
Dense Graphs, Node Sets, and Riders: 
Toward a Foundation for Particle Physics 
without Continuum Mathematics

Alexander G. D. Lamb 

1545 Scenic Avenue
Berkeley, CA 94708, USA
alex.lamb@gmail.com

Digital  physics  seeks  to  help  answer  problematic  open  questions  in
quantum gravity by bringing to bear techniques from computer science.
One  approach  to  this  endeavor  is  the  creation  of  a  toolbox  of  algo-
rithms that  can reliably  simulate  basic  quantum phenomena.  To facili-
tate this goal, we explore the extent to which set-based, pseudo-particle
algorithms and dense, irregular graphs can be made to emulate the be-
haviors of naturally occurring fundamental particles. We investigate the
relation  between  dense  graphs  and  pseudo-particles  traversing  them,
which has profound implications for limits on particle information and
may  provide  an  experimental  tool  for  testing  the  geometric  properties
of  quantized  space.  We  also  show that  behaviors  with  properties  such
as particle polarization are easy to generate with this approach. 

1. Introduction  

Many  theorists  in  modern  particle  physics  are  investigating  discrete
models  of  spacetime  in  an  attempt  to  reconcile  quantum  mechanics
with general relativity~two theories that have resisted integration for
almost a century [1, 2]. Computationally speaking, discrete models of
nature are highly appealing for their simplicity, rigor, and firm logical
foundation. Digital physics represents an attempt by the computer sci-
ence community to meet these efforts halfway by providing new algo-
rithmic tools for exploring such models. 

From a computational  perspective,  the  universe  may be  said  to  be
equivalent to some machine, be it  a Turing machine, or some variety
of hypercomputer. In this context, the aim of digital physics is to de-
termine  the  computational  requirements  of  such  a  universe  machine
and propose implementations, which are models that equate to sets of
physical laws. Such implementations differ from normal formulaic de-
scriptions of nature in that they always propose concrete mechanisms
for  natural  processes  with  the  understanding  that  such  mechanisms
may be ruled out if they do not match observation. 

One  approach  to  the  digital  physics  challenge  is  provided  by  the
work of the New Kind of Science (NKS) movement. The NKS method-
ology is to explore the space of simplest possible algorithms in an un-
biased fashion, so as to seek out those algorithms that are applicable
to a range of problems in science [3]~in this arena, specifically to par-
ticle physics. In contrast, the approach adopted by most particle physi-
cists is to describe observed natural phenomena using the most expres-
sive  and  accurate  mathematical  toolkit  available,  regardless  of  the
computational  implications.  To  date,  the  most  heavily  used  such
toolkit  has  been  continuum  mathematics.  Physicists  then  can  encode
these descriptions as computer simulations tuned to provide results at
some given level of precision. 
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work of the New Kind of Science (NKS) movement. The NKS method-
ology is to explore the space of simplest possible algorithms in an un-
biased fashion, so as to seek out those algorithms that are applicable
to a range of problems in science [3]~in this arena, specifically to par-
ticle physics. In contrast, the approach adopted by most particle physi-
cists is to describe observed natural phenomena using the most expres-
sive  and  accurate  mathematical  toolkit  available,  regardless  of  the
computational  implications.  To  date,  the  most  heavily  used  such
toolkit  has  been  continuum  mathematics.  Physicists  then  can  encode
these descriptions as computer simulations tuned to provide results at
some given level of precision. 

A challenge for the NKS approach is that the search-space of possi-
ble  universe  implementations  is  vast.  Thus,  an  unbiased  exploration
of  this  space  may  not  be  the  most  efficient  means  of  identifying  the
best  candidates  for  an  algorithm  that  can  compute  nature.  Further-
more,  without  an interpretive  framework inspired by observations,  it
may  be  difficult  to  demonstrate  that  a  given  algorithm has  relevance
to physical systems. 

On the other hand, the toolkit of choice for most modern physics,
namely  continuum  mathematics,  may  not  be  the  right  toolkit  for
constructing  a  successful  implementation  of  the  universe.  The
algorithmic  approximations  to  nature  that  are  produced  by  the
implementation  of  physical  formulas  are  a  reflection  of  human  tool-
building  and  may  be  a  poor  model  for  an  implementation  of  nature
itself.  For  example,  physical  formulas  do  not  generally  provide  an
explicit  model  for  how  information  is  transferred  through  the
universe.  Also,  these  formulas  are  typically  not  constrained  to  be
local,  even  while  locality  often  plays  a  critical  role  in  the  theories
themselves. Branches of physics such as quantum field theory assume
the spontaneous transfer of  information through fields over arbitrary
distances  while  relying  on  an  implicit  and  undefined  mechanism  for
its propagation. Such approaches do not give weight to the fact that a
field  that  extends  indefinitely  through  smooth  space  contains  an
infinite amount of information and is therefore not computable. 

Broadly speaking, the principle that an object is only influenced by
its  immediate  surroundings  has  played  a  critical  role  in  the  develop-
ment  of  physical  theory.  This  principle  is  only  broken  by  quantum-
mechanical  systems,  in  which  it  is  trumped  by  entanglement~
another,  even  more  concrete  form  of  informational  connectedness.
Ideally  then,  a  computational  model  of  physical  phenomena  would
respect locality, while perhaps also describing both locality and entan-
glement through the same mechanism. Two strengths of the NKS ap-
proach are that it always provides an explicit mechanism for informa-
tion transfer and that this mechanism is always local. 

This  paper  uses  an  intermediate  approach  between  the  NKS
methodology  and  that  of  most  physics.  It  seeks  to  preserve  the  con-
crete and local aspects of the NKS approach, without confining itself
to  the  absolute  simplest  algorithms.  At  the  same  time,  it  attempts  to
produce particles that unambiguously resemble their natural analogs. 

The  goal  is  to  provide  a  discrete,  local,  deterministic,  and Turing-
machine-equivalent  implementation  for  realistic  particles.  We  do  not
expect this particular implementation to be the actual one run by the
universe.  However,  by  exploring  the  space  of  plausible  implementa-
tions,  we hope to learn more about the actual  implementation of the
universe than can be learned by simply generating a formulaic descrip-
tion. If this approach succeeds in producing relevant models of physi-
cal  phenomena,  it  may  then  be  possible  to  refine  the  resulting  algo-
rithms with an eye toward the NKS goal of finding the simplest such
algorithms. 
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The goal  is  to  provide  a  discrete,  local,  deterministic,  and Turing-
machine-equivalent  implementation  for  realistic  particles.  We  do  not
expect this particular implementation to be the actual one run by the
universe.  However,  by  exploring  the  space  of  plausible  implementa-
tions,  we hope to learn more about the actual  implementation of the
universe than can be learned by simply generating a formulaic descrip-
tion. If this approach succeeds in producing relevant models of physi-
cal  phenomena,  it  may  then  be  possible  to  refine  the  resulting  algo-
rithms with an eye toward the NKS goal of finding the simplest such
algorithms. 

We began an exploration of this approach in [4]. That paper tack-
led  the  following  challenge:  is  it  possible  to  create  stable,  local  pat-
terns that travel across a discrete approximation to space in a rotation-
ally  invariant  fashion?  We  presented  the  “Jellyfish”  algorithm  and
used it to produce a stable pseudo-particle that shows the desired be-
havior  when  applied  to  dense,  irregular  graphs.  We  also  illustrated
how motion around potential wells and a simple model of relativistic
time dilation might be achieved using the same mechanisms. 

Arguably,  the  most  interesting  possibility  to  emerge  from  [4]  was
an  indication  that,  for  a  given  pseudo-particle  size,  there  is  a  certain
density of graph connections for which its  motion is  straightest.  This
leads to the possibility  that  models  of  this  sort  might  eventually  pro-
vide  an  experimentally  testable  measure  of  the  granularity  of  space.
For example, the scale and motion of electrons are well understood. It
might  be  possible  to  make an estimate  of  the  required connectedness
of the spatial graph that electrons would have to traverse in order for
their observed motion to be achieved, presuming that an algorithm in
the same class as Jellyfish underpinned their motion. 

Such an investigation would be  unlikely  to  prove useful,  however,
if the dense graphs approach is unable to yield particle behaviors rich
enough to mirror those of  actual  electrons.  This  paper represents  the
first  of  several  ongoing  explorations  into  ways  in  which  the  dense
graphs  paradigm can be  extended to  bring  it  closer  to  observed phe-
nomena. 

Of  the  numerous  ways  in  which  the  current  models  fall  short  of
mimicking  nature,  perhaps  the  easiest  to  amend  is  that  of  “particle
complexity”. By this we refer to the physical attributes that fundamen-
tal  particles  exhibit,  such  as  spin,  charge,  and  polarization.  The
pseudo-particles generated in [4] were the simplest possible implemen-
tations:  they  had  no  intrinsic  properties  (other  than  size)  and  con-
tained no substructure. It is useful, therefore, to extend our models to
see how much information must be added to a pseudo-particle before
it becomes plausibly naturalistic. 

In this paper, we explore in greater detail the relation between par-
ticle size and degree of graph connectedness suggested in [4]. This re-
sults in a concrete demonstration that for a given pseudo-particle size,
there is an optimum degree of graph connectedness. We then attempt
to  extend  our  pseudo-particle  model  so  that  we  may  begin  to put  a
minimum bound on the amount of  information a natural  particle  re-
quires  to  function.  To  achieve  this  extension  of  the  model,  we  aug-
ment  the  Jellyfish  pseudo-particle  algorithm  previously  described
through the use of a mechanism we refer to as a “steed|rider” relation-
ship.  This  mechanism is  intended to represent  a very simple relation-
ship between two pseudo-particles. In this relationship, particle A (the
rider)  has  information about  the  elements  of  particle  B,  while  B  (the
steed) has no knowledge of A. Nodes referenced by A are a subset of
those referenced by B.  For the purposes  of  this  work,  the steed is  an
ordinary  pseudo-particle  of  the  sort  explored  in  [4].  The  rider  is  de-
fined by a new, modified algorithm. 
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In this paper, we explore in greater detail the relation between par-
ticle size and degree of graph connectedness suggested in [4]. This re-
sults in a concrete demonstration that for a given pseudo-particle size,
there is an optimum degree of graph connectedness. We then attempt
to  extend  our  pseudo-particle  model  so  that  we  may  begin  to put  a
minimum bound on the amount of  information a natural  particle  re-
quires  to  function.  To  achieve  this  extension  of  the  model,  we  aug-
ment  the  Jellyfish  pseudo-particle  algorithm  previously  described
through the use of a mechanism we refer to as a “steed|rider” relation-
ship.  This  mechanism is  intended to represent  a very simple relation-
ship between two pseudo-particles. In this relationship, particle A (the
rider)  has  information about  the  elements  of  particle  B,  while  B  (the
steed) has no knowledge of A. Nodes referenced by A are a subset of
those referenced by B.  For the purposes  of  this  work,  the steed is  an
ordinary  pseudo-particle  of  the  sort  explored  in  [4].  The  rider  is  de-
fined by a new, modified algorithm. 

The latter half of this paper explores in detail our first extension to
the  Jellyfish  algorithm,  which  is  designed  to  have  behavior  in  com-
mon  with  the  property  of  polarization  seen  in  natural  particles.  The
goal is to implement this behavior without impacting the straightness
of motion that was achieved in [4]. 

Section  2  presents  the  relation  between  optimum particle  size  and
the connectedness of the graph. The data suggests a linear increase in
graph connectedness as a function of particle size. Section 3 proposes
a definition for polarization in the context of pseudo-particle simula-
tions and describes the rider algorithm used to create the effect, along
with the metric  used to test  its  effectiveness.  A set  of  simulations de-
signed to test the rider’s performance are described along with the re-
sults of the tests. Section 4 contains a discussion of the implications of
this  research.  Section 5 briefly  outlines  some further  simulations  that
are currently in progress, and Section 6 summarizes our conclusions. 

2. Establishing Preconditions for Pseudo-Particle Behavior  

2.1 Angular Deviation as a Measure of Straightness of Motion

As  suggested  in  [4],  given  a  pseudo-particle  size  n,  there  is  an  opti-
mum graph connection density that produces the straightest linear mo-
tion  (i.e.,  the  least  angular  deviation  from  a  straight  path).  We  can
characterize graph connection density as the average number of neigh-
bors  to  a  given  node  in  the  graph,  or  the  “mean degree”  for  a  node
Xd\. We denote the optimum such density as Xd\opt. 

The relation between n and graph connection density Xd\opt was in-
vestigated  in  [4]  using  two-dimensional  (2D)  graphs,  with  relatively
coarse  sampling  of  the  parameter  space.  However,  the  implemen-
tations of polarization-like behavior in Section 3 of this paper only be-
come meaningful  in  three-dimensional  (3D) graphs.  We therefore  be-
gin this work by following up the preliminary 2D study of [4] with a
higher  density  sampling  of  parameter  space,  and  further  extending
this to 3D graphs. 

Performing a 3D parameter exploration requires generating graphs
with a greatly increased total node count because we need to pack vol-
umes with nodes instead of areas. However, holding enough nodes in
computer  memory  to  carry  out  robust  3D  simulations  rapidly  be-
comes  awkward.  To  resolve  this  problem,  new  software  was  pro-
duced that made use of an “as-needed” graph construction technique.
Under the new system, rather than creating an entire graph at runtime
and wrapping the edges to produce a closed surface, we instead gener-
ate  small  tiles  of  the  graph  only  as  required  when  a  pseudo-particle
traverses  them.  To  mimic  the  effect  of  randomly  distributed  nodes
with a mean density of Xr\  nodes per tile,  graph tiles were populated
with  varying  numbers  of  nodes  according  to  a  Poisson  distribution
centered  at  Xr\.  The  nodes  within  each  tile  were  then  linked  using  a
threshold neighbor radius r,  as  in [4].  This  produced the effect  of  an
unbounded topologically flat space. 
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Performing a 3D parameter exploration requires generating graphs
with a greatly increased total node count because we need to pack vol-
umes with nodes instead of areas. However, holding enough nodes in
computer  memory  to  carry  out  robust  3D  simulations  rapidly  be-
comes  awkward.  To  resolve  this  problem,  new  software  was  pro-
duced that made use of an “as-needed” graph construction technique.
Under the new system, rather than creating an entire graph at runtime
and wrapping the edges to produce a closed surface, we instead gener-
ate  small  tiles  of  the  graph  only  as  required  when  a  pseudo-particle
traverses  them.  To  mimic  the  effect  of  randomly  distributed  nodes
with a mean density of Xr\  nodes per tile,  graph tiles were populated
with  varying  numbers  of  nodes  according  to  a  Poisson  distribution
centered  at  Xr\.  The  nodes  within  each  tile  were  then  linked  using  a
threshold neighbor radius r,  as  in [4].  This  produced the effect  of  an
unbounded topologically flat space. 

2.2 Simulations for Determining Optimal Graph Density   

Using the Jellyfish algorithm, we generated a set  of  simulations for  a
range of particle sizes with n  20 through 200, each with a range of
degrees  of  graph node  density  Xr\  20 through 571.  For  each  value
of n,  we plotted the angular deviation qdev  for each Xr\  value. qdev  is
defined  as  the  net  change  in  direction  of  pseudo-particle  flight  be-
tween  the  first  half  of  a  simulation  sample  run,  and  the  second  half
(see  [4]  for  details).  Thus,  lower  values  of  qdev  correspond  to
straighter  motion.  For  each  value  of  n,  we  determined  the  optimal
value  of  Xr\  by  fitting  polynomial  functions  to  the  function qdev HXr\L

and locating the value of Xr\  that corresponds to the minimum value
of qdev. We call this value Xr\opt. 

As  an  example,  Figure  1(a)  shows  the  2D simulations  for  n  80.
There  is  a  clear  minimum  in  qdev  at  Xr\  160  indicating  that  this
graph  density  gives  the  straightest  motion  for  a  particle  of  size
n  80.  This  minimum  is  due  to  two  competing  effects.  At  low  Xr\,
there are an insufficient number of nodes in the pseudo-particle front
set candidates to adequately define forward motion. As Xr\  increases,
the  graph  is  more  likely  to  have  nodes  where  the  pseudo-particle  re-
quires them to produce forward motion. The second effect  applies at
high Xr\, where each pseudo-particle element is connected to so many
candidate  nodes  that  are  greater  than  n  candidates  with  the  same
score.  The  pseudo-particle  has  no  extra  information  for  determining
forward motion and so a random component is introduced. 

In Figure 1(b) we see the same behavior at n  160, with the mini-
mum  moving  to  a  higher  Xr\opt.  Generally,  we  see  that  Xr\opt  in-
creases with n.  However,  as Xr\opt  increases it  becomes harder to as-
certain  the  correct  value  because  the  simulations  have  only  been  run
to  Xr\  571.  For  high  n,  we  can  only  derive  a  lower  bound  for
Xr\opt.  It  is  also worth noting that  for  higher n,  the relation between
qdev  and  Xr\  around  the  minimum becomes  broad  and  shallow.  This
means that at high n,  the range of viable graph densities for straight-
line motion becomes larger. 
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In Figure 1(b) we see the same behavior at n  160, with the mini-
mum  moving  to  a  higher  Xr\opt.  Generally,  we  see  that  Xr\opt  in-
creases with n.  However,  as Xr\opt  increases it  becomes harder to as-
certain  the  correct  value  because  the  simulations  have  only  been  run
to  Xr\  571.  For  high  n,  we  can  only  derive  a  lower  bound  for
Xr\opt.  It  is  also worth noting that  for  higher n,  the relation between
qdev  and  Xr\  around  the  minimum becomes  broad  and  shallow.  This
means that at high n,  the range of viable graph densities for straight-
line motion becomes larger. 

Figure 2 shows Xr\opt  for n  80 in the 3D case. Compared to the
2D  case  in  Figure  1(a),  Xr\opt  is  higher  in  three  than  in  two
dimensions.  This  was  expected  as  the  nodes  in  the  graph  need  to
populate  a  volume  rather  than  an  area.  This  means  that  we  run  up
against  the  simulation  limit  faster  in  three  dimensions  and  therefore
will  have  more  lower-bound  points  on  Xr\opt  in  three  than  in  two
dimensions. 

HaL HbL

Figure  1.  Example  plots  showing  identification  of  Xr\opt  for  (a)  n  80  and
(b) n  160 from a range of Xr\ values for two dimensions. Plot minima such
as this were used to determine the relationship between n and Xr\opt.  

Figure  2.  Example  plot  showing  identification  of  Xr\opt  for  n  80  from  a
range of Xr\ values for three dimensions.  
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2.3 Angular Deviation Simulation Results  

From Xr\opt, we can calculate the average neighbor count Xd\opt  for a
given  node  in  the  graph  by  integrating  over  the  area  or  volume  en-
closed  by  the  linking  radius.  For  two dimensions  the  neighbor  count
is  p Xr\opt,  while  for  three  dimensions  it  is  4 ê 3 p Xr\opt,  with  a  con-

stant linking radius r  1 for all simulations. 
Figure 3(a) shows Xd\opt  as a function of n  in two dimensions and

Figure 3(b) shows three dimensions. For large values of n we can only
obtain a lower bound on Xd\opt, particularly in the 3D case (see discus-
sion in Section 2.2). For lower values of n, where we do have measure-
ments,  Xd\opt  increases linearly with n.  However,  the slope in the 2D
case  is  different  from  the  3D  case.  For  two  dimensions,  the  relation
was  given  by  Xd\opt 2 º 6 n.  For  three  dimensions,  the  relationship
Xd\opt 3 º 12 n was obtained. For higher n, the lower bounds are con-
sistent with an extrapolation of these linear relations. 

HaL HbL

Figure  3.  Plots  showing  change  in  Xd\opt  for  n  20  through  200  for  both
(a) the  2D  and  (b)  the  3D  cases.  In  the  2D  case,  the  dashed  line  shows
Xd\opt 2  6 n,  while in the 3D case it shows Xd\opt 3  12 n.  Arrows indicate
a lower bound on Xd\opt.  

3. Emulating Polarization  

3.1 Definition  

Polarization is a property of particles that describes the orientation of
their  wave-like  oscillations.  However,  the  pseudo-particle  algorithms
under investigation have not yet been extended to include the proper-
ties  of  waves.  We  therefore  require  a  definition  of  “polarization”
in the context of these simulations. So as to differentiate this property
from  that  witnessed  in  physical  particles,  we  refer  to  it  as  “quasi-
polarization”. 
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Polarization is a property of particles that describes the orientation of
their  wave-like  oscillations.  However,  the  pseudo-particle  algorithms
under investigation have not yet been extended to include the proper-
ties  of  waves.  We  therefore  require  a  definition  of  “polarization”
in the context of these simulations. So as to differentiate this property
from  that  witnessed  in  physical  particles,  we  refer  to  it  as  “quasi-
polarization”. 

We  define  quasi-polarization  as  the  property  of  retained  orienta-
tion  in  a  direction  orthogonal  to  the  pseudo-particle’s  direction  of
motion.  We  choose  this  interpretation  because  retained  orientation
would  seem  to  be  a  prerequisite  for  all  implementations  of  physical
polarization, regardless of what mechanism is employed. 

3.2 Algorithm  

In  order  to  model  quasi-polarization,  we  use  a  standard  Jellyfish  in-
stance  defined  by  two sets  A  and  B,  both  of  size  n.  These  constitute
the  steed  particle.  We  attach  to  it  a  rider  pseudo-particle  defined  by
two sets of size n ê 2 which we label R and L. For the particle’s initial
condition,  the  nodes  of  A  and  B  are  distributed  at  random  across  a
sample graph, as was described for the Jellyfish algorithm in [4]. The
initial  members  of  R  are  selected  randomly  from A.  Those  members
of A not allocated to R are allocated to L. 

With each iteration of the algorithm, we move the Jellyfish instance
forward by scoring neighbors of sets A  and B  without regard for the
rider particle. From the set of nodes A£  selected to replace A, we then
run the Jellyfish scoring system again, this time to determine which of
its  elements  belong  to  which  rider  sets.  For  this  step,  neighbors  to
nodes in the subset labeled R receive positive scoring. Neighbors to L
elements  receive  negative  scoring.  The  new members  for  R£  are  then
selected  on  the  basis  of  maximum scores  as  for  Jellyfish,  and  the  re-
maining members of A£  become L£.  The rider particle is therefore es-
sentially a Jellyfish within a Jellyfish. 

To  write  down  a  formulation  of  the  Jellyfish  plus  quasi-polariza-
tion algorithm, we will need the following formalism. Set S  of size m
has  members  x1, x2 … xm.  The  function  NeighborsHSL  indicates  the
set of all nodes that are linked to by any member of S.  This function
can  also  operate  on  a  single  node  where  NeighborsHxL  denotes  all
nodes that x connects to. We now define the function TopHn, S, f HxLL,
which returns the n top scoring members of S, using the metric f HxL to
score each element x. 

The formula for the Jellyfish plus polarization rider pair is then

A£  TopHn, NeighborsHA ‹ BL,
†NeighborsHxL › A§ - †NeighborsHxL › B§L

B£  A

R£  Top
n

2
, A£, †NeighborsHxL › R§ - †NeighborsHxL › L§

L£  A£ - R£.
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3.3 Simulation Conditions for Assessing Quasi-Polarization  

We examined the performance of the quasi-polarization pseudo-parti-
cle  pair  for  a  range  of  values  of  n  and  Xr\  in  order  to  determine  the
conditions  under  which  optimum  polarization  was  achieved  (n  20
through 200, Xr\  20 through 685). 

Measuring  the  quality  of  quasi-polarization  requires  that  we  have
some measure of change in orientation over time. To achieve this, we
first determine the mean position of the steed particle’s nodes for each
iteration (PS). We compare this value to the mean position of the rid-
er’s  front  set  (PR).  So  as  to  have  larger,  more  stable  node  samples
from  which  to  determine  the  positions  of  the  steed  and  rider,  we
retain those nodes that were members of R in the steed’s set B and cal-
culate the mean rider position from the union of both R sets. By com-
paring the normalized vector from PS to PR at the start of each experi-
mental  run  to  the  same  vector  at  the  end,  it  is  possible  to  determine
the extent to which the orientation of the particle has changed. We de-
note this value as qrot. 

We measured the orientation only at the start and end of each run
so  as  to  minimize  the  effects  of  noise,  as  was  done  with  the  metric
used  to  measure  qdev  in  Section  2.  Because  the  graphs  used  are  pur-
posefully irregular, some change of orientation with each step is guar-
anteed. 

3.4 Results  

For these simulations,  we ideally would like to model quasi-polariza-
tion without  compromising the  straightness  of  motion.  In  the  perfect
case,  therefore,  we  would  find  that  the  connection  density  that  pro-
duces  optimal  polarization-like  behavior  is  also  the  density  that  pro-
duces optimum straight-line motion. In practice this  is  not shown, as
described  later  in  this  section.  We  can  quantify  the  discrepancy  by
comparing the  Xd\  needed to  produce  polarization-like  behavior  with
the  Xd\opt  for  the  simple  particle.  Ideal  quasi-polarization  behavior
would  have  constant  orientation  (qrot  0).  Thus,  minimizing  qrot
gives us Xr\opt P. 

We determine  values  for  Xr\opt P  in  a  process  analogous  to  that  in
Section 2.2. For each n, we plot qrot  versus Xr\ and find the minimum
qrot  for  that  n.  The  corresponding  Xr\  is  Xr\opt P,  and  therefore  gives
us Xd\opt P. 

Figure 4(a) shows Xd\opt P  as a function of n. We note that Xd\opt P
increases  linearly  with  n  with  a  slope  that  is  shallower  than  that  for
the  simple  3D  particle  shown  in  Figure  3(b).  If  Xd\opt P  depended
merely on steed size, it would match the results in Figure 3(b), while if
Xd\opt P  depended  merely  on  rider  size, it  would  have  an  even  shal-
lower slope, because the rider has size n ê 2. Instead, it has the relation
Xd\opt P º 7.5 n,  which  suggests  that  complex  particle  behavior  re-
quires  that  a  graph  is  at  least  partly  tuned  to  the  ideal  properties  of
any riders that it carries. 
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Figure 4(a) shows Xd\opt P  as a function of n. We note that Xd\opt P
increases  linearly  with  n  with  a  slope  that  is  shallower  than  that  for
the  simple  3D  particle  shown  in  Figure  3(b).  If  Xd\opt P  depended
merely on steed size, it would match the results in Figure 3(b), while if
Xd\opt P  depended  merely  on  rider  size, it  would  have  an  even  shal-
lower slope, because the rider has size n ê 2. Instead, it has the relation
Xd\opt P º 7.5 n,  which  suggests  that  complex  particle  behavior  re-
quires  that  a  graph  is  at  least  partly  tuned  to  the  ideal  properties  of
any riders that it carries. 

As  seen  in  Figure  4(b),  the  minimum  value  of  qrot  depends  on  n
such  that  larger  pseudo-particles  show  a  more  consistent  orientation
than smaller ones. This trend resembles that found in [4] for optimal
qdev  as a function of n. Thus, as we approach the continuum limit, we
expect to see unchanging orientation. However, just as in the case for
qdev,  there  is  curvature  in  the  relation  such  that  the  gain  in  quasi-
polarization behavior flattens as n  increases. This means that there is
a  tradeoff  between  the  performance  of  the  simulations  and  their
computational cost. 

HaL HbL

Figure 4. (a) Plot showing relationship between steed particle size n and graph
connection  density  Xd\opt P  for  quasi-polarization  behavior.  The  relationship
Xd\opt P  7.5 n  is  marked  for  comparison.  (b)  Plot  showing  relationship  be-
tween  steed  particle  size  n  and  minimum  obtained  rotation  angle  qrot  for
quasi-polarization behavior. qrot decreases for increasing n.  

4. Discussion  

4.1 Comparison to Natural Particles  

In  discussing  the  similarities  of  pseudo-particles  and  their  counter-
parts in nature, it is important to address an apparent discrepancy be-
tween the models employed here and the experimentally observed enti-
ties they are intended to mimic~namely that physical particles are so
far not observed to have physical extent. Instances of the Jellyfish al-
gorithm would appear at first glance to have finite size, in contradic-
tion to this.  They inhabit  sets  of  spatially  distributed nodes  and can-
not produce straight-line motion without doing so. 

Though  it  should  not  be  expected  that  fundamental  particles  run
on  the  Jellyfish  algorithm,  we  anticipate  that  any  model  in  which
space  is  discrete  will  require  particles  to  consist  of  ensembles  of
nodes. This is because a particle represented by a single node in isola-
tion has insufficient information to exhibit straight-line motion across
a discrete network. Instead, it  will  execute a random walk across the
graph. The perceived discrepancy therefore still requires explanation.
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Though  it  should  not  be  expected  that  fundamental  particles  run
on  the  Jellyfish  algorithm,  we  anticipate  that  any  model  in  which
space  is  discrete  will  require  particles  to  consist  of  ensembles  of
nodes. This is because a particle represented by a single node in isola-
tion has insufficient information to exhibit straight-line motion across
a discrete network. Instead, it  will  execute a random walk across the
graph. The perceived discrepancy therefore still requires explanation.

This  issue  may  be  resolved  in  one  of  two ways.  The  first  of  these
emerges from the fact  that a set  of  nodes in a finite  graph represents
infinitely less information to describe than a point in a smooth mani-
fold (presuming that  we require  our  descriptions  to uniquely  identify
a  particle’s  position).  As  shown  in  Section  2,  there  appears  to  be  an
optimum  Xd\  for  Jellyfish-like  algorithms  that  scales  with  n.  In  a
smooth manifold,  any  finite  spatial  extent  represents  an  uncountably
infinite set of nodes. This means that a pseudo-particle composed of a
finite number of nodes must occupy an infinitely small spatial extent.
Even if the particle is made to comprise an uncountably infinite set of
nodes, this says nothing about the spatial extent that we might expect
the  particle  to  occupy,  as  any  region  of  smooth  space,  regardless  of
how small, contains an uncountably infinite set of points. 

A  second  possible  resolution  is  to  recognize  that  intrinsic  particle
size  does  not  necessarily  equate  to  measured  particle  size.  Measure-
ment  requires  a  particle  interaction,  but  we  have  not  yet  introduced
an interaction model. An interaction model can be imagined in which
all interactions happen via a single node intersection between two par-
ticles.  This  means that  particle  extent  upon measurement will  always
correspond to the scale of an individual node, and thus have zero spa-
tial extent. We propose that such models would yield pseudo-particles
that always have zero extent upon measurement from within the simu-
lation. In this interpretation, the set distribution is perhaps more anal-
ogous to a  natural  particle’s  wave-function before  measurement  than
to its size upon measurement. 

Which  resolution  we  choose  to  employ  depends  on  whether  the
continuum-limit case is expected to eventually prove relevant. In both
cases, however, the arguments hinge upon the fact that the correspon-
dence  between  the  models  under  investigation  and  natural  phe-
nomena has yet to be determined. For the purposes of the rest of this
discussion,  we  assume  that  this  issue  is  unresolved  but  not  insur-
mountable, and to be addressed in future work. 

4.2 Findings on Optimum Graph Density  

In these simulations, the amount of memory needed to encode a parti-
cle depends directly on the number of nodes it contains. Thus, particle
size  corresponds  to  particle  information  content.  This  relation  seems
unavoidable for all such simulations. 

Section 2 shows that there is a linear relation between n and Xr\opt
such that  larger particles  imply more densely connected spatial  nodes
in  this  type  of  simulation.  The  reverse  is  also  true,  as  shown  in  [4]:
higher Xr\  requires larger particles.  If  we equate particle size with in-
formation content, there are several implications.
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Section 2 shows that there is a linear relation between n and Xr\opt
such that  larger particles  imply more densely connected spatial  nodes
in  this  type  of  simulation.  The  reverse  is  also  true,  as  shown  in  [4]:
higher Xr\  requires larger particles.  If  we equate particle size with in-
formation content, there are several implications.

First, if space is continuous (i.e., made up of an infinitely dense net-
work of nodes),  then particles must contain infinite information (i.e.,
an  infinite  number  of  nodes,  even  if  this  does  not  imply  spatial
extent).  This  would make the universe non-computable,  which is  not
surprising,  as  continuously  valued  operations  generally  imply  non-
computability.  The  work  of  Gerard  t’Hooft  [5]  and  others  suggests
that  black  holes  contain  a  finite  amount  of  information.  In  this  con-
text  it  seems  unreasonable  to  postulate  a  universe  in  which  a  single
subatomic particle contains infinite information. 

Second,  because  Xr\opt  and  n  correlate,  a  measurement  of  particle
size  or  information  content  would  constrain  the  density  of  nodes  in
space,  presuming  an  irregular  directed  graph  such  as  those  outlined
here  underpins  the  universe.  This  raises  the  exciting  possibility  that
the density of space might be measured by observing the properties of
natural particles, as mentioned in Section 1. 

4.3 Findings on Quasi-Polarization  

We showed in  Section 3  that  our  rider|steed  polarization model  suc-
cessfully produced a pseudo-particle with an intrinsic property of ori-
entation.  Nothing  in  the  algorithm  explicitly  enforced  orientation.
Rather, it emerged as a natural consequence of applying one instance
of the Jellyfish algorithm to the members of another. This means that
implementing  polarization  does  not  require  a  great  increase  to  the
algorithmic complexity of our model. 

However, the graph density required to produce stable quasi-polar-
ization behavior is always lower than that needed to optimize straight-
line  motion for  the  simple  particle  with  the  same n.  This  means  that
adding complexity to the particle  implies  decreased graph connected-
ness. We expect this behavior to hold for other types of particle com-
plexity  as  well,  such  as  spin  or  charge.  This  means  that  the  level  of
complexity  observed  in  physical  particles  constrains  the  spatial  net-
work to lower Xd\ graphs. 

We also saw that in Figure 1, as n gets larger, the qdev|Xr\ relation
has a broader and shallower region around Xr\opt. Thus, it should be
easier  to  reconcile  the  graph  requirements  for  well-behaved  straight-
line  motion  with  those  required  for  quasi-polarization  at  large  n.
While  we  can  expect  this  effect  to  be  minimized  at  large  scales,  it
places  further  constraints  on  what  we  might  expect  to  see  if  these
models are ever extended to the point of experimental testability. Nat-
ural particles would require a dense enough graph to show linear mo-
tion  but  sparse  enough  conditions  to  capture  the  properties  required
to describe their intrinsic properties. 
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4.4 General Findings  

The behavior of a rider under the conditions described in the polariza-
tion  simulations  might  be  characterized  as  that  of  an  “intrinsic  sub-
particle”. The rider may be said to be a sub-particle,  as its  motion is
defined by an independent algorithm. It may be said to be intrinsic be-
cause it does not affect the particle over which it operates between in-
teractions. Consequently, it manifests as a persistent physical property
of its parent particle rather than as a separate object. If we model all
such  particle  attributes  this  way,  we  might  therefore  expect  a  single
pseudo-particle showing naturalistic properties to host a flexible num-
ber of sub-particles internally. 

This  flexibility  is  welcome  as  we  would  like  to  measure  not  only
particles but also space using iterative functions over sets of nodes. At
any  given  iteration,  a  particle  can  be  viewed  as  a  kind  of  “meta-
node”,  which is  connected to a  set  of  other  nodes  via  graph associa-
tions. In this analogy, the meta-node’s neighbors are the set of nodes
that  belong  to  that  particle.  From  this  construction,  we  can  see  that
the only difference between the meta-node and any other node in the
graph  is  simply  the  function  by  which  its  neighbors  are  updated.  In
this way, spatial nodes and particles may be described using the same
mechanism. Making use of riders in our model has, however, come at
a  cost  in  terms  of  descriptive  complexity.  For  the  simple  particles  of
[4]  and Section 2,  we only had to define the function through which
new nodes  were  selected,  along  with  a  value  of  n.  For  more  realistic
particles,  we also need to define  the  domain over  which its  members
may be selected. 

5. Future Work  

With the polarization model, we presented a simple instance of a rider
running  a  very  similar  algorithm  to  the  Jellyfish  instance  run  by  the
steed. This reuse of the Jellyfish algorithm minimizes the total algorith-
mic complexity of the model. A nice aspect of this system is that quasi-
polarization can be said to be an “intrinsic” property  of  the  pseudo-
particle,  in  that  it  does  not  change  the  macroscopic  behavior  of  the
pseudo-particle. 

In  the  wake  of  this  investigation,  it  is  natural  to  ask  what  other
physical  attributes  of  fundamental  particles  might  be  represented  us-
ing a steed|rider relationship or similar mechanism. We are currently
exploring  three  different  possible  modifications.  The  first  of  these  is
an investigation of the range of behavior that can be obtained from a
single rider, with only minor changes to the quasi-polarization model. 

5.1 Spin-Like Models  

Early trials show that by increasing the size of the steed relative to the
rider, we can produce a scenario in which the rider takes up a pattern
of stable motion inside the steed. This stable motion has some of the
properties of particle spin, in that the rider rotates around the perime-
ter  of  the  steed  with  stable  angular  velocity  in  either  a  clockwise  or
counter-clockwise direction. As with quasi-polarization, the rider can-
not affect  the steed and so does not manifest  as a physical  sub-parti-
cle. This therefore provides a nice analog to intrinsic angular momen-
tum for the steed particle. The current model is not realistic, however,
in that the axis of rider rotation is restricted to the direction of steed
motion,  a  limitation  we  expect  to  remove  with  more  sophisticated
models. 
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Early trials show that by increasing the size of the steed relative to the
rider, we can produce a scenario in which the rider takes up a pattern
of stable motion inside the steed. This stable motion has some of the
properties of particle spin, in that the rider rotates around the perime-
ter  of  the  steed  with  stable  angular  velocity  in  either  a  clockwise  or
counter-clockwise direction. As with quasi-polarization, the rider can-
not affect  the steed and so does not manifest  as a physical  sub-parti-
cle. This therefore provides a nice analog to intrinsic angular momen-
tum for the steed particle. The current model is not realistic, however,
in that the axis of rider rotation is restricted to the direction of steed
motion,  a  limitation  we  expect  to  remove  with  more  sophisticated
models. 

It  is  interesting to note that by increasing the number of riders we
are  able  to  obtain  a  range  of  “quasi-spin  values”  similar  to  the  spin
values  observed  in  natural  particles.  With  two  riders,  they  may  be
measured  as  traveling  in  the  same  direction  either  clockwise  or
counter-clockwise,  or  in  opposing  directions.  This  yields  the  quasi-
spin values of -1, 0, and 1. Increasing the number of riders increases
the  number  of  quasi-spin  states  in  keeping  with  the  number  of  spin
states permitted to particles with the corresponding spin numbers. 

5.2 Particle Variety Models  

Looking to the future, we have begun to experiment with steeds that
have  multiple  riders.  Initial  investigations  show that  the  attributes  of
different  kinds  of  particles  are  relatively  easy  to  capture  using  this
method. 

Particles  in  the  standard  model  exhibit  symmetries  that  hint  at  a
deeper  structure.  There  has  been  speculation  for  many  years  that
those particles currently considered fundamental may be composed of
sub-particles  constrained  to  travel  in  certain  specific  configurations.
Several  “preon”  models  have  been  suggested  that  capture  such
structure.  However,  these  sub-particles  have  not  been  found.
Nevertheless,  in  order  to  simulate  the  full  variety  of  standard  model
particles using steeds with multiple riders, it would be useful to find a
mechanism that forced riders to travel in groups of fixed size so that
we  might  make  use  of  such  substructure,  regardless  of  whether  we
consider  existing  preon  models  to  represent  convincing  physical
theories.  There  are  two  obvious  ways  to  do  this;  the  first  is  to  have
riders  that  have  knowledge  of  one  another  in  a  steed  that  has  no
knowledge  of  them.  The  other  is  to  have  riders  that  are  ignorant  of
each other  in a  steed that  has knowledge of  its  riders.  Models  of  the
first variety have some commonality with Rishons, while those of the
second  variety  turn  out  to  have  some  commonality  with  quark
models. 

The  Rishon model  was  a  candidate  model  for  substructure  under-
pinning  the  standard  model  suggested  by  Haim  Harari  in  1979  [6].
This  and  other  models  based  on  preons  have  been  largely set  aside
since the 1980s. Such models are hampered by an inherent mass para-
dox as they require tiny particles with enormous momenta to be con-
fined  within  particles  that  are  experimentally  observed  to  be  point-
like. 
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The Rishon model  was  a  candidate  model  for  substructure  under-
pinning  the  standard  model  suggested  by  Haim  Harari  in  1979  [6].
This  and  other  models  based  on  preons  have  been  largely set  aside
since the 1980s. Such models are hampered by an inherent mass para-
dox as they require tiny particles with enormous momenta to be con-
fined  within  particles  that  are  experimentally  observed  to  be  point-
like. 

We  constructed  trial  simulations  in  which  a  steed  particle  carries
multiple riders that select their new candidate front sets based on the
proximity  of  the  elements  of  other  riders  on  the  same  steed.  We  bi-
ased  candidate  selection  to  nodes  that  were  adjacent  to  at  least  two
other  riders.  This  produced  the  effect  of  rider  groups  that  traveled
preferentially in groups of at least three. We then reduced the connec-
tion density of our trial graph to a level where large Jellyfish instances
spontaneously broke into unstable fragments. Under these conditions,
we were able to obtain steed particle fragments that either had no rid-
ers,  or  had riders  traveling in interchangeable groups of  size  three or
larger. 

In this trial, the riders distributed themselves across their steed par-
ticles  rather  than  behaving  as  localized  subsets.  This  produced  the
effect of interchangeable intrinsic pseudo-particle attributes. Such pat-
terns may represent a useful first step toward representing particle va-
riety. However, without an interaction model to back up such efforts,
they  fall  short  of  being  useful  as  they  currently  stand.  This  arena
seems ripe for more thorough exploration. 

The  other  preliminary  simulation  we  explored  broke  the  original
steed|rider  relationship pattern by permitting the steed to be affected
by the riders it carried. We produced a steed that chose its next front
set  based  on  whether  candidate  nodes  were  adjacent  to  the  elements
of at least two different riders. The riders themselves had no relation-
ships with each other. 

When exposed to the same low-density graph with large steed size
conditions  as  the  Rishon trial,  this  pseudo-particle  combination once
again produced the effect of riders only traveling in groups. However,
in  this  trial,  steed  particle  fragments  containing  no  riders  only  per-
sisted  for  very  short  distances,  creating  a  scenario  in  which the  pres-
ence  of  riders  was  a  requirement  for  pseudo-particle  stability.  These
conditions  also  slightly  distorted  the  motions  of  the  steed  particles,
creating  a  situation  in  which  the  riders  behaved  somewhat  like  inde-
pendent particles constrained to interact at a certain range, somewhat
like  the  observed  behavior  of  quarks.  As  the  results  of  these  simula-
tions have not yet been thoroughly explored, we defer a detailed pre-
sentation of them to future work. 

6. Conclusions  

We do  not  expect  particles  in  nature  to  rely  upon  the  Jellyfish  algo-
rithm. Similarly,  we do not  expect  that  the  pseudo-particle  attributes
described  in  this  work  exactly  mimic  those  seen  in physical  experi-
ments.  However,  we  have  shown  that  this  simple  approach  is  ade-
quate to capture complex effects with clear natural analogs. We fully
expect other algorithms in the same domain as Jellyfish to be able to
more closely approximate real particles, and to provide a useful com-
putational  foundation  for  describing  particle  interactions.  The  do-
main of  such algorithms has  barely  been explored and appears  to  be
rich with potential. 
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We do  not  expect  particles  in  nature  to  rely  upon  the  Jellyfish  algo-
rithm. Similarly,  we do not  expect  that  the  pseudo-particle  attributes
described  in  this  work  exactly  mimic  those  seen  in physical  experi-
ments.  However,  we  have  shown  that  this  simple  approach  is  ade-
quate to capture complex effects with clear natural analogs. We fully
expect other algorithms in the same domain as Jellyfish to be able to
more closely approximate real particles, and to provide a useful com-
putational  foundation  for  describing  particle  interactions.  The  do-
main of  such algorithms has  barely  been explored and appears  to  be
rich with potential. 

Furthermore,  many  physical  theories  simply  assign  attributes  to
particles  as  values  and  model  the  changes  they  undergo.  It  is  hoped
that using implementation models such as the one explored here may
be  able  to  shed  light  on  deeper  questions  not  touched  by  such  theo-
ries, such as “why does spin exist at all?” and “how and why do the
group symmetries observed in physical particles arise?” 

Acknowledgments 

This  paper  is  based  on  a  talk  given  at  the  Just  One  Universal  Algo-
rithm (JOUAL) 2009 Workshop.

References 

[1] L.  Smolin,  Three Roads to Quantum Gravity,  New York:  Basic  Books,
2002. 

[2] J.  Henson, “The Causal  Set  Approach to Quantum Gravity,” from Ap-
proaches to Quantum Gravity: Towards a New Understanding of Space
and  Time,  (D.  Oriti,  ed.),  Cambridge,  England:  Cambridge  University
Press, 2006. 

[3] S.  Wolfram,  A New Kind  of  Science,  Champaign,  IL:  Wolfram Media,
Inc., 2002. 

[4] A.  Lamb,  “A  Glider  for  Every  Graph:  Exploring  the  Algorithmic  Re-
quirements  for  Rotationally  Invariant,  Straight-Line Motion,” Complex
Systems, 18(4), 2009 pp. 439|456. 

[5] G. ’t Hooft, “Dimensional Reduction in Quantum Gravity,”
gr-qc/9310026v2 (1993). 

[6] H.  Harari,  “A Schematic  Model  of  Quarks  and  Leptons,”  Physics  Let-
ters B, 86(1), 1979 pp. 83|86. 

 130 A. G. D. Lamb 

 Complex Systems, 19 © 2010 Complex Systems Publications, Inc.
 
https://doi.org/10.25088/ComplexSystems.19.2.115




