
Linear Time Algorithm for Identifying the
Invertibility of Null-Boundary Three
Neighborhood Cellular Automata

Nirmalya S. Maiti
Soumyabrata Ghosh*

Shiladitya Munshi
P. Pal Chaudhuri

Cellular Automata Research Lab (CARL)
Alumnus Software Limited, Sector V, Kolkata, West Bengal
India 700091
*soumyabrata@alumnux.com

This paper reports an algorithm to check for the invertibility of null-
boundary three neighborhood cellular automata (CAs). While the best
known result for checking invertibility is quadratic [1, 2], the complex-
ity of the proposed algorithm is linear. An efficient data structure called
a rule vector graph (RVG) is proposed to represent the global function-
ality of a cellular automaton (CA) by its rule vector (RV). The RVG of
a null-boundary invertible CA preserves the specific characteristics that
can be checked in linear time. These results are shown in the more gen-
eral case of hybrid CAs. This paper also lists the elementary rules [3]
that are invertible.

1. Introduction

Theory and applications of cellular automata (CAs) were initiated in
[4] and carried forward by a large number of authors [3, 5|38]. By
convention, a cellular automaton (CA) that employs the same rule for
each of its cells is referred to as a uniform CA. However, a large num-
ber of authors [13, 14, 16|19, 21, 29, 30, 37, 38] have discussed the
hybrid CA concept where different rules are employed in different
cells. An n cell hybrid CA (Figure 1) is represented by its rule vector
(RV) YR0, R1, … , Ri, … , Rn-1] where the same rule is not employed
for each of the cells. For a uniform CA, R0  R1  Ri  Rn-1.
In subsequent discussions, both hybrid and uniform CAs are referred
to as simply CAs. For an invertible CA, its global map is invertible.
Each of its states is reachable and there is no Garden of Eden (i.e.,
nonreachable) state. Hence, an invertible CA has exactly one predeces-
sor for a given state. The need to model different real-life physical pro-
cesses provides the major motivation for investigating the invertibility
of CAs.

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

HaL

HbL

Figure 1. General structure of a CA employing RV YR0, R1, … Ri, … RHn-1L]

of an n cell CA. (a) An n cell null-boundary CA. (b) Rule Ri employed on
cell i.

The invertibility issue of CAs was first addressed by Amoroso and
Patt [31]. Subsequently, many theoretical works on invertible CAs
(ICAs) are reported [1, 2, 9, 11]. Toffoli and Margolus [12] have rep-
resented the existence of ICAs that are computation and construction
universal. Sutner [1, 2] has utilized the general network of a de Bruijn
graph to represent a CA and to identify its invertibility in quadratic
time. In this context, this paper reports a linear time algorithm for
checking the invertibility of a null-boundary three neighborhood CA.
While a de Bruijn graph is a general network with wide applications
in different fields, the structure of a rule vector graph (RVG) has been
specifically designed to represent CA characteristics. As a result, it has
become possible to design a linear time algorithm for traversing a
RVG to identify invertibility.

Generating the RVG of a CA from its RV is presented in Section 3,
subsequent to introducing a few basic terminologies in Section 2. The
linear time algorithm for checking the invertibility of a null-boundary
CA is reported in Section 4. This section also lists the elementary rules
[3] that are identified as invertible by the algorithm. Experimental re-
sults are reported in Section 5 in respect to growth of storage space
and execution time for the algorithm. Unless mentioned otherwise, a
CA in the rest of the paper refers to a three neighborhood null-bound-
ary CA.

2. Basic Terminologies and Definitions

Generating the next state of a three neighborhood CA rule can be
viewed as a three variable function with eight possible input patterns.
Borrowing from the concept of switching theory [39], such input pat-
terns (Table 1) are referred to as rule minterms (RMTs). A few basic
terminologies and definitions used in this paper are summarized in the
rest of this section.

 90 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Generating the next state of a three neighborhood CA rule can be
viewed as a three variable function with eight possible input patterns.
Borrowing from the concept of switching theory [39], such input pat-
terns (Table 1) are referred to as rule minterms (RMTs). A few basic
terminologies and definitions used in this paper are summarized in the
rest of this section.

Next State Value bi

TH7L TH6L TH5L TH4L TH3L TH2L TH1L TH0L Rule Number

7 6 5 4 3 2 1 0 ~

1 1 0 0 1 0 1 0 202

1 0 1 0 0 1 1 0 166

0 1 0 1 1 0 1 0 90

0 0 0 1 0 1 0 0 20

0 1 1 1 1 0 0 0 120

Table 1. RMT and CA rule. The left columns represent the next state value bi

of cell i for the present state values Yai-1 ai ai+1] of cells Hi - 1L, i, and Hi + 1L.
The eight minterms Yai-1 ai ai+1]  000 to 111 are represented as T(0) to T(7)
in the text and 0 to 7 in the figures. The decimal value of the 8-bit binary pat-
tern in the left column, referred to as its rule number, is noted in the right
column.

Definition 1. The ordered sequence of rules YR0 R1 … Ri … Rn-1] of an
n cell CA is referred to as its rule vector (RV) where rule Ri is em-
ployed on cell i (Figure 1). The RV of a uniform CA employs the
same rule R for each cell IR0  R1  Ri   Rn-1  RM and is rep-
resented by the RV XR R … R\.

Definition 2. The rule employed on a CA cell represents a local map,
that is, the local next state function denoted as f . Thus, fi represents
the local next state function corresponding to the rule Ri employed on
cell i.

Definition 3. The global next state function F is derived from the local
next state functions as F = Yf0 f1 … fi … fn-1] with the three variable
Boolean function fi employed on the current state Yai-1, ai, ai+1] of
cells Hi - 1L, i, and Hi + 1L, respectively.

Definition 4. The global present and next states are denoted by capital
letters A and B, respectively. Thus A = Ya0, a1 … ai … an-1] and
B = FHAL = Yb0, b1 … bi … bn-1]. That is, B is the successor state of A
and A is the predecessor state of B. Consequently, for the invertible
CA, F£HBL = A, where F£ is the inverse of the global next state func-
tion F.

Both local and global states are noted simply as “state” in the rest
of the paper and can be differentiated from the context. For example,
as shown later in Figure 2(a), the state B = Yb0 b1 b2 b3]  H0111L  7
of the four cell uniform CA X120 120 120 120\ is the successor of
state A = Ya0 a1 a2 a3]  H0110L  6, where the present and next
states of the first cell are a1 = 1 and b1 = 1.

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 91

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Both local and global states are noted simply as “state” in the rest
of the paper and can be differentiated from the context. For example,
as shown later in Figure 2(a), the state B = Yb0 b1 b2 b3]  H0111L  7
of the four cell uniform CA X120 120 120 120\ is the successor of
state A = Ya0 a1 a2 a3]  H0110L  6, where the present and next
states of the first cell are a1 = 1 and b1 = 1.

Definition 5. For a CA having F as its next state function, a state B is a
nonreachable state (NRS) if F£HBL = f, where F£ is the inverse of F.
That is, there does not exist any predecessor of state B. An NRS is
also referred to as a Garden of Eden state.

Definition 6. The eight minterms (Table 1) of the three variable Boolean
function fi, corresponding to rule Ri employed on cell i, are referred
to as the rule minterms (RMTs). The three Boolean variables are ai-1,
ai, ai+1, the current state values of cells Hi - 1L, i, and Hi + 1L, respec-
tively, whereby the minterm m = Yai-1 ai ai+1]. THmL denotes a single
RMT in the text and it is noted simply as m for clarity in the figures.
The symbol 8T< represents the set of all eight RMTs, whereby
8T<  8TH0L, TH1L, TH2L, TH3L, TH4L, TH5L, TH6L, TH7L<  8THmL<. In gen-
eral, a single RMT for cell i is also denoted as Ti œ 8T< , where
Ti  Yai-1, ai, ai+1].

Definition 7. For a specific CA rule Ri, the next state value bi of cell i is
0 for a subset of RMTs while for the other subset the value is 1.
Hence, a CA rule divides the RMTs into two subsets referred to as
0-RMT and 1-RMT, respectively, which are denoted as 9T0

i = and 9T1
i =

where 9T0
i = › 9T1

i =  f, 9T0
i = ‹ 9T1

i =  8T< . For the rule 90 (Table 1)

on cell i, 9T0
i =  8TH7L, TH5L, TH2L, TH0L<, 9T1

i =  8T H6L, TH4L, TH3L,
T H1L<.

Note that in general, with reference to the next state bi of cell i, a
RMT subset containing qi

£ number of RMTs is denoted as

:Tbi

i >  :Tbi,1
i , Tbi,2

i , … Tbi,qi

i … Tbi,qi
£

i >, Tbi,qi

i œ :Tbi

i >, bi  80, 1<,

qi  1, 2 … qi
£, qi

£  :Tbi

i >  cardinality of the subset. However, a

RMT Tbi,qi

i is simply noted as Ti œ :Tbi

i > where reference to the next

state bi is not specified. Ti represents a single RMT while a subset of
its RMTs denoted as 8Ti<, as elaborated next, is also referred to as
9Vi=.

 92 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Definition 8. A subset of RMTs 9Ti= Œ 8T < of cell i without reference to
the next state value bi is denoted as 9Vi=. The xi subsets are denoted

as :Vxi
i >, where xi  1, 2, … xi

£ , ‹xi1
xi
£

:Vxi
i >  8T< and xi

£ is the num-

ber of subsets formed out of the set of RMTs 8T<. The symbol 8V<
representing a subset of RMTs is used to denote a node in the RVG in-
troduced next.

3. Rule Vector Graph

This section presents an efficient data structure called the rule vector
graph (RVG) (Figure 2) designed to represent CA characteristics. The
preliminary RVG concept was reported in [34|36]. The RVG of an n
cell CA denoted by its RV YR0, R1 … Ri … Rn-1] consists of n levels
marked as 0 to Hn - 1L; the level i refers to the rule Ri. Each level has a
set of input and output nodes connected by directed edges. Figure 2(a)
shows the state transition graph (STG) while Figure 2(b) shows the
RVG of a uniform CA X120 120 120 120\. Figure 3(b) illustrates a
RVG for the hybrid CA X202 166 90 20\.

HaL HbL

Figure 2. (a) STG and (b) RVG of a four cell CA employing uniform rule 120
represented by its RV X120 120 120 120\.

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 93

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

HaL HbL

Figure 3. (a) STG and (b) RVG of a CA with RV X202 166 90 20\. The binary
bit string of a state is denoted by its decimal value. A RMT THmL is denoted
as m (m = 0 to 7) and SN is the sink node. Because of the null boundary, as
per Step 3 of Algorithm 2, only even valued RMTs can exist on the third level
input nodes V1

3 and V2
3.

Definition 9. A node represents a subset of RMTs. An output node of
level i is derived from its input node through RMT transition
(Table 2). The output node of level i is the input node of level Hi + 1L
corresponding to the rule Ri+1.

Definition 10. The edge of a level represents the RMT transition from
input to output node. Let Ti  THmL  Yai-1 ai ai+1]  X1 0 1\ be a
RMT of an input node. Consequently, Ti+1 (a RMT of an output
node) can be derived from Ti as Ti+1  Yai ai+1 ai+2]  X0 1 0\  2
and X0 1 1\  3 by deleting ai-1 and appending 0 and 1 as ai+2.
Table 2 shows this RMT transition for all eight RMTs.

Ti Yai-1 ai ai+1] Ti+1 Yai ai+1 ai+2]

TH0L H000L and TH4L H100L TH0L  000 H0L TH1L  001 H1L

TH1L H001L and TH5L H101L TH2L  010 H2L TH3L  011 H3L

TH2L H010L and TH6L H110L TH4L  100 H4L TH5L  101 H5L

TH3L H011L and TH7L H111L TH6L  110 H6L TH7L  111 H7L

Table 2. RMT transition. The left column refers to the RMTs of cell i while
the right column refers to the corresponding RMTs of cell Hi + 1L.

 94 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Definition 11. The 0-edge and 1-edge refer to the edges from an input
node of level i corresponding to the 0-RMT and 1-RMT for the rule
Ri employed on cell i. The bi-edge (bi œ 80, 1<) is assigned the edge

weight :Tbi

i >íbi, where :Tbi

i > represents the set of RMTs for rule Ri

for which the next state value is bi.

3.1 Generating Rule Vector Graphs for Level i

As per the rule Ri, the RMTs of an input node can be divided into

two groups referred to as 0-RMT 9T0
i = and 1-RMT 9T1

i =

(Definition 7). Two edges marked as 0-edge and 1-edge are derived
from an input node corresponding to 0-RMT and 1-RMT respectively.

Each RMT Ti œ :Tbi

i > specifies the decimal value corresponding to

the three bit string Yai-1 ai ai+1]. An output node :Vxi+1
i+1 > is derived

from the RMT subset :Tbi

i >. A RMT Ti+1 œ :Vxi+1
i+1 > is generated, as

noted in Table 2, by deleting ai-1 from Ti  Yai-1 ai ai+1] and append-
ing 0 and 1 bits as ai+2, whereby Ti+1  Yai ai+1 ai+2]. The algorithm
employed to generate the RVG for level i for rule Ri follows. Such a

graph is referred to as the ith rule vector subgraph RVSHiL.

Algorithm 1: Generate RVS HiL for rule Ri.
We employ constructs such as Draw Edge, Assign Edge Weight, Iterate,
Attach Tag, Generate RMTs, Derive Output Node, and Node Merging.

Input: The rule Ri and the input nodes 9Vxi
i = Ixi  1, 2, … xi

£, xi
£ 

number of input nodes) that are output nodes of level Hi - 1L derived for
rule Ri-1.

Output: The ith level RVG with its edges and output nodes that serve as
input nodes for level Hi + 1L.
Step 1:

(a) Draw Edge: bi-edge (bi œ 80, 1<) for rule Ri out of each input
node.

(b) Assign Edge Weight: :Tbi

i >íbi Ø bi-edge, (bi œ 80, 1<).

Step 2: Iterate Steps 3 through 6 for each edge.

Step 3:

(a) Attach Tag: “SLS Tag” Ø edge with weight :Tbi

i >íbi if bi  ai,

where Ti  Yai-1 ai ai+1], JT
i œ :Tbi

i >N.

/* The edge with the SLS Tag is referred to as the potential self loop
state edge (PSLSE) and can be used to identify all self loop states
(SLSs). */

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 95

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Figure 4. RVS for rule 120. A RMT THmL is simply denoted as m and the
punctuation symbol “,” between two RMTs is removed for clarity. {012367}
and {4567} are Potential Type 2 nodes with reference to edges ea and eb,
respectively, and 80, 1< is a Type 1 node due to the missing 1-edge.

(b) Attach Tag: “Type 1” Ø Input node, if either the 0- or 1-edge
outgoing from the node is missing.

Step 4: Generate RMTs: 9Ti+1= for each Ti œ :Tbi

i >, in the output node

as per Table 2.

Step 5: Derive Output Node: :Vxi+1
i+1 >, xi+1  1, 2, … , where

Ê9Ti+1=  :Vxi+1
i+1 >.

Step 6:

(a) Node Merging: Merge V£ with V if V£ Œ V, where V and V£ are
the output nodes generated in Step 3.
(b) Attach Tag: “Potential Type 2” Ø Merged node V, if V£ Õ V.

Stop.

Step by step execution of Algorithm 1:
We now give an example to illustrate the execution of Algorithm 1

for rule 120, which has the binary string 01111000 (Table 1).
Figure 4 shows the RVS(i) for rule Ri  120. There are three input

nodes: V1
i  8TH0L, TH1L<, V2

i  8TH2L, TH3L, TH4L, TH5L<, and

V3
i  8T H2L, TH3L, TH6L, TH7L<. As per Step 1, there is only one edge

with weight 8TH0L, TH1L<ê0 out of input node V1
i . In the first iteration

(Step 2) this edge is marked as Type 1 as per Step 3(b) because the out-
going 1-edge is missing from this input node. As per Steps 4 and 5,
the 8TH0L, TH1L<ê0 edge (ea) generates the output node
8TH0L, TH1L, TH2L, TH3L< (not shown explicitly in Figure 4) since it gets
merged in Step 6(a). In subsequent iterations, from
9V2

i =  8TH2L, TH3L, TH4L, TH5L< two edges eb and ec are drawn with
the edge weights 8T H2L<ê0 and 8TH3L, TH4L, TH5L<ê1, respectively. ec gen-
erates the output node V1

i+1  8TH0L, TH1L, TH2L, TH3L, TH6L, TH7L<.

Since the output node out of ea 8TH0L, TH1L, TH2L, TH3L< œ V1
i+1, it is

merged with V1
i+1. The merging is represented by ea entering into

V1
i+1  8TH0L, TH1L, TH2L, TH3L, TH6L, TH7L<. Similarly, edge eb with

weight 8TH2L<ê0 generates 8TH4L, T H5L<, which gets merged with
V2

i+1  8TH4L, TH5L, TH6L, TH7L< generated out of ed from V3
i . Hence,

as per Step 6(b), V1
i+1 and V2

i+1 are marked as Potential Type 2 nodes.

The edge ee coming out from node V3
i generates

V5
i+1  8TH4L, TH5L, TH6L, TH7L< that gets merged with V2

i+1.

 96 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Step by step execution of Algorithm 1:
We now give an example to illustrate the execution of Algorithm 1

for rule 120, which has the binary string 01111000 (Table 1).
Figure 4 shows the RVS(i) for rule Ri  120. There are three input

nodes: V1
i  8TH0L, TH1L<, V2

i  8TH2L, TH3L, TH4L, TH5L<, and

V3
i  8T H2L, TH3L, TH6L, TH7L<. As per Step 1, there is only one edge

with weight 8TH0L, TH1L<ê0 out of input node V1
i . In the first iteration

(Step 2) this edge is marked as Type 1 as per Step 3(b) because the out-
going 1-edge is missing from this input node. As per Steps 4 and 5,
the 8TH0L, TH1L<ê0 edge (ea) generates the output node
8TH0L, TH1L, TH2L, TH3L< (not shown explicitly in Figure 4) since it gets
merged in Step 6(a). In subsequent iterations, from
9V2

i =  8TH2L, TH3L, TH4L, TH5L< two edges eb and ec are drawn with
the edge weights 8T H2L<ê0 and 8TH3L, TH4L, TH5L<ê1, respectively. ec gen-
erates the output node V1

i+1  8TH0L, TH1L, TH2L, TH3L, TH6L, TH7L<.

Since the output node out of ea 8TH0L, TH1L, TH2L, TH3L< œ V1
i+1, it is

merged with V1
i+1. The merging is represented by ea entering into

V1
i+1  8TH0L, TH1L, TH2L, TH3L, TH6L, TH7L<. Similarly, edge eb with

weight 8TH2L<ê0 generates 8TH4L, T H5L<, which gets merged with
V2

i+1  8TH4L, TH5L, TH6L, TH7L< generated out of ed from V3
i . Hence,

as per Step 6(b), V1
i+1 and V2

i+1 are marked as Potential Type 2 nodes.

The edge ee coming out from node V3
i generates

V5
i+1  8TH4L, TH5L, TH6L, TH7L< that gets merged with V2

i+1.
A few terminologies relevant for subsequent discussions are intro-

duced next.

Definition 12. The CA state can be expressed as a RMT string
YT0 T1 … Ti … Tn-1] where Ti œ 8T<  8TH0LTH1LTH2LTH3LTH4LTH5L
TH6LTH7L<, and Ti  Yai-1 ai ai+1]. Thus Ti denotes the decimal value
of the bit string Yai-1 ai ai+1], where ai-1, ai, and ai+1 represent the
current state of the cells Hi - 1L, i, and Hi + 1L, respectively. For a null-
boundary CA, the left neighbor of the cell 0 and the right neighbor of
the cell Hn - 1L of a CA are assumed to be null (0). Consequently,
T0  Y0 a0 a1], and Tn-1  Yan-2 an-1 0]. For example, the state of a
four bit string 1010 of a four cell can be denoted as the RMT string
YT0 T1 T2 T3]  XTH2LTH5LTH2LTH4L\ since 010  2 for the leftmost
cell (cell 0), 101  5 for cell 1, 010  2 for cell 2, and finally 100  4
for the rightmost cell (cell 3). Conversely, a CA state expressed as a
RMT string, say, XTH1LTH3LTH6LTH4L\, can be converted to a binary
string X0 1 1 0\  6.

Definition 13. A pair of RMTs Ti and Ti+1 in a RMT string
Y… Ti-1 Ti Ti+1 …] (where Ti  Yai-1 ai ai+1] and Ti+1 
Yai

£ ai+1
£ ai+2

£]) are compatible if (i) ai  ai
£ and (ii) ai+1  ai+1

£ . The

pair Ti and Ti+1 is referred to as incompatible if these are not
compatible.

Definition 14. A RMT string YT0 … Ti-1 Ti Ti+1 … Tn-1] representing
the state of a CA is a valid RMT string if each pair Ti and Ti+1 (i  0
to Hn - 2L) is a compatible RMT pair.

Definition 15. For a null-boundary CA, the leftmost cell (cell 0) can
have RMTs TH0L, TH1L, TH2L, TH3L. Consequently, the input node for
level 0, 8TH0L, TH1L, TH2L, TH3L< is referred to as the root node (RN).
The edges outgoing from the RN can have only the RMTs
TH0L, TH1L, TH2L, TH3L. For a null-boundary n cell CA, cell Hn - 1L can
have the value 8TH0L, TH2L, TH4L, TH6L<. Consequently, input nodes and
the edges on level Hn - 1L can have only the RMTs
TH0L, TH2L, TH4L, TH6L where m is even for the RMT THmL. The output
node of level Hn - 1L is marked as the sink node (SN).

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 97

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Definition 15. For a null-boundary CA, the leftmost cell (cell 0) can
have RMTs TH0L, TH1L, TH2L, TH3L. Consequently, the input node for
level 0, 8TH0L, TH1L, TH2L, TH3L< is referred to as the root node (RN).
The edges outgoing from the RN can have only the RMTs
TH0L, TH1L, TH2L, TH3L. For a null-boundary n cell CA, cell Hn - 1L can
have the value 8TH0L, TH2L, TH4L, TH6L<. Consequently, input nodes and
the edges on level Hn - 1L can have only the RMTs
TH0L, TH2L, TH4L, TH6L where m is even for the RMT THmL. The output
node of level Hn - 1L is marked as the sink node (SN).

Definition 16. Path, subpath, and parallel subpath.
(a) Path in a RVG. A path in a RVG is a sequence of edges from the

RN to the SN. The level i edge of a RVG is marked with the weight
:Tbi

i >íbi where bi œ 80, 1<, :Tbi

i >  :Tbi 1
i , Tbi 2

i … Tbi qi

i … Tbi qi
£

i >,

and Tbi qi

i œ :Tbi

i > Œ 8T<= 8TH7L, TH6L, TH5L, TH4L, TH3L, TH2L, TH1L,

TH0L<, qi  1, 2 … qi
£ and qi

£ is the cardinality of RMTs in the set

:Tbi

i >. Thus, a path in the RVG of an n cell CA can be denoted as a

set of sequential weighted edges ::Tb0

0 >íb0, :Tb1

1 >íb1, …

:Tbi

i >íbi,… :Tbn-1

n-1 >íbn-1>::Tbi

i >íbi> for i  0 to Hn - 1L, where the

RMT Ti œ :Tbi

i > is compatible with Ti+1 œ :Tbi+1

i+1 >.

(b) Path representing a CA state. The set of sequential edges corre-
sponding to a valid RMT string ZTb0 q0

0 , Tb1 q1

1 , … Tbi qi

i , … Tbn-1 qn-1

n-1 ^

JTbi qi

i œ :Tbi

i >N on the path from the RN to the SN represents a CA

state. The global state A = Ya0, a1, … ai, … an-1] can be derived by
converting the RMT string to its binary counterpart (Definition 12).
Thus, A=ZTb0 q0

0 , Tb1 q1

1 , … Tbi qi

i , … Tbn-1 qn-1

n-1 ^Ya0 a1 … ai … an-1].

Its next state B = Yb0, b1, … bi, … bn-1] can be derived from the path

::Tbi

i >íbi>. Consequently, forward traversal of the path ::Tbi

i >íbi>

for a state A = Ya0 a1, … ai, … an-1]  YT0 T1 … Ti … Tn-1] gener-
ates its next state B = Yb0 b1, … bi … bn-1]. Similarly, backward
traversal with B generates its previous state(s) as
YT0 T1 … Ti … Tn-1]. The state B is a NRS if the path between the
root and sink nodes cannot be established due to missing edges or in-
compatible RMT pairs Ti and Ti+1.

(c) Subpath. A subpath refers to a section of a path

[:Tbi-1

i-1 >íbi-1 :Tbi

i >íbi :Tbi+1

i+1 >íbi+1 … :Tbj

j
>ìbj_ from level (i - 1) to

level j of a RVG that starts with a RMT Ti-1 œ :Tbi-1

i-1 >.

(d) Parallel subpath. A subpath Z:HT£Lbi+1

i+1 >íbi+1 :HT£Lbi+2

i+2 >íbi+2 …^ is

parallel to the subpath Z:Tbi+1

i+1 >íbi+1 :Tbi+2

i+2 >íbi+2 …^ if both have

identical next state values bi+1, bi+2 … bn-1 at each level from level
Hi + 1L to level Hn - 1L of a RVG.

 98 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

(d) Parallel subpath. A subpath Z:HT£Lbi+1

i+1 >íbi+1 :HT£Lbi+2

i+2 >íbi+2 …^ is

parallel to the subpath Z:Tbi+1

i+1 >íbi+1 :Tbi+2

i+2 >íbi+2 …^ if both have

identical next state values bi+1, bi+2 … bn-1 at each level from level
Hi + 1L to level Hn - 1L of a RVG.

With reference to the node merging noted in Step 6 of Algorithm 1,
the following definitions are formally introduced after defining a path
and subpath in a RVG.

Definition 17. Let V and V£ be a pair of output nodes generated by
Algorithm 1, where each node covers a subset of RMTs. The node V£

gets merged with the node V if V£ Œ V. The resulting node V is
referred to as a merged node (Figure 5).

Figure 5. Node merging.

Definition 18. A node V is marked with a Type 1 tag if there is a
missing 0/1-edge outgoing from the node. The node V1

i is a Type 1
node in Figure 4.

Definition 19. A Type 2 node satisfies the following two conditions.
Condition (i). A merged node V (Figure 5) is marked with a Potential

Type 2 tag if the merging has occurred for two nodes V£ and V
(V£ Õ V), where V£ is generated out of RMTs :HT£Lbi

£
i > of the edge hav-

ing a weight of :HT£Lbi
£

i >ìbi
£ and V is generated out of RMTs :Tbi

i > of

the edge having a weight of :Tbi

i >íbi, (bi œ 80, 1<, bi
£ œ 80, 1<) where

:Tbi

i > > :HT£Lbi
£

i > . A Potential Type 2 node is noted with reference

to the edge having a weight of :HT£Lbi
£

i >ìbi
£ that has a smaller number

of RMTs. In Figure 4, the node 8TH4L, TH5L, TH6L, TH7L< is a Potential
Type 2 node with reference to the edge eb having weight T(2)/0 that
has fewer RMTs than the other incoming edges with weights 8T(2),
T(7)</0 and 8T(3),T(6)</1.

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 99

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Condition (i). A merged node V (Figure 5) is marked with a Potential
Type 2 tag if the merging has occurred for two nodes V£ and V
(V£ Õ V), where V£ is generated out of RMTs :HT£Lbi

£
i > of the edge hav-

ing a weight of :HT£Lbi
£

i >ìbi
£ and V is generated out of RMTs :Tbi

i > of

the edge having a weight of :Tbi

i >íbi, (bi œ 80, 1<, bi
£ œ 80, 1<) where

:Tbi

i > > :HT£Lbi
£

i > . A Potential Type 2 node is noted with reference

to the edge having a weight of :HT£Lbi
£

i >ìbi
£ that has a smaller number

of RMTs. In Figure 4, the node 8TH4L, TH5L, TH6L, TH7L< is a Potential
Type 2 node with reference to the edge eb having weight T(2)/0 that
has fewer RMTs than the other incoming edges with weights 8T(2),
T(7)</0 and 8T(3),T(6)</1.

Condition (ii). A Potential Type 2 node V (at output level i) is
marked as a Type 2 node if (1) a subpath (Definition 16(c)) can be
identified from the node to the SN starting with a RMT
Ti+1 œ 9V - V

£
=; and (2) no parallel subpath (Definition 16(d)) exists

starting with a RMT T£i+1 œ V£.

Condition (ii) of Definition 19 regarding Type 2 nodes is illustrated
later in Section 3.2 Figure 6(b).

3.2 Generating Rule Vector Graphs

The algorithm for generating RVGs, presented next, employs Algo-
rithm 1 for each of the n levels for an n cell null-boundary CA.

Algorithm 2: Generate RVG.
Input: The RV YR0 R1 … Ri … Rn-1] of an n cell CA.
Output: The RVG.

Step 0:

(a) Generate Root Node: Mark 8TH0L, TH1L, TH2L, TH3L< as the RN
(the input node for level 0).
(b) Generate RVS(0): Execute Algorithm 1 to generate the level 0
RVS for rule R0.

Step 1: Iterate Step 2 for i  1 to Hn - 2L.

Step 2:

(a) Mark Input Node(i): Output Node(i - 1)ØInput Node(i).

(b) Generate RVS(i): Execute Algorithm 1 for rule Ri and mark
“Type 1” and “Potential Type 2” nodes.
(c) Check Status: Condition (ii) of “Type 2” node (Definition 19) at
each level of the RVG until the SN is reached.

Step 3:

(a) Delete odd valued RMTs from the level Hn - 1L input nodes.

(b) Assign Edge Weight: As per rule RHn-1L to Hn - 1L level edges
(from input node Hn - 1L to the output node marked as SN).
(c) Mark “Potential Type 2” node as “Type 2” if Condition (ii) is
true for the node.

Stop.

Step by step execution of Algorithm 2:
Figure 6(b) illustrates the execution of Algorithm 2 for the four cell

null-boundary CA with RV X12 162 166 80\. As per Step 0, the input
node 8TH0L, TH1L, TH2L, TH3L< is the RN and two edges are drawn for
Rule 12 as 8TH0L, TH1L< ê 0 and 8TH2L, TH3L< ê 1 generating the level 0
output nodes as 8TH0L, TH1L, TH2L, TH3L< and 8TH4L, TH5L, TH6L, TH7L<.
These two nodes, as per Step 2(a), are the input nodes of the first
level.

 100 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

HaL HbL

Figure 6. (a) STG and (b) RVG for a four cell CA with RV X12 162 166 80\.

In the next two iterations, the first and second levels of the RVG
for rules 162 and 166 are generated.

Odd valued RMTs are deleted, as per Step 3(a), from the third
level input nodes to generate the nodes 8TH0L, TH4L<, 8TH2L, TH6L<,
8TH4L, TH6L<. Edge weights are next assigned as per Step 3(b) for
R3  80 to the edges input to the SN.

The Type 1 node 8TH4L, TH6L< (level three input node) and the
Potential Type 2 nodes 8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L< and
8TH2L, TH3L, TH6L, TH7L< (level two input nodes) are identified as per
Step 2(b) while executing Algorithm 1. The first node is marked by a
bold outline in Figure 6(b) with reference to the edge having weight
8TH4L, TH6L<ê0 (also marked with a bold line).

The subpath starting from the Potential Type 2 to the SN is
checked in Step 2(c) until the SN is reached. The second level input
node 8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L< satisfies both Conditions (i)
and (ii) of Type 2 nodes (Definition 19) where
V  8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<, V£  8TH0L, TH1L, TH4L, TH5L<,
and 8V - V£<  8TH6L, TH7L<. This is true since the subpath
XTH6Lê0 TH4Lê1\ starting with RMT TH6L œ 8V - V£< from the Potential
Type 2 node to the SN through levels two and three is a unique sub-
path with no parallel counterpart through these two levels. As a re-
sult, the state 9 X1 0 0 1\ through the Potential Type 2 node
8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L< (with reference to the bold line
edge 8TH4L, TH6L<ê0) and the path X8T(2), T(3)</1, 8T(4), T(6)</0,
8T(0), T(4), T(6)</0, 8T(4)</1\ is a NRS. Similarly, the subpath
XTH7Lê1 TH6Lê1\ starting with RMT TH7L œ 8V - V£< (of a Potential
Type 2 node) is another unique subpath resulting in the state 11 X1 0
1 1\ as a NRS.

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 101

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

The subpath starting from the Potential Type 2 to the SN is
checked in Step 2(c) until the SN is reached. The second level input
node 8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L< satisfies both Conditions (i)
and (ii) of Type 2 nodes (Definition 19) where
V  8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L<, V£  8TH0L, TH1L, TH4L, TH5L<,
and 8V - V£<  8TH6L, TH7L<. This is true since the subpath
XTH6Lê0 TH4Lê1\ starting with RMT TH6L œ 8V - V£< from the Potential
Type 2 node to the SN through levels two and three is a unique sub-
path with no parallel counterpart through these two levels. As a re-
sult, the state 9 X1 0 0 1\ through the Potential Type 2 node
8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L< (with reference to the bold line
edge 8TH4L, TH6L<ê0) and the path X8T(2), T(3)</1, 8T(4), T(6)</0,
8T(0), T(4), T(6)</0, 8T(4)</1\ is a NRS. Similarly, the subpath
XTH7Lê1 TH6Lê1\ starting with RMT TH7L œ 8V - V£< (of a Potential
Type 2 node) is another unique subpath resulting in the state 11 X1 0
1 1\ as a NRS.

However, Condition (ii) is not satisfied for the Potential Type 2
node 8TH2L, TH3L, TH6L, TH7L<, where V  8TH2L, TH3L, TH6L, TH7L<,
V£  8TH2L, TH3L<, and 8V - V£<  8TH6L, TH7L<. This is true since there
exists the following parallel subpaths through the second level edges
8TH3L TH6L<ê0 and 8TH2L TH7L<ê1:

(a) Subpath XTH3Lê0 TH6Lê1\ starting with RMT TH3L œ V£ is paral-
lel to subpath XTH6Lê0 TH4Lê1\ that starts with RMT TH6L œ 8V - V£<.
As a result, there exists the predecessor state
3  X0 0 1 1\  XTH0LTH1LTH3LTH6L\ for the state 5  X0 1 0 1\ on the
path X8TH0L TH1L<ê0, 8TH1L<ê1, 8TH3L, TH6L<ê0, 8TH4L, TH6Lê1<\ from the
RN to the SN through the Potential Type 2 node
8TH2L, TH3L, TH6L, TH7L<.

(b) Similarly, the subpath XTH2Lê1 TH4Lê1\ starting with RMT
TH2L œ V£ is parallel to the subpath XTH7Lê1 TH6Lê1\ that starts with
RMT TH7L œ 8V - V£<. As a result, there exists the predecessor state
2  X0 0 1 0\  XTH0LTH1LTH2LTH4L\ for the state 7  X0 1 1 1\ on the
path X8TH0L TH1L<ê0, 8TH1L<ê1, 8TH2L, TH7L<ê1, 8TH4L, TH6L<ê1\ from the
RN to the SN through the Potential Type 2 node
8TH2L, TH3L, TH6L, TH7L<.

Hence, the Potential Type 2 node 8TH2L, TH3L, TH6L, TH7L< is not a
Type 2 node.

The input node in the third level 8TH4L, TH6L< is a Type 1 node
marked with a broken outline because the 0-edge is missing for this
node.

3.3 Time and Space Complexity of Generating Rule Vector Graphs
for Null-Boundary Cellular Automata

The time complexity of Algorithm 2 for generating a RVG for a null-
boundary CA is clearly linear with each rule Ri of RV
YR0 R1 … Ri … Rn-1] being processed once to generate the level i
RVG Hi  0, 1, 2, … Hn - 1LL. The space complexity, as shown in
Lemma 1, is also linear because of node merging (Definition 17).
Lemma 1. The maximum number of output nodes at any level of a
RVG is six.

Proof. The set of output nodes at any level are derived as per Table 2
from the RMTs specified in the set :Tbi

i > noted on the ith level bi-edge

(bi œ 80, 1<) having edge-weight :Tbi

i >íbi. The RMTs in the output

nodes, as shown in Table 2, always appear in pairs (one even and one
odd). The four pairs are HTH0L, TH1LL, HTH2L, TH3LL, HTH4L, TH5LL,
HTH6L, TH7LL. Hence, due to node merging (Definition 17), the maxi-
mum number of possible output nodes are 4C2

 6, which are
8TH0L, TH1L, TH2L, TH3L<, 8TH4L, TH5L, TH6L, TH7L<, 8TH0L, TH1L, TH4L, TH5L<,
8TH2L, TH3L, TH6L, TH7L<, 8TH0L, TH1L, TH6L, TH7L<, and 8TH2L, TH3L,
TH4L,TH5L<. ·

 102 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Proof. The set of output nodes at any level are derived as per Table 2
from the RMTs specified in the set :Tbi

i > noted on the ith level bi-edge

(bi œ 80, 1<) having edge-weight :Tbi

i >íbi. The RMTs in the output

nodes, as shown in Table 2, always appear in pairs (one even and one
odd). The four pairs are HTH0L, TH1LL, HTH2L, TH3LL, HTH4L, TH5LL,
HTH6L, TH7LL. Hence, due to node merging (Definition 17), the maxi-
mum number of possible output nodes are 4C2

 6, which are
8TH0L, TH1L, TH2L, TH3L<, 8TH4L, TH5L, TH6L, TH7L<, 8TH0L, TH1L, TH4L, TH5L<,
8TH2L, TH3L, TH6L, TH7L<, 8TH0L, TH1L, TH6L, TH7L<, and 8TH2L, TH3L,
TH4L,TH5L<. ·

Figure 7 displays the RVG of a five cell null-boundary CA (with
RV X12 202 166 90 20\) having six input nodes at the fourth level.
The odd valued RMTs are deleted as per Step 3(a) of Algorithm 2.

Figure 7. An illustration of six nodes in a level with a RVG for a five cell CA
with RV X12 202 166 90 20\.

4. Linear Time Algorithm for Identifying Invertibility

This section reports a linear time algorithm to identify the invertibility
of a null-boundary three neighborhood CA. Theorems 1 and 2 estab-
lish the fact that the presence of Type 1 or 2 nodes in the RVG of a
CA makes it noninvertible.

Theorem 1. If the RVG of a null-boundary CA has a Type 1 node, it is
a noninvertible CA.

Proof. As discussed in Definition 18, a Type 1 node is identified by a
missing outgoing bi-edge (bi œ 80, 1<) (Definition 11). Hence the path

::Tbi

i >íbi> for the state Yb0 b1, … bi, … bn-1] from the RN to the SN

cannot be established through the Type 1 node due to a missing edge.
Consequently, such a state is nonreachable. The presence of a NRS
having no pre-image makes the CA noninvertible. Hence, the CA hav-
ing a Type 1 node in its RVG is noninvertible. ·

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 103

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Proof. As discussed in Definition 18, a Type 1 node is identified by a
missing outgoing bi-edge (bi œ 80, 1<) (Definition 11). Hence the path

::Tbi

i >íbi> for the state Yb0 b1, … bi, … bn-1] from the RN to the SN

cannot be established through the Type 1 node due to a missing edge.
Consequently, such a state is nonreachable. The presence of a NRS
having no pre-image makes the CA noninvertible. Hence, the CA hav-
ing a Type 1 node in its RVG is noninvertible. ·

Figure 8(b) illustrates the RVG of a noninvertible CA. The input
node 8TH2LTH3L< of level 1 is a Type 1 node, as it does not have an out-
going 1-edge. Hence, all the states corresponding to nonexistent paths
passing through the missing 1-edge are nonreachable. For example,
the path for state B = Yb0 b1 b2 b3]  X0 1 0 0\ does not exist and con-
sequently the state 4 is nonreachable. Similarly, three other states
0101(5), 0110(6), and 0111(7) with b1  1 are nonreachable
(Figure 8(a)). Hence, the CA X13 112 196 64\ is noninvertible.

HaL HbL

Figure 8. (a) STG and (b) RVG for a four cell CA with RV X13 112 196 64\.
{23} is a Type 1 node, as marked with a broken outline. {46} is a Type 2 node
(marked with a bold line) with reference to edge 2/1 (also marked with a bold
line).

A path in a RVG (Definition 16(b)) identifies a state A and its suc-
cessor B. Lemma 2 specifies the condition for which a state is non-
reachable, even though there is no missing 0- or 1-edge from a node
in the RVG.
Lemma 2. A NRS exists in the STG of a CA if no valid path exists in
the RVG of the CA.

Proof. For each reachable state of a CA there exists a path
Z:Tb0

0 >íb0 :Tb1

1 >íb1 … :Tbi

i >íbi :Tbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1^, where

each Ti+1 œ :Tbi+1

i+1 > is compatible with Ti œ :Tbi

i >. Consequently,

there exists a predecessor state A Ya0 a1 … ai ai+1 … an-1] 
YT0 T1 … Ti Ti+1 … Tn-1] of the state Yb0 b1 … bi bi+1 … bn-1] = B.
On the other hand, if Ti and Ti+1 are incompatible (Definition 13)
then the path is invalid. Consequently, there exists no predecessor for
the state Yb0 b1 … bi bi+1 … bn-1] and it is not reachable from any
other state. ·

 104 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Proof. For each reachable state of a CA there exists a path
Z:Tb0

0 >íb0 :Tb1

1 >íb1 … :Tbi

i >íbi :Tbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1^, where

each Ti+1 œ :Tbi+1

i+1 > is compatible with Ti œ :Tbi

i >. Consequently,

there exists a predecessor state A Ya0 a1 … ai ai+1 … an-1] 
YT0 T1 … Ti Ti+1 … Tn-1] of the state Yb0 b1 … bi bi+1 … bn-1] = B.
On the other hand, if Ti and Ti+1 are incompatible (Definition 13)
then the path is invalid. Consequently, there exists no predecessor for
the state Yb0 b1 … bi bi+1 … bn-1] and it is not reachable from any
other state. ·

Theorem 2. If the RVG of a null-boundary CA has a Type 2 node, it is
a noninvertible CA.

Proof. As per Condition (i) (Definition 19), a Type 2 node V is gener-
ated due to merging output nodes V and V£ of level i (Figure 5) where
V£ Õ V. The node V£ is generated out of :HT£Lbi

£
i > while V is generated

out of :Tbi

i > as per RMT transition of Table 2. Since V£ Õ V,

:HT£Lbi
£

i > < :Tbi

i > . Consequently, at least two RMTs exist in

(V - V£).
Let an edge from level Hi + 1L be denoted as :Tbi+1

i+1 , HT£Lbi+1

i+1 >íbi+1,

where Tbi+1

i+1 œ HV - V£L, while HT£Lbi+1

i+1 œ V£ and HT£Lbi+1

i+1 – HV - V£L.

Condition (ii) (Definition 19) ensures the following:
(a) The presence of a subpath ZTbi+1

i+1 íbi+1 Tbi+2

i+2 íbi+2 …^

(Definition 16(c)) from a Potential Type 2 node to the SN.
(b) That there is no subpath ZHT£Lbi+1

i+1 íbi+1 Tbi+2

i+2 íbi+2 …^ parallel

to (a) (Definition 16(d)).
If no parallel subpath exists, the path

[:Tb0

0 >íb0 :Tb1

1 >íb1 … :HT£Lbi
£

i >ìbi
£ :Tbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1^ is

invalid since the RMT pair HT£Lbi
£

i and Tbi+1

i+1 is incompatible

(Definition 13). This is true since Tbi+1

i+1 is not generated out of HT£Lbi
£

i

through RMT transition of Table 2. As per Lemma 2, the path

[:Tb0

0 >íb0 :Tb1

1 >íb1 … :HT£Lbi
£

i >ìbi
£ :Tbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1_

through a Potential Type 2 node is invalid and no predecessor exists
for the state Yb0 b1 … bi

£ bi+1 … bn-1]. So the state is a NRS and the
CA is marked as noninvertible.

On the other hand, if a parallel subpath (Definition 16(d)) exists,
we can always identify a valid path Z:Tb0

0 >íb0 :Tb1

1 >íb1 …

:HT£Lbi
£

i >ìbi
£ :HT£Lbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1_ from the RN to the SN.

This is true since :HT£Lbi+1

i+1 >íbi+1œV£, RMTs of V£ are generated from

:HT£Lbi
£

i >, the node pair T£i and T£Hi+1L is compatible where

T£i œ :HT£Lbi
£

i >, and T£Hi+1L œ :HT£Lbi+1

i+1 >. As a result there exists a prede-

cessor Yb0 b1 … bi
£ bi+1

£ … bn-1]. ·

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 105

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

On the other hand, if a parallel subpath (Definition 16(d)) exists,
we can always identify a valid path Z:Tb0

0 >íb0 :Tb1

1 >íb1 …

:HT£Lbi
£

i >ìbi
£ :HT£Lbi+1

i+1 >íbi+1 … :Tbn-1

n-1 >íbn-1_ from the RN to the SN.

This is true since :HT£Lbi+1

i+1 >íbi+1œV£, RMTs of V£ are generated from

:HT£Lbi
£

i >, the node pair T£i and T£Hi+1L is compatible where

T£i œ :HT£Lbi
£

i >, and T£Hi+1L œ :HT£Lbi+1

i+1 >. As a result there exists a prede-

cessor Yb0 b1 … bi
£ bi+1

£ … bn-1]. ·

The instances of absence and presence of a parallel subpath from a
Potential Type 2 node to the SN have been illustrated in Section 3.2
(Figure 6) with reference to the Potential Type 2 nodes
8TH0L, TH1L, TH4L, TH5L, TH6L, TH7L< and 8TH2L, TH3L, TH6L, TH7L<. The
first Potential Type 2 node generates a NRS. On the other hand, the
presence of a valid path through the second Potential Type 2 node
prohibits the generation of a NRS.

Figure 8 illustrates another case of generating a NRS due to the ab-
sence of a parallel subpath through a Potential Type 2 node.

The state 1111(15) in Figure 8(a) is a NRS because from the Poten-
tial Type 2 node 8TH4LTH6L< there is a unique subpath XTH6Lê1\ to the
SN without any parallel subpath (Definition 16(d)). Hence, the node
8TH4LTH6L< is a Type 2 node. As a result, the pre-image for the state
15  X1 1 1 1\ through the Type 2 node 8TH4LTH6L< (input node of
level three) does not exist due to the incompatible RMT pair T(2) and
T(6) on the path 88TH0LTH2LTH3L< ê 1 8TH4LTH5LTH6L< ê 1 8TH2L< ê 1
8TH6L<ê1< from the RN to the SN.

Theorem 3. Necessary and sufficient conditions for the RVG of an in-
vertible CA are that no Type 1 or 2 nodes exist.

Proof. Necessity: The presence of a Type 1 or 2 node, as established
in the proof of Theorems 1 and 2, makes the CA noninvertible.

Sufficiency: The RVG, as per Algorithm 2, is generated with com-
patible RMT pairs on incoming and outgoing edges of any node.
RMT Ti+1 on the outgoing edge with weight :Tbi+1

i+1 >íbi+1 is gener-

ated, as per Table 2, out of Ti œ :Tbi

i > on the incoming edge with

weight :Tbi

i >íbi. Consequently, if there is no Type 1 or 2 node, then

for each state B = Yb0 b1 … bi … bn-1] there exists a path

Z:Tb0

0 >íb0 :Tb1

1 >íb1 … :Tbi

i >íbi … :Tbn-1

n-1 >íbn-1^ generating its previ-

ous state A = Ya0 a1 … ai … an-1]  YT0 T1 … Ti … Tn-1], where

Ti œ :Tbi

i > and the RMT string is a valid one with only one compati-

ble RMT pair Ti and Ti+1 (i  0 to Hn - 2L). Hence, each state B has a
predecessor A. Since each state has one successor state and there is no
NRS, there exists only one pre-image of each state. Hence, the CA is
an invertible one. ·

A noninvertible CA, as established in Theorem 3, can be identified
by the presence of either Type 1 or 2 nodes. Algorithm 3 formalizes
the identification procedure.

 106 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

Algorithm 3: Check Invertibility

Input: An n cell CA, YR0, R1, … Ri, … Rn-1].
Output: Identification of Invertibility.

Step 0: Execute Algorithm 2 to generate the RVG of the CA along with
identifying Type 1 and 2 nodes, if there are any.
Step 1: Iterate Step 2 for each level Hi  1 to Hn - 1L) of the RVG.

Step 2: Check node type for the presence of any Type 1 or 2 nodes.

Step 3: Mark the CA as noninvertible if a Type 1 or 2 node exists.

Otherwise, mark the CA as invertible.

Stop.

Step by step execution of Algorithm 3:
An illustration of Algorithm 3 is shown in Figure 9 for the four cell

CA X6 240 60 65\. The RVG of the CA (Figure 9(b)) is drawn by exe-
cuting Algorithm 2. Step by step execution of Algorithm 2 has been
illustrated in Section 3.2 (Figure 6(b)). Step 2(b) of Algorithm 2 calls
Algorithm 1. Step 3(b) of Algorithm 1 identifies a Type 1 node, while
a Potential Type 2 node is identified in Step 6(b).

HaL HbL

Figure 9. An illustration of Algorithm 3 with a four cell CA X6 240 60 65\.
(a) The STG and (b) the RVG.

In each iteration of Step 2(c) of Algorithm 2 at each level of the
RVG, the status of Condition (ii) of the Type 2 node (Definition 19)
is checked. This checking is implemented for each Potential Type 2
node until the SN is reached. Finally, on the last iteration at level
Hn - 1L (Step 3(c) of Algorithm 2), the Potential Type 2 node is
marked as a Type 2 node if Condition (ii) is found to be true for a sub-
path from the Potential Type 2 node to the SN. Thus, in each itera-
tion step of Algorithm 2, the presence of a Type 1 node, if it exists,
gets detected. On the other hand, marking a Type 2 node waits for
traversal through the RVG until the SN is reached.

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 107

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

In each iteration of Step 2(c) of Algorithm 2 at each level of the
RVG, the status of Condition (ii) of the Type 2 node (Definition 19)
is checked. This checking is implemented for each Potential Type 2
node until the SN is reached. Finally, on the last iteration at level
Hn - 1L (Step 3(c) of Algorithm 2), the Potential Type 2 node is
marked as a Type 2 node if Condition (ii) is found to be true for a sub-
path from the Potential Type 2 node to the SN. Thus, in each itera-
tion step of Algorithm 2, the presence of a Type 1 node, if it exists,
gets detected. On the other hand, marking a Type 2 node waits for
traversal through the RVG until the SN is reached.

Step 2 of Algorithm 3 scans through each level to detect the pres-
ence of a Type 1 or 2 node. No Type 1 or 2 node exists in the RVG of
Figure 9(b). Hence, it is an invertible CA. Its state transition behavior,
as shown in Figure 9(a), consists of six cycles.

The absence of a Type 1 and 2 node, in general, imparts the follow-
ing characteristic on the RVG: each node at each level i (i  0 to
Hn - 2L) of an n cell CA has four RMTs, while for i  n - 1, the num-
ber of RMTs is two.

4.1 Invertible Uniform Cellular Automata and Elementary Rules

In a uniform CA, the same rule is employed for each cell. All 256 CA
rules, as per [3], can be divided into 88 groups of elementary rules.
Each elementary rule group has been derived as follows. Each group
consists of four rules marked as (r1, r2, r3, r4); the first rule r1 is the
conventional rule number, the second rule r2 is obtained by inter-
changing bits 1 and 0, the third rule r3 is obtained by interchanging
the left and right neighbors, while rule r4 is derived by applying both
operations. A few elementary rules are listed in Table 3 as per the for-
mulation noted in [3]. Out of the 88 groups of elementary rules, six
groups generate invertible n bit CAs (Table 3). Figures 10, 11, and 12
illustrate the results of Algorithm 3 for n  4, 5, and 6 cell uniform
CAs with rule 105. The RVGs shown in Figures 10(b), 11(b), and
12(b) are drawn as per Algorithm 2. The four and six cell CAs, as dis-
played by the STGs shown in Figures 10(a) and 12(a), are invertible
since there is no Type 1 or 2 node in any level of the corresponding
RVGs. On the other hand, the five cell CA, as shown in Figure 11(a),
is not invertible due to the presence of Type 1 nodes (marked by bold
lines in Figure 11(b)) at the fourth level.

Elementary Rule Group Size for which the CA is Invertible

H51, 51, 51, 51L for all values of n

H60, 195, 102, 153L for all values of n

H90, 165, 90, 165L for even values of n

H105, 105, 105, 105L for all values of n excepting
n  2 + 3 y Iy  0, 1, 2, 3 …M

H150, 150, 150, 150L for all values of n excepting
n  2 + 3 y Iy  0, 1, 2, 3 …M

H204, 204, 204, 204L for all values of n

Table 3. Invertible elementary group rules.

 108 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

HaL HbL

Figure 10. An illustration of Algorithm 3 with a four cell uniform CA with
rule X105 105 105 105\. (a) The STG and (b) the RVG.

HaL HbL

Figure 11. An illustration of Algorithm 3 with a five cell uniform CA with rule
105. (a) The STG and (b) the RVG. Type 1 nodes are marked with bold lines.

Table 3 displays all the associated rules (51, 60, 195, 102, 153, 90,
165, 105, 150, 204) of different groups and the value of n for which
the rule generates invertible CAs. Table 3 has been derived by apply-
ing Algorithm 3 on the RVG of an n cell uniform CA. A formal proof
of correctness of these results can be derived from the structure of
their RVG.

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 109

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

HaL HbL

Figure 12. An illustration of Algorithm 3 with a six cell uniform CA with rule
105. (a) The STG and (b) the RVG.

5. Experimental Results

Algorithm 3 has been coded using the C language on the Fedora 7
platform and run on an IBM Xeon server with various lengths of CAs
ranging up to 10 000 cells. The CAs are chosen arbitrarily with an
equal percentage of uniform and hybrid CAs. Figure 13 displays the
linear growth of storage space and execution time, as confirmed in
Section 3.3.

6. Conclusion

This paper reports a linear time algorithm for identifying null-
boundary three neighborhood invertible cellular automata (CAs). An
efficient data structure called the rule vector graph (RVG) of a cellu-
lar automaton (CA) is reported. The RVG of a CA can be derived
from its rule vector (RV). Linear time traversal of a RVG identifies
whether the CA is invertible or not. This result presents a significant
improvement over quadratic time complexity reported earlier based
on the general network of de Bruijn graphs.

 110 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

HaL HbL

Figure 13. Experimental results. (a) Shows the growth in storage space and
(b) shows the growth of execution time.

References

[1] K. Sutner, “Additive Automata on Graphs,” Complex Systems, 2(6),
1988 pp. 649|661.

[2] K. Sutner, “De Bruijn Graphs and Linear Cellular Automata,” Complex
Systems, 5(1), 1991 pp. 19|30.

[3] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[4] J. Von Neumann, The Theory of Self-Reproducing Automata (A. W.
Burks, ed.), Urbana, IL: University of Illinois Press, 1966.

[5] S. Wolfram, Theory and Application of Cellular Automata, Singapore:
World Scientific Publishing Company, 1986.

[6] M. Sipper, “Co-evolving Non-Uniform Cellular Automata to Perform
Computations,” Physica D, 92(3|4), 1996 pp. 193|208.

[7] N. Ganguly, “Cellular Automata Evolution: Theory and Applications in
Pattern Recognition and Classification,” Ph.D. Thesis, CST Department,
BECDU, India, 2003.

[8] K. Culik, L. P. Hurd, and S. Yu, “Computation Theoretic Aspects of
Cellular Automata,” Physica D, 45(1|3), 1990 pp. 357|378.

[9] M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting the Edge of
Chaos: Evolving Cellular Automata to Perform Computations,” Com-
plex Systems, 7(2), 1993 pp. 89|130.

[10] K. Sutner, “Linear Cellular Automata and Fischer Automata,” Parallel
Computing, 23(11), 1997 pp. 1613|1634.

[11] T. Toffoli, “CAM: A High-Performance Cellular-Automaton Machine,”
Physica D, 10(1|2), 1984 pp. 195|204.

[12] T. Toffoli and N. H. Margolus, “Invertible Cellular Automata: A Re-
view,” Physica D, 45(1|3), 1990 pp. 229|253.

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 111

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

[13] P. P. Chaudhuri, D. R. Chowdhury, S. Nandi, and S. Chatterjee, Addi-
tive Cellular Automata, Theory and Applications Volume 1, Los Alami-
tos, CA: Wiley-IEEE Computer Society Press, 1997.

[14] P. Maji, C. Shaw, N. Ganguly, B. K. Sikdar, and P. P. Chaudhuri,
“Theory and Application of Cellular Automata for Pattern Classifica-
tion,” Fundamenta Informaticae, 58(3|4), 2003 pp. 321|354.

[15] N. Ganguly, P. Maji, B. K. Sikdar, and P. P. Chaudhuri, “Design and
Characterization of Cellular Automata Based Associative Memory for
Pattern Recognition,” IEEE Transactions on Systems, Man and Cyber-
netics, Part B: Cybernetics, 34(1), 2004 pp. 672|679.

[16] K. Cattell and J. C. Muzio, “Synthesis of One-Dimensional Linear Hy-
brid Cellular Automata,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 15(3), 1996 pp. 325|335.

[17] S. Chakraborty, D. R. Chowdhury, and P. P. Chaudhuri, “Theory and
Application of Nongroup Cellular Automata for Synthesis of Easily
Testable Finite State Machines,” IEEE Transactions on Computers,
45(7), 1996 pp. 769|781.

[18] D. R. Chowdhury, S. Basu, I. S. Gupta, and P. P. Chaudhuri, “Design of
CAECC~Cellular Automata Based Error Correcting Code,” IEEE
Transactions on Computers, 43(6), 1994 pp. 759|764.

[19] D. R. Chowdhury, I. S. Gupta, and P. P. Chaudhuri, “CA-Based Byte
Error-Correcting Code,” IEEE Transactions on Computers, 44(3), 1995
pp. 371|382.

[20] A. K. Das and P. P. Chaudhuri, “Vector Space Theoretic Analysis of Ad-
ditive Cellular Automata and Its Application for Pseudoexhaustive Test
Pattern Generation,” IEEE Transactions on Computers, 42(3), 1993
pp. 340|352.

[21] K. Cattell and J. C. Muzio, “Analysis of One-Dimensional Linear Hy-
brid Cellular Automata over GF(q),” IEEE Transactions on Computers,
45(7), 1996 pp. 782|792.

[22] N. Ganguly, P. Maji, B. K. Sikdar, and P. P. Chaudhuri, “Generalized
Multiple Attractor Cellular Automata (GMACA) Model for Associative
Memory,” International Journal of Pattern Recognition and Artificial
Intelligence, 16(7), 2002 pp. 781|795.

[23] P. Maji, N. Ganguly, and P. P. Chaudhuri, “Error Correcting Capability
of Cellular Automata Based Associative Memory,” IEEE Transactions
on Systems, Man and Cybernetics, Part A, 33(4), 2003 pp. 466|480.

[24] K. Paul, D. R. Chowdhury, and P. P. Chaudhuri, “Theory of Extended
Linear Machines,” IEEE Transactions on Computers, 51(9), 2002
pp. 1106|1110.

[25] M. Serra, T. Slater, J. C. Muzio, and D. M. Miller, “The Analysis of
One-Dimensional Linear Cellular Automata and Their Aliasing Probabil-
ities,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 9(7), 1990 pp. 767|778.

[26] B. K. Sikdar, N. Ganguly, and P. P. Chaudhuri, “Design of Hierarchical
Cellular Automata for On-Chip Test Pattern Generator,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
21(12), 2002 pp. 1530|1539.

 112 N. S. Maiti, S. Ghosh, S. Munshi, and P. Pal Chaudhuri

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

[27] B. K. Sikdar, N. Ganguly, and P. P. Chaudhuri, “Fault Diagnosis of
VLSI Circuits with Cellular Automata Based Pattern Classifier,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 24(7), 2005 pp. 1115|1131.

[28] K. Cattell and J. C. Muzio, “Analysis of One-Dimensional Linear Hy-
brid Cellular Automata Over GF(q),” IEEE Transactions on Comput-
ers, 45(7), 1996 pp. 782|792.

[29] K. Cattell, S. Zhang, M. Serra, and J. C. Muzio, “2xn Hybrid Cellular
Automata with Regular Configuration: Theory and Application,” IEEE
Transactions on Computers, 48(3), 1999 pp. 285|295.

[30] M. Serra.“Hybrid Cellular Automata.” (Jan 8, 2009)
http://webhome.cs.uvic.ca/~mserra/CA.html.

[31] S. Amoroso and Y. N. Patt, “Decision Procedures for Surjectivity and In-
jectivity of Parallel Maps for Tessellation Structures,” Journal of Com-
puter and System Sciences, 6(5), 1972 pp. 448|464.

[32] J. Kari, “Theory of Cellular Automata: A Survey,” Theoretical Com-
puter Science, 334(1|3), 2005 pp. 3|33.

[33] J. Kari, “Reversibility of 2D Cellular Automata is Undecidable,” in Cel-
lular Automata: Theory and Experiment, (H. Gutowitz, ed.), Cam-
bridge, MA: MIT Press, 1991 pp. 379|385.

[34] S. Das, B. K. Sikdar, and P. P. Chaudhuri, “Characterization of Reach-
able/Nonreachable Cellular Automata States,” in Lecture Notes in Com-
puter Science, Berlin: Springer, 2004 pp. 813|822.

[35] N. S. Maiti, S. Munshi, and P. P. Chaudhuri, “An Analytical Formula-
tion for Cellular Automata (CA) Based Solution of Density Classifica-
tion Task (DCT),” in Seventh International Conference on Cellular
Automata for Research and Industry (ACRI) 2006, Perpignan, France
(S. El Yacoubi, ed.), New York: Springer, 2006 pp. 147|156.

[36] S. Munshi, N. S. Maiti, D. Ray, D. R. Chowdhury, and P. P. Chaudhuri,
“An Analytical Framework for Characterizing Restricted Two Dimen-
sional Cellular Automata Evolution,” in Third Indian International Con-
ference On Artificial Intelligence (IICAI 2007), Pune, India (B. Prasad,
ed.), 2007 pp. 1383|1402.

[37] K. Cattell and J. C. Muzio, “Synthesis of One-Dimensional Linear Hy-
brid Cellular Automata,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 15(3), 1996 pp. 325|335.

[38] S. Dormann and A. Deutsch, “Modeling of Self-Organized Avascular
Tumor Growth with Hybrid Cellular Automata,” In Silico Biology,
2(3), 2002 pp. 393|406.

[39] Z. Kohavi, Switching and Finite Automata Theory, 2nd ed., New York:
McGraw-Hill, 1978.

 Identifying the Invertibility of Null-Boundary Three Neighborhood CAs 113

Complex Systems, 19 © 2010 Complex Systems Publications, Inc.

https://doi.org/10.25088/ComplexSystems.19.1.89

