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Models  of  complex  information  processing  based  on  artificial  neural
networks frequently apply fully connected or random graph structures.
However,  it  is  well  known  that  biological  neural  systems  operate  on
sparsely connected networks having properties quite distinct to random
graphs. In this paper, a simple method is introduced for the determinis-
tic  generation  of  strongly  connected  digraphs.  The  method  is  inspired
by  Sierpinski  carpets.  Despite  the  large  size  of  these  digraphs,  the
distance between most of the nodes is short, that is, it scales logarithmi-
cally.  It  is  further  shown  that  important  network  properties,  such  as
average  degree  and  degree  distribution,  can  directly  be  determined  by
the initial structure of this process. These findings lead to the formula-
tion  of  general  conditions  providing  a  targeted  generation  of  complex
networks  of  arbitrary  size.  The  circumstances  under  which  these
digraphs  can  show  scale-free  and  small-world  properties  are  discussed
and  finally  possible  applications  of  this  method  are  outlined  in  the
domain of artificial neural networks. 

1. Introduction

Artificial neural networks (ANNs) represent a method of information
processing  that  is  inspired  and  motivated  by  the  neural  structures
found  in  biological  systems  [1].  Therefore,  it  is  not  surprising  that
ANNs  are  frequently  utilized  as  the  basic  building  blocks  for  large-
scale  models  in  order  to  explore  the  nature  of  complex  information
processing exploited in animals and human beings.

The majority of such neural models are based on connectivity struc-
tures  that  match  with  the  classical  types  of  ANNs,  such  as  multilay-
ered perceptrons, Hopfield networks, or Elman networks [2, 3]. All of
the  classical  network  types  establish  only  fully  connected  networks.
The application of fully connected networks, however, might become
crucial  with  respect  to  plausibility  if  they  are  intended to  model  bio-
logical  systems.  Fully  connected  ANNs  can  hardly  represent  very
sparsely  connected  brain-like  neural  structures,  if,  as  only  one  exam-
ple [4], “in the mouse cortex only approximately 1 in 100 million of
all possible connections are actually made.”

An alternative, in particular for large-scale neural models, to over-
come  fully  connected  neural  networks  is the  creation  of  random
graph  structures  [5].  Nevertheless,  random  graph  models  do  not  de-
scribe some essential properties of real-world networks [6]. 
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An alternative, in particular for large-scale neural models, to over-
come  fully  connected  neural  networks  is the  creation  of  random
graph  structures  [5].  Nevertheless,  random  graph  models  do  not  de-
scribe some essential properties of real-world networks [6]. 

Therefore,  we  argue,  while  modeling  large-scale  neural  networks,
alternatives for the projections between neural assemblies must be con-
sidered,  including  alternatives  that  go  beyond  random  graphs  and
fully connected structures. 

Furthermore,  it  becomes  more  and  more  common  in  the  field  of
neural  computation  [7]  that  large-scale  neural  models  are  used  for
robot  control  [8,  9].  This  leads  very  often  to  implementations  of
ANNs  on  special  hardware  devices,  like  massively  parallel  processor
array  VLSI  circuits  [10].  Such  implementations  on  autonomous
robots might be motivated as a proof of concept, as well as for target-
ing specific issues of embodiment [11]. However, autonomous robots
usually  have  very  limited  computational  resources,  especially  mem-
ory,  compared  with  the  performance  provided  by  computer  clusters
or similar equipment. Hence, for performance reasons it  is important
to utilize highly connected and robust networks established by as few
connections as possible. 

The  objective  of  this  paper  is  to  introduce  a  deterministic  method
for  creating  highly  connected  and  structured  neural  systems  formed
by a  number of  connection magnitudes  smaller  than needed for  fully
connected  networks.  The  generation  process  of  such  sparsely  con-
nected  networks  is  inspired  by  fractal  sets.  This  makes  the  resulting
networks very distinct compared with random graphs and as we will
see,  they can cover,  depending on the initialization,  a  wide range be-
tween  fully  connected  graphs  and  connected  graphs  organized  as
rings. Due to the simplicity and the deterministic character of the gen-
eration  process,  this  method  seems  to  be  a  promising  alternative  for
the  generation  of  graphs  and  opens  a  wide  field  for  applications  in
many areas of neural modeling. 

Fractal sets, invented and promoted by Mandelbrot [12], are estab-
lished  tools  for  describing  and  modeling  complex  structures  and
processes,  such  as  textures  of  surfaces  or  even  the  state  space  of
chaotic  attractors.  Sierpinski  carpets  are  well-known  examples  of
mathematical shapes forming fractals (see Figure 1).  Inherent proper-
ties  of  fractals,  being  self-similar  and  scale-free,  can  impressively  be
demonstrated with these sets. Therefore, we have asked what types of
graphs or networks can be expected to emerge if the intermediate sets
resulting  from a  generation  process  toward  Sierpinski  carpets  are  in-
terpreted as adjacency matrices. 

This paper presents an investigation of the properties of graphs con-
structed  in  the  same  fashion  as  Sierpinski  carpets.  As  we  will  show,
the  result  of  this  investigation  is  a  simple  method for  a  deterministic
generation  of  strongly  connected  directed  graphs.  The  manifold  of
possible graphs provided by this method is systematically analyzed for
a low-dimensional case. But as we will see, this analysis already leads
us  to  general  conditions  which  guarantee  robustness  as  well  as  spe-
cific degree distributions for arbitrary dimensions. 
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Figure 1.  An example for a Sierpinski carpet.  Its mask and initial  form (a) as
well as the first (b) and second (c) iteration of the process generating the Sier-
pinski carpet. 

Based on these findings, we introduce two strategies that allow ap-
plying our graph generation method in the domain of ANNs. But be-
fore we discuss these aspects in detail, Section 2 introduces basic defi-
nitions  and  explains  the  process  of  graph  generation.  This  includes
the introduction of a sufficient condition maintaining the property of
being strongly  connected in  general.  After  this,  the  next  two sections
describe  essential  network properties  (e.g.,  shortest  paths,  degree  dis-
tribution, clustering, and robustness) resulting from a systematic anal-
ysis  of  a  representative  subset.  This  is  followed by a  discussion sum-
marizing our findings in a more general form leading to the outline of
possible applications for generating ANNs, as aforementioned. 

2. Generating Digraphs of Fractal Dimension

A  directed  graph/digraph  G  is  a  set  of  vertices  V  (sometimes  also
called  nodes)  and  connections  E  (edges)  between  them.  An  edge  ej i
only connects two nodes vi  and vj, where ej i  is the incoming edge for
vj and the outgoing for vi.

We  call  the  total  number  of  incoming  and  outgoing  edges  the  de-
gree k.  In directed graphs for  a single  node,  the number of  incoming
edges  ki  can  be  different  from the  number  of  the  outgoing  edges  ko.
Note that  ko  and ki  are  also referred to as  out-degree and in-degree,
respectively. 

If there exists a path between each pair of nodes in the digraph, we
call  it  strongly  connected.  In  the  case  that  node  vj  can  be  reached
from vi,  while  there  is  no path back to vi  starting in  vj,  the  graph is
only connected. 

The structure of a digraph GHV, EL can be represented by an adja-
cency matrix M. Each matrix element mj i  of an adjacency matrix can
either be 0 or 1. The element mj i is one, if and only if ej i œ E. 

As  we  show in  the  following,  adjacency  matrices  build  the  bridge
between Sierpinski  carpets  and directed graphs as  well  as  giving us a
process for the deterministic development of digraphs. 
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As  we  show in  the  following,  adjacency  matrices  build  the  bridge
between Sierpinski  carpets  and directed graphs as  well  as  giving us a
process for the deterministic development of digraphs. 

In Figure 1 an example for the construction of a Sierpinski carpet is
illustrated.  The  process  starts  with  the  basic  form  of  a  square.  Each
side  of  this  square  is  segmented into  three  equal  sections  defining  an
overall partition into nine identical squares. Some of these squares are
labeled,  as  indicated  by  the  gray  coloring.  We  call  this  basic  form  a
mask. 

As  can  be  seen  in  the  figure,  the  Sierpinski  carpet  is  easily  gener-
ated  by  applying  the  same  partitioning,  defined  by  the  mask,  for  all
the labeled squares of the given form. In contrast to the original gener-
ation of Sierpinski carpets, now unlabeled squares are also subdivided
in the same way but the resulting subsquares remain unmarked. 

The  partitioning  of  labeled  and  unlabeled  squares,  including  the
new labeling of the new set of squares, is what we call an iteration. 

In  this  process  a  distinction  has  to  be  made  between  a  mask  and
the  form.  The  mask  defines  the  partitioning  while  the  form  is  the
structure the mask is applied to. Indeed, a mask can be applied to any
form. In the following, mask and initial form are always identical. All
the resulting forms therefore are fully determined by the mask and the
number  of  iterations.  For  an infinite  number  of  iterations  we get  the
Sierpinski carpet, that is, a set of fractal dimension. 

We utilize this type of fractal generating process in order to gener-
ate  directed  graphs  simply  by  interpreting  the  resulting  set  after  n
iterations  as  an  adjacency  matrix  of  a  directed  graph.  Examples  of
3-segmented  forms  transformed  into  digraphs  are  given  in  Figure  2.
The labeled squares are interpreted as edges, that is, a gray color rep-
resents the value 1 in the corresponding adjacency matrix, while unla-
beled squares indicate the 0 entries. 

Figure 2. Examples of digraphs derived from 3-segmented forms. 

Considering  our  transformation  between  patterns  and  adjacency
matrices,  we  see  that  the  Kronecker  product  [13]  can  directly  be
applied  in  order  to  define  an  algorithm that  is  isomorph  to  the  pro-
cess generating Sierpinski carpets: 
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Considering  our  transformation  between  patterns  and  adjacency
matrices,  we  see  that  the  Kronecker  product  [13]  can  directly  be
applied  in  order  to  define  an  algorithm that  is  isomorph  to  the  pro-
cess generating Sierpinski carpets: 

D0 := MS

Di+1 := Di ⊗ MS,

where  MS  is  an adjacency matrix  (M Hi, jL œ 80; 1<)  of  dimension SäS
representing  the  mask.  In  the  following we refer  to  this  algorithm as
the digraph generating process (DGP).

Given  the  DGP,  we  want  to  know  what  kind  of  digraphs  can  be
expected.  An  investigation  of  this  question  needs  to  focus  on  the
masks  MS  and the  number  of  iterations  i  only,  because  these  are  the
parameters  that  determine  the  resulting  structures.  For  the  3-
segmented  case,  we  get  29  512  different  masks.  Higher
segmentations S generate 2HSÿSL, since an adjacency matrix has to have
equal dimensions. 

In order to cope with this exponentially increasing number of possi-
ble masks, we begin our analysis for S  3. This analysis will provide
insights  about  the  interrelation  between  mask  properties  and  the
global structure of the resulting digraphs and therefore,  will  guide us
into the  huge space  of  digraphs spanned by the  masks  of  higher  seg-
mentations. 

The first constraint for our investigation is that we are interested in
strongly  connected  digraphs  only.  This  reduces  the  number  of  masks
to be considered. We will show that this set can be further reduced by
taking  into  account  certain  symmetries  of  the  adjacency  matrices,
which maintain the property of being strongly connected. In that way
we get a manageable number of remaining basic forms. 

2.1 Labeling and Filtering of the Masks

We start by introducing a general numbering or labeling of the masks.
As  a  unique  numbering  we  have  chosen  the  binary  code  derived
directly  from  the  structure  of  the  mask/adjacency  matrix  (see  Fig-
ure 3(a)). It can be seen that the labeled and unlabeled mask elements
are interpreted as 1 and 0 of a binary number. However, this number-
ing  is  only  unique  if  the  mask  segmentation  is  taken  into  account.
Therefore,  we  use  the  symbol  Mn

S ,  where  n  is  the  number  that  in
binary representation corresponds to the mask of segmentation S.  An
example is given in Figure 3(b). It can be seen that the number M511

3

refers  to  the  3-segmented  mask  in  which  all  segments  or  entries  are
labeled. In the 4-segmented case, the number 511 represents a totally
different mask structure.
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Figure  3.  (a)  Schema of  the  three-dimensional  and  D-dimensional  mask  indi-
cating  the  value  of  each  entry  in  order  to  derive  the  number  of  the  binary
code  given  by  the  mask.  (b)  Examples  of  the  number  511,  which  in  binary
code represents different masks depending on the dimension.

2.2 Generating Strongly Connected Digraphs  

As  mentioned  earlier,  we  only  consider  strongly  connected  digraphs.
One necessary condition of being strongly connected is that each node
has at least one outgoing and one incoming edge, koêi > 0. The value
of ki  and ko  can be derived from the corresponding adjacency matrix
M.  Value ko  of node vl  is the sum over all  entries in column l,  while
ki is the sum over row l:

ko IvlM := ‚

j

mj,l kiIvlM := ‚

i

ml,i.

After applying the DGP it can be seen that each mask containing a
node of  in-  or  out-degree  zero will  inevitably  result  in  graphs having
at  least  one  node  with  in-  or  out-degree  zero.  Thus,  they  are  not
strongly  connected.  Therefore,  if  a  mask of  segmentation S  generates
strongly  connected  digraphs,  then  this  mask  must  have  at  least  S
labeled entries. In other words, a mask must contain at least as many
labeled squares (edges) as columns/rows (nodes). 

Apart  from  this  condition,  we  have  shown  in  [14]  that  each
strongly  connected  digraph  organized  as  a  ring  applied  to  the  DGP
generates  digraphs  that  separate  into  disconnected  subgraphs.  In
short, a mask representing a ring does not produce strongly connected
or any connected digraphs at all. 

On  the  other  hand,  we  have  proven  that  the  following  criterion
guarantees strongly connected digraphs [14]: If a mask MS  represents
a ring with at least one node having a self-connection, then the DGP
generates  a  strongly  connected  digraph  in  each  iteration.  A  self-con-
nection is represented by a nonzero entry in the main diagonal of the
adjacency  matrix.  According  to  this  condition,  the  adjacency  matrix
of an S-segmented mask must contain at least S + 1 edges:  S  edges to
form a ring plus one self-connection. 

Note that the introduced criterion is only a sufficient condition but
applies to all segmentations (S > 2) and iterations. It is also worth not-
ing  that  this  condition  provides  a  huge  set  of  masks  generating
strongly connected digraphs.  For a given segmentation S  there are S !
possible  ring  structures.  Taking  into  account  the  self-connection
needed, we get a set of S ÿ S !  masks generating strongly connected di-
graphs. Furthermore, each mask in this set can also be used as a sub-
structure  since  additional  connections  do not  destroy the property  of
being strongly connected. 
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Note that the introduced criterion is only a sufficient condition but
applies to all segmentations (S > 2) and iterations. It is also worth not-
ing  that  this  condition  provides  a  huge  set  of  masks  generating
strongly connected digraphs.  For a given segmentation S  there are S !
possible  ring  structures.  Taking  into  account  the  self-connection
needed, we get a set of S ÿ S !  masks generating strongly connected di-
graphs. Furthermore, each mask in this set can also be used as a sub-
structure  since  additional  connections  do not  destroy the property  of
being strongly connected. 

2.3 Fractal Dimension of Strongly Connected Digraphs

It  is  easy  to  see  that  a  mask that  is  fully  labeled  generates  only  fully
connected  digraphs.  If  we  consider  the  given  criterion,  then  the  non-
trivial  cases  of  strongly  connected  digraphs  are  generated  by  masks
with n  labeled entries,  where S < n < S2.  Interestingly enough,  masks
with  this  number  of  labeled  segments  generate  Sierpinski  carpets  of
fractal dimensions df  between 1 and 2 [12], since

(1)df 
logHnL

logHSL
S < n < S2,

from which follows: 1 < df < 2. Therefore, we define a graph G  as a

strongly connected digraph of fractal dimension if G is a strongly con-
nected digraph and the result from the DGP applied to a mask of frac-
tal dimension df  with 1 < df < 2.

Figure 4. General rotation and reflection symmetries of Sierpinski carpets. Cer-
tain Sierpinski carpets remain the same applying a rotation (T) as well as un-
der  reflections  along  the  middle  horizontal  or  the  vertical  line  (RH  and  RV )
and along the two diagonals RM D and RA D. 

2.4 Symmetrical Masks

Sierpinski  carpets  can be symmetric.  Figure 4 shows the five possible
transformations under which certain sets  undergo no alterations. The
Sierpinski  carpet  shown  in  Figure  1  remains  obviously  the  same  for
each of the five transformations.
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Sierpinski  carpets  can be symmetric.  Figure 4 shows the five possible
transformations under which certain sets  undergo no alterations. The
Sierpinski  carpet  shown  in  Figure  1  remains  obviously  the  same  for
each of the five transformations.

If we apply these transformations to adjacency matrices, then only
reflections  along the two diagonals  (RA D,  RM D)  as  well  as  two suc-
cessively  applied  rotations  (T2)  keep  a  digraph  strongly  connected.
Taking  into  account  these  three  symmetries,  we  get  50  distinct
3-segmented  masks  of  fractal  dimension  generating  strongly  con-
nected  digraphs.  All  other  masks  produce  either  no  strongly  con-
nected digraphs at all or can be transformed into one of the 50 masks
by  a  combination  of  the  operations  T2,  RM D,  and/or  RA D.  Table  1
lists these masks indicating their fractal  dimension. A 4-segmentation
gives us 6692 unique masks out of 216  65 536 possibilities. 

°E0• df 
logIE0M

logHSL
Mn

3
⁄

4 1.26 99, 102, 106, 114 4

5 1.46 79, 94, 103, 107, 110, 115, 118, 122, 171,
173, 174, 186, 229, 355

14

6 1.63 95, 111, 119, 123, 126, 175, 187, 189, 190,
231, 238, 245, 335, 359, 363, 371, 427

17

7 1.77 127, 191, 239, 247, 254, 351, 367, 375,
379, 431, 443

11

8 1.89 255, 383, 447, 495 4

⁄  50

Table  1.  Numbers  of  unique  3-segmented  masks  generating  strongly  con-
nected digraphs and their fractal dimension. Some of them do not match the
introduced condition, but yet they create strongly connected digraphs.

3. Properties of Digraphs with Fractal Dimension

In  this  section  we  investigate  some  properties  of  the  strongly  con-
nected digraphs constructed by the masks given in Table 1. As already
mentioned,  this  list  contains  all  unique  3-segmented  masks  that  are
strongly  connected  and  create  strongly  connected  digraphs  via  the
DGP.  This  was  explicitly  tested  because  some  of  the  masks  do  not
match  the  sufficient  criterion  we  introduced.  For  all  masks,  we  ap-
plied  five  iterations  and  therefore  the  digraphs  under  investigation
have 36  729 nodes.

3.1 Shortest Paths

The most important feature of a strongly connected digraph is the av-
erage of the shortest paths and the evolution of this value over the iter-
ations. Self-connections are not included in this calculation.
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Figure  5.  Diagram  showing  the  evolution  over  five  iterations  of  the  average
shortest  path  length  with  respect  to  the  number  of  nodes  (scaled  logarithmi-
cally). All masks are plotted in this diagram and overlapping curves appear as
one. 

As indicated by the diagram in Figure 5,  the average length of the
shortest  paths  increases  logarithmically  with  the  number  of  nodes.
The average length of the shortest paths correlates with the fractal di-
mension.  The  smaller  the  fractal  dimension,  the  larger  the  shortest
path between the nodes, on average. 

3.2 Average Degree

A judgment about the shortest paths has to include the corresponding
average degree.  Figure  6 shows the evolution of  the  out-degrees  over
the  iterations  for  all  digraphs.  It  is  obvious  that  the  average  degree
correlates to the fractal dimension of the mask. Indeed, the average of
the total degree k is determined by the ratio of the number of edges to
the number of nodes:

ktotal  2
†E§

†V§
.

However, for our fractal digraphs we know that

(2)°Ei•  E0
i+1

and  

(3)°Vi•  Si+1

where °Ei• and °Vi• refer to the number of edges and nodes after i > 0
iterations while E0  is the number of edges in the applied mask MS.  S
is  the  segmentation of  MS,  which gives  the  number of  nodes.  Hence,
after i iterations we get the total degree:  
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where °Ei• and °Vi• refer to the number of edges and nodes after i > 0
iterations while E0  is the number of edges in the applied mask MS.  S
is  the  segmentation of  MS,  which gives  the  number of  nodes.  Hence,
after i iterations we get the total degree:  

(4)ktotalHiL  2 ÿ
E0

S

i+1
, S < E0 < S2.

The average degree is obviously determined by E0  and S. Both deter-
mine the fractal dimension of the mask. For S  3 we have five values
for  E0  H84, 5, 6, 7, 8<L.  These  five  values  result  in  the  five  distinct
curves in the diagram of Figure 6, although all of the 50 unique 3-seg-
mented masks are plotted.  

Figure  6.  Diagram showing  the  evolution  over  five  iterations  of  the  mean  of
the in-degree ki  (equal to ko) with respect to the number of nodes. As in Fig-
ure 5, all masks are plotted and overlapping curves appear as one. 

Therefore,  a  general  property  of  our  fractal  digraphs  is  that  the
average degree is exponentially increasing with respect to the number
of  nodes,  since  per  definition  E0 ë S > 1.  Furthermore,  the  larger  the
fractal  dimension,  the  larger  the  exponential  increase.  The  same  pic-
ture  emerges  if  we  consider  either  the  in-degree  or  the  out-degree
only. In fact, we have 

ki HiL  ko HiL 
E0

S

i+1

ktotal HiL  2 ÿ
E0

S

i+1
 2 ÿ ki HiL  2 ÿ ko HiL

indicating  that  the  difference  between  total  degree  and  in-  or  out-
degree is determined by a constant factor only.  
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3.3 Clustering  

The third characteristic of graphs is the average clustering coefficient.
We  will  apply  the  definition  given  in  [15].  The  resulting  values  over
the iteration process for our digraphs is plotted in Figure 7. It can be
seen  that  all  values  tend  to  decrease  with  respect  to  the  size  of  the
graph, that is, †V§.  

Figure 7.  Clustering coefficient  after  the definition given in [15].  Once again,
all 50 3-segmented masks are plotted. 

The clustering coefficients of digraphs under investigation are often
compared  with  the  clustering  values  of  random  graphs  Gn,p.  A  ran-
dom  graph  belongs  to  the  group  Gn,p  if  it  is  undirected  and  has  n
nodes,  where  each  pair  of  nodes  is  connected  with  probability  p  [6].
Interesting  for  us  is  the  fact  that  the  average  clustering  coefficient  of
random graphs is equal to

(5)cr  p

with high probability [16].  
In  order  to  compare  the  clustering  coefficient  of  random  graphs

with  our  digraphs  of  fractal  dimension  we  define  the  ratio  r  of  cf
to cr: 

(6)r 
cf

cr


cf

p
,

where cr can be substituted by p.  
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Figure  8.  Evolution  of  r  cf ë cr  over  the  number  of  iterations.  In  other
words, the relation between the clustering coefficients of random graphs and
digraphs of fractal dimension having the same size. 

Assume  a  digraph  of  fractal  dimension  Gf  with  †E§  edges  and  †V§

nodes.  Then  we  can  estimate  p  of  the  corresponding  random  graph
G†V§,p  with  the  same  number  of  nodes  and  edges  in  the  following
way: 

(7)p 
†E§

†V§2
 cr,

which is equal to the clustering coefficient cr of G†V§,p, with high prob-
ability.  Hence,  we  have  an  estimation  of  the  clustering  coefficient  cr
of  a  random  graph  having  the  same  number  of  edges  and  nodes  as

Gf . Therefore, the ratio r of cf  to cr can be written as:  

(8)r 
cf ÿ °V§2

†E§
,

where †V§  and †E§  are the number of nodes and edges in Gf  and cf  is

the  clustering  coefficient  of  Gf  which  was  calculated  empirically

(results shown in Figure 7).  
Figure 8 shows the evolution of r  over the number of iterations. It

can be seen that digraphs of small fractal dimension are more likely to
have a significantly larger clustering coefficient  than a random graph
of the same size. This relation is better illustrated later in Figure 9. On
the other hand, one can see that the clustering coefficient of a fractal
digraph can also be much smaller  than in  the  corresponding random
graph.
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Figure 8 shows the evolution of r  over the number of iterations. It
can be seen that digraphs of small fractal dimension are more likely to
have a significantly larger clustering coefficient  than a random graph
of the same size. This relation is better illustrated later in Figure 9. On
the other hand, one can see that the clustering coefficient of a fractal
digraph can also be much smaller  than in  the  corresponding random
graph.

3.4 Degree Distribution  

The last property under investigation in this paper is the degree distri-
bution.  Similar  to  the  average  degree,  this  distribution  is  fully  deter-
mined by the mask. Let 

di  ko IviM, 1 § i § S,

where S  is  the segmentation of mask MS.  Hence,  di  is  the out-degree
of  node i.  In the following we will  only consider  out-degrees.  Never-
theless,  the same argumentation also holds for the distribution of the
in-degrees.

The out-degree  of  each node in  a  digraph after  j  iterations  can be
derived by solving

Id1 + d2 + + dSM
j+1, j > 1,

in a symbolic manner to get a sum of Sj+1  elements. Each summand is
a product of Hj + 1L factors. Each product represents the out-degree of
a particular node in the resulting digraph. Whereas, each factor in the
product  represents  an  out-degree  in  the  originally  given  mask  MS.
Hence, the distribution of the out-degrees is given directly by the out-
degree  values  in  MS  and  the  iterations.  As  an  example,  assume  we
have

di < dS, 1 § i < S.

Therefore, after j iterations we have exactly one node, out of n  Sj+1

nodes,  with  the  maximal  out-degree  dS
j+1.  Furthermore,  let

d1,… , S-1  1 and dS > 1. In such a case the number of nodes zr  with
out-degree dS

n-r is given by

(9)zr 
n

n - r
ÿ HS - 1Lr, 0 § r < n,

where S  is  the segmentation of  the mask and n  Sj+1  is  the number

of nodes after j iterations. The term 
n

n - r
 can be substituted by

(10)Hn - rLr ÿ ‰
l1

r 1

l
+ 1

and with n as the total number of nodes, we determine the probability
PHrL for selecting a node with degree dS

Hn-rL in the following way:  
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and with n as the total number of nodes, we determine the probability
PHrL for selecting a node with degree dS

Hn-rL in the following way:  

(11)PHrL 
zr

n


HS - 1Lr ÿ Hn - rLr

n
ÿ ‰
l1

r 1

l
+ 1 .

According to the following estimation:  

(12)1 < ‰

li

r 1

l
+ 1 § 2r

we get:  

(13)
HHS - 1L Hn - rLLr

n
< PHrL § 2r

HHS - 1L Hn - rLLr

n
, 0 § r < n.

It follows, that for this specific case, the tail of the corresponding out-
degree distribution (r > n ê 2) is decreasing exponentially.  

Obviously,  the  distribution  of  the  out-degree  has  no  characteristic
scale and due to the construction process there will always be “a few
nodes” (called hubs) with a degree that is magnitudes larger than the
average [17]. As a consequence, we can say that there are digraphs of
fractal dimension that can represent scale-free networks. 

On the other hand, we can see that in-degree and out-degree are to-
tally  independent.  They are  determined by the corresponding degrees
given  in  the  mask.  Hence,  the  distribution  of  the  total  degree  is  the
sum of the in- and out-degree distributions. 

3.5 Five Examples Representing the Five Possible Fractal 
Dimensions  

The diagrams in Figure 9 summarize the main findings of this section
by  showing  the  qualities  under  investigation  (average  shortest  path
length,  clustering  coefficient,  and  the  ratio  of  this  coefficient  in  rela-
tion to random graphs)  for  five  examples.  Each mask has  a  different
fractal dimension.  

The mean value  of  the  length of  the  shortest  paths  increases  loga-
rithmically. We can also see that the larger the fractal dimension, the
shorter  the  paths  connecting  the  nodes.  Our  empirical  investigations
of  the  clustering  coefficients  indicate  that  they  tend  to  decrease  over
the iterations.  Compared to random graphs having the  same number
of nodes and edges, however, one can see that masks with small frac-
tal  dimension  (here  M114

3 ,  M186
3 ,  and  M335

3 )  have  significantly  larger
clustering coefficients. This difference even grows with the number of
iterations. 
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M114
3 M186

3 M335
3 M351

3 M495
3

Figure 9. Characteristic qualities of five representative examples of digraphs of
fractal  dimension,  including  the  distribution  of  the  total  degree.  Each  mask
has a different fractal dimension. See text for explanations. 

The  bottom  of  Figure  9  shows  the  histograms  of  the  total  degree
for  each  strongly  connected  digraph  after  five  iterations.  Hence,  a
total  degree  number  of  I36 - 1M ÿ 2  1456  can  be  expected.  Some  of
the distributions have a shape very similar to the typical scale-free dis-
tribution.  Namely,  the digraphs resulting from M114

3 ,  M186
3 ,  or  M335

3

have  a  “long  tail”  referring  to  a  few  nodes  with  significantly  larger
total degree, compared to the majority. The arrows indicate small but
nonzero  entries  in  the  histogram that  cannot  be  seen  in  this  illustra-
tion clearly. 
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The  bottom  of  Figure  9  shows  the  histograms  of  the  total  degree
for  each  strongly  connected  digraph  after  five  iterations.  Hence,  a
total  degree  number  of  I36 - 1M ÿ 2  1456  can  be  expected.  Some  of
the distributions have a shape very similar to the typical scale-free dis-
tribution.  Namely,  the digraphs resulting from M114

3 ,  M186
3 ,  or  M335

3

have  a  “long  tail”  referring  to  a  few  nodes  with  significantly  larger
total degree, compared to the majority. The arrows indicate small but
nonzero  entries  in  the  histogram that  cannot  be  seen  in  this  illustra-
tion clearly. 

4. Robustness  

The robustness  of  digraphs  can be  investigated  with  respect  to  many
specific properties. In the following, we only consider the property of
being strongly connected and the average length of the shortest paths
while  nodes  are  removed.  No  matter  which  properties  we  are  inter-
ested  in,  for  any  type  of  graph  or  network  there  are  two  types  of
robustness  to  consider.  On  the  one  hand,  we  want  to  estimate  how
essential  properties  of  a  network  do  change  if  a  randomly  chosen
node is removed. On the other hand, it is important to know whether
or not a graph contains single nodes that have a radical  impact on a
global scale. Nodes of the latter type make a network highly sensitive
to targeted attacks because the failure of a single specific node causes
a catastrophic failure of the whole network.  

Due  to  the  deterministic  nature  of  our  generation  process,  once
more we can start to investigate these questions in a systematic man-
ner. 

4.1 Robustness under Attack  

Whether  or  not  a  strongly  connected  digraph  is  not  strongly  con-
nected  after  a  particular  node  is  removed  is  verified  by  removing  it
and testing explicitly  if  the digraph is  still  strongly connected.  Nodes
destroying the property of being strongly connected are called crucial
nodes.  

All  digraphs  during  the  first  four  iterations  were  analyzed  in  this
way  and  Table  2  gives  a  summary  of  this  experiment.  One  can  see
that apart from 16 digraphs, all others have at least one crucial node.
Digraphs that  have crucial  nodes  can be distinguished over  the  itera-
tions  with  respect  to  the  change  in  their  number  of  crucial  nodes  as
either exponentially increasing or remaining constant. 

We cannot explain yet how this number of crucial nodes is related
to  the  underlying  structure  of  the  mask  and  the  DGP.  However,  it
turns out that the number of crucial nodes is zero if the mask has no
node with in- and out-degree less than two. This is formally written as

" i : ko IviM > 1 Ô ki IviM > 1,

where vi is a node in mask MS.   
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E0 Mn
3 1st 2nd 3rd 4th E0 Mn

3 1st 2nd 3rd 4th
4 99 7 15 31 63 6 231 1 1 1 1 

102 4 8 16 32 238 0 0 0 0 
106 4 8 16 32 245 0 0 0 0 
114 7 15 31 63 335 1 1 1 1 

359 2 2 2 2 
5 79 1 1 1 1 363 1 1 1 1 

94 1 1 1 1 371 0 0 0 0 
103 4 8 16 32 427 0 0 0 0 
107 4 8 16 32 
110 1 1 1 1 7 127 1 1 1 1 
115 2 2 2 2 191 1 1 1 1 
118 2 2 2 2 239 0 0 0 0 
122 4 8 16 32 247 0 0 0 0 
171 1 1 1 1 254 0 0 0 0 
173 2 2 2 2 351 0 0 0 0 
174 1 1 1 1 367 1 1 1 1 
186 1 1 1 1 375 0 0 0 0 
229 1 1 1 1 379 0 0 0 0 
355 2 2 2 2 431 0 0 0 0 

443 0 0 0 0 
6 95 1 1 1 1 

111 1 1 1 1 8 255 0 0 0 0 
119 1 1 1 1 383 0 0 0 0 
123 2 2 2 2 447 0 0 0 0 
126 1 1 1 1 495 0 0 0 0 
175 1 1 1 1 
187 1 1 1 1 
189 1 1 1 1 
190 1 1 1 1 

Table 2. Numbers of crucial nodes. This value is given for the first four itera-
tions. Hence, the largest digraphs have 35  243 nodes.   

The  test  of  being  strongly  connected  after  removing  two  nodes
gives the same result (see Table 3). We only remove two nodes if they
are  not  crucial  nodes.  Hence,  the  nodes  counted  in  Table  2  are  not
considered  in  Table  3.  Again,  the  strong  connectedness  of  a  digraph
cannot  be  destroyed  by  removing  two  nodes  if  the  underlying  mask
contains only nodes with in- and out-degree larger than one. 
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E0 Mn
3 1st 2nd 3rd E0 Mn

3 1st 2nd 3rd 
4 99 0 0 0 6 231 3 3 4 

102 2 0 0 238 0 0 0 
106 2 0 0 245 0 0 0 
114 0 0 0 335 0 0 0 

359 0 0 0 
5 79 0 0 0 363 2 3 4 

94 3 3 3 371 0 0 0 
103 0 0 0 427 0 0 0 
107 0 0 0 
110 4 3 4 7 127 0 0 0 
115 4 6 8 191 0 0 0 
118 6 6 8 239 0 0 0 
122 0 0 0 247 0 0 0 
171 3 3 4 254 0 0 0 
173 6 6 8 351 0 0 0 
174 4 3 4 367 0 0 0 
186 0 0 0 375 0 0 0 
229 3 3 4 379 0 0 0 
355 4 6 8 431 0 0 0 

443 0 0 0 
6 95 0 0 0 

111 0 0 0 8 255 0 0 0 
119 2 3 4 383 0 0 0 
123 0 0 0 447 0 0 0 
126 3 3 4 495 0 0 0 
175 3 3 4 
187 0 0 0 
189 2 3 4 
190 0 0 0 

Table  3.  Numbers  of  pairs  of  nodes  that  cause  the  graph  to  become  discon-
nected  when  deleted.  A  single  node  of  these  pairs  does  not  destroy  the  con-
nectedness.   

This  simple  relation  was  also  tested  for  the  first  two  iterations  of
the 4-segmented masks. It holds for these cases as well. Therefore, al-
though  not  formally  proven,  our  experiments  give  evidence  that  if  a
given  mask  MS  represents  a  strongly  connected  digraph  and  each
node  in  MS  has  at  least  two outgoing  and two incoming  edges,  then
the property of being strongly connected of the resulting digraphs can-
not be destroyed by removing one or two nodes. 

4.2 Robustness under Failure  

The  experiments  outlined  in  Section  4.1  indicate  that  the  number  of
crucial nodes (if they are present at all) either remains constant or in-
creases  exponentially  with  respect  to  the  iterations.  Nevertheless,  the
total  number  of  nodes  in  the  digraphs  is  exponentially  increasing  as
well. In order to provide an estimation of the likelihood of destroying
the property of being strongly connected if a randomly chosen node is
removed,  we have to consider  the relative number of  crucial  nodes q

in  a  given  digraph.  For  the  worst  cases  (i.e.,  M99
3  and  M114

3 )  we  get
the relation  
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The  experiments  outlined  in  Section  4.1  indicate  that  the  number  of
crucial nodes (if they are present at all) either remains constant or in-
creases  exponentially  with  respect  to  the  iterations.  Nevertheless,  the
total  number  of  nodes  in  the  digraphs  is  exponentially  increasing  as
well. In order to provide an estimation of the likelihood of destroying
the property of being strongly connected if a randomly chosen node is
removed,  we have to consider  the relative number of  crucial  nodes q

in  a  given  digraph.  For  the  worst  cases  (i.e.,  M99
3  and  M114

3 )  we  get
the relation  

(14)qHiL 
VcHiL

VHiL


2Hi+2L - 1

3i+1
,

where  VcHiL  represents  the  number  of  crucial  nodes  and  VHiL  is  the
total number of nodes in the digraph after i iterations. Thus, the term
qHiL represents the relative number of crucial nodes in the strongly con-

nected  digraphs  resulting  from  M99
3  and  M114

3  after  i  iterations.
Hence, the probability of destroying the strong connectedness of these
digraphs  by  removing  a  single  node  accidentally  drops  exponentially
with  respect  to  the  number  of  iterations.  Since  this  statement  holds
for the worst  cases  of  3-segmentation,  we formulate a hypothesis  for
arbitrary segmentations in the following way: the probability of turn-
ing  a  strongly  connected  digraph  of  fractal  dimension  into  a  non-
strongly  connected  digraph  by  randomly  removing  a  single  node  is
either zero or drops exponentially with respect to the number of itera-
tions.  

4.3 Changes of the Shortest Path Length  

The question remains  of  how other  network properties  change  if  the
digraph  is  still  strongly  connected  after  a  random deletion  of  one  or
more nodes. Here, we have investigated this issue with respect to the
average length of the shortest paths. In these tests the maximal value
of the shortest paths in a given digraph is used for the normalization
of all the shortest path lengths. Hence, the normalized values indicate
their  length relative to the longest  shortest  path in a digraph.  Conse-
quently, if one or more nodes are removed, the mean value of the rela-
tive length must be larger or equal to the mean value in the original di-
graph.  

The three examples shown in Figure 10 indicate a change in the rel-
ative  length  of  the  shortest  paths  after  removing up to  30 nodes.  All
removed nodes were selected in a way that the resulting digraph was
still strongly connected. Two of these curves represent the very few ex-
amples  where  significant  changes  occur.  Most  of  our  50  digraphs  of
fractal dimension show results very similar to the curve of M126

3 . The
value  does  not  change  significantly  for  several  reasons.  The  first,  of
course, is simply due to the fact that the larger the fractal dimension,
the more connections our digraphs have and therefore, less impact on
shortest path lengths if single nodes are removed. On the other hand,
nodes  were  randomly  selected  and  only  removed  if  the  digraph  re-
mained strongly connected. Therefore, most of the digraphs were only
cut  on  the  periphery,  where  changes  have  minor  impact  on  a  global
scale. 
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The three examples shown in Figure 10 indicate a change in the rel-
ative  length  of  the  shortest  paths  after  removing up to  30 nodes.  All
removed nodes were selected in a way that the resulting digraph was
still strongly connected. Two of these curves represent the very few ex-
amples  where  significant  changes  occur.  Most  of  our  50  digraphs  of
fractal dimension show results very similar to the curve of M126

3 . The
value  does  not  change  significantly  for  several  reasons.  The  first,  of
course, is simply due to the fact that the larger the fractal dimension,
the more connections our digraphs have and therefore, less impact on
shortest path lengths if single nodes are removed. On the other hand,
nodes  were  randomly  selected  and  only  removed  if  the  digraph  re-
mained strongly connected. Therefore, most of the digraphs were only
cut  on  the  periphery,  where  changes  have  minor  impact  on  a  global
scale. 

Figure  10.  The  plot  shows  the  relative  shortest  path  length  after  removing  n
nodes randomly and without destroying the strong connectedness. Results are
shown for the digraphs generated by M106

3 , M173
3 , and M126

3 . Up to 30 nodes
were deleted in each digraph. The relative length is related to the length of the
longest shortest path in the original digraph, which has 81 nodes. Each dele-
tion process was repeated 50 times. 

In  summary we can say,  as  long as  the  property  of  being strongly
connected  in  our  digraphs  is  not  destroyed,  the  deletion  of  a  few
nodes has no significant impact on the average length of the shortest
paths. According to our results it seems that the deletion of up to 30
nodes, out of 81, does not touch most of the shortest paths in the orig-
inally given digraphs at all. 

5. Discussion  

In  the  previous  sections  we  analyzed  digraphs  generated  with  3-seg-
mented masks.  Nevertheless,  it  was  also shown that  many properties
of the resulting structures can directly be related to general mask prop-
erties, meaning that they apply for any segmentation S. Hence, we are
able to determine and estimate graph properties resulting from masks
of  higher  segmentations.  This  section  briefly  summarizes  these  find-
ings in order to outline a more general picture of the directed graphs
of  fractal  dimension.  Finally,  two  methods  for  the  generation  of
ANNs are discussed.  

5.1 Being Strongly Connected  

In general, we call a mask complete if it generates strongly connected
digraphs in each iteration of the DGP. The sufficient condition we in-
troduced provides a huge set of complete masks for any segmentation.
And, as we have argued, if a mask has a complete mask as a substruc-
ture then it also belongs to the set of complete masks.
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In general, we call a mask complete if it generates strongly connected
digraphs in each iteration of the DGP. The sufficient condition we in-
troduced provides a huge set of complete masks for any segmentation.
And, as we have argued, if a mask has a complete mask as a substruc-
ture then it also belongs to the set of complete masks.

However,  it  is  still  unknown  which  conditions  will  guarantee  di-
graphs that are strongly connected for arbitrary adjacency matrices M
and G  combined  via  the  Kronecker  product  M ⊗ G.  Nevertheless,  as
long as G and M are themselves complete masks or are the result of a
complete  mask,  then  the  resulting  digraph  (M ⊗ G)  is  strongly  con-
nected. In consequence, one can think of applications where different
complete masks are used during the generation process. This will pro-
vide  a  huge  variety  of  strongly  connected  digraphs  of  arbitrary  size.
But this is an issue for future research or more concrete applications. 

5.2 Parameterized Scale-Free Digraphs  

Digraphs  resulting  from  the  DGP  have  illustrated  that  if  they  have
scale-free  properties  then  in-  and  out-degrees  in  the  corresponding
mask  differ.  (For  example,  consider  masks  where  all  nodes  have  the
same in- and out-degree. In such a case, the degrees of the resulting di-
graphs are equal as well, which does not match with the characteristic
degree distribution of scale-free networks.)  

The resulting average degree and degree distribution can be derived
easily from the values of in- and out-degrees in the mask and the num-
ber of iterations. Robustness issues can also directly be addressed un-
der the consideration of minimal in- and out-degrees in the mask. As
we saw, if each in- and out-degree in the mask is larger than one, then
the generated networks are robust against targeted attacks. These find-
ings hold for any segmentation without exception. 

In summary, we are able to generate digraphs of characteristic aver-
age  degree,  degree  distribution,  and  robustness  just  by  “tuning”  the
in- and out-degrees in the mask irrespective of its segmentation. 

5.3 Small-World Properties  

Small-world  properties  of  networks  are  not  uniformly  defined  in  the
literature [6, 17]. Consequently, whether or not a graph establishes a
small-world network somehow depends on the definition applied. Fur-
thermore, small-world properties are very often defined in relation to
random  graphs.  This  class,  however,  does  not  well  match  the  deter-
ministic  nature  of  our  fractal  digraphs.  It  is  therefore  not  surprising
that  digraphs  of  fractal  dimension  are  small-world  networks  as  well
as they are not. It depends on the given definition or, in other words,
on the point of view.  

One  definition  for  small-world  networks,  given  in  [6],  relates  the
average degree to the shortest paths. According to the definition pro-
vided,  a  graph  is  a  small-world  network  if  the  average  length  of  the
shortest  paths  scales  logarithmically  with  respect  to  the  number  of
nodes, while the average degree does not change. 

As  mentioned  earlier,  the  average  of  the  total  degree  k  of  our  di-
graphs increases exponentially with respect to the iterations: 
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As  mentioned  earlier,  the  average  of  the  total  degree  k  of  our  di-
graphs increases exponentially with respect to the iterations: 

(15)k 
S + m

S

i+1

and so this criterion is not fulfilled. Again, S is the segmentation and i
represents  the  iterations,  while  S < HS + mL < S2.  Nevertheless,  one
can also see in equation (15) that the average degree does not signifi-
cantly  change  if  i  and m  are  kept  in  certain  ranges.  For  instance,  set
S  10  and  consider  complete  masks  with  less  than  15  edges
(m œ 81, 2, 3, 4<).  The  average  degree  before  the  first  iteration  is  less
than  1.5.  After  i  6  iterations  we  have  strongly  connected  digraphs
established  by  n  106  nodes,  while  the  average  degree  is  still  less
than 5 and the average of the shortest paths scales with logHnL. Thus,
this  specific  example shows that  k  does not change significantly over
the  first  six  iterations  while  the  number  of  nodes  n  rises  immensely
(n œ 910, 100, 1000, 105, 106=)  and  yet  the  shortest  paths  scale  with
logHnL.  Therefore,  according  to  the  given  definition,  it  can  be  argued
that these digraphs have small-world properties.  

Another  characterization  of  small-world  networks  is  based  on  the
clustering coefficient [6]. In random graphs Gp,n  the clustering coeffi-
cient  tends  to  be  OIn-1M  for  large  n  (number  of  nodes)  and  small  p
(probability that two nodes are connected), while small-world graphs
are  characterized  by  a  OH1L-relation  [6].  In  other  words,  in  small-
world  networks  the  clustering  coefficients  remain  constant,  which  is
obviously not the case for our digraphs (see Figure 7). Again, the de-
crease  of  the  clustering  coefficient  scales  logarithmically.  For  a  spe-
cific  application  this  could  mean  that  the  change  is  not  significant.
Therefore, under certain circumstances our digraphs might be consid-
ered as small-world networks. 

The  last  characterization  of  small-world  networks  we  discuss  re-
lates  the  clustering  coefficient  to  random  graphs,  as  done  in  equa-
tion (6).  The  clustering  coefficients  of  small-world  networks  tend  to
be considerably higher than for random graphs of the same size (i.e.,
equal number of nodes and edges) [15]. We already discussed this rela-
tion and the results are plotted in Figure 8 for S  3. It can be seen in
our diagram that there are digraphs of fractal dimensions having clus-
tering coefficients that are magnitudes larger than those of the corre-
sponding random graphs. We also argued previously that this relation
correlates  to  the  number  of  connections,  meaning  that  the  lower  the
fractal  dimension,  the  larger  the  coefficient  in  relation  to  random
graphs. Furthermore, the diagrams in Figures 8 and 9 indicate that for
some digraphs of fractal dimension the clustering coefficient increases
much faster with respect to the number of nodes than it does for ran-
dom  graphs.  Therefore, it  can  be  argued  that  strongly  connected
digraphs  of  small  fractal  dimension  have  small-world  properties,  be-
cause  their  clustering  coefficient  is  much  larger  than  for  random
graphs. 
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tion (6).  The  clustering  coefficients  of  small-world  networks  tend  to
be considerably higher than for random graphs of the same size (i.e.,
equal number of nodes and edges) [15]. We already discussed this rela-
tion and the results are plotted in Figure 8 for S  3. It can be seen in
our diagram that there are digraphs of fractal dimensions having clus-
tering coefficients that are magnitudes larger than those of the corre-
sponding random graphs. We also argued previously that this relation
correlates  to  the  number  of  connections,  meaning  that  the  lower  the
fractal  dimension,  the  larger  the  coefficient  in  relation  to  random
graphs. Furthermore, the diagrams in Figures 8 and 9 indicate that for
some digraphs of fractal dimension the clustering coefficient increases
much faster with respect to the number of nodes than it does for ran-
dom  graphs.  Therefore, it  can  be  argued  that  strongly  connected
digraphs  of  small  fractal  dimension  have  small-world  properties,  be-
cause  their  clustering  coefficient  is  much  larger  than  for  random
graphs. 

Unfortunately,  the  lower  the  fractal  dimension,  the  less  the  abso-
lute  value  of  the  clustering  coefficient  (see  Figure  9).  The  classical
Watts|Strogatz  networks  for  generating  small-world  networks  start
with  a  clustering  coefficient  of  0.5  [6,  15,  17].  Whether  or  not  this
value  has  to  be  considered  as  a  threshold  for  networks  with  small-
world properties is out of the scope of this paper. 

In  summary,  our  fractal  digraphs  do  not  belong  to  the  class  of
small-world networks in general. However, for specific parameter set-
tings such network properties can be expected to emerge. 

5.4 From Carpets to Neural Networks  

In  general,  there  are  two  strategies  for  the  implementation  of  ANNs
based on the  introduced method (see  Figure  11).  First,  the  adjacency
matrix/the graph can directly be interpreted as a neural network con-
taining recurrences of any kind. Second, the adjacency matrix can be
seen  as  a  feed-forward  projection  between  two  neuron  layers  of  the
same size. Here, the term “size” refers to the number of neurons in a
layer. Obviously, a chain of different feed-forward connections can be
constructed in that way.  
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Figure  11.  Two  ways  of  transforming  a  given  adjacency  matrix  (left)  into
ANNs.  First,  the  graph  is  directly  interpreted  with  recurrent  neural  connec-
tions  (middle).  Second,  the  adjacency  matrix  as  a  description  of  a  feed-
forward network (right). 

The recurrent  case  might  be  an interesting method for  the  genera-
tion  of  reservoirs  of  nonlinear  dynamics.  Based  on  random  graphs,
this has been done in the echo-state [18] or liquid-state-machine [19]
approach. 

The latter case might become an object of investigation within the
neural Darwinism approach to the function of the brain [20]. Accord-
ing to this approach, an essential element for the brain function is to
match specific  signal  configurations  to neural  groups that  respond in
a  specific  manner.  Obviously, this  matching  must  be  sufficiently  spe-
cific in order to allow distinction among different signals, called recog-
nition.  However,  more  important  within  the  neural  Darwinism
approach is the argumentation that such a matching must be degener-
ated. The assumption is that there is more than one way to recognize
a  signal,  that  is,  one  signal  configuration  activates  different  neural
groups as well as one neural group can be activated by different signal
configurations. Two extremes of degeneration can be distinguished: a
nondegenerated  (unique)  matching  on  one  side  and  the  completely
degenerated  matching  on  the  other  side.  The  neural  Darwinism
approach  claims  that  the  variability  of  brain  functions  occurs  within
neural  organization somehow located between these  two extremes of
non- and complete degeneration. 
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neural Darwinism approach to the function of the brain [20]. Accord-
ing to this approach, an essential element for the brain function is to
match specific  signal  configurations  to neural  groups that  respond in
a  specific  manner.  Obviously, this  matching  must  be  sufficiently  spe-
cific in order to allow distinction among different signals, called recog-
nition.  However,  more  important  within  the  neural  Darwinism
approach is the argumentation that such a matching must be degener-
ated. The assumption is that there is more than one way to recognize
a  signal,  that  is,  one  signal  configuration  activates  different  neural
groups as well as one neural group can be activated by different signal
configurations. Two extremes of degeneration can be distinguished: a
nondegenerated  (unique)  matching  on  one  side  and  the  completely
degenerated  matching  on  the  other  side.  The  neural  Darwinism
approach  claims  that  the  variability  of  brain  functions  occurs  within
neural  organization somehow located between these  two extremes of
non- and complete degeneration. 

It is interesting to see that the introduced digraphs of fractal dimen-
sion  create  networks  between  these  two  extremes.  The  examples
shown in Figure 12 represent only a simple schema. But it is not hard
to  imagine  that  the  fractal  dimension  and  degree  distribution  of  a
graph  determine  the  level  of  degeneration.  Therefore,  we  argue  that
within  the  neural  Darwinism  approach  the  introduced  digraphs  of
fractal  dimension  might  be  a  promising  substrate  for  future  research
in order to model brain-like mechanisms of adaptation. 
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Figure  12.  Three  examples  of  feed-forward  connections  between  two  neural
layers of  an ANN. (a)  Shows a nondegenerated matching between input and
output  signal.  Each neuron in  the  left  layer  only  activates  one  neuron in  the
right layer. Such a projection is established by a ring. (b) Shows a degenerated
matching  formed  by  a  digraph  of  fractal  dimension.  (c)  Shows  a  completely
degenerated matching where each neuron on the left activates each neuron on
the right. This projection is based on a fully connected digraph.
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6. Conclusion  

In this paper we have introduced a method, called the digraph generat-
ing  process  (DGP),  for  the  deterministic  generation  of  directed  and
strongly connected graphs.  The DGP is  inspired by fractal  sets  called
Sierpinski  carpets.  Strongly connected digraphs result  from structures
that correspond to Sierpinski carpets of fractal dimensions between 1
and  2.  Therefore,  we  refer  to  them  as  strongly  connected  digraphs
with fractal dimension.  

Exclusively aiming for strongly connected digraphs, we introduced
a  general  criterion  allowing  the  design  of  masks  that  guarantee  the
generation  of  strongly  connected  digraphs.  For  better  or  for  worse,
this  criterion  does  not  cover  all  possible  masks  generating  strongly
connected  digraphs.  At  this  point,  we  must  be  content  to  leave  this
problem to future investigations. However, we have outlined that the
given  criterion  is  valid  for  all  mask  segmentations  and  therefore,  it
provides a huge number of masks and digraphs. 

We have shown that  the  DGP creates  complex network structures
very  distinct  to  random  graphs  and  that  the  average  of  the  shortest
paths scale logarithmically with respect to the number of nodes. Addi-
tional  essential  properties  of  complex networks  (e.g.,  average  degree,
degree  distribution,  clustering  coefficient,  and  robustness)  can  be  de-
rived directly  from the structure of  the mask,  the initial  structures  of
the DGP.  Furthermore,  conditions  were  discussed under  which scale-
free or small-world networks can be expected to emerge. 

The simplicity and the deterministic  character of the DGP support
an  application  of  this  method  in  many  areas  related  to  complex
network research. Here, our emphasis was on the domain of artificial
neural networks (ANNs). Indeed, more and more models of complex
information  processing  based  on  ANNs  take  into  account  complex
network  structures  [4].  We  think  the  introduced  digraphs  of  fractal
dimension  provide  a  promising  framework  for  this  context,  not  only
because  they  match  real-world  network  properties  better  than
random graph structures, but mainly because the DGP provides a vari-
ety  of  complex  network  structures  generated  in  a  systematic  and
reproducible  way.  And  therefore,  the  global  performance  of  these
complex networks can directly be compared according to their global
structural  properties,  such  as  fractal  dimension,  average  degree,
degree distribution, clustering coefficient, robustness, and so forth. 
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