
Turing Machines with Two Letters and
Two States

Maurice Margenstern

Université Paul Verlaine ~ Metz, LITA, EA 3097
UFR MIM, Campus du Saulcy, 57045 METZ Cédex, France
margens@univ-metz.fr

In this paper we provide a survey of the technique that allows giving a
simple proof that all Turing machines with two letters and two states
have a decidable halting problem. The result was proved by L. Pavlot-
skaya in 1973.

1. Introduction

The notion of Turing machines appeared in 1936 in the famous paper
by Alan M. Turing [1]. Turing’s notion has since given rise to com-
puter science. A few months later a paper by Emil Post appeared, de-
scribing the same object. Post’s paper gives a very precise and simple
description of the Turing machine which is more or less what is used
today.

In this paper we follow the classical notion of a Turing machine. It
is a device consisting of an infinite tape of squares indexed by , a
head that looks at the scanned square and which is in a state belong-
ing to a fixed finite set of states. The index x of a square is called its
address and we shall also say the square x for the square with address
x. Each square contains a symbol belonging to a fixed finite set of let-
ters also called the alphabet. Among these letters, a symbol is distin-
guished and called the blank. The device also contains a finite se-
quence of instructions described as a quintuple: two data constitute
the input of the instruction, the scanned symbol, and the state of the
head; three data constitute the output, the letter written by the head
in place of the scanned letter, the new state that replaces the current
state of the head, and the move performed by the head. After execut-
ing the instruction, the next cell to be scanned is to the left or right of
the previously scanned cell, or is the same cell. A Turing machine
with  letters and s states is called an sä-machine. Note that classical
Turing machines are deterministic, meaning that the input of two dis-
tinct instructions are different. The symbols  and s have this meaning
throughout this paper. The computation of a Turing machine is de-
fined by the sequence of successive configurations obtained from an
initial configuration, where all but a finite number of cells are blank.
The computation continues until a possible final configuration which
occurs, in Turing’s definition, after a halting state was called. In Tur-
ing’s definition too, the result of the computation is what is written
on the tape once the machine halted.

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

In this paper we follow the classical notion of a Turing machine. It
is a device consisting of an infinite tape of squares indexed by , a
head that looks at the scanned square and which is in a state belong-
ing to a fixed finite set of states. The index x of a square is called its
address and we shall also say the square x for the square with address
x. Each square contains a symbol belonging to a fixed finite set of let-
ters also called the alphabet. Among these letters, a symbol is distin-
guished and called the blank. The device also contains a finite se-
quence of instructions described as a quintuple: two data constitute
the input of the instruction, the scanned symbol, and the state of the
head; three data constitute the output, the letter written by the head
in place of the scanned letter, the new state that replaces the current
state of the head, and the move performed by the head. After execut-
ing the instruction, the next cell to be scanned is to the left or right of
the previously scanned cell, or is the same cell. A Turing machine
with  letters and s states is called an sä-machine. Note that classical
Turing machines are deterministic, meaning that the input of two dis-
tinct instructions are different. The symbols  and s have this meaning
throughout this paper. The computation of a Turing machine is de-
fined by the sequence of successive configurations obtained from an
initial configuration, where all but a finite number of cells are blank.
The computation continues until a possible final configuration which
occurs, in Turing’s definition, after a halting state was called. In Tur-
ing’s definition too, the result of the computation is what is written
on the tape once the machine halted.

In [1] the description is more sophisticated and the basic properties
of the set of Turing machines are given: the existence of universal
machines, which, by definition, are able to simulate any Turing
machine and the existence of a limit to the model as a problem that
cannot be solved by any Turing machine. This problem is now known
as the halting problem. It is an essential feature of Turing machines
that their computation may halt or not and that to determine whether
this is the case or not, which is the halting problem, turns out to be
undecidable: there is no algorithm to solve it.

Figure 1. The small universal Turing machines and those with a decidable halt-
ing problem (in blue). The figure indicates the best known results only. The
machines indicated with an orange or a purple square simulate the iterations
of the 3 x + 1 function.

Later, in the 1950s, Claude Shannon raised the problem of what is
now called the descriptional complexity of Turing machines: how
many states and letters are needed in order to get universal machines?
A race ensued to find the smallest Turing machine that was stopped
by Yurii Rogozhin’s result in 1982 [2]. Seven universal Turing ma-
chines were given, one in each of the following sets of machines:
2ä21, 3ä10, 4ä6, 5ä5, 7ä4, 11ä3, and 24ä2 (see Figure 1). Noth-
ing changed during the next 10 years. In 1992, Rogozhin improved
his 11ä3 universal machine into a 10ä3. In 1995, he proved that
there are universal 2ä18-machines. After an exchange of mails with
the author, who had found a 2ä21-machine, in 1998 Rogozhin found
a 22ä2 universal machine. In 2001, Claudio Baiocchi found a univer-
sal 19ä2-machine. Then, in 2002, Rogozhin and Manfred Kudlek
found a universal 3ä9-machine. Recently, in 2006, Turlough Neary
found a universal 18ä2-machine and in 2007, Neary and Damien
Woods found a universal 6ä4-machine. Note that all of the machines
mentioned from 1995 onwards were found at the occasion of a forth-
coming edition of Machines, Computations, and Universality (MCU)
conferences organized by the author.

 30 M. Margenstern

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

Later, in the 1950s, Claude Shannon raised the problem of what is
now called the descriptional complexity of Turing machines: how
many states and letters are needed in order to get universal machines?
A race ensued to find the smallest Turing machine that was stopped
by Yurii Rogozhin’s result in 1982 [2]. Seven universal Turing ma-
chines were given, one in each of the following sets of machines:
2ä21, 3ä10, 4ä6, 5ä5, 7ä4, 11ä3, and 24ä2 (see Figure 1). Noth-
ing changed during the next 10 years. In 1992, Rogozhin improved
his 11ä3 universal machine into a 10ä3. In 1995, he proved that
there are universal 2ä18-machines. After an exchange of mails with
the author, who had found a 2ä21-machine, in 1998 Rogozhin found
a 22ä2 universal machine. In 2001, Claudio Baiocchi found a univer-
sal 19ä2-machine. Then, in 2002, Rogozhin and Manfred Kudlek
found a universal 3ä9-machine. Recently, in 2006, Turlough Neary
found a universal 18ä2-machine and in 2007, Neary and Damien
Woods found a universal 6ä4-machine. Note that all of the machines
mentioned from 1995 onwards were found at the occasion of a forth-
coming edition of Machines, Computations, and Universality (MCU)
conferences organized by the author.

Remember that all of these machines are universal in the sense that
they simulate any Turing machine starting from a finite configuration
and that when their computation stops the halting instruction is not
taken into account when counting the instructions.

Turing machines on infinite configurations were also studied. The
immortality problem, first studied by Philipp K. Hooper in 1966, con-
sists of finding an initial infinite configuration on which the Turing
machine never halts, whatever the initial state [3]. Other models of
discrete computations were studied in this regard, in particular cellu-
lar automata and planar Turing machines. There, it turned out that
by using initial infinite configurations it was possible to reduce the
number of states and letters in order to obtain a universal device.

Now, we have to be careful about universality in this context: what
does it mean? The reason is that if we allow arbitrary initial infinite
configurations, then the halting problem becomes solvable. It is
enough to encode the characteristic function of the set of all n for
which the nth Turing machine with input n halts on the tape of the
Turing machine! This is why, during a certain time, initial infinite
configurations were required to be ultimately periodic. This means
that outside some finite interval, what remains of the tape on the left-
and on the right-hand side is periodic, the periods being possibly
different on each side of the tape. The rest of the simulation is the
same as in the case of a classical Turing machine. Note that the clas-
sical situation is a particular case of this definition: the period is 1 and
the content of the square is given; it must be the blank. This extended
definition of universality is called weak universality. Although this
generalization is very natural, there is a sharp difference from the clas-
sical case. The results indicated later also point to this difference.

Not everybody makes use of the term weak universality. Many a
researcher does not think it that important to make a distinction on
properties of the initial configuration leading to universal computa-
tions and, as an example, calls rule 110 universal.

In this context, the works of Stephen Wolfram on cellular au-
tomata inspired research that reached an important result: the weak
universality of rule 110, [4, 5] an elementary cellular automaton. The
corollary was the construction of very small weakly universal Turing
machines, already announced in 2002, with significantly fewer instruc-
tions than the machines in Figure 1: eight instructions in 2005 [5] and
five instructions in 2007 [5, 6]. Another difference is that the halting
of these very small machines is not obtained by a halting instruction.
This point about the way of halting was already raised in [7] where a
universal planar Turing machine with eight instructions is constructed
that does not halt on a specific instruction. It was also raised in the
construction of reversible computations, first of cellular automata and
then of Turing machines, which forced people to slightly change the
notion of halting: in this frame, it could no more be characterized by
a unique configuration. In 2003 the author, in a joint work with Lud-
mila Pavlotskaya, proved that a Turing machine with four instruc-
tions, even coupled with a finite automaton, has a decidable halting
problem [8]. In the same paper, the authors proved that there is a Tur-
ing machine with five instructions and a particular finite automaton
such that the resulting couple is universal. This can be compared with
the result in [6] established after the well-known challenge launched
by Wolfram. The result in [6] is stronger than that of [8] as in [6] the
tape of the Turing machine is initially fixed. Its initial configuration is
not exactly periodic, but it is “regular” in the sense that the infinite
word written on the tape can be generated by a Muller finite automa-
ton.

 Turing Machines with Two Letters and Two States 31

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

In this context, the works of Stephen Wolfram on cellular au-
tomata inspired research that reached an important result: the weak
universality of rule 110, [4, 5] an elementary cellular automaton. The
corollary was the construction of very small weakly universal Turing
machines, already announced in 2002, with significantly fewer instruc-
tions than the machines in Figure 1: eight instructions in 2005 [5] and
five instructions in 2007 [5, 6]. Another difference is that the halting
of these very small machines is not obtained by a halting instruction.
This point about the way of halting was already raised in [7] where a
universal planar Turing machine with eight instructions is constructed
that does not halt on a specific instruction. It was also raised in the
construction of reversible computations, first of cellular automata and
then of Turing machines, which forced people to slightly change the
notion of halting: in this frame, it could no more be characterized by
a unique configuration. In 2003 the author, in a joint work with Lud-
mila Pavlotskaya, proved that a Turing machine with four instruc-
tions, even coupled with a finite automaton, has a decidable halting
problem [8]. In the same paper, the authors proved that there is a Tur-
ing machine with five instructions and a particular finite automaton
such that the resulting couple is universal. This can be compared with
the result in [6] established after the well-known challenge launched
by Wolfram. The result in [6] is stronger than that of [8] as in [6] the
tape of the Turing machine is initially fixed. Its initial configuration is
not exactly periodic, but it is “regular” in the sense that the infinite
word written on the tape can be generated by a Muller finite automa-
ton.

In this paper, we are interested by the decidability side of the ques-
tion, about which very little is known [9]. Marvin Minsky mentions
an unpublished proof by him and one of his students in [10] as un-
readable because it involves a huge number of cases. The first read-
able proof was published by Pavlotskaya and states the following.

Theorem 1. (Pavlotskaya [11]) The halting problem is decidable for any
2ä2-Turing machine.

Later in [12], Kudlek proved the same result in a very different
way, classifying the machines according to what the computations
produce, thus including machines that never halt. It is interesting to
note that all computations are more or less trivial except one case,
putting aside the trivial permutations and symmetries on states and
letters. This case was also found in [8] where it was proved to have
an exponential time computation on a sequence of patterns of the
form 1n.

In this paper, we give a simple proof of Theorem 1 that is based on
an analysis of the motion of the Turing machine head on its tape. Sec-
tion 2 deals with this analysis. In Section 3 we prove Theorem 1.

2. Motion of the Turing Machine Head on Its Tape

In this section, we fix notions and notations for the rest of the paper.
We denote by t the current time of execution, t being a non-negative
integer. Usually, the initial time is denoted by t0 and, most often,
t0  0. The current instruction is performed at time t and we get the
result at time t + 1 when the next instruction is performed.

 32 M. Margenstern

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

In this section, we fix notions and notations for the rest of the paper.
We denote by t the current time of execution, t being a non-negative
integer. Usually, the initial time is denoted by t0 and, most often,
t0  0. The current instruction is performed at time t and we get the
result at time t + 1 when the next instruction is performed.

2.1 Two Position Lemmas

Let hHtL be the position of the head on the tape at time t. We denote
by h HtL the state of the head at time t and by s Ht, xL the content of the
square x at time t. By definition, s Ht, xL…s Ht, x + LL is the word
whose letters consist of the contents of the squares with addresses
from x to x + L at time t. This word will also be called the interval
@x, x + LD of the tape at time t. We define 0 and r0 to be the left- and
right-hand side ends of the smallest interval that contains all the
nonblank squares of the tape together with the square scanned by the
head at time 0, the initial time. We define two functions  and r to in-
dicate the limits of the current configuration at time t as

H0L  0,

rH0L  r0,

 Ht + 1L  min Hh Ht + 1L,  HtLL,
r Ht + 1L  max Hh Ht + 1L, r HtLL.

In other terms,  Ht + 1L <  HtL if and only if h HtL   HtL and the
machine performs an instruction with a move to the left at time t.
Symmetrically, r Ht + 1L > r HtL if and only if h HtL  r HtL and the
machine performs an instruction with a move to the right at time t.
The configuration at time t is denoted by Ct.

The functions  and r allow us to define the notion of the head exit-
ing the limits of the current configuration. Define the times of exit
E as

EH0L  0
EHi + 1L  min 8t hHtL < HEHiLL Ó hHtL > rHEHiLL<.

From this definition, when E HiL § t < E Hi+1L, we have:

@ HtL, r HtLD Œ @ HE HiLL, r HE HiLLD

and, by abus de langage, we call E HiL the ith exit.
Now, such an exit is called a left- or right-hand side exit, depend-

ing on whether HEHiLL ≠ HEHi - 1LL or rHEHiLL ≠ rHEHi - 1LL. This allows
us to define functions LE and RE to denote the ith left-hand or ith
right-hand side exit as

LEH0L  0,
LEHi + 1L  min 8t h HtL < HLEHiLL<,

RE H0L  0,
RE Hi + 1L  min 8t hHtL < rHREHiLL<.

The motion of the Turing machine head on its tape consists of a se-
quence of consecutive runs over an interval during which the head
moves in the same direction each time. Let us call such a run sweep-
ing and note that a sweeping may be finite or infinite. Also note that
in the case of an infinite sweeping the motion of the machine is ulti-
mately periodic. After a certain time the head encounters an infinite in-
terval of blank cells and, because the move at each step is constant, it
always scans a blank and the only changing parameter is its state. As
the number of states is finite, there must be a repetition and this inter-
val between two occurrences of the same state is a period of the
motion.

 Turing Machines with Two Letters and Two States 33

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

The motion of the Turing machine head on its tape consists of a se-
quence of consecutive runs over an interval during which the head
moves in the same direction each time. Let us call such a run sweep-
ing and note that a sweeping may be finite or infinite. Also note that
in the case of an infinite sweeping the motion of the machine is ulti-
mately periodic. After a certain time the head encounters an infinite in-
terval of blank cells and, because the move at each step is constant, it
always scans a blank and the only changing parameter is its state. As
the number of states is finite, there must be a repetition and this inter-
val between two occurrences of the same state is a period of the
motion.

Any sweeping has at least one half-turn, that is, a time and a posi-
tion such that the next move is in the opposite direction of the previ-
ous move. The half-turn is called a left- or right-hand side half-turn,
depending on whether it occurs on the left- or right-hand side of the
sweeping. Now, we say that an exit is extremal if and only if the new
limit of the configuration which it defines is a half-turn. We now de-
fine the functions LEE and REE to denote the left- and right-hand
side extremal exits, respectively:

LEEH0L  0,
LEE Hi + 1L  min 8t h HtL < HLEEHiLL Ô hHt + 1L > hHtL<,

REEH0L  0,
REEHi + 1L  min 8t h HtL > rHREEHiLL Ô hHt - 1L < hHtL<.

We now have the following first property: a finite interval @a, bD of
the tape is a trap zone for the machine starting from a time t1 if and
only if a § hHtL § b for all t with t ¥ t1. We say that @a, bD is a trap
zone for the machine if there is a time t1 starting from which it is a
trap zone. Here is an easy lemma to test whether a given finite inter-
val is a trap zone for the machine.
Lemma 1. Let @a, bD be a finite interval of the tape of the machine M.
Then, we know whether @a, bD is a trap zone starting from a given
time t1 after at most nb-a+1Hb - a + 1L s + 1, where n is the size of the
alphabet of the machine and s is the number of its states.

The obvious proof is left to the reader.
From Lemma 1, we have the following corollary, whose trivial

proof is also left to the reader.

Corollary 1. The functions E, , and r are recursive and the finiteness of
the domain of definition of E is recursively enumerable.

Now, we turn to an important lemma that relies on the same idea
as Lemma 1.

 34 M. Margenstern

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

Lemma 2. (Margenstern [13, 14]) Let M be a Turing machine and as-
sume that there are two right-hand side exits at times t1 and t2, with
t1 < t2 and that there is an address a such that:

i. " t œ @t1, t2D, h HtL ¥ a

ii. let d  h Ht2L - h Ht1L ¥ 0; then: " x œ @a, h Ht1LD, s Ht1, xL  s Ht2, x + dL

iii. h Ht1L  h Ht2L.

Then, the sequence of instructions on the time interval @t1, t2 - 1D
is an execution pattern that is endlessly repeated and we say that the
motion of the machine is ultimately periodic.

Proof. The conditions of the lemma are illustrated by Figure 2. The
statement assumes that between times t1 and t2 the head never goes to
the left of square a, that at times t1 and t2 the head of the machine is
under the same state u, and that the words of the interval @a, h Ht1LD at
time t1 and of the interval @a + d, h Ht2LD at time t2 are the same.

Let Ct1 be the configuration at time t1. Now, imagine that at time
t1 we replace the interval D -¶, a - 1D by the same interval with all
squares filled up with the blank. Let C1

£ be this new configuration.
Then, the motion of the Turing machine on the tape between t1 and
t2 is the same, whether it starts from Ct1 or C1

£ . Now, we clearly can
repeat the same for Ct2 being replaced by C2

£ where all squares on the
left of a + d are replaced by the blank for times t2 and t2 + t2 - t1.
And so, the same motion is repeated during the time interval
@t2, 2 t2 - t1D. And this can be repeated endlessly by an easy induction
left to the reader. ·

Figure 2. Illustrating the assumptions of Lemma 2 and its conclusion.

Note that the conditions of the assumption of Lemma 2 are recur-
sively enumerable.

 Turing Machines with Two Letters and Two States 35

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

2.2 Additional Tools

The occurrence of a halting instruction is always recursively enumer-
able. And so, to prove that the halting problem is decidable, it is
enough to focus on the nonhalting situations and prove that the gen-
eral nonhalting situation is also recursively enumerable. This happens
each time we have an algorithmic way to decide, after a certain time
which may depend on the considered instance of the problem, that
the machine will not halt. Later on, we shall only consider the non-
halting situations.

If the machine does not halt but instead remains within a finite in-
terval, Lemma 1 indicates that the motion of the machine is ulti-
mately periodic: the same finite sequence of instructions is endlessly
repeated.

From now on, we assume that the Turing machine head traverses
an infinite interval, which implies, of course, that the machine does
not halt. If the motion involves an interval of time @t, t + sD such that
t + i, for i œ 80 .. s< is an instance of a right-hand side exit, then there
will be two times t + h and t + k, with h < k, such that the head of the
machine is under the same state at these times. As a right-hand side in-
struction is performed at these times and because the head always
scans a blank due to the exit, the same sequence of instructions per-
formed between t + h and t + k - 1 will be repeated endlessly, involv-
ing a motion which is ultimately periodic. Of course, we can perform
a similar argument for successive s + 1 times at which a left-hand side
exit occurs.

If we do not have this situation, necessarily, there are infinitely
many extremal exits. In general, we have three cases.

i. There are infinitely many right-hand side extremal exits and finitely
many left-hand side ones.

ii. There are infinitely many left-hand side extremal exits and finitely
many right-hand side ones.

iii. There are infinitely many left-hand side extremal exits and infinitely
many right-hand side ones.

Consider case i. We may assume that, after a time t1, there are no
more left-hand side exits. Denote by lmpHjL the leftmost position of
the machine head between REEHjL and REEHj+1L. Call lmp-time for
lmpHjL the first time after REEHjL that the machine head scans the
square lmpHjL. Let a be the address of the last left-hand side exit.
Then, lmpHjL ¥ a for all j. Let l  lim infjØ¶ lmpHjL. Of course l ¥ a
whether l is finite or not. Let am  infj¥m lmpHjL. Because am ¥ a,
and as am is an integer, am is reached: there is an integer nm ¥ j such
that lmpHnmL  am and so, lmpHjL ¥ lpmHnmL for all j ¥ nm. Note that
the position lmpHnmL is absolute in the following sense: after
REEHnmL, the machine never goes to the left of the square lmpHnmL.
The sequence of the lmpHnmL is nondecreasing and we may assume
that the sequence of the nm is increasing.

 36 M. Margenstern

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

Consider case i. We may assume that, after a time t1, there are no
more left-hand side exits. Denote by lmpHjL the leftmost position of
the machine head between REEHjL and REEHj+1L. Call lmp-time for
lmpHjL the first time after REEHjL that the machine head scans the
square lmpHjL. Let a be the address of the last left-hand side exit.
Then, lmpHjL ¥ a for all j. Let l  lim infjØ¶ lmpHjL. Of course l ¥ a
whether l is finite or not. Let am  infj¥m lmpHjL. Because am ¥ a,
and as am is an integer, am is reached: there is an integer nm ¥ j such
that lmpHnmL  am and so, lmpHjL ¥ lpmHnmL for all j ¥ nm. Note that
the position lmpHnmL is absolute in the following sense: after
REEHnmL, the machine never goes to the left of the square lmpHnmL.
The sequence of the lmpHnmL is nondecreasing and we may assume
that the sequence of the nm is increasing.

Note that case ii can be dealt with symmetrically. We can define
rmpHjL, the rightmost position between two consecutive left-hand side
extremal exits and rmp-time, the first time that rmpHjL is reached after
LEEHjL.

2.3 Laterality and Color of an Instruction

Consider an instruction of the program of the Turing machine M. The
instruction can be written ixyMj where x is the scanned symbol at the
current time, the current state of the machine is i, and y is the symbol
written by the machine head in place of x. Then, j is the new state
taken by the machine head and M is the move performed by the head
just after writing y: M is L, D, or S depending on whether the move
makes the head go one square to the left, to the right, or to stay on
the same square. Call the color of an instruction ixyMj the triple xMy
and call laterality of the instruction the value of M. Note that when
we have a stationary instruction I, that is, M  S, the next instruction
is either stationary or not. Repeating this argument, either there is a
cycle of stationary instructions, or a halting or, after a certain se-
quence of consecutive stationary instructions, the next instruction is
not stationary. If we are in the first or second case, we say that I is a
blocking instruction. Consequently, if I is not blocking, it is ulti-
mately followed by a nonstationary instruction J: by definition, the
laterality of I is that of J. We say that a machine is unilateral if and
only if all of its instructions have the same laterality: either L or R. By
this we mean that when a stationary instruction is not blocking, its lat-
erality is defined by one of the other instructions. We also consider
that a halting instruction is a particular case of a blocking instruction.
Lemma 3. The halting problem is decidable for any unilateral Turing
machine.

Proof. We may assume that all of the instructions are right-hand side.
Because the occurrence of a blocking instruction is recursively enumer-
able it is enough to wait for its possible execution and we may assume
that the machine head always goes to the right. It eventually exits
from the right-hand side limit of the initial configuration and, later
on, the machine head only sees a blank in the scanned cell. If after s+1
steps the machine does not find a blocking instruction, it will fall un-
der two identical states and the sequence of instructions performed be-
tween the times of two consecutive occurrences of this state will be
endlessly repeated meaning that the machine will not halt. ·

However, note that if the machine has two heads, Lemma 3 is no
longer true when stationary instructions are allowed [15].

Say that a Turing machine M is erasing to the left if all its left-hand
side instructions write a blank. We have the following lemma.

 Turing Machines with Two Letters and Two States 37

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

Lemma 4. The halting problem is decidable for a Turing machine that
is erasing to the left.

Note that if M is a unilateral machine whose laterality is L, we ob-
tain another unilateral machine by changing L to R in all of the in-
structions. This operation is called lateral symmetry. In particular,
Lemma 2 has a left-hand side version which is obviously obtained by
lateral symmetry. We shall use this version only without further justifi-
cation.
Proof of Lemma 4. We consider that the Turing machine M is erasing
to the left and that it does not halt. We may assume that we are not in
a trap zone nor in the situation of a sequence of times t, … , t + s of
exit on the same side. Accordingly, we are in one of the cases defined
in Section 2.2.

Case i. We may assume that after a time t1, all exits are right-hand
side.

Consider the sequence of absolute lmp defined in Section 2.2,
which, here also, we denote by lmpHnmL, with increasing nm.

Consider the configurations Ctn1
, … , Ctns

 where tnm is the first
time between REEHnmL and REEHnm + 1L that lmpHnmL is reached by
the machine head. For two of these configurations, the machine head
will be under the same state. By definition of Ctnm

, the head is on the
lmpHnmL at its lmp-time. Now, because the machine writes blanks
only when it performs a left-hand side instruction, there are only
blanks on the right-hand side of the lmpHnmL at this time, from the ad-
dress lmpHnmL + 1 up to infinity. Let h and k be the indices for which
the state of the head is the same at tnh

 and tnk
, with h < k. Because

the lmpHnmL are absolute, the machine never goes to the left of
lmpInhM between tnh

 and tnk
. And so, the sequence of instructions be-

tween these two times is repeated endlessly. Now, the occurrence of
two configurations with these conditions is also recursively enumer-
able.

Case ii. For this case we can prove a stronger result and distinguish
it as Sublemma 1.
Sublemma 1. Assume that for a Turing machine M, there are infinitely
many left-hand side extremal exits and finitely many right-hand side
ones and that all of the left-hand side instructions write the same let-
ter y. Then the halting problem of M is decidable.

Proof of Sublemma 1. We assume that we are at a time after t1, start-
ing from which there are only left-hand side exits. Under these as-
sumptions, the configuration of the ith left-hand side exit after t1 is

ui yni Wi
where ui is the state of the head at the exit, ni is the number of consec-
utive y written by the head before the exit, and Wi is a word on the al-
phabet of the machine that does not start with y when not empty. Be-
cause there are no more right-hand side exits, the right-hand side limit
of the configuration is always r Ht1L.

 38 M. Margenstern

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

where ui is the state of the head at the exit, ni is the number of consec-
utive y written by the head before the exit, and Wi is a word on the al-
phabet of the machine that does not start with y when not empty. Be-
cause there are no more right-hand side exits, the right-hand side limit
of the configuration is always r Ht1L.

Denote by ai the address of the rightmost y in the word yni . We get
that ai § r Ht1L for all i. As all the left-hand side instructions write y on
the tape, it is plain that ai+1 ¥ ai. Let a  lim supiØ¶ ai. We have that
a § r Ht1L and a is reached, because the ai are all integers. If a is
reached at a time t2, then, after s + 1 exits after t2, we can see two ex-
its which satisfy the assumptions of the left-hand side version of
Lemma 2. Now, the occurrence of two such exits is recursively enu-
merable.

Case iii. Because there are infinitely many left- and right-hand side
exits, there are infinitely many extremal right-hand side exits such
that the next exit is on the left-hand side. And so, there is an increas-
ing sequence of nm such that EHnmL is a right-hand side exit and that
E Hnm + 1L is a left-hand side one. Because the left-hand side instruc-
tions write the blank only, at time EHnm + 1L, the tape of the machine
contains blanks only. Now, looking at the configurations at the times
E Hn1 + 1L, … , E Ins+1 + 1M, two of them are identical: the tape is
empty and the head is under the same state. This induces a sequence
of endlessly repeating instructions and the occurrence of two such con-
figurations is recursively enumerable. The motion of the machine is
ultimately periodic because if there is no shift in the position of the
machine head on the two detected configurations with an empty tape,
the motion remains trapped in a finite interval. If there is a shift, the
motion goes infinitely on one side of the tape only. And so, in all
three situations, there cannot be infinitely many left- and right-hand
side exits.

This means that Case iii does not occur for the considered ma-
chines.

Accordingly, the nonhalting of M is recursively enumerable in both
possible cases of the motion of the machine head, which proves the
lemma. ·

3. Proof of Theorem 1

The proof relies on the following property.

Lemma 5. (Pavlotskaya [11]) Let M be a Turing machine on the alpha-
bet 80, 1< such that M has a single instruction whose laterality is L.
Then the halting problem of M is decidable.

Theorem 1 is an immediate corollary of Lemma 5. Indeed, if a 2ä2-
machine has no halting instruction, it never halts. So, it has at least
one halting instruction. On the others, it has at most one instruction
whose laterality is not shared by the others. By lateral symmetry, we
may assume that the laterality with a unique instruction is L.

 Turing Machines with Two Letters and Two States 39

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

Theorem 1 is an immediate corollary of Lemma 5. Indeed, if a 2ä2-
machine has no halting instruction, it never halts. So, it has at least
one halting instruction. On the others, it has at most one instruction
whose laterality is not shared by the others. By lateral symmetry, we
may assume that the laterality with a unique instruction is L.

Proof of Lemma 5. From Lemma 4, we may rule out the colors x L 0
for the unique left-hand side instruction. And so, we remain with the
colors x L 1 with x  0 or x  1.

Color 1 L 1. In this case, if the machine head reads a blank, it does
not move to the left. Consider the case of a stationary instruction
which is unique: otherwise we have a unilateral machine for which
Lemma 3 applies. Then, if the color of the instruction is 0 S 0, this
blank square is a trap zone or it calls a right-hand side instruction. If
the stationary instruction has the color 0 S 1, and because we assumed
that the machine has a single instruction with the laterality L, the sta-
tionary instruction calls the right-hand side one and so the machine
goes to the right.

In all cases that the machine head reads a blank, if it does not halt
or if it is not stuck in the same place, it goes to the right. In particular,
if there is a right-hand side exit, the machine head goes to the right
forever. Accordingly, we may assume that all exits are on the left-
hand side. But now we are under the assumptions of Sublemma 1 as
all left-hand side instructions write a 1. And so, we know that in this
case, the nonhalting is recursively enumerable.

Color 0 L 1. This time, if the machine reads a 1, it goes to the right.
Indeed, it cannot go to the left because one of the remaining

nonhalting instructions is on the right-hand side and the other is
either on the right-hand side or stationary. If the instruction is station-
ary, it is of the form 1 S 1 or 1 S 0. If it is stationary, and because we
assume that there is a single instruction with the laterality L, a station-
ary instruction of the color 1 S 1 reading a 1 will either keep the head
on this square or call the right-hand side instruction. Now, if the
stationary instruction is of the color 1 S 0, and because we assume
that there is a single instruction with the laterality L, it also necessar-
ily calls the right-hand side instruction as the machine is not assumed
to be unilateral.

If the new state of an instruction is the same as its current one we
say that the instruction is stable. Otherwise, we call it unstable.

First, assume that the left-hand side instruction is unstable. Then, if
it scans the square a at time t, it scans the square a + 1 at time at most
t + 4, unless it is blocked in between.

Indeed, if a right-hand side instruction is performed, then a + 1 is
reached at time t + 3. Otherwise, we have several cases. If the head
performs a stationary instruction, either the head is blocked or it calls
a right-hand side instruction again and a + 1 is reached at time t + 2.
If the head performs the left-hand side instruction at time t, we have
the configuration e1 • 0 e2, where • represents the position of the head
at this time. Then we have

 40 M. Margenstern

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

Indeed, if a right-hand side instruction is performed, then a + 1 is
reached at time t + 3. Otherwise, we have several cases. If the head
performs a stationary instruction, either the head is blocked or it calls
a right-hand side instruction again and a + 1 is reached at time t + 2.
If the head performs the left-hand side instruction at time t, we have
the configuration e1 • 0 e2, where • represents the position of the head
at this time. Then we have

H“ L e1 • 0 e2 Ø •e1 1 e2 Øa e1
£ • 1 e2 with a œ 81, 2<,

with a indicating the number of instructions applied by the machine.
From the given analysis, scanning 1 in the square a, if the machine is
not blocked in between, its head reaches a+1 at most two steps later.

Accordingly, if the machine does not halt, it goes forever to the
right. Now we want to find out if that motion is predictable. From
Section 2.2 we may assume that there are infinitely many extremal
right exits. At an extremal exit the head arrives on a blank on which
it performs a half-turn, meaning that the sequence H“ L is repeated,
with e2  0. Now, it is plain that considering REEH1L, REEH2L, and
REEH3L, we can find two exits among them for which e1 is the same.
Accordingly, in between the two times, we have a sequence of instruc-
tions that is endlessly repeated. Note that there are at most s steps be-
tween REEHiL and REEHi + 1L but s may be very large.

At last, we remain with the case of a stable left-hand side instruc-
tion.

Note that if there is a left-hand side exit, it is performed by the left-
hand side instruction and, since it is stable, the head goes infinitely to
the left.

And so, we may assume that there are no left-hand side exits.
Again, from the study of Section 2.2, we may assume that we have in-
finitely many extremal right-hand side exits. From the stability of the
left-hand side instruction, we conclude that lmpHiL is the position of
the rightmost 1 of the tape at REEHiL. Because we assume there are no
left-hand side exits, there is an address a such that lmpHiL ¥ a for all i.

Consider the sequence of absolute lmp defined by lmpHnmL with in-
creasing nm. From the previous remark about the stability of the left-
hand side instruction, there must be a 1 in the interval of the tape
AlmpInkM, hIREEInk + 1MME.

Now we consider li  hHREEHiLL - lmpHiL. We know that lk > 0
for all k. Let l  lim infkØ¶ lnk

. There are two cases, depending on
whether l < +¶ or l  +¶. In the latter case, l is a natural number.

When l < +¶, considering REEHn1L, … , REEInl+1M, we find two
indices h and k such that lh  lk. Now, at the times jna , with
a œ 8h, k<, of lmp-time at lmpHnaL we have the same configuration
from the address lmpHnaL and to its right-hand side at time jna , also
because the state at time jna is always the same for both values of a.
Indeed, this latter property follows from the fact that we have a single
left-hand side instruction. Accordingly, assuming h < k, the same
sequence of instructions between REEInhM and lmpInkM is endlessly
repeated.

Now we consider the case when l  +¶. In this case we assume
that lnk

 is big enough. On a large interval of ones, the machine is
unilateral and because we assume that it does not halt, its motion is
ultimately periodic. Since the state at the time of an lmpHjL is always
the same, the sequence of instructions on an interval of ones is the be-
ginning of the same infinite sequence w which is periodic starting from
a certain rank. We may assume that lnk

 is big enough to contain
at least one complete period of this sequence. Define
mi  hHREEHi + 1LL - hHREEHiLL as the length of the interval of zeros
traversed by the head starting from the first exit to the right after
hHREEHiLL until the next right-hand side half-turn. If a 1 is written dur-
ing the period of the motion on ones or on the mi zeros, we have in-
finitely many situations when li § 2 s, because the period cannot be
greater than the number of states. Accordingly, lim infkØ¶ lnk

< +¶,
a contradiction with our assumption and the 1 written after the lmp-
time of lmpInkM is written by the head in the aperiodic part of its mo-
tion on the interval of ones. By possibly taking a subsequence of the
lnk

, we may assume that lnk
< lnk+1 .

 Turing Machines with Two Letters and Two States 41

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

Now we consider the case when l  +¶. In this case we assume
that lnk

 is big enough. On a large interval of ones, the machine is
unilateral and because we assume that it does not halt, its motion is
ultimately periodic. Since the state at the time of an lmpHjL is always
the same, the sequence of instructions on an interval of ones is the be-
ginning of the same infinite sequence w which is periodic starting from
a certain rank. We may assume that lnk

 is big enough to contain
at least one complete period of this sequence. Define
mi  hHREEHi + 1LL - hHREEHiLL as the length of the interval of zeros
traversed by the head starting from the first exit to the right after
hHREEHiLL until the next right-hand side half-turn. If a 1 is written dur-
ing the period of the motion on ones or on the mi zeros, we have in-
finitely many situations when li § 2 s, because the period cannot be
greater than the number of states. Accordingly, lim infkØ¶ lnk

< +¶,
a contradiction with our assumption and the 1 written after the lmp-
time of lmpInkM is written by the head in the aperiodic part of its mo-
tion on the interval of ones. By possibly taking a subsequence of the
lnk

, we may assume that lnk
< lnk+1 .

Now let w be the length of the smallest period of w and consider
the times when the head reaches lmpInkM at its lmp-time for
k œ @1 .. w + 1D. For two of them, say j1 and j2, the state under which
the head reaches hIREEInja MM, a œ 81, 2< while coming from lmpInja M

after its lmp-time is the same, say u, and it has the same place in the
period of w. Because lnja

> w, and assuming j1 < j2, we may write

lj2  lj1 + b.w, for some integer b.
Now, the sequence of right-hand side half-turns in the tape interval

@REEHj1 + 1L, REEHj2 + 1L@ is endlessly repeated. The words of the
tape defined by the intervals @lmpHjaL, hHREEHjaLLD at the time of the
first right-hand side exit after REEHjaL have a common prefix and a

common suffix, the rest being a word of the form Wha with
h2  h1 + b.

Because this situation is recursively enumerable, it is also the case
when we have lim infkØ¶ lnk

 +¶ to complete the proof. ·

Acknowledgment

The author is very much in debt to Stephen Wolfram from asking him
to write this paper. He is also very much in debt to the anonymous
referees whose precious remarks allowed him to improve the paper.

 42 M. Margenstern

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

References

[1] A. M. Turing, “On Computable Real Numbers, with an Application to
the Entscheidungsproblem,” Proceedings of the London Mathematical
Society, 42(2), 1936 pp. 230|265.

[2] Y. V. Rogozhin, “Sem’ universal’nykh mashin T’juringa,” Matematich-
eskie Issledovaniya, 69, 1982 pp. 76|90 (Seven Universal Turing Ma-
chines) (in Russian).

[3] P. K. Hooper, “The Undecidability of the Turing Machine Immortality
Problem,” Journal of Symbolic Logic, 31(2), 1966 pp. 219|234.

[4] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1|40.

[5] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[6] A. Smith, “Wolfram’s 2,3 Turing Machine Is Universal,” Complex Sys-
tems, to appear. (Aug 12, 2010)
http://www.wolframscience.com/prizes/tm23/solved.html

[7] L. Priese, “Towards a Precise Characterization of the Complexity of Uni-
versal and Nonuniversal Turing Machines,” SIAM Journal of Computa-
tion, 8(4), 1979 pp. 508|523.

[8] M. Margenstern and L. Pavlotskaya, “On the Optimal Number of In-
structions for Universal Turing Machines Connected with a Finite Au-
tomaton,” International Journal of Algebra and Computation, 13(2),
2003 pp. 133|202.

[9] M. Margenstern, “Frontier between Decidability and Undecidability: A
Survey,” Theoretical Computer Science, 231(2), 2000 pp. 217|251.

[10] M. L. Minsky, Computation: Finite and Infinite Machines, Englewood
Cliffs, NJ: Prentice Hall, 1967.

[11] L. M. Pavlotskaya, “Razreshimost’ problemy ostanovki dlja nekotorykh
klassov mashin T’juringa,” Matematicheskie Zametki, 13(6), 1973
pp. 899|909, (translation: “Solvability of the Halting Problem for Cer-
tain Classes of Turing Machines,” Mathematical Notes of the Academy
of Sciences of the USSR, 13(6), Nov. 1973 pp. 537|541).

[12] M. Kudlek, “Small Deterministic Turing Machines,” Theoretical Com-
puter Science, 168(2), 1996 pp. 241|255.

[13] M. Margenstern, “Non Erasing Turing Machines: A Frontier between a
Decidable Halting Problem and Universality,” in Lecture Notes in Com-
puter Science: Proceedings of the 9th International Symposium on Fun-
damentals of Computation Theory (FCT 1993), Szeged, Hungary
(Zoltán Éstik, ed.), Berlin: Springer-Verlag, 1993 pp. 375|385.

[14] M. Margenstern, “The Laterality Problem for Non-Erasing Turing
Machines on 80, 1< Is Completely Solved,” Informatique théorique et
Applications/Theoretical Informatics and Applications, 31(2), 1997
pp. 159|204.

[15] M. Margenstern, “On Quasi-Unilateral Universal Turing Machines,”
Theoretical Computer Science, 257(1|2), 2001 pp. 153|166.

 Turing Machines with Two Letters and Two States 43

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.29

