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In this paper we provide a survey of the technique that allows giving a
simple  proof  that  all  Turing  machines  with  two  letters  and  two  states
have a decidable halting problem. The result  was proved by L.  Pavlot-
skaya in 1973. 

1. Introduction

The notion of Turing machines appeared in 1936 in the famous paper
by  Alan  M.  Turing  [1].  Turing’s  notion  has  since  given  rise  to  com-
puter science. A few months later a paper by Emil Post appeared, de-
scribing the same object.  Post’s paper gives a very precise and simple
description of the Turing machine which is more or less what is used
today.

In this paper we follow the classical notion of a Turing machine. It
is  a  device  consisting  of  an  infinite  tape  of  squares  indexed  by  ,  a
head that looks at the scanned square and which is in a state belong-
ing to a fixed finite set of states. The index x of a square is called its
address and we shall also say the square x for the square with address
x. Each square contains a symbol belonging to a fixed finite set of let-
ters  also called the  alphabet.  Among these  letters,  a  symbol  is  distin-
guished  and  called  the  blank.  The  device  also  contains  a  finite  se-
quence  of  instructions  described  as  a  quintuple:  two  data  constitute
the input  of the instruction, the scanned symbol,  and the state of the
head;  three  data  constitute  the  output,  the  letter  written  by  the  head
in place  of  the  scanned letter,  the  new state  that  replaces  the  current
state of the head, and the move performed by the head. After execut-
ing the instruction, the next cell to be scanned is to the left or right of
the  previously  scanned  cell,  or  is  the  same  cell.  A  Turing  machine
with  letters and s states is called an sä-machine. Note that classical
Turing machines are deterministic, meaning that the input of two dis-
tinct instructions are different. The symbols  and s have this meaning
throughout  this  paper.  The  computation  of  a  Turing  machine  is  de-
fined  by  the  sequence  of  successive  configurations  obtained  from  an
initial  configuration, where all  but a finite number of cells  are blank.
The computation continues until  a possible final configuration which
occurs, in Turing’s definition, after a halting state was called. In Tur-
ing’s  definition  too,  the  result  of  the  computation  is  what  is  written
on the tape once the machine halted. 
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fined  by  the  sequence  of  successive  configurations  obtained  from  an
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The computation continues until  a possible final configuration which
occurs, in Turing’s definition, after a halting state was called. In Tur-
ing’s  definition  too,  the  result  of  the  computation  is  what  is  written
on the tape once the machine halted. 

In [1] the description is more sophisticated and the basic properties
of  the  set  of  Turing  machines  are  given:  the  existence  of  universal
machines,  which,  by  definition,  are  able  to  simulate  any  Turing
machine  and the  existence  of  a  limit  to  the  model  as  a  problem that
cannot be solved by any Turing machine. This problem is now known
as  the  halting  problem.  It  is  an  essential  feature  of  Turing  machines
that their computation may halt or not and that to determine whether
this  is  the  case  or  not,  which  is  the  halting  problem,  turns  out  to  be
undecidable: there is no algorithm to solve it. 

Figure 1. The small universal Turing machines and those with a decidable halt-
ing  problem (in  blue).  The  figure  indicates  the  best  known results  only.  The
machines indicated with an orange or a purple square simulate the iterations
of the 3 x + 1 function. 

Later, in the 1950s, Claude Shannon raised the problem of what is
now  called  the  descriptional  complexity  of  Turing  machines:  how
many states and letters are needed in order to get universal machines?
A race  ensued  to  find  the  smallest  Turing  machine  that  was  stopped
by  Yurii  Rogozhin’s  result  in  1982  [2].  Seven  universal  Turing  ma-
chines  were  given,  one  in  each  of  the  following  sets  of  machines:
2ä21, 3ä10, 4ä6, 5ä5, 7ä4, 11ä3, and 24ä2 (see Figure 1).  Noth-
ing  changed  during  the  next  10  years. In  1992,  Rogozhin  improved
his  11ä3  universal  machine  into  a  10ä3.  In  1995,  he  proved  that
there  are  universal  2ä18-machines.  After  an  exchange  of  mails  with
the author, who had found a 2ä21-machine, in 1998 Rogozhin found
a 22ä2 universal machine. In 2001, Claudio Baiocchi found a univer-
sal  19ä2-machine.  Then,  in  2002,  Rogozhin  and  Manfred  Kudlek
found  a  universal  3ä9-machine.  Recently,  in  2006,  Turlough  Neary
found  a  universal  18ä2-machine  and  in  2007,  Neary  and  Damien
Woods found a universal 6ä4-machine. Note that all of the machines
mentioned from 1995 onwards were found at the occasion of a forth-
coming edition  of  Machines,  Computations,  and Universality  (MCU)
conferences organized by the author. 
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Remember that all of these machines are universal in the sense that
they simulate any Turing machine starting from a finite configuration
and  that  when  their  computation  stops  the  halting  instruction  is  not
taken into account when counting the instructions. 

Turing  machines  on  infinite  configurations  were  also  studied.  The
immortality problem, first studied by Philipp K. Hooper in 1966, con-
sists  of  finding  an  initial  infinite  configuration  on  which  the  Turing
machine  never  halts,  whatever  the  initial  state  [3].  Other  models  of
discrete computations were studied in this  regard,  in particular cellu-
lar  automata  and  planar  Turing  machines.  There,  it  turned  out  that
by  using  initial  infinite  configurations  it  was  possible  to  reduce  the
number of states and letters in order to obtain a universal device. 

Now, we have to be careful about universality in this context: what
does  it  mean?  The  reason is  that  if  we  allow arbitrary  initial  infinite
configurations,  then  the  halting  problem  becomes  solvable.  It  is
enough  to  encode  the  characteristic  function  of  the  set  of  all  n  for
which  the  nth  Turing  machine  with  input  n  halts  on  the  tape  of  the
Turing  machine!  This  is  why,  during  a  certain  time,  initial  infinite
configurations  were  required  to  be  ultimately  periodic.  This  means
that outside some finite interval, what remains of the tape on the left-
and  on  the  right-hand  side  is  periodic,  the  periods  being  possibly
different  on  each  side  of  the  tape.  The  rest  of  the  simulation  is  the
same as in the case of a classical Turing machine. Note that the clas-
sical situation is a particular case of this definition: the period is 1 and
the content of the square is given; it must be the blank. This extended
definition  of  universality  is  called  weak  universality.  Although  this
generalization is very natural, there is a sharp difference from the clas-
sical case. The results indicated later also point to this difference. 

Not  everybody  makes  use  of  the  term  weak  universality.  Many  a
researcher  does  not  think  it  that  important  to  make  a  distinction  on
properties  of  the  initial  configuration  leading  to  universal  computa-
tions and, as an example, calls rule 110 universal.

In  this  context,  the  works  of  Stephen  Wolfram  on  cellular  au-
tomata  inspired  research  that  reached  an  important  result:  the  weak
universality of rule 110, [4, 5] an elementary cellular automaton. The
corollary was the construction of  very small  weakly universal  Turing
machines, already announced in 2002, with significantly fewer instruc-
tions than the machines in Figure 1: eight instructions in 2005 [5] and
five instructions in 2007 [5, 6].  Another difference is that the halting
of these very small machines is not obtained by a halting instruction.
This point about the way of halting was already raised in [7] where a
universal planar Turing machine with eight instructions is constructed
that  does  not  halt  on  a  specific  instruction.  It  was  also  raised  in  the
construction of reversible computations, first of cellular automata and
then  of  Turing  machines,  which  forced  people  to  slightly  change  the
notion of halting: in this frame, it could no more be characterized by
a unique configuration. In 2003 the author, in a joint work with Lud-
mila  Pavlotskaya,  proved  that  a  Turing  machine  with  four  instruc-
tions,  even  coupled  with  a  finite  automaton,  has  a  decidable  halting
problem [8]. In the same paper, the authors proved that there is a Tur-
ing  machine  with  five  instructions  and  a  particular  finite  automaton
such that the resulting couple is universal. This can be compared with
the  result  in  [6]  established  after  the  well-known  challenge  launched
by Wolfram. The result in [6] is stronger than that of [8] as in [6] the
tape of the Turing machine is initially fixed. Its initial configuration is
not  exactly  periodic,  but  it  is  “regular”  in  the  sense  that  the  infinite
word written on the tape can be generated by a Muller finite automa-
ton. 
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tape of the Turing machine is initially fixed. Its initial configuration is
not  exactly  periodic,  but  it  is  “regular”  in  the  sense  that  the  infinite
word written on the tape can be generated by a Muller finite automa-
ton. 

In this paper, we are interested by the decidability side of the ques-
tion,  about  which  very  little  is  known [9].  Marvin  Minsky  mentions
an  unpublished  proof  by  him  and  one  of  his  students  in  [10]  as  un-
readable  because  it  involves  a  huge  number  of  cases.  The  first  read-
able proof was published by Pavlotskaya and states the following. 

Theorem 1. (Pavlotskaya [11]) The halting problem is decidable for any
2ä2-Turing machine. 

Later  in  [12],  Kudlek  proved  the  same  result  in  a  very  different
way,  classifying  the  machines  according  to  what  the  computations
produce,  thus  including  machines  that  never  halt.  It  is  interesting  to
note  that  all  computations  are  more  or  less  trivial  except  one  case,
putting  aside  the  trivial  permutations  and  symmetries  on  states  and
letters.  This  case  was  also  found  in  [8]  where  it  was  proved  to  have
an  exponential  time  computation  on  a  sequence  of  patterns  of  the
form 1n. 

In this paper, we give a simple proof of Theorem 1 that is based on
an analysis of the motion of the Turing machine head on its tape. Sec-
tion 2 deals with this analysis. In Section 3 we prove Theorem 1. 

2. Motion of the Turing Machine Head on Its Tape

In this section, we fix notions and notations for the rest of the paper.
We denote by t  the current time  of execution, t  being a non-negative
integer.  Usually, the  initial  time  is  denoted  by  t0  and,  most  often,
t0  0. The current instruction is performed at time t  and we get the
result at time t + 1 when the next instruction is performed.
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2.1 Two Position Lemmas

Let hHtL  be the position of the head on the tape at time t.  We denote
by h HtL the state of the head at time t and by s Ht, xL the content of the
square  x  at  time  t.  By  definition,  s Ht, xL…s Ht, x + LL  is  the  word
whose  letters  consist  of  the  contents  of  the  squares  with  addresses
from x  to  x + L  at  time  t.  This  word  will  also  be  called  the  interval
@x, x + LD of the tape at time t. We define 0  and r0  to be the left- and
right-hand  side  ends  of  the  smallest  interval  that  contains  all  the
nonblank squares of the tape together with the square scanned by the
head at time 0, the initial time. We define two functions  and r to in-
dicate the limits of the current configuration at time t as

H0L  0,

rH0L  r0,

 Ht + 1L  min Hh Ht + 1L,  HtLL,
r Ht + 1L  max Hh Ht + 1L, r HtLL.

In  other  terms,   Ht + 1L <  HtL  if  and  only  if  h HtL   HtL  and  the
machine  performs  an  instruction  with  a  move  to  the  left  at  time  t.
Symmetrically,  r Ht + 1L > r HtL  if  and  only  if  h HtL  r HtL  and  the
machine  performs  an  instruction  with  a  move  to  the  right  at  time  t.
The configuration at time t is denoted by Ct.

The functions  and r allow us to define the notion of the head exit-
ing  the  limits  of  the  current  configuration.  Define  the  times  of  exit
E as

EH0L  0
EHi + 1L  min 8t hHtL < HEHiLL Ó hHtL > rHEHiLL<.

From this definition, when E HiL § t < E Hi+1L, we have:

@ HtL, r HtLD Œ @ HE HiLL, r HE HiLLD

and, by abus de langage, we call E HiL the ith exit.
Now, such an exit is called a left-  or right-hand side  exit,  depend-

ing on whether HEHiLL ≠ HEHi - 1LL  or rHEHiLL ≠ rHEHi - 1LL.  This allows
us  to  define  functions  LE  and  RE  to  denote  the  ith  left-hand  or  ith
right-hand side exit as

LEH0L  0,
LEHi + 1L  min 8t h HtL < HLEHiLL<,

RE H0L  0,
RE Hi + 1L  min 8t hHtL < rHREHiLL<.

The  motion  of  the  Turing  machine  head on its  tape  consists  of  a  se-
quence  of  consecutive  runs  over  an  interval  during  which  the  head
moves in the same direction each time. Let us call  such a run sweep-
ing  and note that a sweeping may be finite or infinite. Also note that
in the case of  an infinite  sweeping the motion of  the machine is  ulti-
mately periodic. After a certain time the head encounters an infinite in-
terval of blank cells and, because the move at each step is constant, it
always scans a blank and the only changing parameter is its state. As
the number of states is finite, there must be a repetition and this inter-
val  between  two  occurrences  of  the  same  state  is  a  period  of  the
motion.
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Any sweeping has at least one half-turn, that is, a time and a posi-
tion such that the next move is in the opposite direction of the previ-
ous  move.  The  half-turn  is  called  a  left-  or  right-hand side  half-turn,
depending on whether it  occurs  on the left-  or  right-hand side of  the
sweeping. Now, we say that an exit is extremal if and only if the new
limit of the configuration which it defines is a half-turn. We now de-
fine  the  functions  LEE  and  REE  to  denote  the  left-  and  right-hand
side extremal exits, respectively: 

LEEH0L  0,
LEE Hi + 1L  min 8t h HtL < HLEEHiLL Ô hHt + 1L > hHtL<,

REEH0L  0,
REEHi + 1L  min 8t h HtL > rHREEHiLL Ô hHt - 1L < hHtL<.

We now have the following first property: a finite interval @a, bD of
the tape is a trap zone  for the machine starting from a time t1  if and
only  if  a § hHtL § b  for  all  t  with  t ¥ t1.  We  say  that  @a, bD  is  a  trap
zone  for  the  machine  if  there  is  a  time  t1  starting  from which  it  is  a
trap zone. Here is an easy lemma to test whether a given finite inter-
val is a trap zone for the machine. 
Lemma 1.  Let  @a, bD  be  a  finite  interval  of  the  tape of  the  machine  M.
Then,  we  know  whether  @a, bD  is  a  trap  zone  starting  from  a  given
time t1  after at most nb-a+1Hb - a + 1L s + 1, where n is the size of the
alphabet of the machine and s is the number of its states.

The obvious proof is left to the reader. 
From  Lemma  1,  we  have  the  following  corollary,  whose  trivial

proof is also left to the reader. 

Corollary 1. The functions E, , and r are recursive and the finiteness of
the domain of definition of E is recursively enumerable.

Now, we turn to an important lemma that relies on the same idea
as Lemma 1. 
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Lemma 2.  (Margenstern [13,  14])  Let  M  be  a  Turing machine  and as-
sume that there are two right-hand side exits at times t1  and t2, with
t1 < t2 and that there is an address a such that:

i. " t œ @t1, t2D, h HtL ¥ a 

ii. let d  h Ht2L - h Ht1L ¥ 0; then: " x œ @a, h Ht1LD, s Ht1, xL  s Ht2, x + dL 

iii. h Ht1L  h Ht2L. 

Then,  the  sequence  of  instructions  on  the  time  interval  @t1, t2 - 1D
is an execution pattern that is endlessly repeated and we say that the
motion of the machine is ultimately periodic.

Proof.  The  conditions  of  the  lemma  are  illustrated  by  Figure  2.  The
statement assumes that between times t1 and t2 the head never goes to
the left of square a, that at times t1  and t2  the head of the machine is
under the same state u, and that the words of the interval @a, h Ht1LD at
time t1 and of the interval @a + d, h Ht2LD at time t2 are the same.

Let Ct1  be the configuration at time t1. Now, imagine that at time
t1  we  replace  the  interval  D -¶, a - 1D  by  the  same  interval  with  all
squares  filled  up  with  the  blank.  Let  C1

£  be  this  new  configuration.
Then,  the motion of  the Turing machine on the tape between t1  and
t2  is the same, whether it starts from Ct1  or C1

£ . Now, we clearly can
repeat the same for Ct2  being replaced by C2

£  where all squares on the
left  of  a + d  are  replaced  by  the  blank  for  times  t2  and  t2 + t2 - t1.
And  so,  the  same  motion  is  repeated  during  the  time  interval
@t2, 2 t2 - t1D. And this can be repeated endlessly by an easy induction
left to the reader. ·

Figure 2. Illustrating the assumptions of Lemma 2 and its conclusion.

Note that the conditions of the assumption of Lemma 2 are recur-
sively enumerable. 
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2.2 Additional Tools

The occurrence of  a halting instruction is  always recursively enumer-
able.  And  so,  to  prove  that  the  halting  problem  is  decidable,  it  is
enough to focus on the nonhalting situations and prove that the gen-
eral nonhalting situation is also recursively enumerable. This happens
each time we have an algorithmic way to decide,  after  a certain time
which  may  depend  on  the  considered  instance  of  the  problem,  that
the  machine  will  not  halt.  Later  on,  we  shall  only  consider  the  non-
halting situations.

If the machine does not halt but instead remains within a finite in-
terval,  Lemma  1  indicates  that  the  motion  of  the  machine  is  ulti-
mately  periodic:  the  same  finite  sequence  of  instructions  is  endlessly
repeated. 

From now on,  we  assume that  the  Turing  machine  head  traverses
an  infinite  interval,  which  implies,  of  course,  that  the  machine  does
not halt.  If  the motion involves an interval of time @t, t + sD  such that
t + i,  for i œ 80 .. s<  is  an instance of a right-hand side exit,  then there
will be two times t + h and t + k, with h < k, such that the head of the
machine is under the same state at these times. As a right-hand side in-
struction  is  performed  at  these  times  and  because  the  head  always
scans  a  blank due  to  the  exit,  the  same sequence  of  instructions  per-
formed between t + h  and t + k - 1 will  be repeated endlessly,  involv-
ing a motion which is ultimately periodic. Of course, we can perform
a similar argument for successive s + 1 times at which a left-hand side
exit occurs. 

If  we  do  not  have  this  situation,  necessarily,  there  are  infinitely
many extremal exits. In general, we have three cases. 

i. There  are  infinitely  many  right-hand  side  extremal  exits  and  finitely
many left-hand side ones. 

ii. There  are  infinitely  many  left-hand  side  extremal  exits  and  finitely
many right-hand side ones. 

iii. There  are  infinitely  many  left-hand  side  extremal  exits  and  infinitely
many right-hand side ones. 

Consider case i. We may assume that, after a time t1, there are no
more  left-hand  side  exits.  Denote  by  lmpHjL  the  leftmost  position  of
the  machine  head  between  REEHjL  and  REEHj+1L.  Call  lmp-time  for
lmpHjL  the  first  time  after  REEHjL  that  the  machine  head  scans  the
square  lmpHjL.  Let  a  be  the  address  of  the  last  left-hand  side  exit.
Then,  lmpHjL ¥ a  for  all  j.  Let  l  lim infjØ¶ lmpHjL.  Of  course  l ¥ a
whether  l  is  finite  or  not.  Let  am  infj¥m lmpHjL.  Because  am ¥ a,
and as am  is an integer, am  is reached: there is an integer nm ¥ j such
that lmpHnmL  am  and so, lmpHjL ¥ lpmHnmL for all j ¥ nm. Note that
the  position  lmpHnmL  is  absolute  in  the  following  sense:  after
REEHnmL, the  machine  never  goes  to  the  left  of  the  square  lmpHnmL.
The  sequence  of  the  lmpHnmL  is  nondecreasing  and  we  may  assume
that the sequence of the nm is increasing. 
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Consider case i. We may assume that, after a time t1, there are no
more  left-hand  side  exits.  Denote  by  lmpHjL  the  leftmost  position  of
the  machine  head  between  REEHjL  and  REEHj+1L.  Call  lmp-time  for
lmpHjL  the  first  time  after  REEHjL  that  the  machine  head  scans  the
square  lmpHjL.  Let  a  be  the  address  of  the  last  left-hand  side  exit.
Then,  lmpHjL ¥ a  for  all  j.  Let  l  lim infjØ¶ lmpHjL.  Of  course  l ¥ a
whether  l  is  finite  or  not.  Let  am  infj¥m lmpHjL.  Because  am ¥ a,
and as am  is an integer, am  is reached: there is an integer nm ¥ j such
that lmpHnmL  am  and so, lmpHjL ¥ lpmHnmL for all j ¥ nm. Note that
the  position  lmpHnmL  is  absolute  in  the  following  sense:  after
REEHnmL, the  machine  never  goes  to  the  left  of  the  square  lmpHnmL.
The  sequence  of  the  lmpHnmL  is  nondecreasing  and  we  may  assume
that the sequence of the nm is increasing. 

Note  that  case  ii  can  be  dealt  with  symmetrically.  We  can  define
rmpHjL, the rightmost position between two consecutive left-hand side
extremal exits and rmp-time, the first time that rmpHjL is reached after
LEEHjL. 

2.3 Laterality and Color of an Instruction

Consider an instruction of the program of the Turing machine M. The
instruction can be written ixyMj where x is the scanned symbol at the
current time, the current state of the machine is i, and y is the symbol
written  by  the  machine  head  in  place  of  x.  Then,  j  is  the  new  state
taken by the machine head and M is the move performed by the head
just  after  writing y:  M  is  L,  D,  or S  depending on whether the move
makes  the  head go one  square  to  the  left,  to  the  right,  or  to  stay  on
the same square. Call the color of an instruction ixyMj the triple xMy
and  call  laterality  of  the  instruction  the  value  of  M.  Note  that  when
we have a stationary instruction I, that is, M  S, the next instruction
is  either  stationary  or  not.  Repeating  this  argument,  either  there  is  a
cycle  of  stationary  instructions,  or  a  halting  or,  after  a  certain  se-
quence  of  consecutive  stationary  instructions,  the  next  instruction  is
not stationary. If we are in the first or second case, we say that I  is a
blocking  instruction.  Consequently,  if  I  is  not  blocking,  it  is  ulti-
mately  followed  by  a  nonstationary  instruction  J:  by  definition,  the
laterality  of  I  is  that  of  J.  We say that  a  machine is  unilateral  if  and
only if all of its instructions have the same laterality: either L or R. By
this we mean that when a stationary instruction is not blocking, its lat-
erality  is  defined  by  one  of  the  other  instructions.  We  also  consider
that a halting instruction is a particular case of a blocking instruction.
Lemma 3.  The  halting  problem  is  decidable  for  any  unilateral  Turing
machine.

Proof. We may assume that all of the instructions are right-hand side.
Because the occurrence of a blocking instruction is recursively enumer-
able it is enough to wait for its possible execution and we may assume
that  the  machine  head  always  goes  to  the  right.  It  eventually  exits
from  the  right-hand  side  limit  of  the  initial  configuration  and,  later
on, the machine head only sees a blank in the scanned cell. If after s+1
steps the machine does not find a blocking instruction, it will fall un-
der two identical states and the sequence of instructions performed be-
tween  the  times  of  two  consecutive  occurrences  of  this  state  will  be
endlessly repeated meaning that the machine will not halt. · 

However,  note  that  if  the machine has  two heads,  Lemma 3 is  no
longer true when stationary instructions are allowed [15]. 

Say that a Turing machine M is erasing to the left if all its left-hand
side instructions write a blank. We have the following lemma.
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Lemma 4.  The halting problem is  decidable for a Turing machine that
is erasing to the left.

Note that if M is a unilateral machine whose laterality is L, we ob-
tain  another  unilateral  machine  by  changing  L  to  R  in  all  of  the  in-
structions.  This  operation  is  called  lateral  symmetry.  In  particular,
Lemma 2 has a left-hand side version which is obviously obtained by
lateral symmetry. We shall use this version only without further justifi-
cation. 
Proof of Lemma 4. We consider that the Turing machine M is erasing
to the left and that it does not halt. We may assume that we are not in
a  trap zone  nor  in  the  situation of  a  sequence  of  times  t, … , t + s  of
exit on the same side. Accordingly, we are in one of the cases defined
in Section 2.2.

Case i. We may assume that after a time t1, all exits are right-hand
side.

Consider  the  sequence  of  absolute  lmp  defined  in  Section  2.2,
which, here also, we denote by lmpHnmL, with increasing nm. 

Consider  the  configurations  Ctn1
, … , Ctns

 where  tnm  is  the  first
time  between  REEHnmL  and  REEHnm + 1L  that  lmpHnmL  is  reached  by
the machine head. For two of these configurations, the machine head
will be under the same state. By definition of Ctnm

, the head is on the
lmpHnmL  at  its  lmp-time.  Now,  because  the  machine  writes  blanks
only  when  it  performs  a  left-hand  side  instruction,  there  are  only
blanks on the right-hand side of the lmpHnmL at this time, from the ad-
dress lmpHnmL + 1 up to infinity. Let h and k be the indices for which
the  state  of  the  head  is  the  same  at  tnh

 and  tnk
,  with  h < k.  Because

the  lmpHnmL  are  absolute,  the  machine  never  goes  to  the  left  of
lmpInhM between tnh

 and tnk
. And so, the sequence of instructions be-

tween  these  two  times  is  repeated  endlessly.  Now,  the  occurrence  of
two  configurations  with  these  conditions  is  also  recursively  enumer-
able. 

Case ii. For this case we can prove a stronger result and distinguish
it as Sublemma 1.
Sublemma 1. Assume that for a Turing machine M,  there are infinitely
many  left-hand  side  extremal  exits  and  finitely  many  right-hand  side
ones and that all of the left-hand side instructions write the same let-
ter y. Then the halting problem of M is decidable.

Proof of Sublemma 1. We assume that we are at a time after t1, start-
ing  from  which  there  are  only  left-hand  side  exits.  Under  these  as-
sumptions, the configuration of the ith left-hand side exit after t1 is

ui yni Wi
where ui is the state of the head at the exit, ni is the number of consec-
utive y written by the head before the exit, and Wi is a word on the al-
phabet of the machine that does not start with y when not empty. Be-
cause there are no more right-hand side exits, the right-hand side limit
of the configuration is always r Ht1L.
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where ui is the state of the head at the exit, ni is the number of consec-
utive y written by the head before the exit, and Wi is a word on the al-
phabet of the machine that does not start with y when not empty. Be-
cause there are no more right-hand side exits, the right-hand side limit
of the configuration is always r Ht1L.

Denote by ai the address of the rightmost y in the word yni . We get
that ai § r Ht1L for all i. As all the left-hand side instructions write y on
the tape, it is plain that ai+1 ¥ ai. Let a  lim supiØ¶ ai. We have that
a § r Ht1L  and  a  is  reached,  because  the  ai  are  all  integers.  If  a  is
reached at a time t2, then, after s + 1 exits after t2, we can see two ex-
its  which  satisfy  the  assumptions  of  the  left-hand  side  version  of
Lemma 2.  Now,  the  occurrence  of  two such  exits  is  recursively  enu-
merable. 

Case iii. Because there are infinitely many left- and right-hand side
exits,  there  are  infinitely  many  extremal  right-hand  side  exits  such
that the next exit is on the left-hand side. And so, there is an increas-
ing sequence of nm  such that EHnmL is a right-hand side exit and that
E Hnm + 1L  is  a  left-hand  side  one.  Because  the  left-hand  side  instruc-
tions write the blank only, at time EHnm + 1L, the tape of the machine
contains blanks only. Now, looking at the configurations at the times
E Hn1 + 1L,  …  ,  E Ins+1 + 1M,  two  of  them  are  identical:  the  tape  is
empty and the head is  under the same state.  This  induces a sequence
of endlessly repeating instructions and the occurrence of two such con-
figurations  is  recursively  enumerable.  The  motion  of  the  machine  is
ultimately  periodic  because  if  there  is  no  shift  in  the  position  of  the
machine head on the two detected configurations with an empty tape,
the motion remains trapped in a finite interval.  If  there is a shift,  the
motion  goes  infinitely  on  one  side  of  the  tape  only.  And  so,  in  all
three  situations,  there  cannot  be  infinitely  many  left-  and  right-hand
side exits.

This  means  that  Case  iii  does  not  occur  for  the  considered  ma-
chines. 

Accordingly, the nonhalting of M is recursively enumerable in both
possible  cases  of  the  motion  of  the  machine  head,  which  proves  the
lemma. ·

3. Proof of Theorem 1

The proof relies on the following property.

Lemma 5. (Pavlotskaya [11]) Let M be a Turing machine on the alpha-
bet  80, 1<  such  that  M  has  a  single  instruction  whose  laterality  is  L.
Then the halting problem of M is decidable.

Theorem 1 is an immediate corollary of Lemma 5. Indeed, if a 2ä2-
machine  has  no  halting  instruction,  it  never  halts.  So,  it  has  at  least
one halting instruction.  On the others,  it  has at  most  one instruction
whose laterality  is  not  shared by the others.  By lateral  symmetry,  we
may assume that the laterality with a unique instruction is L. 
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Theorem 1 is an immediate corollary of Lemma 5. Indeed, if a 2ä2-
machine  has  no  halting  instruction,  it  never  halts.  So,  it  has  at  least
one halting instruction.  On the others,  it  has at  most  one instruction
whose laterality  is  not  shared by the others.  By lateral  symmetry,  we
may assume that the laterality with a unique instruction is L. 

Proof of Lemma 5. From Lemma 4, we may rule out the colors x L 0
for the unique left-hand side instruction. And so, we remain with the
colors x L 1 with x  0 or x  1.

Color 1 L 1.  In this case, if the machine head reads a blank, it does
not  move  to  the  left.  Consider  the  case  of  a  stationary  instruction
which  is  unique:  otherwise  we  have  a  unilateral  machine  for  which
Lemma  3  applies.  Then,  if  the  color  of  the  instruction  is  0 S 0,  this
blank square is a trap zone or it calls a right-hand side instruction. If
the stationary instruction has the color 0 S 1, and because we assumed
that the machine has a single instruction with the laterality L, the sta-
tionary  instruction  calls  the  right-hand  side  one  and  so  the  machine
goes to the right.

In all cases that the machine head reads a blank, if it does not halt
or if it is not stuck in the same place, it goes to the right. In particular,
if  there  is  a  right-hand  side  exit,  the  machine  head  goes  to  the  right
forever.  Accordingly,  we  may  assume  that  all  exits  are  on  the  left-
hand side.  But now we are under the assumptions of Sublemma 1 as
all left-hand side instructions write a 1. And so, we know that in this
case, the nonhalting is recursively enumerable. 

Color 0 L 1. This time, if the machine reads a 1, it goes to the right.
Indeed,  it  cannot  go  to  the  left  because  one  of  the  remaining

nonhalting  instructions  is  on  the  right-hand  side  and  the  other  is
either on the right-hand side or stationary. If the instruction is station-
ary, it is of the form 1 S 1 or 1 S 0. If it is stationary, and because we
assume that there is a single instruction with the laterality L, a station-
ary instruction of the color 1 S 1 reading a 1 will either keep the head
on  this  square  or  call  the  right-hand  side  instruction.  Now,  if  the
stationary  instruction  is  of  the  color  1 S 0,  and  because  we  assume
that there is a single instruction with the laterality L, it also necessar-
ily calls the right-hand side instruction as the machine is not assumed
to be unilateral. 

If the new state of an instruction is the same as its current one we
say that the instruction is stable. Otherwise, we call it unstable. 

First, assume that the left-hand side instruction is unstable. Then, if
it scans the square a at time t, it scans the square a + 1 at time at most
t + 4, unless it is blocked in between. 

Indeed,  if  a  right-hand  side  instruction  is  performed,  then  a + 1  is
reached  at  time  t + 3.  Otherwise,  we  have  several  cases.  If  the  head
performs a stationary instruction, either the head is blocked or it calls
a right-hand side instruction again and a + 1 is  reached at  time t + 2.
If  the  head performs the left-hand side  instruction at  time t, we have
the configuration e1 • 0 e2, where • represents the position of the head
at this time. Then we have 
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Indeed,  if  a  right-hand  side  instruction  is  performed,  then  a + 1  is
reached  at  time  t + 3.  Otherwise,  we  have  several  cases.  If  the  head
performs a stationary instruction, either the head is blocked or it calls
a right-hand side instruction again and a + 1 is  reached at  time t + 2.
If  the  head performs the left-hand side  instruction at  time t, we have
the configuration e1 • 0 e2, where • represents the position of the head
at this time. Then we have 

H“ L e1 • 0 e2 Ø •e1 1 e2 Øa e1
£ • 1 e2 with a œ 81, 2<,

with a  indicating the number of instructions applied by the machine.
From the given analysis, scanning 1 in the square a, if the machine is
not blocked in between, its head reaches a+1 at most two steps later.

Accordingly,  if  the  machine  does  not  halt,  it  goes  forever  to  the
right.  Now  we  want  to  find  out  if  that  motion  is  predictable.  From
Section  2.2  we  may  assume  that  there  are  infinitely  many  extremal
right exits. At an extremal exit the head arrives on a blank on which
it  performs  a  half-turn,  meaning  that  the  sequence  H“ L  is  repeated,
with  e2  0.  Now,  it  is  plain  that  considering  REEH1L,  REEH2L,  and
REEH3L, we can find two exits among them for which e1  is the same.
Accordingly, in between the two times, we have a sequence of instruc-
tions that is endlessly repeated. Note that there are at most s steps be-
tween REEHiL and REEHi + 1L but s may be very large. 

At last,  we remain with the case of  a stable left-hand side instruc-
tion. 

Note that if there is a left-hand side exit, it is performed by the left-
hand side instruction and, since it is stable, the head goes infinitely to
the left. 

And  so,  we  may  assume  that  there  are  no  left-hand  side  exits.
Again, from the study of Section 2.2, we may assume that we have in-
finitely many extremal right-hand side exits. From the stability of the
left-hand  side  instruction,  we  conclude  that  lmpHiL  is  the  position  of
the rightmost 1 of the tape at REEHiL. Because we assume there are no
left-hand side exits, there is an address a such that lmpHiL ¥ a for all i. 

Consider the sequence of absolute lmp defined by lmpHnmL with in-
creasing nm. From the previous remark about the stability of the left-
hand  side  instruction,  there  must  be  a  1  in  the  interval  of  the  tape
AlmpInkM, hIREEInk + 1MME. 

Now  we  consider  li  hHREEHiLL - lmpHiL.  We  know  that  lk > 0
for  all  k.  Let  l  lim infkØ¶ lnk

.  There  are  two  cases,  depending  on
whether l < +¶ or l  +¶. In the latter case, l is a natural number. 

When l < +¶,  considering REEHn1L,  … ,  REEInl+1M,  we find two
indices  h  and  k  such  that  lh  lk.  Now,  at  the  times  jna ,  with
a œ 8h, k<,  of  lmp-time  at  lmpHnaL  we  have  the  same  configuration
from the  address  lmpHnaL  and  to  its  right-hand  side  at  time  jna ,  also
because the state at time jna  is always the same for both values of a.
Indeed, this latter property follows from the fact that we have a single
left-hand  side  instruction.  Accordingly,  assuming  h < k,  the  same
sequence  of  instructions  between  REEInhM  and  lmpInkM  is  endlessly
repeated. 

Now  we  consider  the  case  when  l  +¶.  In  this  case  we  assume
that  lnk

 is  big  enough.  On  a  large  interval  of  ones,  the  machine  is
unilateral  and because  we  assume that  it  does  not  halt,  its  motion  is
ultimately  periodic.  Since  the  state  at  the  time of  an lmpHjL  is  always
the same, the sequence of instructions on an interval of ones is the be-
ginning of the same infinite sequence w which is periodic starting from
a  certain  rank.  We  may  assume  that  lnk

 is  big  enough  to  contain
at  least  one  complete  period  of  this  sequence.  Define
mi  hHREEHi + 1LL - hHREEHiLL  as  the  length  of  the  interval  of  zeros
traversed  by  the  head  starting  from  the  first  exit  to  the  right  after
hHREEHiLL until the next right-hand side half-turn. If a 1 is written dur-
ing the period of the motion on ones or on the mi  zeros, we have in-
finitely  many  situations  when  li § 2 s,  because  the  period  cannot  be
greater than the number of states.  Accordingly, lim infkØ¶ lnk

< +¶,
a contradiction with our assumption and the 1 written after the lmp-
time of lmpInkM is written by the head in the aperiodic part of its mo-
tion on the interval  of  ones.  By possibly  taking a  subsequence of  the
lnk

, we may assume that lnk
< lnk+1 . 
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Now  we  consider  the  case  when  l  +¶.  In  this  case  we  assume
that  lnk

 is  big  enough.  On  a  large  interval  of  ones,  the  machine  is
unilateral  and because  we  assume that  it  does  not  halt,  its  motion  is
ultimately  periodic.  Since  the  state  at  the  time of  an lmpHjL  is  always
the same, the sequence of instructions on an interval of ones is the be-
ginning of the same infinite sequence w which is periodic starting from
a  certain  rank.  We  may  assume  that  lnk

 is  big  enough  to  contain
at  least  one  complete  period  of  this  sequence.  Define
mi  hHREEHi + 1LL - hHREEHiLL  as  the  length  of  the  interval  of  zeros
traversed  by  the  head  starting  from  the  first  exit  to  the  right  after
hHREEHiLL until the next right-hand side half-turn. If a 1 is written dur-
ing the period of the motion on ones or on the mi  zeros, we have in-
finitely  many  situations  when  li § 2 s,  because  the  period  cannot  be
greater than the number of states.  Accordingly, lim infkØ¶ lnk

< +¶,
a contradiction with our assumption and the 1 written after the lmp-
time of lmpInkM is written by the head in the aperiodic part of its mo-
tion on the interval  of  ones.  By possibly  taking a  subsequence of  the
lnk

, we may assume that lnk
< lnk+1 . 

Now let  w  be  the  length  of  the  smallest  period  of  w  and consider
the  times  when  the  head  reaches  lmpInkM  at  its  lmp-time  for
k œ @1 .. w + 1D. For two of them, say j1  and j2, the state under which
the  head  reaches  hIREEInja MM,  a œ 81, 2<  while  coming  from lmpInja M

after its lmp-time is the same, say u,  and it has the same place in the
period  of  w.  Because  lnja

> w,  and  assuming  j1 < j2,  we  may  write

lj2  lj1 + b.w, for some integer b. 
Now, the sequence of right-hand side half-turns in the tape interval

@REEHj1 + 1L, REEHj2 + 1L@  is  endlessly  repeated.  The  words  of  the
tape  defined  by  the  intervals  @lmpHjaL, hHREEHjaLLD  at  the  time  of  the
first  right-hand  side  exit  after  REEHjaL  have  a  common  prefix  and  a

common  suffix,  the  rest  being  a  word  of  the  form  Wha  with
h2  h1 + b. 

Because  this  situation  is  recursively  enumerable,  it  is  also  the  case
when we have lim infkØ¶ lnk

 +¶ to complete the proof. ·
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