
Dynamics of Algorithmic Processing in
Computer Systems

Dominik Strzałka*

Franciszek Grabowski†

Department of Distributed Systems
Rzeszów University of Technology
W. Pola 2, 35-959 Rzeszów, Poland
*strzalka@prz.edu.pl
†fgrab@prz.edu.pl

This paper presents a new analytical and experimental approach to the
insertion sort algorithm and task processing dynamics. The dependen-
cies that exist in the task structure can influence the algorithm’s
behavior, especially in the number of dominant operations that are
needed to compute the computational complexity. The proposed
approach is based on a Tsallis definition of entropy suitable for all sys-
tems that are far from thermodynamical equilibrium. The ideas pre-
sented show how a complex systems approach can provide a good per-
spective for analyzing the processing dynamics of computer systems
that are no longer simple.

1. Introduction

In order to understand the behavior of algorithms and the resources
necessary for their computation, we need some measure. According to
Rabin’s proposal [1] and Turing’s definition of an algorithmic ma-
chine [2], the degree of difficulty for some sets of functions is based
on the number of steps necessary to achieve a solution (usually called
time complexity) or the amount of tape necessary for computation
(usually called memory complexity). The term “computational com-
plexity” was proposed in 1965 by Hartmanis and Stearns [3].

Classical computational complexity makes two important assump-
tions. One is to minimize the influence of specific instances of input
sets. Usually only the worst-case time complexity is considered. This
is because the worst case is an upper bound for the observable run-
ning time. The second assumes that the time complexity should be in-
dependent of the specific central processing unit (CPU) clock rate,
thus the total number of dominant operations needed for the computa-
tion is taken. However, this leads to another tacit assumption that the
cost of all operations in an algorithm (or more generally, in a com-
puter system) is exactly the same. For simplicity, we use big O nota-
tion because the exact number of steps will depend on the CPU or lan-
guage being used for the implementation. If an instance of a problem
that is n bits long can be solved in n3 steps, the problem has a time
complexity of OIn3M. If a problem has a time complexity of OIn2M on
one CPU, then it will have that same complexity on most other CPUs,
so this notation allows us to ignore the details of a particular com-
puter.

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

Classical computational complexity makes two important assump-
tions. One is to minimize the influence of specific instances of input
sets. Usually only the worst-case time complexity is considered. This
is because the worst case is an upper bound for the observable run-
ning time. The second assumes that the time complexity should be in-
dependent of the specific central processing unit (CPU) clock rate,
thus the total number of dominant operations needed for the computa-
tion is taken. However, this leads to another tacit assumption that the
cost of all operations in an algorithm (or more generally, in a com-
puter system) is exactly the same. For simplicity, we use big O nota-
tion because the exact number of steps will depend on the CPU or lan-
guage being used for the implementation. If an instance of a problem
that is n bits long can be solved in n3 steps, the problem has a time
complexity of OIn3M. If a problem has a time complexity of OIn2M on
one CPU, then it will have that same complexity on most other CPUs,
so this notation allows us to ignore the details of a particular com-
puter.

Computational complexity describes how the running time and
memory requirements increase as the size of the input grows. The the-
ory places practical limits on what computers can accomplish. Many
authors claim that computational complexity gives a full, detailed de-
scription of the algorithm’s time action [4], and gives a description
about changes in running time and memory requirements. As it turns
out, these statements seem to be true only in special cases~the worst
and the best~because in these cases the running time changes in a de-
terministic way. But what should be done if the complexity for the
worst and best cases varies? Usually the computational complexity for
the mean case is taken, as introduced in 1984 by Levin [5] to describe
such instances for NP problems that can be solved in P. For P algo-
rithms, the average-case computational complexity shows that every
algorithm with polynomial time has polynomial time on average [6]
and as a result the description by O notation is similar to the worst
case. So this approach is not suitable for describing the dynamical be-
havior of any algorithm.

This paper consists of five sections. Section 2 describes insertion
sorting and the possible dynamical behavior of computer algorithmic
processing with a comparison to fluid flow. Section 3 shows a thermo-
dynamical approach to analyzing computational complexity. Empiri-
cal results of our investigations are presented in Section 4.

2. Insertion Sort Algorithm

Knuth states that sorting is still one of the most important problems
in computer processing, taking about 60 to 70% of total processing
time [7]. From a theoretical viewpoint, the sorting problem is algorith-
mically closed: solutions exist that have a worst-case complexity
equal to the lower limit for the sorting problem (i.e., OH log L). But
due to the importance of this problem and the new view proposed in
this paper, we are still interested in it.

We consider the insertion sort algorithm, which is one of the sim-
plest sorting procedures based on the behavior of a bridge player sort-
ing their cards before the hand is played (see Figure 1).

The algorithm has two loops. The external loop guarantees that all
sorting elements (keys) will be sorted, and an internal loop finds the
right place for each sorted key. The computational complexity, based
on the number of internal loop executions, is OIn2M in the worst case,
but is W HnL for the best case. In these two cases the number of domi-
nant operations needed for each sorted element can be determined.
But from a dynamical viewpoint they are not interesting because they
are deterministic, that is, the number of dominant operations can be
described by a mathematical equation [4]. Between these two cases ex-
ist n ! - 2 other cases and such an equation cannot be written for
many of them. They can lead to the dynamical behavior of the ana-
lyzed algorithm.

 74 D. Strzałka and F. Grabowski

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

The algorithm has two loops. The external loop guarantees that all
sorting elements (keys) will be sorted, and an internal loop finds the
right place for each sorted key. The computational complexity, based
on the number of internal loop executions, is OIn2M in the worst case,
but is W HnL for the best case. In these two cases the number of domi-
nant operations needed for each sorted element can be determined.
But from a dynamical viewpoint they are not interesting because they
are deterministic, that is, the number of dominant operations can be
described by a mathematical equation [4]. Between these two cases ex-
ist n ! - 2 other cases and such an equation cannot be written for
many of them. They can lead to the dynamical behavior of the ana-
lyzed algorithm.

Figure 1. Flow chart for the insertion sort algorithm.

Note that in classical computational complexity the intrinsic fea-
tures of task (i.e., the input data structure) are not taken into account.
This is a natural consequence of the assumptions in this theory but
one should realize that a data structure is not purely deterministic or
purely random. For example, in the space of graphs, those that are
regular or random can be analyzed, but some graphs have the small-
world property. The small-world property does not make sense for
small n [8]. The same situation occurs when there are (long-range) de-
pendencies between values of successive keys. Such properties appear
only when there is an appropriately long set (i.e., an appropriate task
size). Another important example can be the space of elementary cellu-
lar automata. There are the completely regular automata behaviors,
and there are those that are essentially random, but those that make
spontaneous structure like rule 110 do not lend themselves to asymp-
totic analysis [9]. Other examples of such a behavior can be found in
[10]. The first works about computational complexity unjustifiably as-
sumed that the analyzed algorithm would always behave in the same
manner, no matter how large the input set. But today these assump-
tions are not sufficient and we need to go a step beyond.

 Dynamics of Algorithmic Processing in Computer Systems 75

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

Note that in classical computational complexity the intrinsic fea-
tures of task (i.e., the input data structure) are not taken into account.
This is a natural consequence of the assumptions in this theory but
one should realize that a data structure is not purely deterministic or
purely random. For example, in the space of graphs, those that are
regular or random can be analyzed, but some graphs have the small-
world property. The small-world property does not make sense for
small n [8]. The same situation occurs when there are (long-range) de-
pendencies between values of successive keys. Such properties appear
only when there is an appropriately long set (i.e., an appropriate task
size). Another important example can be the space of elementary cellu-
lar automata. There are the completely regular automata behaviors,
and there are those that are essentially random, but those that make
spontaneous structure like rule 110 do not lend themselves to asymp-
totic analysis [9]. Other examples of such a behavior can be found in
[10]. The first works about computational complexity unjustifiably as-
sumed that the analyzed algorithm would always behave in the same
manner, no matter how large the input set. But today these assump-
tions are not sufficient and we need to go a step beyond.

What is meant by the dynamical behavior of an algorithm? In the
insertion sort algorithm, finding the correct place for each sorted key
is achieved by executing the internal loop. This loop is a trap for each
sorted element. The problem is how long this loop will live. The opti-
mistic and pessimistic cases are easy, because in the first case there are
no executions and in the second case, for each successive element, the
loop will live one dominant operation longer. As can be seen in Fig-
ure 2, the increments of this process are constant: 0 for the optimistic
case and 1 for the pessimistic case.

Figure 2. A possible dynamic behavior of the sorting algorithm. The optimistic
and pessimistic cases are similar to laminar flow, while the other cases can
have a turbulent nature [11].

What would happen if other cases were to appear? What is the in-
cremental behavior of the number of dominant operations? If we com-
pare sorting (or processing) to fluid flow, the pessimistic and opti-
mistic cases are similar to deterministic laminar flow, while others are
rather similar to nondeterministic turbulent flow (Figure 2).

Figure 3 shows a record of the dominant operations necessary for
sorting one input set. For each sorted key in the pessimistic case, the
number of dominant operations increases by 1, thus the slope is
a1  1. But, due to some other (nonpessimistic and nonoptimistic)
properties of the input set, it can also happen that a case has a slope
of a2 p a1. From a dynamical viewpoint there can even exist cases
when a3 < 0 or a Ø ¶. This is possible due to the strong dependence
on input data features in the behavior of the insertion sort algorithm.

 76 D. Strzałka and F. Grabowski

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

Figure 3. In many cases the incremental behavior in the number of dominant
operations can be higher than for the worst case. From a dynamical view-
point, such a situation is worse than in the pessimistic case.

A dynamic behavior can be identified with properties of the pro-
cess that show how many dominant operations are needed for each
sorted element. If the input data contains a decreasing trend, the num-
ber of dominant operations will rise and vice versa. The total number
of dominant operations used in the algorithm depends on two condi-
tions. The first is the index value of the sorted key; a larger index
value guarantees that the loop lives longer. The second is the value of
the sorted key; a higher value means a shorter loop duration. These
two conditions come directly from the algorithm’s flow chart realiza-
tion (Figure 1). However, there is also a third condition hidden inside
the algorithm: the duration of the internal loop also depends on the
elements that have been sorted so far. This means that in the insertion
sort algorithm a feedback loop exists that also has an influence on its
dynamics. Due to this feedback a parasite path appears (see Figure 5).
The parasite path later represents loops with varying lifetimes and
shows why there can exist cases with a slope of a2 p 1 or even a
slope of a3 with a negative sign (Figure 3).

If sorting processes can have dynamical properties that are similar
to nondeterministic turbulent flow, can the processes be described by
the classical definition of the Boltzmann|Gibbs (BG) entropy? If some-
one sorts, they also order, so in other words the entropy level of the
input set decreases, but of course the entropy of the environment in-
creases. We can show a new approach that goes further than allowing
assumptions in the classical computational complexity analysis and re-
jecting the minimization of task dependency on the complexity mea-
sure, where one takes into account only a behavior of total time in the
worst case. The existing simple system approach is based on the as-
sumption that computer processing is strictly algorithmic. But com-
puter processing can also be interactive [12] and the existing ap-
proach limits any considerations about the possible dynamic behavior
of many algorithms. This behavior can have a detailed description
only by using a complex systems approach.

 Dynamics of Algorithmic Processing in Computer Systems 77

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

If sorting processes can have dynamical properties that are similar
to nondeterministic turbulent flow, can the processes be described by
the classical definition of the Boltzmann|Gibbs (BG) entropy? If some-
one sorts, they also order, so in other words the entropy level of the
input set decreases, but of course the entropy of the environment in-
creases. We can show a new approach that goes further than allowing
assumptions in the classical computational complexity analysis and re-
jecting the minimization of task dependency on the complexity mea-
sure, where one takes into account only a behavior of total time in the
worst case. The existing simple system approach is based on the as-
sumption that computer processing is strictly algorithmic. But com-
puter processing can also be interactive [12] and the existing ap-
proach limits any considerations about the possible dynamic behavior
of many algorithms. This behavior can have a detailed description
only by using a complex systems approach.

3. Thermodynamical Approach to Computational Complexity

When will the entropy flow in the analyzed algorithm be at its lowest
possible level [11]? Let us assume that n is the size of a sorted set, ni
is the number of successively sorted elements, and M stands for the
total number of internal and external loop executions; thus, M  ni
for each sorted key. Further, let M1 denote the number of external
loop executions. In the analyzed algorithm for each sorted key M1 is
always equal to 1. M2 will similarly denote the number of the internal
loop executions and it can change from 0 to ni - 1. Finally, M3 will
denote the number of possible internal loop executions that can be
done, but do not appear due to some properties of the input set. Obvi-
ously, M  M1 + M2 + M3. Now we can define a number W of possi-
ble configurations of loop executions that can appear during sorting
the best, the worst, and other cases. This allows us to consider ther-
modynamic properties of the sorting process for each sorted set of
size n. The number W of possible combinations is equal to CM

M1 multi-

plied by CM1

M2 :

(1)

W  CM
M1 ÿ CM1

M2 

M !

M1 ! HM - M1L !
ÿ

HM - M1L !

M2 ! HM - M1 - M2L !


M !

M1 !M2 !M3 !
.

For the optimistic case we have one execution of the external loop
HM1  1L, no executions of the internal loop HM2  0L, and
M3  ni - 1 possible internal loop executions that will not be exe-
cuted. In the optimistic case WO equals

(2)WO 
ni !

1 ! 0 ! Ini - 1M !
 ni.

For the pessimistic case the situation is similar: M1  1 gives only
one execution of the external loop, the internal loop used M2  ni - 1
executions, and obviously M3  0. Thus, the number WP in the
pessimistic case equals

 78 D. Strzałka and F. Grabowski

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

For the pessimistic case the situation is similar: M1  1 gives only
one execution of the external loop, the internal loop used M2  ni - 1
executions, and obviously M3  0. Thus, the number WP in the
pessimistic case equals

(3)WP 
ni !

1 ! Ini - 1M ! 0 !
 ni.

The results obtained are a little surprising (we found that
WO  WP) but it should be noted that the pessimistic case means an
inverse order in the input set, although that is still some kind of order.
In these two cases we have the lowest possible level of entropy produc-
tion and from a thermodynamical viewpoint they are almost indistin-
guishable. In any other case W will be greater. For example, consider
the case when the key ni needs only one excess dominant operation,
that is, M1  1, M2  1, M3  ni - 2, and the number of microcon-
figurations WD will equal

(4)

WD 
ni !

1 ! 1 ! Ini - 2M !


Ini - 2M ! Ini - 1M ! ni

Ini - 2M !
 niIni - 1M

and WD > WO.
By using Onsanger relations [13], the lowest possible level of en-

tropy production indicates that the system is in a state close to
(thermal) equilibrium. For such a situation the BG entropy is proper.
But, equation (1) shows the level of entropy production for each suc-
cessively sorted key and immediately another question arises: is this
process extensive (additive) for all ni elements? In the classical ap-
proach for computational complexity analysis one of two similar
ways can be followed. In the first a total time (i.e., a total number of
dominant operations) THnL can be considered, while in the second the
number of dominant operations tHnL (i.e., increments of total time
THnL) for each element of the input set can be analyzed. The second
approach is more interesting because it will give an answer to the
stated question. We do not need knowledge about the distribution be-
havior of W for each key, but (in the simplest approach) information
on the distribution behavior of all possible increments of the number
of dominant operations, that is, t£HnL  tHn + 1L - tHnL. Thus, for each
sorted key ni the value of t£HnL is a random variable si, with values
that appear with changing probabilities. We would like to know the
distribution of the random variable S  ⁄ i si when ni Ø n and of
course when n Ø ¶.

Some properties of S can be deduced without visualization. For ex-
ample, successive si will always have a finite value of variance, thus S
should also have this property. This suggests that the probability dis-
tribution of S for ni Ø n will be in the Gaussian domain of attraction.
But how will the distribution behave for smaller values of ni? To an-
swer this question, we calculate such a distribution for a set consisting
of n  32 000 elements (Figure 4).

 Dynamics of Algorithmic Processing in Computer Systems 79

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

Some properties of S can be deduced without visualization. For ex-
ample, successive si will always have a finite value of variance, thus S
should also have this property. This suggests that the probability dis-
tribution of S for ni Ø n will be in the Gaussian domain of attraction.
But how will the distribution behave for smaller values of ni? To an-
swer this question, we calculate such a distribution for a set consisting
of n  32 000 elements (Figure 4).

Figure 4. Distribution of random variable S shows changes in the value of the
q parameter.

In [14] Tsallis showed that the different values of q in his definition
of entropy lead to different symmetric probability distributions. Even
with heavy tails for q > 5 ê 3, Figure 4 shows that the distribution of
random variable S has parts where the tail vanishes at different rates.
This suggests that in some cases there can appear a probability distri-
bution of increments t£HnL that has a thermodynamical basis that can
be described only by the Tsallis nonextensive entropy. When can such
cases appear? This depends on properties of the input sets and is why
we propose retiring the existing assumption about the independence
of input data properties and the time computational complexity. The
existing assumption does not allow showing a real, possible complex-
ity of algorithmic behavior. The independence between data structure
(input task) and algorithm behavior is proper for the simple systems
approach used in computer systems analysis. But the computer sys-
tems are no longer simple systems due to their specific properties;
they are now complex.

4. Some Properties of Sorting Dynamics

To visualize the considerations presented, we take into account differ-
ent sets of input data and show that the dynamic behavior of the inser-
tion sort algorithm depends on the input data. Investigations were
based on 1000 arbitrarily chosen trajectories of fractional Brownian
motion with n  106 keys. Such trajectories can have a long-term
memory property (if H > 0.5) that appears by the existence of increas-
ing and decreasing trends (we used 500 input sets with H  0.5 and
500 sets with H  0.9). Such trends are the local pessimistic and opti-
mistic cases for the sorting algorithm and should influence the dynam-
ics of the sorting process. Before the experiment, we assumed that the
long-term memory property in the input data could be carried into
the dynamics of the sorting process. To confirm our assumptions, we
made a small modification in the original algorithm code and intro-
duced the variable counter to count how many dominant operations
were needed for each sorted key. As a result, the time series could be
analyzed further.

 80 D. Strzałka and F. Grabowski

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

To visualize the considerations presented, we take into account differ-
ent sets of input data and show that the dynamic behavior of the inser-
tion sort algorithm depends on the input data. Investigations were
based on 1000 arbitrarily chosen trajectories of fractional Brownian
motion with n  106 keys. Such trajectories can have a long-term
memory property (if H > 0.5) that appears by the existence of increas-
ing and decreasing trends (we used 500 input sets with H  0.5 and
500 sets with H  0.9). Such trends are the local pessimistic and opti-
mistic cases for the sorting algorithm and should influence the dynam-
ics of the sorting process. Before the experiment, we assumed that the
long-term memory property in the input data could be carried into
the dynamics of the sorting process. To confirm our assumptions, we
made a small modification in the original algorithm code and intro-
duced the variable counter to count how many dominant operations
were needed for each sorted key. As a result, the time series could be
analyzed further.

The internal loop in the insertion sort algorithm plays a very impor-
tant role from a dynamical viewpoint. The number of internal loop ex-
ecutions is deterministic in the optimistic and pessimistic cases. When
comparing the sorting process to fluid flow, each sorted key would
show a laminar flow. To help understand this, we now show how the
successively sorted keys travel through the flow chart of the insertion
sort algorithm shown in Figure 1. First, we make a few modifications
in the original flow chart to show what is going on with each pro-
cessed key (Figure 5). In the optimistic case the first condition
(namely, A@iD > max) is checked; if it is true, then a key follows a path
marked by the solid line. If all keys follow this path we have the opti-
mistic case. In the pessimistic case a condition A@jD < min is checked;
if it is true, then a key follows a path marked by the dotted line. If all
keys follow this path we have the pessimistic case. But for other cases,
successive keys follow a third path (similar to the second path, but dif-
ferent from a dynamical viewpoint); a situation that has appeared
leads to the existence of a parasite path in the algorithm marked by
the dashed line.

Because we used the comparison of the internal loop to a trap, we
analyzed the probability distribution of trap lifetimes. Kernel estima-
tors were used that allowed us to get a continuous probability distri-
bution, which was then plotted on a log-log scale. As a result of this,
we saw that the power law governs trap lifetime processes (Figure 6).
The power law distribution has appeared for almost all sorting cases,
independently of the value of the H exponent in the input data.

In other words, trap lifetimes have a fractal property that does not
have a characteristic scale and can lead to excess 1 ê f noise. Such a
distribution cannot have its thermodynamical basis described by BG
extensive entropy.

 Dynamics of Algorithmic Processing in Computer Systems 81

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

Figure 5. During sorting the keys follow three different paths. The first (solid
line) is proper for successive elements with max value, the second (dotted
line) is for elements with min value, and the third (dashed line) for the rest
shows the existence of a parasite loop in the insertion sort algorithm.

 82 D. Strzałka and F. Grabowski

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

Figure 6. The power law that governs the distribution of trap lifetimes.

Then we took into account the increments of time t HnL (i.e., t£HnL)
and as a result got a realization of an incremental process similar to
that of noise. This operation allowed us to make further investiga-
tions; quantile lines tests decided whether processes are stationary or
not and analysis of probability distributions led to the assumption
that the time series are asymptotically stationary. Their probability
distribution was especially interesting. Plotting the values in a log-lin
scale showed that the incremental process has properties that can only
appear by the nonextensive definition of entropy because their tails
vanish slowly when compared to fitted Gaussian distributions
(Figure 7). This result once again confirms that the Tsallis entropy is
proper for the thermodynamical basis of our analysis.

One interesting property we used for sorting the different sets of in-
put data is that half of them have long-range dependencies. Immedi-
ately one question arose: does the task with the long-term memory
property influence the sorting dynamics? To check this we used Hurst
R/S analysis and detrended fluctuation analysis [15], both of which
confirmed our expectations: if long-range dependencies existed in the
input data, they influenced the behavior of the insertion sort algo-
rithm. The dynamics of the sorting process depend on this property
and can also have it (Figure 8).

The existence of thermodynamical nonequilibrium states during
sorting should lead to the appearance of bifurcations [13]. Such bifur-
cations exist and can be visualized with special diagrams (Figure 9)
where the number of dominant operations necessary for each sorted
key versus key values ordered inversely are plotted. Each decreasing
trend in the input set implies the existence of a local bifurcation.

 Dynamics of Algorithmic Processing in Computer Systems 83

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

Figure 7. Semi-heavy tails (solid line) in the empirical distribution of incre-
ments of dominant operations for successive sorted keys compared with a nor-
mal distribution (dashed line).

Figure 8. R/S analysis confirms the existence of long-range dependencies in the
sorting dynamics when such a property exists in the input data.

 84 D. Strzałka and F. Grabowski

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

Figure 9. Bifurcation diagram for the sorting process.

The thermodynamical nonequilibrium states found in computer
processing led us to another interesting observation: referring back to
Figure 3, it can be seen that in the pessimistic and optimistic cases the
number of dominant operations are simply a straight line that has a
dimension D  1. Mandelbrot, in the famous article [16] states:
“Clouds are not spheres, mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does lightning travel in a straight
line.” We now can ask: does the computational complexity of an algo-
rithm always follow a straight line or can this line have fractal proper-
ties sometimes? It can be seen that this line can have a dimension
D  2 - H, that is, D > 1 (see Figure 8). As a result of this finding the
authors would like to introduce in a future work a new (possible)
measure of algorithm complexity, that is, a fractal computational
complexity. Such a measure would describe a real complexity of algo-
rithm behavior according to fractal properties of the input data. The
current approach describes rather a “simplicity” (not a “complexity”)
of the computational complexity due to considering only the worst
and best cases (also including the mean-case analysis).

5. Conclusions

We have shown that classical computational complexity analysis,
although it gives a very useful basis for algorithm analysis, cannot de-
scribe the dynamics in the behavior of the insertion sort algorithm.
Such a property governed the realization of the sorting process, due to
the existence of long-range dependencies in the input sets. This case
shows that laws that were previously unknown govern algorithmic
processing in computer systems. Only the complex systems approach,
which goes beyond the classical computational complexity assump-
tions and takes into account the behavior of an algorithm together
with the properties of the input data, allows a better understanding
and gives a good perspective for the future analysis of the complex
behavior of computer systems that is far from thermodynamical equi-
librium.

 Dynamics of Algorithmic Processing in Computer Systems 85

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

We have shown that classical computational complexity analysis,
although it gives a very useful basis for algorithm analysis, cannot de-
scribe the dynamics in the behavior of the insertion sort algorithm.
Such a property governed the realization of the sorting process, due to
the existence of long-range dependencies in the input sets. This case
shows that laws that were previously unknown govern algorithmic
processing in computer systems. Only the complex systems approach,
which goes beyond the classical computational complexity assump-
tions and takes into account the behavior of an algorithm together
with the properties of the input data, allows a better understanding
and gives a good perspective for the future analysis of the complex
behavior of computer systems that is far from thermodynamical equi-
librium.

References

[1] M. O. Rabin, “Degree of Difficulty of Computing a Function and a Par-
tial Ordering of Recursive Sets,” Tech. Rep. No. 2, 1960, Jerusalem, Is-
rael: Hebrew University.

[2] A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety, Series 2, 42, 1936 pp. 230|265. Errata appeared in Series 2, 43,
1937 pp. 544|546.

[3] J. Hartmanis and R. E. Stearns, “On the Computational Complexity of
Algorithms,” Transactions of American Mathematical Society, 117(5),
1965 pp. 285|306.

[4] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Cambridge, MA: MIT Press, 1994.

[5] L. A. Levin, “Problems Complete in ‘Average’ Instance,” in Proceedings
of the Sixteenth Annual ACM Symposium on Theory of Computing
(STOC 1984), Washington, D.C., New York: ACM Press, 1984.

[6] J. Wang, “Average-Case Computational Complexity Theory,” in Com-
plexity Theory Retrospective II (L. Hemaspaandra and A. Selman, eds.),
New York: Springer, 1997 pp. 295|328.

[7] D. Knuth, The Art of Computer Programming I, Reading, MA: Addison-
Wesley, 1997.

[8] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small World’
Networks,” Nature, 393, 1988 pp. 440|442.

[9] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[10] J. Smith, “RandScape: Complex Images from Simple Algorithms,” Artifi-
cial Life, 9(1), 2003 pp. 67|78.

[11] D. Strzałka and F. Grabowski, “Towards Possible Non-Extensive Ther-
modynamics of Algorithmic Processing~Statistical Mechanics of Inser-
tion Sort Algorithm,” International Journal of Modern Physics C, 19(9),
2008 pp. 1443|1458.

[12] P. Wegner and D. Goldin, “Computation beyond Turing Machines,”
Communications of the ACM, 46(4), 2003 pp. 100|102.

[13] I. Prigogine and I. Stengers, Order out of Chaos: Man’s New Dialogue
with Nature, New York: Bantam Books, 1984.

 86 D. Strzałka and F. Grabowski

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

[14] C. Tsallis, S. V. F. Levy, A. M. C. Souza, and R. Mayanard, “Statistical-
Mechanical Foundation of the Ubiquity of Lévy Distributions in Na-
ture,” Physical Review Letters, 75(20), 1995 pp. 3589|3593.

[15] C-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and
A. L. Goldberger, “On the Mosaic Organization of DNA Sequences,”
Phys. Rev. E, 49, 1994 pp. 1685|1689.

[16] B. B. Mandelbrot, “How Long Is the Coastline of Great Britain, Statisti-
cal Self Similarity and Fractional Dimension,” Science, 155, 1967
pp. 636|638.

 Dynamics of Algorithmic Processing in Computer Systems 87

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.73

