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A  computational  theory  of  everything  (TOE)  requires  a  universe  with
discrete (as opposed to continuous) space, time, and state. Any discrete
model  for  the  universe  must  approximate  the  continuous  wave  equa-
tion to extremely high accuracy. The wave equation plays a central role
in  physical  theory.  It  is  the  solution  to  Maxwell’s  equations  and  the
Klein  Gordon  (or  relativistic  Schrödinger)  equation  for  a  particle  with
zero rest mass.

No  discrete  equation  can  model  the  continuous  wave  equation
exactly.  Discretization  must  introduce  nonlinearities  at  something  like
the Planck time and distance scales,  making detailed predictions on an
observable  scale  difficult.  However,  there  are  emergent  properties  and
some  of  them  mimic  aspects  of  quantum  mechanics.  An  additional
emergent  property  is  the  possibility  of  local  but  superluminal  effects
that  might  help  explain  apparent  experimental  violations  of  Bell’s
inequality. 

1. Discretizing the Wave Equation

A computational theory of everything (TOE) requires a universe with
discrete  (as  opposed  to  continuous)  space,  time,  and  state.  Any  dis-
crete  model  for  the  universe  must  approximate  the  continuous  wave
equation to extremely high accuracy. The wave equation plays a cen-
tral  role  in  physical  theory.  It  is  the  solution to  Maxwell’s  equations
and the Klein Gordon (or relativistic Schrödinger) equation for a parti-
cle with zero rest mass.

Discretized  approximations  to  partial  differential  equations  have
been studied extensively but almost exclusively for the purpose of min-
imizing the difference between these models and the continuous equa-
tions  they  are  designed  to  approximate.  In  this  paper  we  are  inter-
ested  in  how  discretized  finite  difference  approximations  differ  from
the continuous wave equation. 

The  continuous  wave  equation  with  a  propagation  velocity  of  v
and a solution of the form f Hx, y, z, tL is: 

(1)
∂2 f

∂ t2
 v2 “2 f .

The simplest  finite  difference  approximation to  the  wave equation
on  a  regular  grid  with  three  spatial  dimensions  and  one  time
dimension  defines  a  scalar  value  fi,j,k,t  at  each  point  in  spacetime.

With  units  chosen  so  that  D x  D t  1,  the  finite  difference
approximation is: 
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The simplest  finite  difference  approximation to  the  wave equation
on  a  regular  grid  with  three  spatial  dimensions  and  one  time
dimension  defines  a  scalar  value  fi,j,k,t  at  each  point  in  spacetime.

With  units  chosen  so  that  D x  D t  1,  the  finite  difference
approximation is: 

(2)
d = v2Ifi+1,j,k,t + fi-1,j,k,t + fi,j+1,k,t +

fi,j-1,k,t + fi,j,k+1,t + fi,j,k-1,t - 6 fi,j,k,tM

(3)fi,j,k,t+1  d - fi,j,k,t-1 + 2 fi,j,k,t

fi,j,k,t+1  in  equation (3)  is  the value computed for  the next  time step.

d  in  equation (2)  is  the  finite  difference approximation to the spatial
divergence (approximation to the right-hand side of equation (1)). v is
the velocity of propagation in units of the grid spacing in time and dis-
tance,  that  is,  v    1  means  the  wave  propagates  one  grid  distance
space in each time increment. 

1.1 Approximating the Isotropic Continuous Equation

To approximate the continuous wave equation, a wave front must ad-
vance in all directions at very close to the same speed. In the rectangu-
lar grid implied by equations (2) and (3), the maximum rate at which
effects can propagate is one immediate neighbor in one time step as il-
lustrated by the four arrows at the center of  Figure 1.  The diamond-
shaped  propagation  patterns  of  the  first  affected  points  at  two  and
four time steps after a change in the center point are also shown.  

A  discrete  rectangular  grid  cannot  be  isotropic  and  this  puts
constraints  on  the  velocity  of  propagation  in  approximating  the
isotropic continuous case. The diagonal in Figure 1 from the center of
the figure to the four time step propagation boundary has a length of

4 + 4  distance increments. Each side of the triangle with this line as
hypotenuse  is  2  distance  increments.  The  distance  to  the  same

propagation boundary along a major axis is 4. The ratio is 8 ì 4 

1 ì 2 .  Assuming  the  standard  Euclidean  metric,  effects  can

potentially  propagate  along  a  major  axis  by  a  factor  of  2  faster
than  they  can  propagate  at  a  45  degree  angle.  Other  grid  topologies
and  finite  difference  approximations  will  have  different  patterns  and
ratios, but no regular grid can have the complete circular symmetry of
the  continuous  case  and  thus  will  require  v < 1  to  approximate  the
continuous equation. 
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Figure 1. Maximum propagation of a physical effect. In equations (2) and (3),
each  point  at  each  time  step  is  affected  only  by  the  immediate  neighboring
points as shown by the four arrows from the center point. The two diamonds
are the boundaries of affected points after two and four time steps.

1.2 Discretizing the Finite Difference Equation  

Discrete  versions  of  equations  (2)  and (3)  must  map integers  to  inte-
gers.  Because  v < 1,  the  equations  must  be  modified  to  discretize
them.  The  simplest  thing  is  to  truncate  or  round the  computation  to
an integer value. Such a modification to equation (2) will preserve the
time  symmetry  of  equations  (3)  and  (1)  and  thus  will  be  time  re-
versible.  

A  truncated  or  rounded  finite  difference  approximation  to  the
wave  equation  is  an  inelegant  model.  There  may  be  a  more  elegant
solution to this problem, but any fully discrete TOE must have within
it  a  discretized  mechanism  that  approximates  the  wave  equation.
Thus,  it  is  worth  understanding  the  emergent  properties  in  this  class
of models. 

2. Emergent Properties  

The existing laws of physics break down near the Planck time and dis-
tance. At that scale, background quantum fluctuations can create tiny
black holes. This suggests that the minimal time and distance in a dis-
crete  spacetime  model  will  be  close  to  the  Planck  time  and  distance.
The  Planck  time  is  5.4ä10-44  seconds  and  the  Planck  distance  is
1.6ä10-35  meters.  Discreteness  at  this  scale  would  make  for  huge
structures  for  the  fundamental  particles  of  physics.  Thus,  although it
is  easy  to  compute  discrete  approximations  to  the  wave  equation,
they will  inevitably  (given existing technology)  be  much smaller  than
is required to reproduce known physics. However, it is possible to de-
velop general properties that characterize these models and to connect
these to known physics. 
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The existing laws of physics break down near the Planck time and dis-
tance. At that scale, background quantum fluctuations can create tiny
black holes. This suggests that the minimal time and distance in a dis-
crete  spacetime  model  will  be  close  to  the  Planck  time  and  distance.
The  Planck  time  is  5.4ä10-44  seconds  and  the  Planck  distance  is
1.6ä10-35  meters.  Discreteness  at  this  scale  would  make  for  huge
structures  for  the  fundamental  particles  of  physics.  Thus,  although it
is  easy  to  compute  discrete  approximations  to  the  wave  equation,
they will  inevitably  (given existing technology)  be  much smaller  than
is required to reproduce known physics. However, it is possible to de-
velop general properties that characterize these models and to connect
these to known physics. 

Two  classes  of  emergent  properties  that  can  arise  from  a  dis-
cretized  finite  difference  approximation  to  the  wave  equation  are
quantization  (a  lower  limit  on  the  size  of  viable  structures  that  is
shared by all discrete models) and chaotic-like behavior from the non-
linearities of discretization. 

2.1 Quantization  

An initial nonzero state cannot diffuse to arbitrarily small values as is
the  case  with  the  continuous  equation.  Because  of  time  reversibility,
an  initial  nonzero  state  cannot  disappear.  There  are  three  options.
The initial state can diverge, eventually producing nonzero values ev-
erywhere.  It  can  break  up  into  disjoint  structures  moving  apart.  Fi-
nally, it can remain in place generating a sequence of states. For small
initial  states,  this  last  case  will  repeat  a  finite  sequence  of  states  that
must include the initial state because of time reversibility. This is true
of any state sequence that does not diverge or break up into indepen-
dent  structures.  However,  the  number  of  possible  states  grows  so
rapidly with the size of the initial state that this looping may never be
observed.  

2.2 Chaotic-Like Behavior  

The definition of chaos theory requires that different initial conditions
are able to be specified arbitrarily close. This is only possible with con-
tinuous models, but because discrete models can approximate continu-
ous  ones,  there  are  chaotic-like  discrete  models  that  approximate
chaotic  behavior.  The  wave  equation  is  linear  and  not  chaotic.  Dis-
cretizing it adds a nonlinear element to the model, opening the possi-
bility of chaotic-like behavior.  

Discretized  approximations  to  the  wave  equation  have  solutions
that  are  vastly  more  complex  than  the  solutions  to  the  continuous
equation.  This  is  easy to show for the scalar  wave equation that  is  a
function  only  of  time.  The  solution  to  the  continuous  equation  is  a
sine  wave  completely  determined  by  its  phase,  amplitude,  and  fre-
quency. The solution to a discretized version of this equation is a vast
array of repeating sequences. Choose any two integers as the first two
values  of  a  sequence  and  they  determine  a  sequence  that  will  repeat
sooner or later. Some examples are given in the appendix. 
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2.3 Particles  

At this point, this paper becomes speculative. I do not know what hap-
pens in these models on the scale of fundamental particles, because it
is  not  possible  to  do  simulations  at  that  scale.  Thus,  I  describe  what
may  happen  based  on  properties  of  the  models  and  existing  physics.
Such  speculation  may  be  essential  to  bridge  the  enormous  gap  be-
tween  the  toy  discrete  models  that  can  be  constructed  with  existing
technology  and  the  vast  structures  that  correspond  to  fundamental
particles if time and space are ultimately discrete.  

On a large enough scale, this class of models can mimic a solution
to the partial differential equation to an arbitrarily high accuracy and
will  have  other  characteristics  that  may  be  chaotic-like.  Specifically
there  may exist,  in  contrast  to  the  continuous model,  stable  dynamic
structures  that  are  similar  to  attractors  in  chaos  theory.  Stable  struc-
tures are those that an initial state tends to converge to and could be
the  fundamental  particles  of  physics.  Under  appropriate  circum-
stances  these  structures  could  transform  into  one  another,  creating
particle  interactions  and  transformations.  This  would  be  a  physical
quantum collapse that nonetheless is time reversible and thus never de-
stroys  information.  It  is  possible  that  an  appropriate  discrete  model
could account for the entire  menagerie  of  “fundamental  particles” of
contemporary  physics  as  well  as  all  the  forces  of  nature.  There  is
enough  complexity  introduced  by  nonlinear  discretization  to  suggest
that this is a possibility. 

2.4 Special Relativity  

All  linear  processes  in  this  model  can  be  thought  of  as  electrody-
namic. This implies that special relativity holds for all linear processes
to  the  same  accuracy  that  the  model  approximates  the  continuous
wave equation. In contrast, the transformation of particles is chaotic-
like, nonlinear, and does not necessarily conform to special relativity.  

2.5 Quantum Uncertainty  

Quantum uncertainty stems from the same mathematics that does not
allow one to specify an exact frequency and exact location for a classi-
cal wave. Only an impulse has an exact location and it is the sum of
all frequencies. Only a pure tone has an exact frequency and it has in-
finite  extent.  There  is  nothing  “uncertain”  in  classical  wave  theory.
The  class  of  discrete  models  proposed  here  suggests  the  possibility
that  quantum  uncertainty  has  a  similar  but  more  complex  explana-
tion  that  does  not  involve  absolute  uncertainty  but  only  chaotic-like
behavior. The approach described below is for a discretized (and thus
nonlinear and potentially chaotic-like) finite difference approximation
to the wave equation.  

The idea is that the transformation of particles is a physical process
extended  over  time  in  which  dynamically  stable  structures  (particles)
transform into other particles. Particles are like attractors in chaos the-
ory  and  are  the  residual  structures that  processes  ultimately  resolve
themselves into. These transformations have a focal point in physical
space and state space. The sharpness of this focal point is determined
by  initial  conditions  and  is  the  basis  of  the  uncertainty  principle  of
quantum mechanics. As long as one only knows the properties of the
system  at  the  level  of  quantum  mechanics,  these  focal  points  deter-
mine  everything  one  can  say  about  the  system.  However,  with  com-
plete knowledge of the detailed discrete state, it  would be possible to
predict  exactly  what  happens.  At  this  lowest  level  of  physical  reality
the  uncertainty  principle  does  not  impose  theoretical  limitations  on
what  can  be  known  about  a  system,  although  the  complexity  and
chaotic-like  structure  of  these  transformations  can  impose  enormous
practical limitations.
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mine  everything  one  can  say  about  the  system.  However,  with  com-
plete knowledge of the detailed discrete state, it  would be possible to
predict  exactly  what  happens.  At  this  lowest  level  of  physical  reality
the  uncertainty  principle  does  not  impose  theoretical  limitations  on
what  can  be  known  about  a  system,  although  the  complexity  and
chaotic-like  structure  of  these  transformations  can  impose  enormous
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2.6 Pseudorandom Behavior  

This class of models is completely deterministic. However, the chaotic-
like  behavior  introduced  through  nonlinear  discretization  can  create
pseudorandom  results  that  in  most  cases  would  be  impossible  to
distinguish  from  the  irreducible  randomness  postulated  by  quantum
mechanics.  The “hidden variables” implied by Einstein and his coau-
thors’ critique of quantum mechanics [1] are not variables in the clas-
sical  sense.  The  variables  are  information  stored  holographic-like
throughout  an extended spatial  region and are  the  detailed evolution
of  a  discretized  time reversible  finite  difference  approximation to  the
wave  equation.  They  do  not  allow the  assignment  of  exact  values  to
noncommuting observables, but they do allow (at least in theory) pre-
diction of all experimental outcomes. 

2.7 Creating the Universe  

Moving beyond the scalar wave function described in the appendix to
one  or  more  spatial  dimensions  results  in  a  huge  number  of  possible
states.  A  repeated  sequence  of  states  can  no  longer  be  observed  in  a
toy model except for small initial states that spread out little or not at
all. What “small” means depends on the velocity of propagation v  in
equation (2).  If  a  single  initial  value,  in  an otherwise  all  zero grid,  is
large  enough  to  propagate  more  than  two  distance  intervals  before
looping through a repeated sequence of states, it usually diverges. The
smaller  the  value  of  v,  the  larger  the  initial  value  can  be  and not  di-
verge.  Divergence  in  this  context  means  filling  (a  necessarily  small,
e.g.,  a  cube  1000  points  in  each  dimension  requires  a  billion  sample
array) state space with nonzero values. The tendency of these simula-
tions  to  diverge  for  all  but  very  trivial  initial  conditions  raises  doubt
about them. However, like the old steady state model of the universe,
it  may  be  that  matter  is  continually  being  created  at  an  extremely
small rate and the observed divergence is that process. Divergent mod-
els  allow  for  a  small  finite  region  of  nonzero  initial  conditions  and
simple state change rules to account for the evolution of the universe.
Everything  is  created  from  a  very  simple  initial  state  as  structure
emerges from a divergent process. 
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3. Bell’s Inequality  

The most problematic aspect of quantum mechanics is the reconcilia-
tion  of  absolute  conservation  laws  with  probabilistic  observations.
Bell  proved  that  quantum  mechanics  requires  that  two  particles  that
interact  and  remain  in  a  singlet  state  are  subject  to  mutual  influence
even  if  they  are  at  opposite  ends  of  the  galaxy  [2].  This  influence  is
essential to ensure that the conservation laws will hold.  

One solution to this problem is an explicitly nonlocal model,  such
as that developed by Bohm [3]. A discrete model can be nonlocal be-
cause  of  the  way  spacetime  points  are  topologically  connected  [4,
p. 544].  This  solution  adds  complexity  to  the  topological  network
that must grow with the size of  the universe being modeled.  In addi-
tion, it fails to address the underlying problem of probabilistic obser-
vations  and  absolute  conservation  laws.  In  quantum  mechanics,  the
mechanism that enforces the conservation laws is the evolution of the
wave function in configuration space.  This is  an even more topologi-
cally complex model that requires a separate set of spatial dimensions
for every particle being modeled.  

A chaotic-like time reversible finite difference approximation to the
wave  equation  may  provide  a  simple  local  (but  not  relativistic)  solu-
tion to the long-standing paradox of probabilistic laws of observation
and absolute conservation laws. 

3.1 A Local Mechanism for the Conservation Laws  

Conservation  laws  that  characterize  the  continuous  equation  will,  to
high accuracy, be obeyed by the discretized model. These laws will im-
pose  constraints  on  what  particle  transformations  can  occur.  Many
transformations can be expected to start to occur that cannot be com-
pleted  because  of  the  conservation  laws  or  other  structural  con-
straints.  These  could  be  a  source  of  the  virtual  particles  of  quantum
mechanics.  The  process  of  particle  transformation  is  one  of  chaotic-
like convergence to a stable state as one set of attractor-like structures
(particles) converge to a new set of attractor-like structures.  

All transformations in this model are local but not necessarily rela-
tivistic. There is an absolute frame of reference (the discrete points in
physical space) and there is a possibility of superluminal transfer of in-
formation.  Define  w  as  the  velocity  of  one  spatial  point  in  one  time
step. It is the maximum rate at which effects can propagate regardless
of  the  velocity  of  wave  propagation  that  simulates  the  continuous
equation. If c is the velocity of wave propagation in the same units as
w,  then w ê c  must  be greater  than 1.  It  can be much larger and may
need to be for a sufficiently accurate approximation to the continuous
equation.  Thus,  the  chaotic-like  transformations  between  particles,
which do not exist in the continuous model, may involve the local but
superluminal transfer of information. 
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3.2 Existing Tests of Bell’s Inequality  

It  is  plausible that this class of models could account for the existing
experimental  tests  of  Bell’s  inequality.  Early  in  this  series  of  experi-
ments it  was observed that quantum mechanics has a property called
delayed  determinism,  meaning  that  the  outcome  of  an  observation
may  not  be  determined  until  some  time  after  the  event  occurred  [5].
We see  this  explicitly  in  the  creation  of  virtual  particles  that  start  to
come  into  existence  before  it  is  determined  whether  the  transforma-
tion that has started will be able to be completed. Quantum mechan-
ics does not have an objective definition of “event”. That is why there
are  competing  philosophical  interpretations  to  fill  this  gap.  Delayed
determinism is an inherent part of the process of converging to a sta-
ble state. There is no absolute definition of “stable”. It is a matter of
probabilities.  Any  transformation  might  ultimately  be  reversed  al-
though that probability may become negligibly small rapidly. Delayed
determinism and the lack of an objective definition of event makes it
tricky to say just when an experiment has conclusively violated Bell’s
inequality.  

There  are  significant  weaknesses  in  existing  experiments  [6].  The
process  of  converging  to  a  stable  state  is  a  bit  like  water  seeking  its
level.  All  the  available  mechanisms (paths  of  water  flow)  are  used in
creating  the  final  state.  The  process  of  converging  to  a  stable  state
may  exploit  every  available  loophole  as  well  as  superluminal  effects
possible with this class of models. If some finite difference approxima-
tion to the wave equation is a correct TOE, then eventually quantum
mechanics will disagree with experimental results in tests of Bell’s in-
equality. One can think of these experiments as trying to determine if
there is a physical quantum collapse process with a local (but not rela-
tivistic) spacetime structure that can be observed experimentally. 

A recent test of Bell’s inequality was motivated by suggestions that
there  must  be  motion of  a  macroscopic  object  (with  gravitational  ef-
fects) for a measurement to be complete [7]. The experiment involved
two  detectors  with  a  spatial  separation  of  18  kilometers  (or  60  mi-
croseconds), setting a new record for these types of experiments. Each
detection triggered a voltage spike to a piezoelectric crystal that gener-
ated  macroscopic  mass  movement  in  about  7.1  microseconds.  The
quantum efficiency was 10% and the dead time was 10 microseconds.
This is not claimed to be a loophole-free experiment, but it does illus-
trate the challenge that the models proposed here face. 

4. Conclusions  

Any  computational  model  for  physics  must  approximate  the  wave
equation to high accuracy and no computational model can do so ex-
actly. Discretizing this continuous equation creates nonlinearities that
may  produce  chaotic-like  behavior  and  superluminal  information
transfer. The former may lead to stable dynamic structures that are a
model  for  fundamental  particles.  These  particles  may  transform  into
one another in a physical quantum collapse somewhat like transforma-
tions between attractors in chaos theory. The superluminal transfer of
information in these models may be one component in existing experi-
ments that appear to violate Bell’s inequality in a way that precludes a
local explanation.  
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Any  computational  model  for  physics  must  approximate  the  wave
equation to high accuracy and no computational model can do so ex-
actly. Discretizing this continuous equation creates nonlinearities that
may  produce  chaotic-like  behavior  and  superluminal  information
transfer. The former may lead to stable dynamic structures that are a
model  for  fundamental  particles.  These  particles  may  transform  into
one another in a physical quantum collapse somewhat like transforma-
tions between attractors in chaos theory. The superluminal transfer of
information in these models may be one component in existing experi-
ments that appear to violate Bell’s inequality in a way that precludes a
local explanation.  

Connecting this mathematics and speculation about it to physics is
extremely  difficult  and  likely  to  remain  so  for  some  time  because  of
the vast computational resources that would be required to model the
fundamental particles. This speculation suggests that tests of Bell’s in-
equality  can  be  viewed  as  tests  for  a  physical  quantum collapse  pro-
cess with a spacetime structure.
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Appendix

A. Discretized Scalar Wave Equation (Excerpted from [8])

The  simplest  dynamic  discrete  system  involves  a  single  scalar  value
that changes at each time step or iteration. A simple time symmetric fi-
nite difference equation for this is:  

(A.1)ft+1  T
nft

d
- ft-1.

n and d are integers (numerator and denominator). T is truncation to-
ward 0. 

The corresponding differential equation is:

(A.2)
d2 f

dt2


n

d
- 2 f HtL.

The  -2  comes  in  because  the  second  order  difference  equation  sub-
tracts Ift - ft-1M from Ift+1 - ftM generating a term -2 ft. 

For -2 < n ê d < 2 equation (A.2) has a solution

(A.3)f HtL  cos t 2 -
n

d

where t is in radians. Figure A.1 plots a solution of the discretized fi-
nite  difference  equation  for  n  19  and  d  10.  This  differs  slightly
from the solution of the difference equation. The solution increments
the angle of the cosine by 0.3162 radians or 18.11 degrees each time
step and takes about 20 time steps to complete one cycle of the cosine
wave. 
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where t  is in radians. Figure A.1 plots a solution of the discretized fi-
nite  difference  equation  for  n  19  and  d  10.  This  differs  slightly
from the solution of the difference equation. The solution increments
the angle of the cosine by 0.3162 radians or 18.11 degrees each time
step and takes about 20 time steps to complete one cycle of the cosine
wave. 

The  solutions  to  the  finite  difference  equation  (A.1)  are  more
complex  than  the  solutions  to  the  corresponding  differential
equation (A.2).  The  latter  are  completely  described  by  equations  like
(A.3).  The  former  have  a  rich  structure  that  varies  with  the  initial
conditions.  Table  A.1  gives  the  length  until  the  sequence  starts  to
repeat the solution to equation (A.1) (again with n  19 and d  10)
for various initial conditions. 

Figure A.1. Simple discretized finite difference equation plot of the solution to
ft+1  TInft ë dM - ft-1  with  f0  100,  f1  109,  n  19,  and  d  10.  T  is
truncation toward 0.  The  solution completes  about  five  cycles  for  every  100
iterations and departs significantly from the solution to the differential equa-
tion.   
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f1  

f0 100 101 102 103 104 105 106 107 108 109 110 111 112
100 154 269 154 154 269 328 328 328 289 309 174 116 116 
101 269 77 250 328 250 289 328 77 309 116 309 174 174 
102 154 250 154 289 328 309 250 77 77 58 174 289 77 
103 154 328 289 77 328 328 328 328 77 309 116 289 289 
104 269 250 328 328 77 309 289 250 309 309 289 174 174 
105 328 289 309 328 309 328 77 77 289 58 289 77 309 
106 328 328 250 328 289 77 116 77 77 116 116 174 77 
107 328 77 77 328 250 77 77 58 289 309 174 289 309 
108 289 309 77 77 309 289 77 289 309 309 309 289 174 
109 309 116 58 309 309 58 116 309 309 289 174 174 289 
110 174 309 174 116 289 289 116 174 309 174 250 116 77 
111 116 174 289 289 174 77 174 289 289 174 116 174 174 
112 116 174 77 289 174 309 77 309 174 289 77 174 116 
113 309 135 289 251 309 116 309 174 309 116 309 251 289 
114 58 174 58 309 135 135 174 289 77 289 174 135 135 
115 174 174 251 174 174 174 251 116 174 58 174 116 251 
116 58 174 309 135 77 251 58 77 58 135 174 135 58 
117 251 174 251 251 251 58 135 174 309 135 251 174 251 
118 58 251 406 58 135 309 251 251 309 174 58 77 135 
119 484 368 174 58 58 174 174 58 309 251 174 251 251 
120 368 232 484 406 368 368 58 251 58 174 135 251 58 
121 58 232 232 406 406 484 58 174 97 251 174 58 174 
122 58 58 484 232 484 58 406 368 406 58 174 58 58 
123 406 194 484 232 484 368 58 484 484 368 58 406 58 
124 213 155 174 368 232 232 58 97 484 368 58 58 368 
125 194 155 174 406 97 213 484 58 368 232 484 406 58 
126 349 136 213 174 174 97 232 368 58 97 484 232 232 

Table  A.1.  Cycle  lengths  for  discretized  finite  difference  equation  giving  the
length  until  repetition  of  the  sequence  generated  by  ft+1  TInft ë dM - ft-1
with  n  19  and  d  10.  T  is  truncation  toward  0.  The  table  is  symmetric
about a diagonal because reversing the order of the initial two values does not
change the  sequence length.  It  reverses  the  sequence order  because  the  equa-
tion is symmetric in time.
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