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This  paper  reports  an  algorithm  to  check  for  the  invertibility  of  null-
boundary  three  neighborhood  cellular  automata  (CAs).  While  the  best
known result for checking invertibility is quadratic [1, 2], the complex-
ity of the proposed algorithm is linear. An efficient data structure called
a rule vector graph (RVG) is proposed to represent the global function-
ality of a cellular automaton (CA) by its rule vector (RV). The RVG of
a null-boundary invertible CA preserves the specific characteristics that
can be checked in linear time. These results are shown in the more gen-
eral  case  of  hybrid  CAs.  This  paper  also  lists  the  elementary  rules  [3]
that are invertible. 

1. Introduction

Theory  and applications  of  cellular  automata  (CAs)  were  initiated  in
[4]  and  carried  forward  by  a  large  number  of  authors  [3,  5|38].  By
convention, a cellular automaton (CA) that employs the same rule for
each of its cells is referred to as a uniform CA. However, a large num-
ber of authors [13, 14, 16|19, 21, 29, 30, 37, 38] have discussed the
hybrid  CA  concept  where  different  rules  are  employed  in  different
cells.  An n  cell  hybrid CA (Figure 1)  is  represented by its  rule  vector
(RV) YR0, R1, … , Ri, … , Rn-1] where the same rule is not employed
for each of the cells.  For a uniform CA, R0  R1  Ri  Rn-1.
In subsequent discussions,  both hybrid and uniform CAs are referred
to  as  simply  CAs.  For  an  invertible  CA,  its  global  map  is  invertible.
Each  of  its  states  is  reachable  and  there  is  no  Garden  of  Eden  (i.e.,
nonreachable) state. Hence, an invertible CA has exactly one predeces-
sor for a given state. The need to model different real-life physical pro-
cesses provides the major motivation for investigating the invertibility
of CAs. 
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Figure  1.  General  structure  of  a  CA employing  RV YR0, R1, … Ri, … RHn-1L]

of  an  n  cell  CA.  (a)  An  n  cell  null-boundary  CA.  (b)  Rule  Ri  employed  on
cell i.

The invertibility issue of CAs was first addressed by Amoroso and
Patt  [31].  Subsequently,  many  theoretical  works  on  invertible  CAs
(ICAs) are reported [1, 2, 9, 11]. Toffoli and Margolus [12] have rep-
resented the existence of ICAs that are computation and construction
universal. Sutner [1, 2] has utilized the general network of a de Bruijn
graph  to  represent  a  CA  and  to  identify  its  invertibility  in  quadratic
time.  In  this  context,  this  paper  reports  a  linear  time  algorithm  for
checking the invertibility of a null-boundary three neighborhood CA.
While  a  de  Bruijn  graph is  a  general  network with wide applications
in different fields, the structure of a rule vector graph (RVG) has been
specifically designed to represent CA characteristics. As a result, it has
become  possible  to  design  a  linear  time  algorithm  for  traversing  a
RVG to identify invertibility. 

Generating the RVG of a CA from its RV is presented in Section 3,
subsequent to introducing a few basic terminologies in Section 2. The
linear time algorithm for checking the invertibility of a null-boundary
CA is reported in Section 4. This section also lists the elementary rules
[3] that are identified as invertible by the algorithm. Experimental re-
sults  are  reported  in  Section  5  in  respect  to  growth  of  storage  space
and execution time for  the  algorithm.  Unless  mentioned otherwise,  a
CA in the rest of the paper refers to a three neighborhood null-bound-
ary CA. 

2. Basic Terminologies and Definitions

Generating  the  next  state  of  a  three  neighborhood  CA  rule  can  be
viewed as a three variable function with eight possible input patterns.
Borrowing from the concept of switching theory [39], such input pat-
terns (Table 1) are referred to as rule minterms (RMTs). A few basic
terminologies and definitions used in this paper are summarized in the
rest of this section.
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Generating  the  next  state  of  a  three  neighborhood  CA  rule  can  be
viewed as a three variable function with eight possible input patterns.
Borrowing from the concept of switching theory [39], such input pat-
terns (Table 1) are referred to as rule minterms (RMTs). A few basic
terminologies and definitions used in this paper are summarized in the
rest of this section.

Next State Value bi

TH7L TH6L TH5L TH4L TH3L TH2L TH1L TH0L Rule Number

7 6 5 4 3 2 1 0 ~

1 1 0 0 1 0 1 0 202

1 0 1 0 0 1 1 0 166

0 1 0 1 1 0 1 0 90

0 0 0 1 0 1 0 0 20

0 1 1 1 1 0 0 0 120

Table 1. RMT and CA rule. The left columns represent the next state value bi

of cell i  for the present state values Yai-1 ai ai+1]  of cells Hi - 1L,  i,  and Hi + 1L.
The eight minterms Yai-1 ai ai+1]  000 to 111 are represented as T(0) to T(7)
in the text and 0 to 7 in the figures. The decimal value of the 8-bit binary pat-
tern  in  the  left  column,  referred  to  as  its  rule  number,  is  noted  in  the  right
column.

Definition 1.  The ordered sequence of rules YR0 R1 … Ri … Rn-1]  of  an
n  cell  CA  is  referred  to  as  its  rule  vector  (RV)  where  rule  Ri  is  em-
ployed  on  cell  i  (Figure  1).  The  RV  of  a  uniform  CA  employs  the
same rule R for each cell IR0  R1  Ri   Rn-1  RM and is rep-
resented by the RV XR R … R\.

Definition 2.  The  rule  employed  on  a  CA  cell  represents  a  local  map,
that  is,  the local  next state  function  denoted as f .  Thus,  fi  represents
the local next state function corresponding to the rule Ri employed on
cell i.

Definition 3.  The global  next  state  function  F  is  derived from the local
next  state  functions  as  F = Yf0 f1 … fi … fn-1]  with  the  three  variable
Boolean  function  fi  employed  on  the  current  state  Yai-1, ai, ai+1]  of
cells Hi - 1L, i, and Hi + 1L, respectively.

Definition 4.  The global  present  and next  states  are  denoted by capital
letters  A  and  B,  respectively.  Thus  A = Ya0, a1 … ai … an-1]  and
B = FHAL = Yb0, b1 … bi … bn-1]. That is, B is the successor state of A
and  A  is  the  predecessor  state  of  B.  Consequently,  for  the  invertible
CA,  F£HBL = A,  where  F£  is  the  inverse  of  the  global  next  state  func-
tion F. 

Both local and global states are noted simply as “state” in the rest
of the paper and can be differentiated from the context. For example,
as shown later in Figure 2(a), the state B = Yb0 b1 b2 b3]  H0111L  7
of  the  four  cell  uniform  CA  X120  120  120  120\  is  the  successor  of
state  A = Ya0 a1 a2 a3]  H0110L  6,  where  the  present  and  next
states of the first cell are a1 = 1 and b1 = 1.
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Both local and global states are noted simply as “state” in the rest
of the paper and can be differentiated from the context. For example,
as shown later in Figure 2(a), the state B = Yb0 b1 b2 b3]  H0111L  7
of  the  four  cell  uniform  CA  X120  120  120  120\  is  the  successor  of
state  A = Ya0 a1 a2 a3]  H0110L  6,  where  the  present  and  next
states of the first cell are a1 = 1 and b1 = 1.

Definition 5. For a CA having F as its next state function, a state B is a
nonreachable  state  (NRS)  if  F£HBL = f,  where  F£  is  the  inverse  of  F.
That  is,  there  does  not  exist  any  predecessor  of  state  B.  An  NRS  is
also referred to as a Garden of Eden state.

Definition 6. The eight minterms (Table 1) of the three variable Boolean
function  fi,  corresponding  to  rule  Ri  employed  on  cell  i,  are  referred
to as the rule minterms (RMTs). The three Boolean variables are ai-1,
ai,  ai+1,  the  current  state  values  of  cells  Hi - 1L,  i,  and  Hi + 1L,  respec-
tively,  whereby  the  minterm  m = Yai-1 ai ai+1].  THmL  denotes  a  single
RMT in the text and it is noted simply as m for clarity in the figures.
The  symbol  8T<  represents  the  set  of  all  eight  RMTs,  whereby
8T<  8TH0L, TH1L, TH2L, TH3L, TH4L, TH5L, TH6L, TH7L<  8THmL<.  In  gen-
eral,  a  single  RMT  for  cell  i  is  also  denoted  as  Ti œ 8T< ,  where
Ti  Yai-1, ai, ai+1].

Definition 7. For a specific CA rule Ri, the next state value bi  of cell i is
0  for  a  subset  of  RMTs  while  for  the  other  subset  the  value  is  1.
Hence,  a  CA  rule  divides  the  RMTs  into  two  subsets  referred  to  as
0-RMT and 1-RMT, respectively, which are denoted as 9T0

i = and 9T1
i =

where  9T0
i = › 9T1

i =  f,  9T0
i = ‹ 9T1

i =  8T< .  For  the  rule  90  (Table  1)

on  cell  i,  9T0
i =  8TH7L, TH5L, TH2L, TH0L<,  9T1

i =  8T H6L, TH4L, TH3L,
T H1L<.

Note that in general, with reference to the next state bi  of cell i,  a
RMT  subset  containing  qi

£  number  of  RMTs  is  denoted  as

:Tbi

i >  :Tbi,1
i , Tbi,2

i , … Tbi,qi

i … Tbi,qi
£

i >,  Tbi,qi

i œ :Tbi

i >,  bi  80, 1<,

qi  1, 2 … qi
£,  qi

£  :Tbi

i >    cardinality  of  the  subset.  However,  a

RMT Tbi,qi

i  is simply noted as Ti œ :Tbi

i > where reference to the next

state bi  is not specified. Ti  represents a single RMT while a subset of
its  RMTs  denoted  as  8Ti<,  as  elaborated  next,  is  also  referred  to  as
9Vi=. 
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Definition 8. A subset of RMTs 9Ti= Œ 8T < of cell i without reference to
the next state value bi  is  denoted as 9Vi=.  The xi  subsets  are denoted

as :Vxi
i >, where xi  1, 2, … xi

£ , ‹xi1
xi
£

:Vxi
i >  8T< and xi

£  is the num-

ber  of  subsets  formed  out  of  the  set  of  RMTs  8T<.  The  symbol  8V<
representing a subset of RMTs is used to denote a node in the RVG in-
troduced next.

3. Rule Vector Graph

This section presents  an efficient  data structure called the rule  vector
graph (RVG) (Figure 2) designed to represent CA characteristics. The
preliminary RVG concept was reported in [34|36]. The RVG of an n
cell  CA denoted  by  its  RV YR0, R1 … Ri … Rn-1]  consists  of  n  levels
marked as 0 to Hn - 1L; the level i refers to the rule Ri. Each level has a
set of input and output nodes connected by directed edges. Figure 2(a)
shows  the  state  transition  graph  (STG)  while  Figure  2(b)  shows  the
RVG  of  a  uniform  CA  X120  120  120  120\.  Figure  3(b)  illustrates  a
RVG for the hybrid CA X202 166 90 20\. 

HaL HbL

Figure 2. (a) STG and (b) RVG of a four cell CA employing uniform rule 120
represented by its RV X120 120 120 120\.
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Figure 3. (a) STG and (b) RVG of a CA with RV X202 166 90 20\. The binary
bit string of a state is denoted by its decimal value. A RMT THmL  is  denoted
as m (m = 0 to 7) and SN is the sink node. Because of the null boundary, as
per Step 3 of Algorithm 2, only even valued RMTs can exist on the third level
input nodes V1

3 and V2
3.

Definition 9.  A node  represents  a  subset  of  RMTs.  An  output  node  of
level  i  is  derived  from  its  input  node  through  RMT  transition
(Table 2).  The output node of level  i  is  the input node of level  Hi + 1L
corresponding to the rule Ri+1.

Definition 10.  The  edge  of  a  level  represents  the  RMT  transition  from
input  to  output  node.  Let  Ti  THmL  Yai-1 ai ai+1]  X1 0 1\  be  a
RMT  of  an  input  node.  Consequently,  Ti+1  (a  RMT  of  an  output
node)  can  be  derived  from  Ti  as  Ti+1  Yai ai+1 ai+2]  X0 1 0\  2
and  X0 1 1\  3  by  deleting  ai-1  and  appending  0  and  1  as  ai+2.
Table 2 shows this RMT transition for all eight RMTs.

Ti Yai-1 ai ai+1] Ti+1 Yai ai+1 ai+2]

TH0L H000L and TH4L H100L TH0L  000 H0L TH1L  001 H1L

TH1L H001L and TH5L H101L TH2L  010 H2L TH3L  011 H3L

TH2L H010L and TH6L H110L TH4L  100 H4L TH5L  101 H5L

TH3L H011L and TH7L H111L TH6L  110 H6L TH7L  111 H7L

Table  2.  RMT transition.  The  left  column refers  to  the  RMTs of  cell  i  while
the right column refers to the corresponding RMTs of cell Hi + 1L.
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Definition 11.  The  0-edge  and  1-edge  refer  to  the  edges  from an  input
node of level  i  corresponding to the 0-RMT and 1-RMT for the rule
Ri  employed  on  cell  i.  The  bi-edge  (bi œ 80, 1<)  is  assigned  the  edge

weight  :Tbi

i >íbi,  where  :Tbi

i >  represents  the  set  of  RMTs for  rule  Ri

for which the next state value is bi.

3.1 Generating Rule Vector Graphs for Level i

As  per  the  rule  Ri,  the  RMTs  of  an  input  node  can  be  divided  into

two  groups  referred  to  as  0-RMT  9T0
i =  and  1-RMT  9T1

i =

(Definition 7).  Two  edges  marked  as  0-edge  and  1-edge  are  derived
from an input node corresponding to 0-RMT and 1-RMT respectively.

Each RMT Ti œ :Tbi

i > specifies the decimal value corresponding to

the  three  bit  string  Yai-1 ai ai+1].  An  output  node  :Vxi+1
i+1 >  is  derived

from the  RMT subset  :Tbi

i >.  A  RMT Ti+1 œ :Vxi+1
i+1 >  is  generated,  as

noted in Table 2, by deleting ai-1 from Ti  Yai-1 ai ai+1] and append-
ing 0 and 1 bits as ai+2,  whereby Ti+1  Yai ai+1 ai+2].  The algorithm
employed to generate the RVG for level  i  for rule Ri  follows.  Such a

graph is referred to as the ith rule vector subgraph RVSHiL. 

Algorithm 1: Generate RVS HiL for rule Ri. 
We employ constructs such as Draw Edge, Assign Edge Weight, Iterate,
Attach Tag, Generate RMTs, Derive Output Node, and Node Merging.

Input:  The  rule  Ri  and  the  input  nodes  9Vxi
i = Ixi  1, 2, … xi

£, xi
£ 

number of input nodes) that are output nodes of level Hi - 1L derived for
rule Ri-1. 

Output: The ith level RVG with its edges and output nodes that serve as
input nodes for level Hi + 1L.
Step 1: 

(a) Draw Edge: bi-edge (bi œ 80, 1<) for rule Ri out of each input 
node. 

(b) Assign Edge Weight: :Tbi

i >íbi Ø bi-edge, (bi œ 80, 1<). 

Step 2: Iterate Steps 3 through 6 for each edge. 

Step 3: 

(a) Attach Tag: “SLS Tag” Ø edge with weight :Tbi

i >íbi if bi  ai, 

where Ti  Yai-1 ai ai+1], JT
i œ :Tbi

i >N. 

/* The edge with the SLS Tag is referred to as the potential self loop 
state edge (PSLSE) and can be used to identify all self loop states 
(SLSs). */ 
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Figure  4.  RVS  for  rule  120.  A  RMT  THmL  is  simply  denoted  as  m  and  the
punctuation symbol “,” between two RMTs is removed for clarity. {012367}
and  {4567}  are  Potential  Type  2  nodes  with  reference  to  edges  ea  and  eb,
respectively, and 80, 1< is a Type 1 node due to the missing 1-edge.

(b) Attach Tag: “Type 1” Ø Input node, if either the 0- or 1-edge 
outgoing from the node is missing. 

Step 4: Generate RMTs: 9Ti+1= for each Ti œ :Tbi

i >, in the output node

as per Table 2. 

Step  5:  Derive  Output  Node:  :Vxi+1
i+1 >,  xi+1  1, 2, … ,  where

Ê9Ti+1=  :Vxi+1
i+1 >. 

Step 6: 

(a) Node Merging: Merge V£ with V if V£ Œ V, where V and V£ are 
the output nodes generated in Step 3. 
(b) Attach Tag: “Potential Type 2” Ø Merged node V, if V£ Õ V. 

Stop. 

Step by step execution of Algorithm 1:
We now give an example to illustrate the execution of Algorithm 1

for  rule  120,  which  has  the  binary  string  01111000  (Table  1).
Figure 4  shows  the  RVS(i)  for  rule  Ri  120.  There  are  three  input

nodes:  V1
i  8TH0L, TH1L<,  V2

i  8TH2L, TH3L, TH4L, TH5L<,  and

V3
i  8T H2L,  TH3L, TH6L, TH7L<.  As  per  Step  1,  there  is  only  one  edge

with weight 8TH0L, TH1L<ê0 out of input node V1
i .  In the first  iteration

(Step 2) this edge is marked as Type 1 as per Step 3(b) because the out-
going  1-edge  is  missing  from  this  input  node.  As  per  Steps  4  and  5,
the  8TH0L, TH1L<ê0  edge  (ea)  generates  the  output  node
8TH0L, TH1L, TH2L, TH3L<  (not shown explicitly in Figure 4) since it  gets
merged  in  Step  6(a).  In  subsequent  iterations,  from
9V2

i =  8TH2L, TH3L, TH4L, TH5L<  two  edges  eb  and  ec  are  drawn  with
the edge weights 8T H2L<ê0 and 8TH3L, TH4L, TH5L<ê1, respectively. ec gen-
erates  the  output  node  V1

i+1  8TH0L, TH1L, TH2L, TH3L, TH6L, TH7L<.

Since  the  output  node  out  of  ea 8TH0L, TH1L, TH2L, TH3L< œ V1
i+1,  it  is

merged  with  V1
i+1.  The  merging  is  represented  by  ea  entering  into

V1
i+1  8TH0L, TH1L, TH2L, TH3L, TH6L, TH7L<.  Similarly,  edge  eb  with

weight  8TH2L<ê0  generates  8TH4L, T H5L<,  which  gets  merged  with
V2

i+1  8TH4L, TH5L, TH6L, TH7L<  generated  out  of  ed  from  V3
i .  Hence,

as per Step 6(b), V1
i+1 and V2

i+1 are marked as Potential Type 2 nodes.

The  edge  ee  coming  out  from  node  V3
i  generates

V5
i+1  8TH4L, TH5L, TH6L, TH7L< that gets merged with V2

i+1. 
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Step by step execution of Algorithm 1:
We now give an example to illustrate the execution of Algorithm 1

for  rule  120,  which  has  the  binary  string  01111000  (Table  1).
Figure 4  shows  the  RVS(i)  for  rule  Ri  120.  There  are  three  input

nodes:  V1
i  8TH0L, TH1L<,  V2

i  8TH2L, TH3L, TH4L, TH5L<,  and

V3
i  8T H2L,  TH3L, TH6L, TH7L<.  As  per  Step  1,  there  is  only  one  edge

with weight 8TH0L, TH1L<ê0 out of input node V1
i .  In the first  iteration

(Step 2) this edge is marked as Type 1 as per Step 3(b) because the out-
going  1-edge  is  missing  from  this  input  node.  As  per  Steps  4  and  5,
the  8TH0L, TH1L<ê0  edge  (ea)  generates  the  output  node
8TH0L, TH1L, TH2L, TH3L<  (not shown explicitly in Figure 4) since it  gets
merged  in  Step  6(a).  In  subsequent  iterations,  from
9V2

i =  8TH2L, TH3L, TH4L, TH5L<  two  edges  eb  and  ec  are  drawn  with
the edge weights 8T H2L<ê0 and 8TH3L, TH4L, TH5L<ê1, respectively. ec gen-
erates  the  output  node  V1

i+1  8TH0L, TH1L, TH2L, TH3L, TH6L, TH7L<.

Since  the  output  node  out  of  ea 8TH0L, TH1L, TH2L, TH3L< œ V1
i+1,  it  is

merged  with  V1
i+1.  The  merging  is  represented  by  ea  entering  into

V1
i+1  8TH0L, TH1L, TH2L, TH3L, TH6L, TH7L<.  Similarly,  edge  eb  with

weight  8TH2L<ê0  generates  8TH4L, T H5L<,  which  gets  merged  with
V2

i+1  8TH4L, TH5L, TH6L, TH7L<  generated  out  of  ed  from  V3
i .  Hence,

as per Step 6(b), V1
i+1 and V2

i+1 are marked as Potential Type 2 nodes.

The  edge  ee  coming  out  from  node  V3
i  generates

V5
i+1  8TH4L, TH5L, TH6L, TH7L< that gets merged with V2

i+1. 
A  few terminologies  relevant  for  subsequent  discussions  are  intro-

duced next. 

Definition 12.  The  CA  state  can  be  expressed  as  a  RMT  string
YT0 T1 … Ti … Tn-1]  where  Ti œ 8T<  8TH0LTH1LTH2LTH3LTH4LTH5L
TH6LTH7L<,  and Ti  Yai-1 ai ai+1].  Thus Ti  denotes the decimal value
of  the  bit  string  Yai-1 ai ai+1],  where  ai-1,  ai,  and  ai+1  represent  the
current state of the cells Hi - 1L,  i,  and Hi + 1L,  respectively. For a null-
boundary CA, the left neighbor of the cell 0 and the right neighbor of
the  cell  Hn - 1L  of  a  CA  are  assumed  to  be  null  (0).  Consequently,
T0  Y0 a0 a1],  and Tn-1  Yan-2 an-1 0].  For example,  the state of a
four bit  string 1010 of a four cell  can be denoted as the RMT string
YT0 T1 T2 T3]  XTH2LTH5LTH2LTH4L\  since  010  2  for  the  leftmost
cell (cell 0), 101  5 for cell 1, 010  2 for cell 2, and finally 100  4
for  the  rightmost  cell  (cell  3).  Conversely,  a  CA state  expressed  as  a
RMT  string,  say,  XTH1LTH3LTH6LTH4L\,  can  be  converted  to  a  binary
string X0 1 1 0\  6.

Definition 13.  A  pair  of  RMTs  Ti  and  Ti+1  in  a  RMT  string
Y… Ti-1 Ti Ti+1 …]  (where  Ti  Yai-1 ai ai+1]  and  Ti+1 
Yai

£ ai+1
£ ai+2

£ ])  are  compatible  if  (i)  ai  ai
£  and  (ii)  ai+1  ai+1

£ .  The

pair  Ti  and  Ti+1  is  referred  to  as  incompatible  if  these  are  not
compatible.

Definition 14.  A  RMT  string  YT0 … Ti-1 Ti Ti+1 … Tn-1]  representing
the state of a CA is a valid RMT string if each pair Ti  and Ti+1  (i  0
to Hn - 2L) is a compatible RMT pair.

Definition 15.  For  a  null-boundary  CA,  the  leftmost  cell  (cell  0)  can
have  RMTs  TH0L, TH1L, TH2L, TH3L.  Consequently,  the  input  node  for
level  0,  8TH0L, TH1L, TH2L, TH3L<  is  referred  to  as  the  root  node  (RN).
The  edges  outgoing  from  the  RN  can  have  only  the  RMTs
TH0L, TH1L, TH2L, TH3L.  For  a  null-boundary n  cell  CA,  cell  Hn - 1L  can
have the value 8TH0L, TH2L, TH4L, TH6L<. Consequently, input nodes and
the  edges  on  level  Hn - 1L  can  have  only  the  RMTs
TH0L, TH2L, TH4L, TH6L where m is even for the RMT THmL. The output
node of level Hn - 1L is marked as the sink node (SN). 

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 97 

Complex Systems, 19 © 2010 Complex Systems Publications, Inc. 
 

https://doi.org/10.25088/ComplexSystems.19.1.89



Definition 15.  For  a  null-boundary  CA,  the  leftmost  cell  (cell  0)  can
have  RMTs  TH0L, TH1L, TH2L, TH3L.  Consequently,  the  input  node  for
level  0,  8TH0L, TH1L, TH2L, TH3L<  is  referred  to  as  the  root  node  (RN).
The  edges  outgoing  from  the  RN  can  have  only  the  RMTs
TH0L, TH1L, TH2L, TH3L.  For  a  null-boundary n  cell  CA,  cell  Hn - 1L  can
have the value 8TH0L, TH2L, TH4L, TH6L<. Consequently, input nodes and
the  edges  on  level  Hn - 1L  can  have  only  the  RMTs
TH0L, TH2L, TH4L, TH6L where m is even for the RMT THmL. The output
node of level Hn - 1L is marked as the sink node (SN). 

Definition 16. Path, subpath, and parallel subpath.
(a)  Path in  a  RVG.  A path in a RVG is a sequence of edges from the

RN to the SN. The level  i  edge of a RVG is marked with the weight
:Tbi

i >íbi  where  bi œ 80, 1<,  :Tbi

i >  :Tbi 1
i , Tbi 2

i … Tbi qi

i … Tbi qi
£

i >,

and  Tbi qi

i œ :Tbi

i > Œ 8T<= 8TH7L, TH6L, TH5L, TH4L, TH3L, TH2L, TH1L,

TH0L<,  qi  1, 2 … qi
£  and  qi

£  is  the  cardinality  of  RMTs  in  the  set

:Tbi

i >.  Thus,  a path in the RVG of an n  cell  CA can be denoted as a

set  of  sequential  weighted  edges  ::Tb0

0 >íb0, :Tb1

1 >íb1, …

:Tbi

i >íbi,… :Tbn-1

n-1 >íbn-1>::Tbi

i >íbi>  for i  0 to Hn - 1L,  where the

RMT Ti œ :Tbi

i > is compatible with Ti+1 œ :Tbi+1

i+1 >. 

(b)  Path  representing  a  CA  state.  The  set  of  sequential  edges  corre-
sponding to a valid RMT string ZTb0 q0

0 , Tb1 q1

1 , … Tbi qi

i , … Tbn-1 qn-1

n-1 ^

JTbi qi

i œ :Tbi

i >N  on  the  path  from the  RN to  the  SN represents  a  CA

state.  The  global  state  A = Ya0, a1, … ai, … an-1]  can  be  derived  by
converting  the  RMT string  to  its  binary  counterpart  (Definition  12).
Thus,  A=ZTb0 q0

0 , Tb1 q1

1 , … Tbi qi

i , … Tbn-1 qn-1

n-1 ^Ya0 a1 … ai … an-1].

Its next state B = Yb0, b1, … bi, … bn-1] can be derived from the path

::Tbi

i >íbi>.  Consequently,  forward  traversal  of  the  path  ::Tbi

i >íbi>

for  a  state  A = Ya0 a1, … ai, … an-1]  YT0 T1 … Ti … Tn-1]  gener-
ates  its  next  state  B = Yb0 b1, … bi … bn-1].  Similarly,  backward
traversal  with  B  generates  its  previous  state(s)  as
YT0 T1 … Ti … Tn-1].  The  state  B  is  a  NRS  if  the  path  between  the
root and sink nodes cannot be established due to missing edges or in-
compatible RMT pairs Ti and Ti+1. 

(c)  Subpath.  A  subpath  refers  to  a  section  of  a  path

[:Tbi-1

i-1 >íbi-1 :Tbi

i >íbi :Tbi+1

i+1 >íbi+1 … :Tbj

j
>ìbj_  from  level  (i - 1)  to

level j of a RVG that starts with a RMT Ti-1 œ :Tbi-1

i-1 >. 

(d)  Parallel  subpath.  A  subpath  Z:HT£Lbi+1

i+1 >íbi+1 :HT£Lbi+2

i+2 >íbi+2 …^  is

parallel  to  the  subpath  Z:Tbi+1

i+1 >íbi+1 :Tbi+2

i+2 >íbi+2 …^  if  both  have

identical  next  state  values  bi+1,  bi+2 … bn-1  at  each  level  from  level
Hi + 1L to level Hn - 1L of a RVG.
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(d)  Parallel  subpath.  A  subpath  Z:HT£Lbi+1

i+1 >íbi+1 :HT£Lbi+2

i+2 >íbi+2 …^  is

parallel  to  the  subpath  Z:Tbi+1

i+1 >íbi+1 :Tbi+2

i+2 >íbi+2 …^  if  both  have

identical  next  state  values  bi+1,  bi+2 … bn-1  at  each  level  from  level
Hi + 1L to level Hn - 1L of a RVG.

With reference to the node merging noted in Step 6 of Algorithm 1,
the following definitions are formally introduced after defining a path
and subpath in a RVG. 

Definition 17.  Let  V  and  V£  be  a  pair  of  output  nodes  generated  by
Algorithm 1, where each node covers a subset of RMTs. The node V£

gets  merged  with  the  node  V  if  V£ Œ V.  The  resulting  node  V  is
referred to as a merged node (Figure 5).

Figure 5. Node merging.

Definition 18.  A  node  V  is  marked  with  a  Type  1  tag  if  there  is  a
missing  0/1-edge  outgoing  from  the  node.  The  node  V1

i  is  a  Type  1
node in Figure 4. 

Definition 19. A Type 2 node satisfies the following two conditions.
Condition (i). A merged node V  (Figure 5) is marked with a Potential

Type  2  tag  if  the  merging  has  occurred  for  two  nodes  V£  and  V
(V£ Õ V), where V£ is generated out of RMTs :HT£Lbi

£
i > of the edge hav-

ing a weight of :HT£Lbi
£

i >ìbi
£  and V  is generated out of RMTs :Tbi

i > of

the  edge  having  a  weight  of  :Tbi

i >íbi,  (bi œ 80, 1<,  bi
£ œ 80, 1<)  where

:Tbi

i > > :HT£Lbi
£

i > . A Potential Type 2 node is noted with reference

to the edge having a weight of :HT£Lbi
£

i >ìbi
£  that has a smaller number

of  RMTs.  In  Figure  4,  the  node 8TH4L, TH5L, TH6L, TH7L<  is  a  Potential
Type  2  node  with  reference  to  the  edge  eb  having  weight T(2)/0  that
has  fewer  RMTs  than  the  other  incoming  edges  with  weights  8T(2),
T(7)</0 and 8T(3),T(6)</1. 
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Condition (i). A merged node V  (Figure 5) is marked with a Potential
Type  2  tag  if  the  merging  has  occurred  for  two  nodes  V£  and  V
(V£ Õ V), where V£ is generated out of RMTs :HT£Lbi

£
i > of the edge hav-

ing a weight of :HT£Lbi
£

i >ìbi
£  and V  is generated out of RMTs :Tbi

i > of

the  edge  having  a  weight  of  :Tbi

i >íbi,  (bi œ 80, 1<,  bi
£ œ 80, 1<)  where

:Tbi

i > > :HT£Lbi
£

i > . A Potential Type 2 node is noted with reference

to the edge having a weight of :HT£Lbi
£

i >ìbi
£  that has a smaller number

of  RMTs.  In  Figure  4,  the  node 8TH4L, TH5L, TH6L, TH7L<  is  a  Potential
Type  2  node  with  reference  to  the  edge  eb  having  weight T(2)/0  that
has  fewer  RMTs  than  the  other  incoming  edges  with  weights  8T(2),
T(7)</0 and 8T(3),T(6)</1. 

Condition  (ii).  A  Potential  Type  2  node  V  (at  output  level  i)  is
marked  as  a  Type  2  node  if  (1)  a  subpath  (Definition  16(c))  can  be
identified  from  the  node  to  the  SN  starting  with  a  RMT
Ti+1 œ 9V - V

£
=;  and (2)  no parallel  subpath (Definition 16(d))  exists

starting with a RMT T£i+1 œ V£.

Condition (ii) of Definition 19 regarding Type 2 nodes is illustrated
later in Section 3.2 Figure 6(b). 

3.2 Generating Rule Vector Graphs

The  algorithm  for  generating  RVGs,  presented  next,  employs  Algo-
rithm 1 for each of the n levels for an n cell null-boundary CA.

Algorithm 2: Generate RVG. 
Input: The RV YR0 R1 … Ri … Rn-1] of an n cell CA. 
Output: The RVG. 

Step 0: 

(a) Generate Root Node: Mark 8TH0L, TH1L, TH2L, TH3L< as the RN 
(the input node for level 0). 
(b) Generate RVS(0): Execute Algorithm 1 to generate the level 0 
RVS for rule R0. 

Step 1: Iterate Step 2 for i  1 to Hn - 2L. 

Step 2: 

(a) Mark Input Node(i): Output Node(i - 1)ØInput Node(i). 

(b) Generate RVS(i): Execute Algorithm 1 for rule Ri and mark 
“Type 1” and “Potential Type 2” nodes. 
(c) Check Status: Condition (ii) of “Type 2” node (Definition 19) at 
each level of the RVG until the SN is reached. 

Step 3: 

(a) Delete odd valued RMTs from the level Hn - 1L input nodes. 

(b) Assign Edge Weight: As per rule RHn-1L to Hn - 1L level edges 
(from input node Hn - 1L to the output node marked as SN). 
(c) Mark “Potential Type 2” node as “Type 2” if Condition (ii) is 
true for the node. 

Stop. 

Step by step execution of Algorithm 2:
Figure 6(b) illustrates the execution of Algorithm 2 for the four cell

null-boundary CA with RV X12 162 166 80\. As per Step 0, the input
node  8TH0L, TH1L, TH2L, TH3L<  is  the  RN and  two  edges  are  drawn  for
Rule  12  as  8TH0L, TH1L< ê 0  and  8TH2L, TH3L< ê 1  generating  the  level  0
output  nodes  as  8TH0L, TH1L, TH2L, TH3L<  and  8TH4L, TH5L, TH6L, TH7L<.
These  two  nodes,  as  per  Step  2(a),  are  the  input  nodes  of  the  first
level. 
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Figure 6. (a) STG and (b) RVG for a four cell CA with RV X12 162 166 80\.

In  the  next  two  iterations,  the  first  and  second  levels  of  the  RVG
for rules 162 and 166 are generated. 

Odd  valued  RMTs  are  deleted,  as  per  Step  3(a),  from  the  third
level  input  nodes  to  generate  the  nodes  8TH0L, TH4L<,  8TH2L, TH6L<,
8TH4L, TH6L<.  Edge  weights  are  next  assigned  as  per  Step  3(b)  for
R3  80 to the edges input to the SN. 

The  Type  1  node  8TH4L, TH6L<  (level  three  input  node)  and  the
Potential  Type  2  nodes  8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<  and
8TH2L, TH3L, TH6L, TH7L<  (level  two  input  nodes)  are  identified  as  per
Step 2(b) while executing Algorithm 1. The first node is marked by a
bold  outline  in  Figure  6(b)  with  reference  to  the  edge  having  weight
8TH4L, TH6L<ê0 (also marked with a bold line). 

The  subpath  starting  from  the  Potential  Type  2  to  the  SN  is
checked  in  Step  2(c)  until  the  SN  is  reached.  The  second  level  input
node  8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<  satisfies  both  Conditions  (i)
and  (ii)  of  Type  2  nodes  (Definition  19)  where
V  8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<,  V£  8TH0L, TH1L, TH4L, TH5L<,
and  8V - V£<  8TH6L, TH7L<.  This  is  true  since  the  subpath
XTH6Lê0 TH4Lê1\ starting with RMT TH6L œ 8V - V£< from the Potential
Type 2 node to the SN through levels two and three is a unique sub-
path  with  no  parallel  counterpart  through  these  two  levels.  As  a  re-
sult,  the  state  9  X1 0 0 1\  through  the  Potential  Type  2  node
8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<  (with  reference  to  the  bold  line
edge  8TH4L, TH6L<ê0)  and  the  path  X8T(2),  T(3)</1,  8T(4),  T(6)</0,
8T(0),  T(4),  T(6)</0,  8T(4)</1\  is  a  NRS.  Similarly,  the  subpath
XTH7Lê1 TH6Lê1\  starting  with  RMT  TH7L œ 8V - V£< (of  a  Potential
Type 2 node) is another unique subpath resulting in the state 11 X1 0
1 1\ as a NRS. 
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The  subpath  starting  from  the  Potential  Type  2  to  the  SN  is
checked  in  Step  2(c)  until  the  SN  is  reached.  The  second  level  input
node  8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<  satisfies  both  Conditions  (i)
and  (ii)  of  Type  2  nodes  (Definition  19)  where
V  8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<,  V£  8TH0L, TH1L, TH4L, TH5L<,
and  8V - V£<  8TH6L, TH7L<.  This  is  true  since  the  subpath
XTH6Lê0 TH4Lê1\ starting with RMT TH6L œ 8V - V£< from the Potential
Type 2 node to the SN through levels two and three is a unique sub-
path  with  no  parallel  counterpart  through  these  two  levels.  As  a  re-
sult,  the  state  9  X1 0 0 1\  through  the  Potential  Type  2  node
8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<  (with  reference  to  the  bold  line
edge  8TH4L, TH6L<ê0)  and  the  path  X8T(2),  T(3)</1,  8T(4),  T(6)</0,
8T(0),  T(4),  T(6)</0,  8T(4)</1\  is  a  NRS.  Similarly,  the  subpath
XTH7Lê1 TH6Lê1\  starting  with  RMT  TH7L œ 8V - V£< (of  a  Potential
Type 2 node) is another unique subpath resulting in the state 11 X1 0
1 1\ as a NRS. 

However,  Condition  (ii)  is  not  satisfied  for  the  Potential  Type  2
node  8TH2L, TH3L, TH6L, TH7L<,  where  V  8TH2L, TH3L, TH6L, TH7L<,
V£  8TH2L, TH3L<, and 8V - V£<  8TH6L, TH7L<. This is true since there
exists  the  following  parallel  subpaths  through  the  second  level  edges
8TH3L TH6L<ê0 and 8TH2L TH7L<ê1: 

(a)  Subpath XTH3Lê0 TH6Lê1\  starting  with  RMT TH3L œ V£  is  paral-
lel  to  subpath  XTH6Lê0 TH4Lê1\  that  starts  with  RMT  TH6L œ 8V - V£<.
As  a  result,  there  exists  the  predecessor  state
3  X0 0 1 1\  XTH0LTH1LTH3LTH6L\  for  the  state  5  X0 1 0 1\  on  the
path  X8TH0L TH1L<ê0, 8TH1L<ê1, 8TH3L, TH6L<ê0, 8TH4L, TH6Lê1<\  from  the
RN  to  the  SN  through  the  Potential  Type  2  node
8TH2L, TH3L, TH6L, TH7L<. 

(b)  Similarly,  the  subpath  XTH2Lê1 TH4Lê1\  starting  with  RMT
TH2L œ V£  is  parallel  to  the  subpath  XTH7Lê1 TH6Lê1\  that  starts  with
RMT  TH7L œ 8V - V£<.  As  a  result,  there  exists  the  predecessor  state
2  X0 0 1 0\  XTH0LTH1LTH2LTH4L\  for  the  state  7  X0 1 1 1\  on  the
path  X8TH0L TH1L<ê0, 8TH1L<ê1, 8TH2L, TH7L<ê1, 8TH4L, TH6L<ê1\  from  the
RN  to  the  SN  through  the  Potential  Type  2  node
8TH2L, TH3L, TH6L, TH7L<. 

Hence,  the  Potential  Type  2  node  8TH2L, TH3L, TH6L, TH7L<  is  not  a
Type 2 node. 

The  input  node  in  the  third  level  8TH4L, TH6L<  is  a  Type  1  node
marked  with  a  broken  outline  because  the  0-edge  is  missing  for  this
node. 

3.3 Time and Space Complexity of Generating Rule Vector Graphs 
for Null-Boundary Cellular Automata

The time complexity of Algorithm 2 for generating a RVG for a null-
boundary  CA  is  clearly  linear  with  each  rule  Ri  of  RV
YR0 R1 … Ri … Rn-1]  being  processed  once  to  generate  the  level  i
RVG  Hi  0, 1, 2, … Hn - 1LL.  The  space  complexity,  as  shown  in
Lemma 1, is also linear because of node merging (Definition 17).
Lemma 1.  The  maximum  number  of  output  nodes  at  any  level  of  a
RVG is six. 

Proof. The set of output nodes at any level are derived as per Table 2
from the RMTs specified in the set :Tbi

i > noted on the ith  level bi-edge

(bi œ 80, 1<)  having  edge-weight  :Tbi

i >íbi.  The  RMTs  in  the  output

nodes, as shown in Table 2, always appear in pairs (one even and one
odd).  The  four  pairs  are  HTH0L, TH1LL,  HTH2L, TH3LL,  HTH4L, TH5LL,
HTH6L, TH7LL.  Hence,  due  to  node  merging  (Definition  17),  the  maxi-
mum  number  of  possible  output  nodes  are  4C2

 6,  which  are
8TH0L, TH1L, TH2L, TH3L<,  8TH4L, TH5L, TH6L, TH7L<,  8TH0L, TH1L, TH4L, TH5L<,
8TH2L, TH3L, TH6L, TH7L<,  8TH0L, TH1L, TH6L, TH7L<,  and  8TH2L, TH3L,
TH4L,TH5L<. ·
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Proof. The set of output nodes at any level are derived as per Table 2
from the RMTs specified in the set :Tbi

i > noted on the ith  level bi-edge

(bi œ 80, 1<)  having  edge-weight  :Tbi

i >íbi.  The  RMTs  in  the  output

nodes, as shown in Table 2, always appear in pairs (one even and one
odd).  The  four  pairs  are  HTH0L, TH1LL,  HTH2L, TH3LL,  HTH4L, TH5LL,
HTH6L, TH7LL.  Hence,  due  to  node  merging  (Definition  17),  the  maxi-
mum  number  of  possible  output  nodes  are  4C2

 6,  which  are
8TH0L, TH1L, TH2L, TH3L<,  8TH4L, TH5L, TH6L, TH7L<,  8TH0L, TH1L, TH4L, TH5L<,
8TH2L, TH3L, TH6L, TH7L<,  8TH0L, TH1L, TH6L, TH7L<,  and  8TH2L, TH3L,
TH4L,TH5L<. ·

Figure  7  displays  the  RVG  of  a  five  cell  null-boundary  CA  (with
RV X12  202  166  90  20\)  having  six  input  nodes  at  the  fourth  level.
The odd valued RMTs are deleted as per Step 3(a) of Algorithm 2. 

Figure 7. An illustration of six nodes in a level with a RVG for a five cell CA
with RV X12 202 166 90 20\.

4. Linear Time Algorithm for Identifying Invertibility

This section reports a linear time algorithm to identify the invertibility
of a null-boundary three neighborhood CA. Theorems 1 and 2 estab-
lish the fact  that the presence of Type 1 or 2 nodes in the RVG of a
CA makes it noninvertible.

Theorem 1. If the RVG of a null-boundary CA has a Type 1 node, it is
a noninvertible CA. 

Proof. As discussed in Definition 18, a Type 1 node is identified by a
missing outgoing bi-edge (bi œ 80, 1<) (Definition 11). Hence the path

::Tbi

i >íbi> for the state Yb0 b1, … bi, … bn-1] from the RN to the SN

cannot be established through the Type 1 node due to a missing edge.
Consequently,  such  a  state  is  nonreachable. The  presence  of  a  NRS
having no pre-image makes the CA noninvertible. Hence, the CA hav-
ing a Type 1 node in its RVG is noninvertible. ·
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Proof. As discussed in Definition 18, a Type 1 node is identified by a
missing outgoing bi-edge (bi œ 80, 1<) (Definition 11). Hence the path

::Tbi

i >íbi> for the state Yb0 b1, … bi, … bn-1] from the RN to the SN

cannot be established through the Type 1 node due to a missing edge.
Consequently,  such  a  state  is  nonreachable. The  presence  of  a  NRS
having no pre-image makes the CA noninvertible. Hence, the CA hav-
ing a Type 1 node in its RVG is noninvertible. ·

Figure  8(b)  illustrates  the  RVG  of  a  noninvertible  CA.  The  input
node 8TH2LTH3L< of level 1 is a Type 1 node, as it does not have an out-
going 1-edge. Hence, all the states corresponding to nonexistent paths
passing  through  the  missing  1-edge  are  nonreachable.  For  example,
the path for state B = Yb0 b1 b2 b3]  X0 1 0 0\ does not exist and con-
sequently  the  state  4  is  nonreachable.  Similarly,  three  other  states
0101(5),  0110(6),  and  0111(7)  with  b1  1  are  nonreachable
(Figure 8(a)). Hence, the CA X13 112 196 64\ is noninvertible. 

HaL HbL

Figure 8. (a) STG and (b) RVG for a four cell CA with RV X13 112 196 64\.
{23} is a Type 1 node, as marked with a broken outline. {46} is a Type 2 node
(marked with a bold line) with reference to edge 2/1 (also marked with a bold
line).

A path in a RVG (Definition 16(b)) identifies a state A and its suc-
cessor  B.  Lemma  2  specifies  the  condition  for  which  a  state  is  non-
reachable,  even though there  is  no missing 0-  or  1-edge from a node
in the RVG. 
Lemma 2.  A NRS exists  in the STG of a CA if  no valid path exists  in
the RVG of the CA.

Proof.  For  each  reachable  state  of  a  CA  there  exists  a  path
Z:Tb0

0 >íb0 :Tb1

1 >íb1 … :Tbi

i >íbi :Tbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1^,  where

each  Ti+1 œ :Tbi+1

i+1 >  is  compatible  with  Ti œ :Tbi

i >.  Consequently,

there  exists  a  predecessor  state  A  Ya0 a1 … ai ai+1 … an-1] 
YT0 T1 … Ti Ti+1 … Tn-1]  of  the  state  Yb0 b1 … bi bi+1 … bn-1] = B.
On  the  other  hand,  if  Ti  and  Ti+1  are  incompatible (Definition  13)
then the path is invalid. Consequently, there exists no predecessor for
the  state  Yb0 b1 … bi bi+1 … bn-1]  and  it  is  not  reachable  from  any
other state. ·
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Proof.  For  each  reachable  state  of  a  CA  there  exists  a  path
Z:Tb0

0 >íb0 :Tb1

1 >íb1 … :Tbi

i >íbi :Tbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1^,  where

each  Ti+1 œ :Tbi+1

i+1 >  is  compatible  with  Ti œ :Tbi

i >.  Consequently,

there  exists  a  predecessor  state  A  Ya0 a1 … ai ai+1 … an-1] 
YT0 T1 … Ti Ti+1 … Tn-1]  of  the  state  Yb0 b1 … bi bi+1 … bn-1] = B.
On  the  other  hand,  if  Ti  and  Ti+1  are  incompatible (Definition  13)
then the path is invalid. Consequently, there exists no predecessor for
the  state  Yb0 b1 … bi bi+1 … bn-1]  and  it  is  not  reachable  from  any
other state. ·

Theorem 2. If the RVG of a null-boundary CA has a Type 2 node, it is
a noninvertible CA. 

Proof. As per Condition (i) (Definition 19), a Type 2 node V  is gener-
ated due to merging output nodes V  and V£ of level i (Figure 5) where
V£ Õ V. The node V£  is generated out of :HT£Lbi

£
i > while V  is generated

out  of  :Tbi

i >  as  per  RMT  transition  of  Table  2.  Since  V£ Õ V,

:HT£Lbi
£

i > < :Tbi

i > .  Consequently,  at  least  two  RMTs  exist  in

(V - V£). 
Let  an  edge  from level  Hi + 1L  be  denoted  as  :Tbi+1

i+1 , HT£Lbi+1

i+1 >íbi+1,

where Tbi+1

i+1 œ HV - V£L, while HT£Lbi+1

i+1 œ V£ and HT£Lbi+1

i+1 – HV - V£L. 

Condition (ii) (Definition 19) ensures the following: 
(a)  The  presence  of  a  subpath  ZTbi+1

i+1 íbi+1 Tbi+2

i+2 íbi+2 …^

(Definition 16(c)) from a Potential Type 2 node to the SN.
(b)  That  there  is  no  subpath  ZHT£Lbi+1

i+1 íbi+1 Tbi+2

i+2 íbi+2 …^  parallel

to (a) (Definition 16(d)). 
If  no  parallel  subpath  exists,  the  path

[:Tb0

0 >íb0 :Tb1

1 >íb1 … :HT£Lbi
£

i >ìbi
£  :Tbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1^  is

invalid  since  the  RMT  pair  HT£Lbi
£

i  and  Tbi+1

i+1  is  incompatible

(Definition 13).  This is  true since Tbi+1

i+1  is  not generated out of HT£Lbi
£

i

through  RMT  transition  of  Table  2.  As  per  Lemma  2,  the  path

[:Tb0

0 >íb0 :Tb1

1 >íb1 … :HT£Lbi
£

i >ìbi
£ :Tbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1_

through a Potential  Type 2 node is  invalid  and no predecessor  exists
for  the  state  Yb0 b1 … bi

£ bi+1 … bn-1].  So  the  state  is  a  NRS  and  the
CA is marked as noninvertible. 

On  the  other  hand,  if  a  parallel  subpath  (Definition  16(d))  exists,
we  can  always  identify  a  valid  path  Z:Tb0

0 >íb0 :Tb1

1 >íb1 …

:HT£Lbi
£

i >ìbi
£ :HT£Lbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1_  from the  RN to  the  SN.

This is true since :HT£Lbi+1

i+1 >íbi+1œV£, RMTs of V£  are generated from

:HT£Lbi
£

i >,  the  node  pair  T£i  and  T£Hi+1L  is  compatible  where

T£i œ :HT£Lbi
£

i >, and T£Hi+1L œ :HT£Lbi+1

i+1 >. As a result there exists a prede-

cessor Yb0 b1 … bi
£ bi+1

£ … bn-1]. ·
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On the  other  hand,  if  a  parallel  subpath  (Definition  16(d))  exists,
we  can  always  identify  a  valid  path  Z:Tb0

0 >íb0 :Tb1

1 >íb1 …

:HT£Lbi
£

i >ìbi
£ :HT£Lbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1_  from the  RN to  the  SN.

This is true since :HT£Lbi+1

i+1 >íbi+1œV£, RMTs of V£  are generated from

:HT£Lbi
£

i >,  the  node  pair  T£i  and  T£Hi+1L  is  compatible  where

T£i œ :HT£Lbi
£

i >, and T£Hi+1L œ :HT£Lbi+1

i+1 >. As a result there exists a prede-

cessor Yb0 b1 … bi
£ bi+1

£ … bn-1]. ·

The instances of absence and presence of a parallel subpath from a
Potential  Type 2  node to  the  SN have  been illustrated in  Section 3.2
(Figure  6)  with  reference  to  the  Potential  Type  2  nodes
8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<  and  8TH2L, TH3L, TH6L, TH7L<.  The
first  Potential  Type 2 node generates  a  NRS. On the other hand,  the
presence  of  a  valid  path  through  the  second  Potential  Type  2  node
prohibits the generation of a NRS. 

Figure 8 illustrates another case of generating a NRS due to the ab-
sence of a parallel subpath through a Potential Type 2 node. 

The state 1111(15) in Figure 8(a) is a NRS because from the Poten-
tial Type 2 node 8TH4LTH6L<  there is a unique subpath XTH6Lê1\  to the
SN without  any parallel  subpath (Definition 16(d)).  Hence,  the  node
8TH4LTH6L<  is  a  Type  2  node.  As  a  result,  the  pre-image  for  the  state
15  X1 1 1 1\  through  the  Type  2  node  8TH4LTH6L<  (input  node  of
level three) does not exist due to the incompatible RMT pair T(2) and
T(6)  on  the  path  88TH0LTH2LTH3L< ê 1 8TH4LTH5LTH6L< ê 1 8TH2L< ê 1
8TH6L<ê1< from the RN to the SN. 

Theorem 3.  Necessary  and sufficient  conditions  for  the  RVG of  an  in-
vertible CA are that no Type 1 or 2 nodes exist.

Proof.  Necessity:  The presence of  a  Type 1 or 2 node,  as  established
in the proof of Theorems 1 and 2, makes the CA noninvertible. 

Sufficiency:  The RVG, as per Algorithm 2,  is  generated with com-
patible  RMT  pairs  on  incoming  and  outgoing  edges  of  any  node.
RMT  Ti+1  on  the  outgoing  edge  with  weight  :Tbi+1

i+1 >íbi+1  is  gener-

ated,  as  per  Table  2,  out  of  Ti œ :Tbi

i >  on  the  incoming  edge  with

weight :Tbi

i >íbi.  Consequently,  if  there is  no Type 1 or 2 node, then

for  each  state  B = Yb0 b1 … bi … bn-1]  there  exists  a  path

Z:Tb0

0 >íb0 :Tb1

1 >íb1 … :Tbi

i >íbi … :Tbn-1

n-1 >íbn-1^ generating its previ-

ous  state  A = Ya0 a1 … ai … an-1]  YT0 T1 … Ti … Tn-1],  where

Ti œ :Tbi

i > and the RMT string is a valid one with only one compati-

ble RMT pair Ti and Ti+1 (i  0 to Hn - 2L). Hence, each state B has a
predecessor A. Since each state has one successor state and there is no
NRS, there exists only one pre-image of each state. Hence, the CA is
an invertible one. ·

A noninvertible CA, as established in Theorem 3, can be identified
by  the  presence  of  either  Type  1  or  2  nodes.  Algorithm 3  formalizes
the identification procedure. 
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Algorithm 3: Check Invertibility 

Input: An n cell CA, YR0, R1, … Ri, … Rn-1]. 
Output: Identification of Invertibility. 

Step 0: Execute Algorithm 2 to generate the RVG of the CA along with
identifying Type 1 and 2 nodes, if there are any. 
Step 1: Iterate Step 2 for each level Hi  1 to Hn - 1L) of the RVG. 

Step 2: Check node type for the presence of any Type 1 or 2 nodes. 

Step 3: Mark the CA as noninvertible if a Type 1 or 2 node exists.

Otherwise, mark the CA as invertible.

Stop. 

Step by step execution of Algorithm 3:
An illustration of Algorithm 3 is shown in Figure 9 for the four cell

CA X6 240 60 65\. The RVG of the CA (Figure 9(b)) is drawn by exe-
cuting  Algorithm 2.  Step  by  step  execution  of  Algorithm 2  has  been
illustrated in Section 3.2 (Figure 6(b)).  Step 2(b) of Algorithm 2 calls
Algorithm 1. Step 3(b) of Algorithm 1 identifies a Type 1 node, while
a Potential Type 2 node is identified in Step 6(b). 

HaL HbL

Figure  9.  An  illustration  of  Algorithm  3  with  a  four  cell  CA  X6 240 60 65\.
(a) The STG and (b) the RVG.

In  each  iteration  of  Step  2(c)  of  Algorithm  2  at  each  level  of  the
RVG, the status of Condition (ii)  of  the Type 2 node (Definition 19)
is  checked.  This  checking  is  implemented  for  each  Potential  Type  2
node  until  the  SN  is  reached.  Finally,  on  the  last  iteration  at  level
Hn - 1L  (Step  3(c)  of  Algorithm  2),  the  Potential  Type  2  node  is
marked as a Type 2 node if Condition (ii) is found to be true for a sub-
path  from the  Potential  Type  2  node  to  the  SN.  Thus,  in  each  itera-
tion  step  of  Algorithm 2,  the  presence  of  a  Type  1  node, if  it  exists,
gets  detected.  On  the  other  hand,  marking  a  Type  2  node  waits  for
traversal through the RVG until the SN is reached. 
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In  each  iteration  of  Step  2(c)  of  Algorithm  2  at  each  level  of  the
RVG, the status of Condition (ii)  of  the Type 2 node (Definition 19)
is  checked.  This  checking  is  implemented  for  each  Potential  Type  2
node  until  the  SN  is  reached.  Finally,  on  the  last  iteration  at  level
Hn - 1L  (Step  3(c)  of  Algorithm  2),  the  Potential  Type  2  node  is
marked as a Type 2 node if Condition (ii) is found to be true for a sub-
path  from the  Potential  Type  2  node  to  the  SN.  Thus,  in  each  itera-
tion  step  of  Algorithm 2,  the  presence  of  a  Type  1  node, if  it  exists,
gets  detected.  On  the  other  hand,  marking  a  Type  2  node  waits  for
traversal through the RVG until the SN is reached. 

Step 2 of  Algorithm 3 scans through each level  to detect  the pres-
ence of a Type 1 or 2 node. No Type 1 or 2 node exists in the RVG of
Figure 9(b). Hence, it is an invertible CA. Its state transition behavior,
as shown in Figure 9(a), consists of six cycles. 

The absence of a Type 1 and 2 node, in general, imparts the follow-
ing  characteristic  on  the  RVG:  each  node  at  each  level  i  (i  0  to
Hn - 2L) of an n cell CA has four RMTs, while for i  n - 1, the num-
ber of RMTs is two. 

4.1 Invertible Uniform Cellular Automata and Elementary Rules

In a uniform CA, the same rule is employed for each cell. All 256 CA
rules,  as  per  [3],  can  be  divided  into  88  groups  of  elementary  rules.
Each elementary  rule  group has  been derived as  follows.  Each group
consists of four rules marked as (r1, r2, r3, r4); the first rule r1  is the
conventional  rule  number,  the  second  rule  r2  is  obtained  by  inter-
changing  bits  1  and 0,  the  third  rule  r3  is  obtained  by  interchanging
the left and right neighbors, while rule r4  is derived by applying both
operations. A few elementary rules are listed in Table 3 as per the for-
mulation  noted  in  [3].  Out  of  the  88  groups  of  elementary  rules,  six
groups generate invertible n bit CAs (Table 3). Figures 10, 11, and 12
illustrate  the  results  of  Algorithm 3  for  n  4,  5,  and  6  cell  uniform
CAs  with  rule  105.  The  RVGs  shown  in  Figures  10(b),  11(b),  and
12(b) are drawn as per Algorithm 2. The four and six cell CAs, as dis-
played  by  the  STGs  shown in  Figures  10(a)  and  12(a),  are  invertible
since  there  is  no Type 1  or  2  node in  any level  of  the  corresponding
RVGs. On the other hand, the five cell CA, as shown in Figure 11(a),
is not invertible due to the presence of Type 1 nodes (marked by bold
lines in Figure 11(b)) at the fourth level. 

Elementary Rule Group Size for which the CA is Invertible

H51, 51, 51, 51L for all values of n

H60, 195, 102, 153L for all values of n

H90, 165, 90, 165L for even values of n

H105, 105, 105, 105L for all values of n excepting
n  2 + 3 y Iy  0, 1, 2, 3 …M

H150, 150, 150, 150L for all values of n excepting
n  2 + 3 y Iy  0, 1, 2, 3 …M

H204, 204, 204, 204L for all values of n

Table 3. Invertible elementary group rules.
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Figure  10.  An  illustration  of  Algorithm  3  with  a  four  cell  uniform  CA  with
rule X105 105 105 105\. (a) The STG and (b) the RVG.

HaL HbL

Figure 11. An illustration of Algorithm 3 with a five cell uniform CA with rule
105. (a) The STG and (b) the RVG. Type 1 nodes are marked with bold lines.

Table 3 displays all the associated rules (51, 60, 195, 102, 153, 90,
165, 105, 150, 204) of different groups and the value of n  for which
the rule generates invertible CAs. Table 3 has been derived by apply-
ing Algorithm 3 on the RVG of an n cell uniform CA. A formal proof
of  correctness  of  these  results  can  be  derived  from  the  structure  of
their RVG. 
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Figure 12. An illustration of Algorithm 3 with a six cell uniform CA with rule
105. (a) The STG and (b) the RVG.

5. Experimental Results

Algorithm  3  has  been  coded  using  the  C  language  on  the  Fedora  7
platform and run on an IBM Xeon server with various lengths of CAs
ranging  up  to  10 000  cells.  The  CAs  are  chosen  arbitrarily  with  an
equal  percentage  of  uniform and  hybrid  CAs.  Figure  13  displays  the
linear  growth  of  storage  space  and  execution  time,  as  confirmed  in
Section 3.3. 

6. Conclusion

This  paper  reports  a  linear  time  algorithm  for  identifying  null-
boundary  three  neighborhood  invertible  cellular  automata  (CAs).  An
efficient data structure called the rule vector graph (RVG) of a cellu-
lar  automaton  (CA)  is  reported.  The  RVG  of  a  CA  can  be  derived
from  its  rule  vector  (RV).  Linear  time  traversal  of  a  RVG  identifies
whether the CA is  invertible  or  not.  This  result  presents  a  significant
improvement  over  quadratic  time  complexity  reported  earlier  based
on the general network of de Bruijn graphs.
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Figure  13.  Experimental  results.  (a)  Shows  the  growth  in  storage  space  and
(b) shows the growth of execution time.
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