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Stochastic particle-like persistent structures are found in the class 3 ele-
mentary  cellular  automaton  rule  number  146.  These  particles  arise  as
boundaries separating regions with black cells occupying sites at space-
time points Hx, tL of constant parity x ⊕ t. The particles execute random
walks  and annihilate  in  pairs,  with particle  density  decaying with time
in  a  power-law  fashion.  It  is  shown  that  the  evolution  of  rule  146
closely  resembles  that  of  the  additive  rule  90,  with  persistent  localized
structures. 

1. Elementary Cellular Automata

An elementary cellular automaton (ECA) consists  of  a line of cells  at
discrete  sites  x,  updated  in  time  according  to  a  simple  deterministic
rule.  On  time  step  t,  the  color  aHx, tL  of  the  cell  at  position  x  is
updated  to  produce  aHx, t + 1L.  An  ECA  rule  F  acts  on  the  3-cell
neighborhood consisting of  the cell  aHx, tL  and its  immediate  left  and
right neighbors:

(1)aHx, t + 1L  F@aHx - 1, tL, aHx, tL, aHx + 1, tLD.

Here a fixed number of sites is assumed (N), with periodic boundary
conditions, such that

x œ 81, 2, 3, … , N<

aHN, tL = F@aHN - 1, tL, aHN, tL, aH1, tLD
aH1, tL = F@aHN, tL, aH1, tL, aH2, tLD.

That is,  the right  neighbor of  the rightmost  cell  at  x  N  is  taken to
be the leftmost cell at x  1, and similarly the left neighbor of the left-
most cell at x  1 is taken to be the rightmost cell at x  N (i.e., cells
arranged  on  a  ring).  We  consider  only  elementary  rules  with  binary-
valued cells aHx, tL œ 80, 1<.

The ECA rule F is conveniently summarized in a rule table specify-
ing the updated color of cell aHx, tL for each of the 23  8 possible con-
figurations  of  the  3-cell  neighborhood  8aHx - 1, tL, aHx, tL, aHx + 1, tL<.
Figure 1 shows the rule table for ECA rule 30. 
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Figure 1. Rule table for ECA rule 30.

Starting with a line of  N  cells  and a particular  choice of  color for
each cell (the initial condition), applying the rule F  in equation (1) to
aHx, tL for all x œ 81, 2, 3, … , N< in parallel yields an updated configu-
ration on the next time step: 

aHt + 1L  FHaHtLL.

The  resulting  evolution  is  visualized  by  stacking  successive  aHtL  with
time t running down the page. Figure 2 shows the evolution of rule 30
for  two  types  of  initial  conditions.  On  the  left,  the  initial  condition
consists  of  a  single  black  cell  on  a  white  background,  corresponding
to  underlying  site  values  aH0L  8… , 0, 1, 0, … <,  that  is,
aHx, t  0L  1  for  x  dN ê 2t  and  aHx, 0L  0  otherwise.  This  is  the
simplest  nontrivial  initial  condition for an ECA, and we hereafter re-
fer  to  it  colloquially  as  “simple”.  On  the  right,  the  initial  condition
consists  of  N  cells  where the value of the cell  at  position x  is  chosen
to  be  1  with  probability  PHx aHx, 0L  1L  0.5.  This  random  initial
condition has density rN º 0.5, which approaches the ideal density of
0.5 in the limit of infinite system size: limNØ¶ rN  0.5.

Figure 2. Evolution of ECA rule 30 from a simple (left) and random (right) ini-
tial condition. Rule table for rule 30 (bottom).

2. Rule 146

Figure  3  shows  the  evolution  of  ECA  rule  number  146  from  simple
and random initial conditions, along with the rule table. From a sim-
ple initial condition, a nested pattern is produced, identical to the evo-
lution  of  rule  90  from  this  initial  condition.  Figure  4  compares  the
evolutions of rules 146 and 90 from simple and random initial condi-
tions, showing that from random initial conditions the rules have dif-
ferent detailed behavior.
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Figure 3.  Evolution of  ECA rule  146 from a simple (left)  and random (right)
initial condition. Rule table for rule 146 (bottom).

146 90

Figure  4.  Evolutions  of  ECA rules  146  (left)  and  90  (right)  from simple  and
random initial conditions. The same random initial condition is used for both
rules.

It  is  worth trying to  understand the  similarities  between rules  146
and 90,  since  much is  known about  rule  90.  In  particular,  rule  90 is
additive,  or  linear.  Additivity  implies  that  the  evolution  from  initial
condition cH0L  aH0L⊕ bH0L satisfies 

F@cH0LD  F@aH0L⊕ bH0LD  F@aH0LD⊕ F@bH0LD

where  ⊕  denotes  addition  modulo  2.  The  property  of  additivity
makes  it  possible  to  derive  a  closed-form expression  for  the  value  of
site aHx, tL for arbitrary coordinates Hx, tL without running the rule it-
self (reducibility) [1]. The similarity of rule 146 to rule 90 may there-
fore provide valuable insight into the analysis of rule 146.

Figure 5 shows a comparison of the rule tables for 146 and 90. Dif-
ferences between the rule tables are limited to the three cases with in-
puts  H1, 1, 1L,  H1, 1, 0L,  and H0, 1, 1L.  The rule  tables  are  identical  for
the  five  remaining  inputs:  H1, 0, 1L,  H1, 0, 0L,  H0, 1, 0L,  H0, 0, 1L,  and
H0, 0, 0L.  Note  that  the  three  inputs  yielding  differences  are  exactly
those that contain adjacent black cells. 
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Figure 5 shows a comparison of the rule tables for 146 and 90. Dif-
ferences between the rule tables are limited to the three cases with in-
puts  H1, 1, 1L,  H1, 1, 0L,  and H0, 1, 1L.  The rule  tables  are  identical  for
the  five  remaining  inputs:  H1, 0, 1L,  H1, 0, 0L,  H0, 1, 0L,  H0, 0, 1L,  and
H0, 0, 0L.  Note  that  the  three  inputs  yielding  differences  are  exactly
those that contain adjacent black cells. 

Figure 5. Comparison of rule tables for ECA rules 146 (top) and 90 (bottom).

initial condition 90 146 90-146

Figure  6.  Evolutions  of  rules  90  and  146  for  initial  conditions  where  black
cells are separated by an increasing number of white cells. The columns show,
from left to right, the initial condition used, the evolution of rule 90, the evo-
lution  of  rule  146,  and  the  difference  between  the  evolutions  of  rules  90
and 146.

Figure 6 shows the differences  between evolutions of  rules  90 and
146  from  initial  conditions  of  the  form  8… , 0, 1, 0n, 1, 0, … <,  with
n  0, 1, 2, 3, 4,  that  is,  two  black  cells  separated  by  an  increasing
number of white cells. Since the pattern from each point source grows
outward with speed 1 (i.e., one cell to the left or right per time step),
they  collide  in  the  middle  after  about  n ê 2  time  steps.  In  particular,
with n even, adjacent black cells are produced after n ê 2 steps, giving
rise  to  a  nonzero  difference  in  the  evolutions  of  rules  90  and  146.
This  difference  in  evolutions  for  even  point  source  separations  n  is
just what we expect given that the rule tables differ for inputs involv-
ing adjacent black cells.  Furthermore,  as can be seen in Figure 6,  the
evolutions are identical for odd n, since adjacent black cells are never
generated,  and only those parts  of  the rule tables for which the rules
give identical outputs are ever exercised.
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Figure 6 shows the differences  between evolutions of  rules  90 and
146  from  initial  conditions  of  the  form  8… , 0, 1, 0n, 1, 0, … <,  with
n  0, 1, 2, 3, 4,  that  is,  two  black  cells  separated  by  an  increasing
number of white cells. Since the pattern from each point source grows
outward with speed 1 (i.e., one cell to the left or right per time step),
they  collide  in  the  middle  after  about  n ê 2  time  steps.  In  particular,
with n even, adjacent black cells are produced after n ê 2 steps, giving
rise  to  a  nonzero  difference  in  the  evolutions  of  rules  90  and  146.
This  difference  in  evolutions  for  even  point  source  separations  n  is
just what we expect given that the rule tables differ for inputs involv-
ing adjacent black cells.  Furthermore,  as can be seen in Figure 6,  the
evolutions are identical for odd n, since adjacent black cells are never
generated,  and only those parts  of  the rule tables for which the rules
give identical outputs are ever exercised.

Letting  TnHx, tL  denote  the  appearance  of  the  pattern
80, 1, 0n, 1, 0<  on time step t  centered at position x,  we may summa-
rize  our  analysis  by  saying  that  the  presence  of  the  substructure
T2 nHx, tL  with  n  1, 2, 3, …  is  a  sufficient  condition  for  the  evolu-
tion  of  rule  146  to  diverge  from  that  of  rule  90.  That  is,  for
aT2 n

HtL  8… , T2 nHx, tL, … <, 

(2)F90
n+1 AaT2 n

HtLE ≠ F146
n+1 AaT2 n

HtLE

where Fn+1 denotes n + 1 iterations of F.

3. Persistent Structures in Rule 146

Having identified the cases  in which rule  146 differs  from rule  90,  it
seems  sensible  to  try  to  highlight  the  portions  of  the  evolution
wherein 146 diverges from 90. This can be thought of as a sort of lin-
earity analysis, viewing the evolution of 146 as a slight deviation from
the purely additive behavior of rule 90.

Figure 7 shows an evolution of rule 146 with all occurrences of the
substructure  T2 nHx, tL  highlighted  for  n  0, 1, 2, … .  It  is  immedi-
ately clear that this structure persists in time and remains spatially lo-
calized. 

As noted earlier, even runs of white cells T2 nHx, tL  would generate
a pair of adjacent black cells T0Hx, tL after n steps via the processes 

(3)F146@8… , T2 nHx, tL, … <D Ø 9… , T2 Hn-1LHx, t + 1L, … =

(4)F146
HnL @8… , T2 nHx, tL, … <D Ø 9… , T0Hx, t + nL, … =.

Figure 7 shows an additional process in rule 146 that occurs as a re-
sult of the local environment of the persistent structure. In the follow-
ing process, pairs of adjacent black cells T0Hx, t + nL at the base of tri-
angle T2 nHx, tL nucleate another even triangle T2 m on the next step:

(5)
F146A9… , T0Hx, t + nL, … =E Ø

9… , T2 mHy, t + n + 1L, … =.
Process (5) can be seen taking place in Figure 7, where adjacent black
cells appear at the base of every (highlighted) triangle containing even
runs of white cells. It is not immediately clear whether the size of suc-
cessive  even  triangles  2 n  and  2 m  are  in  any  way  correlated,  or
whether the respective positions x and y are correlated.
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Process (5) can be seen taking place in Figure 7, where adjacent black
cells appear at the base of every (highlighted) triangle containing even
runs of white cells. It is not immediately clear whether the size of suc-
cessive  even  triangles  2 n  and  2 m  are  in  any  way  correlated,  or
whether the respective positions x and y are correlated.

The  overall  process  after  n + 1  steps  is  given  by  combining  the
“triangle-pair” process (4) and “pair-triangle” process (5): 

(6)
F146
Hn+1L@8… , T2 n Hx, tL, … <D Ø

9… , T2 m Hy, t + n + 1L, … =.

Figure 7. Evolution of rule 146 with two types of substructure highlighted: ad-
jacent black cells (in blue/dark gray), and even runs of white cells (in red/light
gray).  The  width-10  initial  condition  used  contains  a  single  pair  of  adjacent
black cells in the center, and only odd runs of white cells with no other adja-
cent black cells everywhere else.

Figure 8 shows a larger,  width-100 evolution of rule 146, with an
initial  condition  containing  a  single  instance  of  T2 nHx, 0L,  with
T2 nHx, tL  highlighted  in  the  same  way  as  in  Figure  7.  The  persistent
structure formed by successive iterations of the process (6) appears to
do something like a random walk. Figure 9 shows the appearance of
many such structures  when starting  from a  random initial  condition.
It is immediately apparent from Figure 9 that the persistent structures
tend to annihilate in pairs. The conditions for such annihilations, how-
ever,  look to be highly dependent on the details  of the local environ-
ment. 
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Figure 8. A larger evolution of rule 146 from an initial condition with a single
even  run  of  white  cells  in  the  center,  with  the  resulting  persistent  structure
highlighted in the same way as in Figure 7.

Figure 9. The evolution of rule 146, starting from a random initial condition,
with persistent structures highlighted in the same fashion as in Figure 7.
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4. Analysis of Persistent Structures

Since the persistent structures in Figure 9 constitute all occurrences of
even  runs  of  white  cells  T2 nHx, tL  (including  pairs  of  black  cells
T0Hx, tL  for  n  0),  the  regions  between  structures  contain  only  odd
runs TH2 n+1LHx, tL  of  white cells  separated by isolated black cells.  For
a  given  time  step  t,  this  implies  that  black  cells  occupy  either  even
sites x ⊕ 2  0 or odd-numbered sites x ⊕ 2  1, but not both.

Furthermore,  as  shown  in  Section  2,  even  runs  T2 nHx, tL  are  en-
tirely  responsible  for  differences  in  evolution  between  rules  146  and
90  (cf.  equation  (2)).  Since  the  regions  between  persistent  structures
lack any occurrences of T2 nHx, tL  (by definition), these regions evolve
locally according to rule 90. 

It  is  easy  to  see  that  rule  90  is  parity-preserving.  That  is,  given  a
configuration a0HtL containing black cells only on sites with x ⊕ t  0
(even parity), on the next time step rule 90 generates black cells only
on  sites  satisfying  x ⊕ Ht + 1L  0  (this  follows  from the  fact  that  the
rule 90 rule table is independent of the center site):

F90 Aa0HtLE Ø a0Ht + 1L.

The same is  true for  odd parity.  Therefore,  we conclude that  regions
between persistent structures are of a single parity. 

Since  the  persistent  structures  always  contain  an  even  number  of
cells,  it  is  easily  seen  that  the  parity  of  black-occupied  sites  must
change  as  one  crosses  over  a  structure.  That  is,  the  persistent  struc-
tures  represent  a  boundary  between  regions  of  different  parities.  We
can  think  of  these  regions  of  different  parities  as  having  different
phases, and the boundaries separating them as phase boundaries. 

Figure  10  shows  this  idea  of  phases  for  rule  90.  The  evolution  at
the  top  is  split  into  two  lattices  with  opposite  parities,  even
(x ⊕ t  0) and odd (x ⊕ t  1). The resulting evolutions are precisely
that  of  the  ECA rule  60,  which  has  the  same rule  table  as  rule  90  if
the middle and rightmost cells are transposed in each 3-cell neighbor-
hood of the rule table.

Figure 11 shows the same phase separation for rule 146. The result-
ing evolutions show regions of a single parity (evolving locally accord-
ing to rule 60), separated by white space where an opposite-parity re-
gion  intervened.  The  jagged  boundaries  of  the  single-parity  regions
are  precisely  the  persistent  structures  seen  when  one  highlights  even
runs in the evolution of rule 146. 

It is interesting to note that for rule 90 the two phases in Figure 10
evolve independently on adjacent lattice sites,  while  rule  146 actively
separates these two phases into spatially distinct regions, separated by
phase  boundaries.  These  phase  boundaries  have  the  behavior  of
stochastic  particles,  the  statistical  properties  of  which  are  the  subject
of Section 5. 
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90: full evolution

even parity cells odd parity cells

Figure 10. Separating the evolution of rule 90 (top) into two phases: cells with
even parity (bottom left) and cells with odd parity (bottom right).

146: full evolution

even parity cells odd parity cells

Figure 11.  Separating the evolution of rule 146 (top) into two phases, as was
done for rule 90 in Figure 10: cells with even parity (bottom left) and cells with
odd parity (bottom right).
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When the  evolution of  rule  146 is  perturbed by  a  point-change  in
the  initial  condition, the  trajectories  of  the  phase  boundaries  are
affected. Figure 12 shows the evolutions of rules 146 and 90 from ini-
tial  conditions  differing  in  only  a  single  site  in  the  middle.  The
difference  pattern  of  rule  90  is  simply  the  evolution  from  the  initial
difference,  which  follows  trivially  from additivity.  Rule  146  shows  a
combination  of  linear  and  nonlinear  parts  in  the  perturbation.  Fig-
ure 13 shows the perturbed trajectories of the phase boundaries super-
imposed on the perturbation pattern. It is clear that the nonlinear por-
tion of  the perturbation follows the phase boundaries.  This  is  due to
the fact that the deflection of the phase boundary by the perturbation
leaves a region occupied by both lattice parities in the difference pat-
tern. 

The  character  of  perturbations  in  rule  146  is  reminiscent  of  light
and  particles.  The  linear  portion  of  the  perturbation  travels  at  light
speed, while the nonlinear portion travels at a speed governed by the
speed  of  the  “particles”  in  the  system  (the  phase  boundaries).  More
concrete analogies may be drawn with classical particles by consider-
ing the perturbation as a one-dimensional Green’s function for the sys-
tem [2]. 

146

run 1 run 2 run 1 - run 2

90

Figure 12.  Evolutions of  rules  146 and 90 from initial  conditions differing in
only a single site in the middle. The difference between the two evolutions is
shown on the right.  Due to the additivity of rule 90, the difference in evolu-
tions  is  simply  the  evolution  from  the  initial  difference.  Rule  146  shows  a
more  complex  difference  pattern,  with  both  a  linear  (90-like)  portion  and  a
nonlinear  portion.  The  nonlinear  portion  arises  from the  deflection  of  phase
boundaries within the light cone of the perturbation event.
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run 1 run 1 - run 2

run 2 superimposed

Figure  13.  Perturbed  evolution  of  rule  146,  showing  the  deflection  of  phase
boundaries in the light cone of the perturbation event in the initial condition.
In the bottom right image, the perturbed trajectories of the phase boundaries
are shown superimposed on the difference pattern.

5. Statistical Properties

The evolution of rule 146 from a random initial  condition, shown in
Figure 4, gives little indication that even-width triangles T2 nHx, tL  be-
have somehow differently than odd-width triangles T2 n+1Hx, tL. How-
ever, the particle-like behavior of the even triangles becomes apparent
when the substructures T2 nHx, tL  are highlighted, as in Figure 7. This
is in sharp contrast to class 4 behaviors, such as rule 110, where per-
sistent  structures  and  their  complex  interactions  are  readily  visible.
Wolfram’s  Principle  of  Computational  Equivalence  makes  the  claim
that class 3 rules should in fact  be universal  [3].  Finding and analyz-
ing persistent structures in class 3 rules is one way to go about discov-
ering how information is propagated in these systems.
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Does  statistical  analysis  give  any  indication  that  these  even-width
triangles play a different role in the system than the odd triangles? 

Figure 14 shows the distribution of run lengths in the evolution of
rule 146 from a random initial condition. Here a “run” of white cells
is  defined  as  a  substructure  of  the  form  8 .. , 1, 0n, 1, … <,  and
8 .. , 0, 1n, 0, … <  for  a  run  of  black  cells.  The  plot  shows  (on  a  log
scale) the frequency of run lengths Pn  for a single simulation of 1000
steps from a random initial condition of width 10 000. Note that the
vast  majority  of  run  lengths  above  n  2  are  contributed  by  white
runs, since longer black runs decay quickly away from the initial con-
dition  in  a  short  initial  transient,  and  are  never  subsequently  gener-
ated. The distribution of even and odd run lengths are both well fit to
an  exponential  Pn ~ expH- bnL,  but  clearly  have  a  statistically  signifi-
cant  difference  in  decay  constants  b,  with  b2 n  0.304 ± 0.004  and
b2 n+1  0.359 ± 0.002.  Therefore,  the  statistical  distribution  of  run
lengths  alone  gives  an  indication  of  the  special  role  played  by  even-
run triangles in rule 146. 
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Figure  14.  Frequency  of  run  lengths  Pn  for  a  single  simulation  of  1000 steps
from  a  random  initial  condition  of  width  10 000,  where  runs  of  white  and
black  cells  are  substructures  of  the  form  8 .. , 1, 0n, 1, … <  and
8 .. , 0, 1n, 0, … <,  respectively.  The  distribution  of  even  and  odd  run  lengths
are  both  well  fit  to  an  exponential  Pn ~ expH- bnL,  but  with  different  decay
constants b2 n  0.304 ± 0.004 and b2 n+1  0.359 ± 0.002.

In Section 3, we questioned the nature of the correlations between
positions x and y of successive triangles T2 nHx, tL and T2 nHy, tL along
the phase boundary (in process (5)). Figure 15 shows the mean-square
displacement Yx2] of the phase boundaries from their starting position
as a function of the number of time steps t. The data shown is based
on an average  over  100 simulations  with  only  a  single  structure  pre-
sent  (as  in  Figure  8).  While  there  are  large  fluctuations,  the  data  is
plausibly linear, that is,  Yx2] ~ t.  This indicates the structures are do-
ing essentially a random walk. 
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Figure 15. Mean-square displacement of persistent structures from their start-
ing position as a function of time t.

Figure 16. Large-scale view of the evolution of rule 146 from a random initial
condition  of  width  10 000,  run  for  10 000  steps,  showing  only  the  paths  of
the persistent structures highlighted in Figures 7 through 9. Each point repre-
sents the midpoint of an even run of white cells 02 n.

A  large-scale  view  of  the  evolution  of  rule  146  is  provided  in
Figure 16. Here, only the paths of the phase boundaries T2 nHx, tL  are
shown by  placing  a  dot  at  spacetime  points  Hx, tL  at  the  midpoint  of
the triangle. The pairwise annihilation of structures seen previously in
Figure  9  is  also  readily  apparent  at  this  scale.  Figure  17  shows  the
density nbHtL of phase boundaries as a function of time t. The density
is a power-law of the form 
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A  large-scale  view  of  the  evolution  of  rule  146  is  provided  in
Figure 16. Here, only the paths of the phase boundaries T2 nHx, tL  are
shown by  placing  a  dot  at  spacetime  points  Hx, tL  at  the  midpoint  of
the triangle. The pairwise annihilation of structures seen previously in
Figure  9  is  also  readily  apparent  at  this  scale.  Figure  17  shows  the
density nbHtL of phase boundaries as a function of time t. The density
is a power-law of the form 

nbHtL ~ t-a

with  a  0.4789 ± 0.0006.  Note  that  this  is  not  consistent  with  a
purely  diffusive  pairwise  annihilation  of  structures,  for  which  one
would expect  a  1 ê 2 [4].  Note  that  qualitatively  similar  results  are
obtained for rules 18, 122, 126, 146, and 182 [4].
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Figure 17. Density nbHtL of pairs of black cells as a function of time t. Note the
natural  logarithm  log nbHtL  is  plotted  against  log  time  log t.  The  linearity  of
the data on a log-log scale implies a power-law. The superimposed line shows
a  fit  of  the  form  nbHtL  C t-a  with  a  least-squares  fit  giving
a  -0.4789 ± 0.0006  and  a log C  -2.041 ± 0.003.  The  system  width  N
here is 60 000, with normalization based on 30 000 possible pairs on a given
time step t. Note that points at large values of t  were averaged over a sliding
window in order to suppress statistical fluctuations.
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