for low r. This effect magnifies with increasing n.

For  n § 32  in  Figure  2(a),  the  expected  behavior  was  confirmed.
Angular  deviation  decreased  as  n  increased.  As  expected,  larger  set
sizes  produce  straighter  motion  because  an  increased  sample  size  is
available from which to obtain a consensus notion of “forward”. How-
ever,  the  algorithm  showed  different  behavior  for  n ¥ 32  in  Fig-
ure 2(b).  On  smooth  graphs  (high  r),  increasing  n  resulted  in
straighter motion (lower qd) as before, while on coarse graphs (low r),
performance actually degraded as n increased. 

Closer  observation  of  these  cases  showed that  under  coarse  graph
conditions there appears to be an insufficient number of neighbor as-
sociations  to  hold  a  large  particle  together.  Thus,  it  cannot  easily
move in a single direction.  The pseudo-particle  delocalizes,  spreading
out  on  multiple  paths.  This  gives  a  poorly  defined  average  position
for straightness measurement. 

Figure 3 presents this data in a different orientation, showing qd  as
a function of n for a range of r. Here we can see a set of valley-shaped
curves,  with  the  minima  sliding  to  the  right  with  increasing  r.  This
suggests that for any r value there is an optimum pseudo-particle size
for which the straightest motion is achieved. 
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Figure  3.  Change  in  angular  deviation  qd  with  pseudo-particle  set  size  n  for
various linking radii r.  For each r  there is a valley-shaped curve with a mini-
mum value of qd, with the minimum generally occurring at higher values of n
for  higher  r.  For  the  values  of  r  0.0144  and  r  0.0336  the  points  corre-
sponding to minimum qd values have been marked.

Pursuing this,  we performed a comparative analysis of the average
number  of  neighbors  per  node  in  each  graph,  and  the  total  size  of  a
pseudo-particle  †A ‹ B§.  This  suggested  that  the  optimum  pseudo-
particle occurs when its size 2 n is the same as the average number of
node neighbors. 

3.2 Simulation Two: Optimum Particle Behavior

Using  the  optimum  particle  size  formula  determined  in  Section  3.1,
another  exploratory  simulation  was  run.  This  simulation  was
intended  to  determine  the  minimum  angular  deviation  given
increasing  linking  radius  r,  and  to  provide  some  guide  as  to  what
behavior might be expected at the continuum limit. 

This experiment used the same angular deviation metric, and mea-
sured  linking  radii  from  0.012 < r < 0.072.  Each  run  measured  the
motion  of  the  pseudo-particle  over  20  steps,  after  a  20-step  delay  to
ensure  cohesion.  Each  angular  deviation  result  was  then  averaged
over a set of 20 runs. 

Figure 4 shows the behavior of particles with size matching the av-
erage neighbor count. This produces a well-behaved angular deviation
curve  that  asymptotically  approached  zero  for  large  r.  This  was  ex-
pected because motion should tend toward a straight line for the most
densely connected networks, given an appropriate n value. 

It should also be noted, however, that even when ideally sized, the
behavior  of  Jellyfish  pseudo-particles  becomes  extremely  poor  on
coarse  graphs.  In  the  limiting  case  of  planar  graphs  with  only  three
links  leaving  each  node,  the  motion  of  the  particle  is  effectively  ran-
dom. 
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Figure  4.  Change  in  angular  deviation  qd  with  linking  radii  r  for  “ideal”
values of n. As r increases, the straightness of motion across two-dimensional
graphs asymptotically improves.

3.3 Simulation Three: Motion on Regular Graphs

To determine whether the use of irregular graphs was a necessary in-
gredient for producing rotationally invariant motion with the Jellyfish
algorithm, a third simulation was conducted. 

In this case we conducted 500 runs of length 10 after a 20-step co-
hesion  delay  for  both  irregular  and  rectangular  lattice  graphs  of
102 400  (3202)  nodes,  with  0.02 < r < 0.038  and  n  50.  In  both
graph types, the same linking strategy was used. Only the positioning
of  the  nodes  differed~in  the  lattice  case,  nodes  were  arrayed  on  a
square grid. For each run, the angle of flight with respect to the x-axis
qf  was measured. Fresh graphs were generated for each run to remove

any potential bias from the results. 
The  resulting  distributions  of  flight  angles  qf  for  r  0.02  and

r  0.038 are  shown in Figure  5.  As expected,  the  histograms for  ir-
regular  graphs showed an even distribution of  angles  of  flight  for  all
values  of  r.  The  pseudo-particle  moved  in  all  directions  with  equal
probability.  However,  the  histograms  for  rectangular  lattice  graphs
always  showed  sharp  spikes  for  motion  in  certain  selected  directions
and often no coverage for others. 

This  matched  our  observations  from  preliminary  analyses  that  in
all observed cases, using lattices biased the direction of flight within a
few  iterations.  Bias  was  always  toward  a  direction  defined  by  some
minimal ratio of axis steps on the lattice. The same behavior was seen
for all set-based algorithms tested, and for all kinds of regular lattice. 

Interestingly, this experiment did not show the number and orienta-
tion  of  selected  directions  changing  monotonically  with  increasing  r.
The relationship between n,  r,  and the set  of  resultant  selected direc-
tions appears to be complex and its analysis lies outside the scope of
this paper. 
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Figure  5.  Histograms  showing  occurrences  of  pseudo-particle  flight  at  angles
qf  varying from 0 to 90 degrees for regular and irregular graphs for two val-
ues of r. For irregular graphs, no clear bias is observed. For regular rectangu-
lar  graphs,  flight  is  almost  entirely  confined to preferred directions that  vary
non-monotonically with r.

Additionally, this experiment confirmed that the neighbor-selection
strategy  in  our  Jellyfish  implementation  did  not  have  a  distorting
effect  on  the  selection  of  flight  angle  for  irregular  graphs,  as  men-
tioned in Section 2.4. 

3.4 Simulation Four: Motion in Extra Dimensions

In order to ensure that the algorithm behavior remained consistent for
graphs  emulating  different  numbers  of  dimensions,  we  repeated  the
simulation in Section 3.2 for a range of three-dimensional graphs. The
graphs contained 105  nodes as previously,  but to compensate for the
increased space that the nodes could occupy, larger linking radii were
tested. We explored values from 0.04 < r < 0.12. The number of runs
per graph, along with the run lengths and delays, were kept the same
as  for  Section  3.2.  The  values  used  for  n  were  determined  using  the
formula for optimal particle size that was derived for the two-dimen-
sional case. 

Using  three-dimensional  graphs  once  again  showed  straighter  mo-
tion for higher values of r (see Figure 6). Increasing the number of di-
mensions appeared to have no significant effect on the behavior of the
algorithm, except for requiring a larger number of nodes to test. 

4. Exploration

Two further qualitative investigations were performed in order to test
the potential of this approach for use in future work. URLs for video
shorts  that  show  the  forms  of  motion  described  in  this  section  are
listed  in  the  appendix.  These  were  originally  generated  for  the  2008
Midwest NKS Conference. 
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Figure 6.  Change in angular deviation qd  with linking radii  r  for  ideal  values
of n.  The same behavior as for two dimensions is witnessed for three dimen-
sions,  though  with  larger  linking  radii  being  required  to  compensate  for  the
relative paucity of nodes in the sample.

4.1 Investigation One: Motion in Curved Spaces

In order for our approach to make use of the advantages of network-
based systems described in Section 1,  it  is  necessary that  the Jellyfish
algorithm behave  consistently  on  graphs  that  do  not  conform to  the
Euclidean norm we use to test straightness. Specifically, in order to be
useful  for  physical  simulations,  we  require  that  the  algorithm  repre-
sent particles moving in a relativistically distorted space. However, re-
search  has  yet  to  be  done  on  how  to  best  adapt  dense,  irregular
graphs to correctly model relativistic curvature. For the purposes of il-
lustrating  the  Jellyfish  algorithm’s  potential,  two  simplified  models
are described, along with the observed flight paths that pseudo-parti-
cles  take  across  them.  In  neither  case  do  we  attempt  to  accurately
model the kind of curvature produced by gravity. Furthermore, we do
not  attempt  to  generalize  the  straightness  metric  described  in  Sec-
tion 2.2  for  these  surfaces,  because  without  a  fully  realized  model  of
curvature, pseudo-particle performance cannot be adequately tested. 

Arguably,  the  simplest  way  to  adapt  our  graph  generation  system
to  model  curvature  is  to  distribute  points  with  approximately  even
density on a manifold described by a smooth function and to connect
them  together  using  a  linking  radius  as  in  the  Euclidean  case.  Thus,
for  our first  example,  we produce graphs using this  method to simu-
late a static potential well conforming to the relation z  1 ë r2, where
r denotes radius and z denotes distance above the x y plane. 

In  order  to  create  a  distribution  of  points  on  such  a  surface  for
which regions of equal area A are equally likely to contain a node, we
generate  random  angle  and  area  values  and  then  apply  the  relation
A ∝ 1 ê r  to  calculate  corresponding  Cartesian  coordinates  in  a  three-
dimensional  space. For simplicity,  these  points  are  then connected by
measuring their  Euclidean distance in three-dimensional  space,  rather
than measuring across the curved surface. 
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In  order  to  create  a  distribution  of  points  on  such  a  surface  for
which regions of equal area A are equally likely to contain a node, we
generate  random  angle  and  area  values  and  then  apply  the  relation
A ∝ 1 ê r  to  calculate  corresponding  Cartesian  coordinates  in  a  three-
dimensional  space. For simplicity,  these  points  are  then connected by
measuring their  Euclidean distance in three-dimensional  space,  rather
than measuring across the curved surface. 

To test this approach, we used graphs of 100K nodes, with a scal-
ing factor of 5 applied to the curvature function so that the effects of
varying distance would be clearly  visible.  A linking radius  of  r  0.1
was then used to connect the points. The mean position of a pseudo-
particle  with  set  size  n  600  was  measured  as  it  traversed  the  sur-
face.  The run lengths  were  of  size  40,  of  which 10 were  carried  out.
These  simulation  parameters  were  selected  to  provide  clear,  well-
behaved examples demonstrating the possibility of orbital motion. 

The  trajectories  traced  by  the  pseudo-particle  in  each  of  the  10
runs  are  illustrated  in  Figure  7.  In  all  the  cases  shown,  smoothly
curved, orbital motion can be seen. However, in order to produce re-
sults  of  this  quality,  a  large  pseudo-particle  and  a  very  densely  con-
nected graph were required, suggesting that this approach only yields
the desired results at larger scales. 

Figure  7.  Sample  of  orbital  flight  paths  for  a  Jellyfish  pseudo-particle  on
graphs with spatial curvature generated using a linking radius applied to a sur-
face in three-dimensional space. The center of gravity is marked with a cross
for each case. Something approaching repeating elliptical motion can be seen.

While the demonstration in Figure 7 shows that well-behaved mo-
tion on curved surfaces is easy to produce, it does not depict the kind
of  curvature  needed  to  model  relativistic  systems.  Stationary  objects
placed in a gravity well accelerate toward the center of the well~a be-
havior  that  static  curvature  cannot  capture.  To  address  this,  general
relativity models curvature in spacetime rather than simply in space. 
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We can go a small way toward mimicking the kind of acceleration
vector field required by general relativity by using directed graphs. In
such  a  system,  we  simulate  a  potential  well  using  a  graph  where  the
connection between nodes is  dependent not only on a linking radius,
but also on a “linking probability” Pl. Instead of always connecting a
node to neighbors within the linking radius with probability one, each
neighbor  is  selected  for  connection  only  with  probability  Pl.  Given
two closely spaced nodes p and q for which q is closer to the well cen-
ter g, the probability that p will link to q is greater than the probabil-
ity  that  q  links  to  p.  By  then  varying  Pl,  we  can  vary  the  degree  to
which a pseudo-particle will be drawn toward the center of the well. 

For a given node p and neighbor q, we can determine a simple link-
ing probability function using the following formula: 

(4)PlHp, qL 
1

2
-

1

2
m

q - p

r
.

Here,  r  denotes  the  linking  radius  and  m  indicates  a  damping  value
used to moderate  the  scale  of  the  effect.  The symbols  p  and q  repre-
sent the vectors from the well center g to the nodes p and q. 

To  test  this  approach,  graphs  of  100K  nodes  were  used,  with  the
linking  radius  set  at  0.06.  A  damping  value  of  0.55  was  chosen  as
preliminary  investigations  showed  that  it  produced  some  of  the
largest  stable  orbits  without  causing  the  pseudo-particle  to  cross  the
graph’s  boundaries.  The  run  lengths  were  of  size  40,  of  which  10
were carried out. 

The  trajectories  traced  by  the  pseudo-particle  in  each  of  the  10
runs are illustrated in Figure 8.  In all  cases,  smoothly curved,  orbital
motion can be seen, though for graphs on this scale, the orbits are not
particularly stable as small changes of angle near the well center pro-
duced significant changes in orbital direction. It is anticipated that for
tests on larger graphs, much smoother behavior will be visible. 

It  is  worth  noting  that  this  method  does  not  require  changing  the
distribution of points from the flat Euclidean graphs described in Sec-
tion 3. In terms of the placement of nodes upon a background mani-
fold, the graphs used here are completely flat. Nevertheless, the effects
of  curvature  are  observed  because  the  relationships  between  nodes
have changed. 

 A Glider for Every Graph 451 

Complex Systems, 18 © 2010 Complex Systems Publications, Inc. 
 

https://doi.org/10.25088/ComplexSystems.18.4.439



Figure  8.  Sample  of  orbital  flight  paths  for  a  Jellyfish  pseudo-particle  on
graphs with spatial curvature generated using linking probabilities. The center
of  gravity  is  marked  with  a  cross  for  each  case.  Though  the  graphs  are  too
coarse  at  this  scale  of  simulation  to  produce  stable  orbits,  something  ap-
proaching repeating elliptical motion can be seen.

4.2 Investigation Two: Relativistic Time Dilation

To  test  whether  our  approach  could  be  extended  to  encompass  mo-
tion conforming to the Lorentz metric, and therefore with special rela-
tivity,  a  simple  technique  was  borrowed  from  Kaluza|Klein  theory:
the  introduction  of  a  rolled-up,  or  compactified,  dimension.  Kaluza|
Klein theory was introduced in 1921 as an early attempt to reconcile
electromagnetism with  relativity  and  popularized  the  use  of  compact
dimensions as possible features of physical space. The original version
of  Kaluza|Klein  theory  has  since  been  abandoned  as  it  failed  to  pre-
dict  the  relative  strengths  of  the  forces  it  sought  to  combine.  How-
ever,  the  mechanisms  it  introduced  are  still  in  use  in  fields  such  as
string theory. 

Using  such  an  extra  dimension,  converting  the  standard  flight
paths  of  pseudo-particles  into  relativistic  flight  paths  is  trivial.  Parti-
cles are simply given freedom of motion in one extra direction. For an
adaptation  of  the  standard  two-dimensional  graph  case,  a  pseudo-
particle’s velocity is measured by examining its motion in the x and y
directions,  while  the  “subjective  time”  it  experiences  is  given  by  the
distance  traveled  in  the  direction  z.  Under  these  conditions,  the
change  in  time-rate  experienced  by  a  pseudo-particle  with  varying
velocity matches the requirements of the Lorentz metric exactly. 
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To see why this  works,  consider the formula for the spacetime in-
terval given by special relativity (we assume units for which c  1): 

(5)s2  t2 - x2 - y2 - z2.

By  adding a  dimension for  s  to  our  graph,  it  is  easy  to  see  that  time
can be described as a function of s and the dimensions of space:

(6)t2  s2 + x2 + y2 + z2.

Each iteration of the simulation corresponds to a step on the t axis
of  unit  length.  As  the  Jellyfish  pseudo-particle  has  constant  velocity
across  the  graph,  some  combination  of  the  s  and  spatial  directions
that  conforms to the required relativity  relationship is  traversed with
each step. This method is not intended to capture all of special relativ-
ity, but was seen as the simplest way to produce the desired result. 

It  should  be  noted  that  the  use  of  this  method to  encompass  rela-
tivistic  effects  is  only  possible  because  the  Jellyfish  particle  has  rota-
tionally  invariant  behavior.  In  this  representation,  frame  of  reference
is  encoded as orientation with respect  to the extra dimension.  Veloc-
ity can only vary smoothly if all possible angles of flight are allowed. 

It  should  also  be  noted  that  compactifying  the  extra  dimension  in
use here is not a requirement for this approach to produce the correct
results,  at  least  for  particles  in  isolation.  However,  it  is  anticipated
that  future  experiments  designed  to  test  relativistic  behavior  in  con-
junction with particle interaction may require it. 

A  basic  proof-of-concept  simulation  employing  this  technique  was
produced  and  its  results  can  be  seen  as  a  video  file  listed  in  the  ap-
pendix.  Subjective  time  experienced  by  a  pseudo-particle  is  repre-
sented using pulses of brightness. Pseudo-particles traveling fast pulse
slowly and those traveling slowly pulse with greater frequency. 

No attempt was made here to fully model the effects of special rela-
tivity as this would have required modeled observers and was consid-
ered outside  the  remit  of  this  paper.  Similarly,  no attempt  was  made
to formally  measure  the  change in  subjective  time as  the  relationship
was all  but  guaranteed by the experimental  set-up.  The fact  that  this
effect  was  so  easily  obtainable  is  not  considered  significant  in  isola-
tion. It merely illustrates the potential for future work in this area. 

5. Discussion

As  anticipated,  more  densely  connected  irregular  graphs  provide  a
better  analog  for  smooth  surfaces  than  sparse  ones.  The  observed
trend suggests that perfectly straight motion should be expected as the
continuum limit for the number of neighbors for each node is probed.
More surprising is the discovery that for every linking radius, there ap-
pears to be an optimum particle size. Though the mechanism outlined
in Section 3.1 suggests a reason for this, it does not tell us why the op-
timum size should be approximately the same as the average number
of  neighbors to a node.  More work is  needed to clarify  what is  hap-
pening here. 
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As  anticipated,  more  densely  connected  irregular  graphs  provide  a
better  analog  for  smooth  surfaces  than  sparse  ones.  The  observed
trend suggests that perfectly straight motion should be expected as the
continuum limit for the number of neighbors for each node is probed.
More surprising is the discovery that for every linking radius, there ap-
pears to be an optimum particle size. Though the mechanism outlined
in Section 3.1 suggests a reason for this, it does not tell us why the op-
timum size should be approximately the same as the average number
of  neighbors to a node.  More work is  needed to clarify  what is  hap-
pening here. 

Observations  of  the  Jellyfish  algorithm  suggest  that,  while  well-
behaved,  it  neither  parallels  the  behavior  of  a  classical  particle  nor  a
quantum-mechanical one. It cannot be considered classical as the par-
ticle is always “in many places at once”, being represented by a poten-
tially disjoint set of nodes. Jellyfish is also not quantum-mechanical as
it has no wavelength and only follows all possible paths for a distance
of one arc before selecting which paths to follow and abandoning all
other possibilities. In this respect, it might be said to experience wave-
function  collapse  with  every  iteration.  We therefore  believe  it  should
be considered a “test particle” rather than a direct analog of any natu-
ral phenomenon. 

We also  note  the  inability  of  Jellyfish  to  traverse  coarse  graphs  in
straight  lines,  even  under  apparently  ideal  conditions.  This  raises  a
question  about  the  suitability  of  very  coarse  graphs  to  any  digital
physics  model  that  employs  pseudo-particles  based  on  iterative  func-
tions  over  node  sets.  The  limiting-case  directed  graph  description  of
two inbound links  and two outbound links  per  node is  known to be
able to emulate all more complex forms of graph. This is done by con-
necting  nodes  together  in  unidirectional  cycles  to  produce  rings  that
can  be  connected  up  to  any  number  of  other  nodes.  However,  while
such emulations are adequate for static systems, it is unclear that they
provide sufficient flexibility for describing the motion of particles. Cy-
cles  of  different  sizes  appear  to  disrupt  the  patterns  of  structures
traversing the  graph.  However,  more work is  needed in  this  area be-
fore anything can be ruled out. 

While  there  are  few  practical  implications  to  this  work  as  yet,  it
seems  to  strongly  suggest  that  smooth-valued  mathematics  are  not  a
requirement  for  modeling  either  spatial  curvature  or  the  motion  of
physical  objects.  Given  that  rotational  invariance  has  been  fairly
straightforward  to  achieve,  it  seems  reasonable  to  suspect  that  other
forms  of  continuous  symmetry  might  be  simulated  within  the  same
descriptive paradigm. 

One  arena  in  which  this  work  might  eventually  provide  testable
hypotheses is that of making estimates about the granularity of space.
For  Jellyfish,  the  optimum pseudo-particle  size  turns  out  to  be  deter-
mined  by  the  connectedness  of  the  graph  it  traverses.  If  this  proves
true for the entire class of such algorithms, it  may have a bearing on
the expected behavior  of  physical  particles.  For  instance,  the  scale  of
electrons is well understood and their motion accurately modeled. We
might  be  able  to  make  an  estimate  of  the  required  connectedness  of
the  spatial  graph  that  electrons  traverse  in  order  for  the  observed
motion  profile  to  be  achieved.  Conceivably,  such  a  result  might  be
used  as  the  basis  for  ruling  out  or  supporting  the  hypothesis  that
space is defined by the kind of graph described in this paper. 
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6. Conclusions

We have shown that dense, irregular graphs provide a viable discrete
medium for modeling rotationally invariant motion for both two- and
three-dimensional  spaces.  Regular  graphs  did  not  achieve  the  same
flexibility,  at  least  with  respect  to  the  class  of  algorithms  on  which
our  research  has  focused.  Our  investigations  further  suggest  that
dense,  irregular graphs have the potential  to model spatial  curvature,
and therefore also local spatial expansion and contraction. 

We also showed that the Jellyfish algorithm provides an instance of
a pseudo-particle algorithm that produces approximately straight-line
motion.  Though  Jellyfish  lacks  the  attributes  of  any  naturally  occur-
ring  phenomenon,  it  has  proved  extremely  useful  by  providing  us
with  a  reliable  and  computationally  economic  test-particle  for  use  in
later studies. 

Overall,  these  simulations  suggest  that  we  have  an  exciting  new
paradigm from which to explore the potential of the digital physics ap-
proach. 
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Appendix

A. URLs for Video Samples

† Motion in two dimentions: www.youtube.com/watch?vY_yCxcjYPmo 

† Motion in three dimentions:
www.youtube.com/watch?v3w4A6m26WI4 

† Deflection by regular graphs:
www.youtube.com/watch?vMe6K4weLS5c 

† Geodesic motion: www.youtube.com/watch?vn3jnKejhX-Q 
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† Relativistic motion: www.youtube.com/watch?vggd8Z1fZwTA 

† Quantum-like collapse: www.youtube.com/watch?vqUrqKhBwjGw 

Alternatively, visit the YouTube site and search for “Jellyfish Parti-
cle”. 
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