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This paper presents a new analytical and experimental approach to the
insertion  sort  algorithm  and  task  processing  dynamics.  The  dependen-
cies  that  exist  in  the  task  structure  can  influence  the  algorithm’s
behavior,  especially  in  the  number  of  dominant  operations  that  are
needed  to  compute  the  computational  complexity.  The  proposed
approach is based on a Tsallis definition of entropy suitable for all sys-
tems  that  are  far  from  thermodynamical  equilibrium.  The  ideas  pre-
sented show how a complex systems approach can provide a good per-
spective  for  analyzing  the  processing  dynamics  of  computer  systems
that are no longer simple. 

1. Introduction    

In  order  to  understand  the  behavior  of  algorithms  and  the  resources
necessary for their computation, we need some measure. According to
Rabin’s  proposal  [1]  and  Turing’s  definition  of  an  algorithmic  ma-
chine  [2],  the  degree  of  difficulty  for  some  sets  of  functions  is  based
on the number of steps necessary to achieve a solution (usually called
time  complexity)  or  the  amount  of  tape  necessary  for  computation
(usually  called  memory  complexity).  The  term  “computational  com-
plexity” was proposed in 1965 by Hartmanis and Stearns [3]. 

Classical  computational  complexity makes two important assump-
tions.  One  is  to  minimize  the  influence  of  specific  instances  of  input
sets.  Usually  only  the  worst-case  time  complexity  is  considered.  This
is  because  the  worst  case  is  an  upper  bound  for  the  observable  run-
ning time. The second assumes that the time complexity should be in-
dependent  of  the  specific  central  processing  unit  (CPU)  clock  rate,
thus the total number of dominant operations needed for the computa-
tion is taken. However, this leads to another tacit assumption that the
cost  of  all  operations  in  an  algorithm  (or  more  generally,  in  a  com-
puter system) is  exactly the same. For simplicity,  we use big O  nota-
tion because the exact number of steps will depend on the CPU or lan-
guage being used for the implementation. If an instance of a problem
that  is  n  bits  long  can  be  solved  in  n3  steps,  the  problem has  a  time
complexity of OIn3M. If a problem has a time complexity of OIn2M on
one CPU, then it will have that same complexity on most other CPUs,
so  this  notation  allows  us  to  ignore  the  details  of  a  particular  com-
puter. 
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that  is  n  bits  long  can  be  solved  in  n3  steps,  the  problem has  a  time
complexity of OIn3M. If a problem has a time complexity of OIn2M on
one CPU, then it will have that same complexity on most other CPUs,
so  this  notation  allows  us  to  ignore  the  details  of  a  particular  com-
puter. 

Computational  complexity  describes  how  the  running  time  and
memory requirements increase as the size of the input grows. The the-
ory places  practical  limits  on what  computers  can accomplish.  Many
authors claim that computational complexity gives a full, detailed de-
scription  of  the  algorithm’s  time  action  [4],  and  gives  a  description
about changes in running time and memory requirements. As it turns
out, these statements seem to be true only in special cases~the worst
and the best~because in these cases the running time changes in a de-
terministic  way.  But  what  should  be  done  if  the  complexity  for  the
worst and best cases varies? Usually the computational complexity for
the mean case is taken, as introduced in 1984 by Levin [5] to describe
such  instances  for  NP  problems  that  can  be  solved  in  P.  For  P  algo-
rithms,  the  average-case  computational  complexity  shows  that  every
algorithm  with  polynomial  time  has  polynomial  time  on  average  [6]
and  as  a  result  the  description  by  O  notation  is  similar  to  the  worst
case. So this approach is not suitable for describing the dynamical be-
havior of any algorithm. 

This  paper  consists  of  five  sections.  Section  2  describes  insertion
sorting and the possible dynamical  behavior of  computer algorithmic
processing with a comparison to fluid flow. Section 3 shows a thermo-
dynamical  approach  to  analyzing  computational  complexity.  Empiri-
cal results of our investigations are presented in Section 4. 

2. Insertion Sort Algorithm    

Knuth states  that  sorting  is  still  one  of  the  most  important  problems
in  computer  processing,  taking  about  60  to  70% of  total  processing
time [7]. From a theoretical viewpoint, the sorting problem is algorith-
mically  closed:  solutions  exist  that  have  a  worst-case  complexity
equal  to the lower limit  for the sorting problem (i.e.,  OH log L).  But
due to the importance of this problem and the new view proposed in
this paper, we are still interested in it. 

We consider the insertion sort  algorithm, which is  one of  the sim-
plest sorting procedures based on the behavior of a bridge player sort-
ing their cards before the hand is played (see Figure 1). 

The algorithm has two loops. The external loop guarantees that all
sorting  elements  (keys)  will  be  sorted,  and  an  internal  loop finds  the
right place for each sorted key. The computational complexity, based
on the number of internal loop executions, is OIn2M in the worst case,
but is W HnL for the best case. In these two cases the number of domi-
nant  operations  needed  for  each  sorted  element  can  be determined.
But from a dynamical viewpoint they are not interesting because they
are  deterministic,  that  is,  the  number  of  dominant  operations  can  be
described by a mathematical equation [4]. Between these two cases ex-
ist  n ! - 2  other  cases  and  such  an  equation  cannot  be  written  for
many  of  them.  They  can  lead  to  the  dynamical  behavior  of  the  ana-
lyzed algorithm. 
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lyzed algorithm. 

Figure 1. Flow chart for the insertion sort algorithm.

Note  that  in  classical  computational  complexity  the  intrinsic  fea-
tures of task (i.e., the input data structure) are not taken into account.
This  is  a  natural  consequence  of  the  assumptions  in  this  theory  but
one should realize that a data structure is  not purely deterministic or
purely  random.  For  example,  in  the  space  of  graphs,  those  that  are
regular or random can be analyzed, but some graphs have the small-
world  property.  The  small-world  property  does  not  make  sense  for
small n [8]. The same situation occurs when there are (long-range) de-
pendencies  between values of  successive keys.  Such properties  appear
only when there is an appropriately long set (i.e., an appropriate task
size). Another important example can be the space of elementary cellu-
lar  automata.  There  are  the  completely  regular  automata  behaviors,
and there  are  those  that  are  essentially  random,  but  those  that  make
spontaneous structure like rule 110 do not lend themselves to asymp-
totic analysis [9]. Other examples of such a behavior can be found in
[10]. The first works about computational complexity unjustifiably as-
sumed that the analyzed algorithm would always behave in the same
manner,  no  matter  how large  the  input  set.  But  today  these  assump-
tions are not sufficient and we need to go a step beyond. 
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size). Another important example can be the space of elementary cellu-
lar  automata.  There  are  the  completely  regular  automata  behaviors,
and there  are  those  that  are  essentially  random,  but  those  that  make
spontaneous structure like rule 110 do not lend themselves to asymp-
totic analysis [9]. Other examples of such a behavior can be found in
[10]. The first works about computational complexity unjustifiably as-
sumed that the analyzed algorithm would always behave in the same
manner,  no  matter  how large  the  input  set.  But  today  these  assump-
tions are not sufficient and we need to go a step beyond. 

What is  meant  by the dynamical  behavior  of  an algorithm? In the
insertion sort algorithm, finding the correct place for each sorted key
is achieved by executing the internal loop. This loop is a trap for each
sorted element. The problem is how long this loop will live. The opti-
mistic and pessimistic cases are easy, because in the first case there are
no executions and in the second case, for each successive element, the
loop will  live  one  dominant  operation longer.  As  can be  seen in  Fig-
ure 2, the increments of this process are constant: 0 for the optimistic
case and 1 for the pessimistic case. 

Figure 2. A possible dynamic behavior of the sorting algorithm. The optimistic
and  pessimistic  cases  are  similar  to  laminar  flow,  while  the  other  cases  can
have a turbulent nature [11].

What would happen if other cases were to appear? What is the in-
cremental behavior of the number of dominant operations? If we com-
pare  sorting  (or  processing)  to  fluid  flow,  the  pessimistic  and  opti-
mistic cases are similar to deterministic laminar flow, while others are
rather similar to nondeterministic turbulent flow (Figure 2). 

Figure  3  shows a  record of  the  dominant  operations  necessary  for
sorting one input set.  For each sorted key in the pessimistic  case,  the
number  of  dominant  operations  increases  by  1,  thus  the  slope  is
a1  1.  But,  due  to  some  other  (nonpessimistic  and  nonoptimistic)
properties of the input set, it  can also happen that a case has a slope
of  a2 p a1.  From  a  dynamical  viewpoint  there  can  even  exist  cases
when a3 < 0 or a Ø ¶. This is possible due to the strong dependence
on input data features in the behavior of the insertion sort algorithm. 
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Figure 3.  In many cases the incremental behavior in the number of dominant
operations  can  be  higher  than  for  the  worst  case.  From  a  dynamical  view-
point, such a situation is worse than in the pessimistic case.

A  dynamic  behavior  can  be  identified  with  properties  of  the  pro-
cess  that  show  how  many  dominant  operations  are  needed  for  each
sorted element. If the input data contains a decreasing trend, the num-
ber of dominant operations will rise and vice versa. The total number
of dominant operations used in the algorithm depends on two condi-
tions.  The  first  is  the  index  value  of  the  sorted  key;  a  larger  index
value guarantees that the loop lives longer. The second is the value of
the  sorted  key;  a  higher  value  means  a  shorter  loop  duration.  These
two conditions come directly from the algorithm’s flow chart realiza-
tion (Figure 1). However, there is also a third condition hidden inside
the  algorithm:  the  duration  of  the  internal  loop  also  depends  on  the
elements that have been sorted so far. This means that in the insertion
sort algorithm a feedback loop exists that also has an influence on its
dynamics. Due to this feedback a parasite path appears (see Figure 5).
The  parasite  path  later  represents  loops  with  varying  lifetimes  and
shows  why  there  can  exist  cases  with  a  slope  of  a2 p 1  or  even  a
slope of a3 with a negative sign (Figure 3). 

If  sorting processes  can have dynamical  properties  that  are  similar
to nondeterministic turbulent flow, can the processes be described by
the classical definition of the Boltzmann|Gibbs (BG) entropy? If some-
one sorts,  they also order,  so in other words the entropy level  of  the
input  set  decreases,  but  of  course  the  entropy of  the  environment  in-
creases. We can show a new approach that goes further than allowing
assumptions in the classical computational complexity analysis and re-
jecting  the  minimization  of  task  dependency  on  the  complexity  mea-
sure, where one takes into account only a behavior of total time in the
worst  case.  The  existing  simple  system  approach  is  based  on  the  as-
sumption  that  computer  processing  is  strictly  algorithmic. But  com-
puter  processing  can  also  be  interactive  [12]  and  the  existing  ap-
proach limits any considerations about the possible dynamic behavior
of  many  algorithms.  This  behavior  can  have  a  detailed  description
only by using a complex systems approach. 
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proach limits any considerations about the possible dynamic behavior
of  many  algorithms.  This  behavior  can  have  a  detailed  description
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3. Thermodynamical Approach to Computational Complexity    

When will the entropy flow in the analyzed algorithm be at its lowest
possible level [11]? Let us assume that n is the size of a sorted set, ni
is  the  number  of  successively  sorted  elements,  and  M  stands  for  the
total  number  of  internal  and  external  loop  executions;  thus,  M  ni
for  each  sorted  key.  Further,  let  M1  denote  the  number  of  external
loop executions. In the analyzed algorithm for each sorted key M1  is
always equal to 1. M2 will similarly denote the number of the internal
loop  executions  and  it  can  change  from 0  to  ni - 1.  Finally,  M3  will
denote  the  number  of  possible  internal  loop  executions  that  can  be
done, but do not appear due to some properties of the input set. Obvi-
ously, M  M1 + M2 + M3. Now we can define a number W  of possi-
ble  configurations  of  loop  executions  that  can  appear  during  sorting
the  best,  the  worst,  and other  cases.  This  allows us  to  consider  ther-
modynamic  properties  of  the  sorting  process  for  each  sorted  set  of
size n. The number W of possible combinations is equal to CM

M1  multi-

plied by CM1

M2 :

(1)

W  CM
M1 ÿ CM1

M2 

M !

M1 ! HM - M1L !
ÿ

HM - M1L !

M2 ! HM - M1 - M2L !


M !

M1 !M2 !M3 !
.

For the optimistic case we have one execution of the external loop
HM1  1L,  no  executions  of  the  internal  loop  HM2  0L,  and
M3  ni - 1  possible  internal  loop  executions  that  will  not  be  exe-
cuted. In the optimistic case WO equals 

(2)WO 
ni !

1 ! 0 ! Ini - 1M !
 ni.

For the pessimistic  case the situation is  similar:  M1  1 gives only
one execution of the external loop, the internal loop used M2  ni - 1
executions,  and  obviously  M3  0.  Thus,  the  number  WP  in  the
pessimistic case equals 
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For the pessimistic  case the situation is  similar:  M1  1 gives only
one execution of the external loop, the internal loop used M2  ni - 1
executions,  and  obviously  M3  0.  Thus,  the  number  WP  in  the
pessimistic case equals 

(3)WP 
ni !

1 ! Ini - 1M ! 0 !
 ni.

The  results  obtained  are  a  little  surprising  (we  found  that
WO  WP) but it should be noted that the pessimistic case means an
inverse order in the input set, although that is still some kind of order.
In these two cases we have the lowest possible level of entropy produc-
tion and from a thermodynamical viewpoint they are almost indistin-
guishable. In any other case W  will be greater. For example, consider
the  case  when the  key  ni  needs  only  one  excess  dominant  operation,
that  is,  M1  1,  M2  1,  M3  ni - 2,  and the  number  of  microcon-
figurations WD will equal 

(4)

WD 
ni !

1 ! 1 ! Ini - 2M !


Ini - 2M ! Ini - 1M ! ni

Ini - 2M !
 niIni - 1M

and WD > WO. 
By  using  Onsanger  relations  [13],  the  lowest  possible  level  of  en-

tropy  production  indicates  that  the  system  is  in  a  state  close  to
(thermal) equilibrium. For such a situation the BG entropy is proper.
But, equation (1) shows the level of entropy production for each suc-
cessively  sorted  key  and  immediately  another  question  arises:  is  this
process  extensive  (additive)  for  all  ni  elements?  In  the  classical  ap-
proach  for  computational  complexity  analysis  one  of  two  similar
ways can be followed. In the first a total time (i.e., a total number of
dominant operations) THnL can be considered, while in the second the
number  of  dominant  operations  tHnL  (i.e.,  increments  of  total  time
THnL)  for  each  element  of  the  input  set  can  be  analyzed.  The  second
approach  is  more  interesting  because  it  will  give  an  answer  to  the
stated question. We do not need knowledge about the distribution be-
havior of W  for each key, but (in the simplest approach) information
on the distribution behavior of all  possible increments of the number
of  dominant  operations,  that  is,  t£HnL  tHn + 1L - tHnL.  Thus,  for  each
sorted  key  ni  the  value  of  t£HnL  is  a  random  variable  si,  with  values
that  appear  with  changing  probabilities.  We  would  like  to  know the
distribution  of  the  random  variable  S  ⁄ i si  when  ni Ø n  and  of
course when n Ø ¶. 

Some properties of S can be deduced without visualization. For ex-
ample, successive si  will always have a finite value of variance, thus S
should also have this property. This suggests that the probability dis-
tribution of S for ni Ø n will be in the Gaussian domain of attraction.
But how will the distribution behave for smaller values of ni? To an-
swer this question, we calculate such a distribution for a set consisting
of n  32 000 elements (Figure 4). 

 Dynamics of Algorithmic Processing in Computer Systems 79 

Complex Systems, 19 © 2010 Complex Systems Publications, Inc. 
 

https://doi.org/10.25088/ComplexSystems.19.1.73



Some properties of S can be deduced without visualization. For ex-
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should also have this property. This suggests that the probability dis-
tribution of S for ni Ø n will be in the Gaussian domain of attraction.
But how will the distribution behave for smaller values of ni? To an-
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Figure 4. Distribution of random variable S shows changes in the value of the
q parameter.

In [14] Tsallis showed that the different values of q in his definition
of entropy lead to different symmetric probability distributions. Even
with heavy tails  for  q > 5 ê 3,  Figure 4 shows that  the distribution of
random variable S has parts where the tail vanishes at different rates.
This suggests that in some cases there can appear a probability distri-
bution of increments t£HnL  that has a thermodynamical  basis  that can
be described only by the Tsallis nonextensive entropy. When can such
cases appear? This depends on properties of the input sets and is why
we  propose  retiring  the  existing  assumption  about  the  independence
of input data properties and the time computational complexity.  The
existing assumption does not allow showing a real, possible complex-
ity of algorithmic behavior. The independence between data structure
(input  task)  and  algorithm behavior  is  proper  for  the  simple  systems
approach  used  in  computer  systems  analysis.  But  the  computer  sys-
tems  are  no  longer  simple  systems  due  to  their  specific  properties;
they are now complex. 

4. Some Properties of Sorting Dynamics    

To visualize the considerations presented, we take into account differ-
ent sets of input data and show that the dynamic behavior of the inser-
tion  sort  algorithm  depends  on  the  input  data.  Investigations  were
based  on  1000  arbitrarily  chosen  trajectories  of  fractional  Brownian
motion  with  n  106  keys.  Such  trajectories  can  have  a  long-term
memory property (if H > 0.5) that appears by the existence of increas-
ing and decreasing trends  (we used 500 input  sets  with  H  0.5 and
500 sets with H  0.9). Such trends are the local pessimistic and opti-
mistic cases for the sorting algorithm and should influence the dynam-
ics of the sorting process. Before the experiment, we assumed that the
long-term  memory  property  in  the  input  data  could  be  carried  into
the dynamics of the sorting process. To confirm our assumptions, we
made  a  small  modification  in  the  original  algorithm  code  and  intro-
duced the variable counter  to count how many dominant operations
were needed for each sorted key. As a result, the time series could be
analyzed further. 
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To visualize the considerations presented, we take into account differ-
ent sets of input data and show that the dynamic behavior of the inser-
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based  on  1000  arbitrarily  chosen  trajectories  of  fractional  Brownian
motion  with  n  106  keys.  Such  trajectories  can  have  a  long-term
memory property (if H > 0.5) that appears by the existence of increas-
ing and decreasing trends  (we used 500 input  sets  with  H  0.5 and
500 sets with H  0.9). Such trends are the local pessimistic and opti-
mistic cases for the sorting algorithm and should influence the dynam-
ics of the sorting process. Before the experiment, we assumed that the
long-term  memory  property  in  the  input  data  could  be  carried  into
the dynamics of the sorting process. To confirm our assumptions, we
made  a  small  modification  in  the  original  algorithm  code  and  intro-
duced the variable counter  to count how many dominant operations
were needed for each sorted key. As a result, the time series could be
analyzed further. 

The internal loop in the insertion sort algorithm plays a very impor-
tant role from a dynamical viewpoint. The number of internal loop ex-
ecutions is deterministic in the optimistic and pessimistic cases. When
comparing  the  sorting  process  to  fluid  flow,  each  sorted  key  would
show a laminar flow. To help understand this, we now show how the
successively sorted keys travel through the flow chart of the insertion
sort algorithm shown in Figure 1. First, we make a few modifications
in  the  original  flow  chart  to  show  what  is  going  on  with  each  pro-
cessed  key  (Figure  5).  In  the  optimistic  case  the  first  condition
(namely, A@iD > max) is checked; if it is true, then a key follows a path
marked by the solid line. If all keys follow this path we have the opti-
mistic case.  In the pessimistic case a condition A@jD < min is  checked;
if it is true, then a key follows a path marked by the dotted line. If all
keys follow this path we have the pessimistic case. But for other cases,
successive keys follow a third path (similar to the second path, but dif-
ferent  from  a  dynamical  viewpoint);  a  situation  that  has  appeared
leads  to  the  existence  of  a  parasite  path  in  the  algorithm marked  by
the dashed line. 

Because we used the comparison of the internal loop to a trap, we
analyzed the  probability  distribution of  trap  lifetimes.  Kernel  estima-
tors were used that allowed us to get a continuous probability distri-
bution, which was then plotted on a log-log scale. As a result of this,
we saw that the power law governs trap lifetime processes (Figure 6).
The power law distribution has appeared for almost all sorting cases,
independently of the value of the H exponent in the input data. 

In other words, trap lifetimes have a fractal property that does not
have  a  characteristic  scale  and  can  lead  to  excess  1 ê f  noise.  Such  a
distribution  cannot  have  its  thermodynamical  basis  described  by  BG
extensive entropy. 
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Figure 5. During sorting the keys follow three different paths. The first (solid
line)  is  proper  for  successive  elements  with  max  value,  the  second  (dotted
line)  is  for  elements  with  min  value,  and  the  third  (dashed  line)  for  the  rest
shows the existence of a parasite loop in the insertion sort algorithm.
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Figure 6. The power law that governs the distribution of trap lifetimes.

Then we took into account the increments  of  time t HnL  (i.e.,  t£HnL)
and as  a  result  got  a  realization  of  an  incremental  process  similar  to
that  of  noise.  This  operation  allowed  us  to  make  further  investiga-
tions;  quantile  lines  tests  decided whether  processes  are  stationary or
not  and  analysis  of  probability  distributions  led  to  the  assumption
that  the  time  series  are  asymptotically  stationary.  Their  probability
distribution was especially  interesting.  Plotting the values  in  a  log-lin
scale showed that the incremental process has properties that can only
appear  by  the  nonextensive  definition  of  entropy  because  their  tails
vanish  slowly  when  compared  to  fitted  Gaussian  distributions
(Figure 7).  This  result  once  again  confirms that  the  Tsallis  entropy is
proper for the thermodynamical basis of our analysis. 

One interesting property we used for sorting the different sets of in-
put  data  is  that  half  of  them have  long-range  dependencies.  Immedi-
ately  one  question  arose:  does  the  task  with  the  long-term  memory
property influence the sorting dynamics? To check this we used Hurst
R/S  analysis  and  detrended  fluctuation  analysis  [15],  both  of  which
confirmed our expectations: if  long-range dependencies existed in the
input  data,  they  influenced  the  behavior  of  the  insertion  sort  algo-
rithm.  The  dynamics  of  the  sorting  process  depend  on  this  property
and can also have it (Figure 8). 

The  existence  of  thermodynamical  nonequilibrium  states  during
sorting should lead to the appearance of bifurcations [13]. Such bifur-
cations  exist  and  can  be  visualized  with  special  diagrams  (Figure  9)
where  the  number  of  dominant  operations  necessary  for  each  sorted
key  versus  key  values  ordered  inversely  are  plotted.  Each  decreasing
trend in the input set implies the existence of a local bifurcation. 
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Figure  7.  Semi-heavy  tails  (solid  line)  in  the  empirical  distribution  of  incre-
ments of dominant operations for successive sorted keys compared with a nor-
mal distribution (dashed line).

Figure 8. R/S analysis confirms the existence of long-range dependencies in the
sorting dynamics when such a property exists in the input data.
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Figure 9. Bifurcation diagram for the sorting process.

The  thermodynamical  nonequilibrium  states  found  in  computer
processing led us to another interesting observation: referring back to
Figure 3, it can be seen that in the pessimistic and optimistic cases the
number  of  dominant  operations  are  simply  a  straight  line  that  has  a
dimension  D  1.  Mandelbrot,  in  the  famous  article  [16]  states:
“Clouds are not spheres,  mountains are not cones,  coastlines  are not
circles, and bark is not smooth, nor does lightning travel in a straight
line.” We now can ask: does the computational complexity of an algo-
rithm always follow a straight line or can this line have fractal proper-
ties  sometimes?  It  can  be  seen  that  this  line  can  have  a  dimension
D  2 - H, that is, D > 1 (see Figure 8). As a result of this finding the
authors  would  like  to  introduce  in  a  future  work  a  new  (possible)
measure  of  algorithm  complexity,  that  is,  a  fractal  computational
complexity. Such a measure would describe a real complexity of algo-
rithm behavior  according to fractal  properties  of  the  input  data.  The
current approach describes rather a “simplicity” (not a “complexity”)
of  the  computational  complexity  due  to  considering  only  the  worst
and best cases (also including the mean-case analysis). 

5. Conclusions    

We  have  shown  that  classical  computational  complexity  analysis,
although it gives a very useful basis for algorithm analysis, cannot de-
scribe  the  dynamics  in  the  behavior  of  the  insertion  sort  algorithm.
Such a property governed the realization of the sorting process, due to
the  existence  of  long-range  dependencies  in  the  input  sets. This  case
shows  that  laws  that  were  previously  unknown  govern  algorithmic
processing in computer systems. Only the complex systems approach,
which  goes  beyond  the  classical  computational  complexity  assump-
tions  and  takes  into  account  the  behavior  of  an  algorithm  together
with  the  properties  of  the  input  data,  allows  a  better  understanding
and  gives  a  good  perspective  for  the  future  analysis  of   the  complex
behavior of computer systems that is far from thermodynamical equi-
librium. 
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Such a property governed the realization of the sorting process, due to
the  existence  of  long-range  dependencies  in  the  input  sets. This  case
shows  that  laws  that  were  previously  unknown  govern  algorithmic
processing in computer systems. Only the complex systems approach,
which  goes  beyond  the  classical  computational  complexity  assump-
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