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A  recipe  is  proposed  for  preparing  class  4  cellular  automata  that  uses
lattice analysis based on rough set approximation. Superimposing class
2-like transitions on an intermediate layer of class 3 automata results in
class 4 behavior.

1. Introduction

Since the conception of the idea of complex systems in the field of sta-
tistical mechanics, it has been expected that the notion of complexity
can  be  reduced  to  a  set  of  simple  rules  applicable  at  a  microscopic
scale. Cellular automata (CAs) revealing diverse complex behavior are
also  used  as  tools  for  understanding  complexity  generated  by  simple
rules. Wolfram has classified all CAs with respect to their patterns of
time  development.  Namely,  class  1  as  stable  homogeneous  patterns,
class  2  as  local  periodic  patterns,  and  class  3  as  chaotic  patterns.  In
this  regard,  class  4  is  characterized  by  both  a  local  periodic  pattern
and  a  chaotic  pattern  that  can  interact  with  each  other.  Class  4  is
found  at  the  critical  area  between  classes  2  and  3  in  a  specific  rule
space  [1,  2].  Turing  machines  can  also  be  implemented  by  using  a
“glider” [3], which characterizes class 4 rules. A glider can be used as
a  device  for  logical  gates,  shifts,  delays,  and  reflections  [4,  5].
Whether  simple  or  complex,  behaviors  can  be  reduced  to  transition
rules,  and  even  class  4  behavior  is  not  an  exception  from  this
generalization.

Class  4  automata  are  considered  to  exhibit  an  essential  feature  of
biological systems in that a system is divided into stably periodic parts
which  can  interact  with  each  other.  Robust  but  dynamic  biological
systems in nature are assumed to be hierarchical  [6,  7],  while  class 4
automata have no hierarchical structure. The notion of hierarchy can
be  rather  problematic.  Physicists  regard  hierarchy  as  consisting  of  a
layer that has its own time constant (e.g., [8]). Different layers cannot
influence each other  due to  differences  between them in terms of  the
order  of  the  time constant,  and therefore  the  hierarchy can be  main-
tained in a stable structure. In this sense, if the boundary between lay-
ers  is  explicitly  defined,  hierarchy  is  found  not  in  function  but  in
structure.  On the other hand, if  there is  a strong interaction between
layers, it can break the boundary between layers as well as the hierar-
chy itself. Hierarchy involving interactions between layers might be in
logical conflict.
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structure.  On the other hand, if  there is  a strong interaction between
layers, it can break the boundary between layers as well as the hierar-
chy itself. Hierarchy involving interactions between layers might be in
logical conflict.

Specifically, in examining a biochemical network or an immune sys-
tem, functional hierarchy cannot be found in the interaction between
the layers since the loss of the functional boundary allows the interac-
tion.  On  the  other  hand,  structural  hierarchy  is  found  to  be  robust.
There is an explicit double meaning between structure and function in
looking  for  hierarchy.  Naturally,  the  question  arises  whether  ob-
servers can freely move between the two meanings. As hierarchical sys-
tems are  self-organizing systems,  the  boundary between layers  has  to
be perpetually broken and reconstructed in order to be maintained in
a  robust  state.  This  self-organizing  process  concerns  not  only  struc-
ture,  but  also  function.  As  a  result,  the  boundary  between  structure
and function is ambiguous and vague, and therefore the boundary be-
tween  layers  is  destined  to  be  ambiguous  and  vague.  The  notion  of
hierarchy itself is self-referential and ambiguous, and these properties
have been recently reflected in the term “heterarchy” [9].

Here, we clarify the notion: (i) Heterarchy is a hierarchy consisting
of  different  layers,  and  (ii)  the  boundary  between  different  layers
cannot be controlled. Thus, an observer observing a phenomenon at a
focal level cannot determine the layer exerting the strongest influence
on  the  focal  level.  This  definition  is  strongly  connected  with  the
notion of  emergence [2,  pp.  737|750].  As  the  computation proceeds,
such as applying elementary CA (ECA) rule 30 to an initial condition
of  just  one  seed  of  state  1,  a  random or  complex  binary  sequence  is
generated.  According  to  Wolfram  in  [2],  complexity  emerges  from
just  one  seed  (simple  matter).  However,  this  statement  implies  a
double meaning. On one hand, the initial  condition is  assumed to be
one  seed  in  a  vacuum  from  a  macroscopic  perspective,  and  so  the
emergence  of  complexity  can  be  observed.  On  the  other  hand,  the
initial  condition  is  assumed  to  be  a  binary  sequence  consisting  of  0
only,  with  the  exception  of  a  central  1  from  a  microscopic
perspective,  and  then  the  ECA  rule  can  be  applied  to  the  initial
condition. It appears that only if an observer has a limited knowledge
of  the  initial  condition  can  emergence  can  be  admitted.  In  this  sense
then, is emergence of complexity just an illusion?

I  think  that  the  notion  of  emergence  inevitably  involves  a  double
meaning. As well, it needs both microscopic and macroscopic perspec-
tives. Indeed, it needs an uncontrollable boundary between the micro-
scopic  and  macroscopic  perspectives.  This  is  the  only  way  to  cham-
pion  the  notion  of  emergence.  Emergence  as  an  illusion  can  hold  if
observers  can  adopt  both  perspectives  and  freely  move  between  the
microscopic  and  macroscopic  perspectives  by  their  own will.  In  con-
trast,  if  the boundary between microscopic and macroscopic perspec-
tives  is  uncontrollable  and  observers  cannot  determine  where  (i.e., in
which perspective) they are, it cannot be said that emergence is merely
an illusion. This observation can champion the notion of emergence.
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If  a  heterarchical  structure  is  implemented  in  ECAs,  the  question
arises  whether  class  4  and/or  more complex behaviors  can emerge in
such  a  system.  If  the  answer  is  positive,  it  can  be  said  that  complex
patterns can emerge in the form of class 4 behavior. We now propose
a model  for  class  4 behavior as  heterarchy that  is  constructed as  fol-
lows.  First,  we analyze  the  macroscopic  properties  of  ECAs by using
an  algebraic  structure  based  on  lattice  analysis.  Next,  a  virtual  alge-
braic structure that characterizes class 1 or 2 ECAs that cannot be de-
rived from class 3 rules is planned to be implemented in a class 3 rule.
Then, we look for modifications in the rules in order to reveal such a
virtual algebraic structure. This results in the superposition of the mid-
dle  layer  transition,  which  can  mediate  the  microscopic  ECA  transi-
tion and the virtual algebraic structure. Finally, we obtain a recipe for
producing  class  3  ECAs  that  exhibit  class  4  behavior.  The  resulting
system consists of a microscopic layer defined through an ECA rule, a
macroscopic  layer  assumed  as  a  global  property  shown  as  a  lattice
structure, and a middle layer transition that mediates the microscopic
and  macroscopic  layers.  Since  there  is  a  conflict  between  the  middle
layer transition and the ECA rule,  the transition for a triplet  is  not a
deterministic  rule.  In  this  sense,  the  resulting  system contains  an  un-
controllable boundary between microscopic and macroscopic layers.

2. Lattices Derived by Double Indiscernibility

In this paper, we propose a method for revealing algebraic properties
of an ECA by using a lattice driven by rough set analysis and how to
make  CAs  equipped  with  the  transition  of  the  intermediate  layer  by
using  a  lattice  modification.  Figure  1  shows  a  rough  scheme  of  our
recipe.  A lattice  (represented by a  Hasse  diagram in Figure  1)  that  is
obtained  by  the  transition  rule  of  an  ECA can  reveal  some  algebraic
property of the ECA. Since the behavior of ECAs in terms of classes 1
through 4 can be roughly compared to the algebraic property of a lat-
tice, it is possible to design and make class 4 automata by using a lat-
tice driven by rough set analysis.

First,  we  prepare  a  mathematical  tool  for  the  analysis  of  the  alge-
braic  properties  of  ECAs.  The  algebraic  structure  of  an  ECA is  ana-
lyzed  by  using  an  equivalence  relation  derived  through  a  transition.
We  review  our  recent  work  on  constructing  lattices  by  using  two
equivalence relations derived from two different maps.  The construc-
tion  is  based  on  a  rough  set  [10|14].  First,  we  review  the  idea  of
rough set.
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Figure 1. Our scenario for making a class 4 CA from a class 3 CA by using a
lattice  analysis  driven  by  rough  set  analysis.  First,  a  class  3  ECA (here,  rule
150) is chosen and the transition rule is divided into two rules R1  and R2  de-
pendent  on the  local  boundary.  Since  two equivalence  relations  are  obtained
by R1 and R2, the binary relation between the two equivalence relations is ob-
tained as shown in the matrix (top, center). The binary relation can represent
a lattice revealing the property of an ECA. By modifying a binary relation to
reveal  a  more  distributive  lattice  (bottom,  left),  the  underlying  transition  is
also modified that can show class 4-like behavior (bottom, center).

Given  a  universal  set  U,  let  R Œ U µ U  be  an  equivalence  relation
on U. For X Œ U, we define the R-upper and R-lower approximations
of X, which are denoted as R*HXL and R*HXL, respectively, as

R*HXL 9x œ U @xDR∩X ≠ «=

R*HXL 8x œ U @xDR Œ X<,

where  @xDR  is  an  equivalence  class  of  R  such  that  @xDR =
8y œ U xRy<.  Since both R*HXL  and R*HXL  are approximations for a
set X, they are called “rough sets”.

It  is  clear that the upper and lower approximations form a Galois
connection [14] if a single equivalence relation is given. In fact, given
a universal set U  and an equivalence relation R Œ U µ U, for a subset
X,  Y Œ U  and  a  Galois  connection  R*HXL Œ Y ñ X Œ R*HYL  is
formed.  This  leads  to  fixed  point  duality  expressed  as
R*HXL = X ñ R*HXL = X.  From  the  duality,  it  is  shown  that  a
partially ordered set, such as XP; Œ\  with P = 8X Œ U R*HXL = X<,  is
a set  lattice,  and that XQ; Œ\  with Q = 8X Œ U R*HXL = X<  is  also a
set lattice. In fact, it is straightforward to verify that join and meet in
XP; Œ\  and  XQ; Œ\  can  be  defined  as  union  and  intersection,
respectively.

To estimate the role of the difference between the upper and lower
approximations,  the  composition  between  them  is  introduced.  Then,
it  can  be  verified  that  XP; Œ\  with  P = 8X Œ U R*HR*HXLL = X<  is  a
set lattice. Similarly, XQ; Œ\ with Q = 8X Œ U R*HR*HXLL = X< is also
a  set  lattice.  Thus,  the  composition  of  the  lower  and  upper  approxi-
mations  is  reduced  to  a  single  approximation.  Even  if  objects  are
recognized depending on the approximation based on an equivalence
relation,  the  structure  of  the  lattice  is  invariant;  namely,  it  is  a
Boolean  lattice.  To  introduce  diversity  into  the  lattice  structure,  it  is
necessary  to  break  the  Galois  connection  derived  from  the  single
equivalence relation [15, 16].
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Boolean  lattice.  To  introduce  diversity  into  the  lattice  structure,  it  is
necessary  to  break  the  Galois  connection  derived  from  the  single
equivalence relation [15, 16].

Thus, we introduce two equivalence relations. Given a universal set
U,  R  and  S Œ U µ U  are  defined  as  different  equivalence  relations.
The  operations  T  and  S  are  defined  as  T = S* R*  and  K = R* S*.
Then,  for  X,  Y Œ U,  THTHXLL = THXL  and  KHKHXLL = KHXL.  By  using
this  operator,  we  can  construct  a  lattice  from a  partially  ordered  set
XLT ; Œ\  with  LT = 8X Œ U THXL = X<,  or  XLK; Œ\  with
LK = 8X Œ U KHXL = X<.  Meet  and  join  for  these  partially  ordered
sets are defined for X, and Y œ LT  as follows:

X Ï Y = T HX › YL,  X Í Y = THX ‹ YL.

Similarly,  for  X  and  Y œ LK,  X Ï Y = KHX › YL  and  X Í Y =
KHX ‹ YL.

Since the two equivalence relations are  independent  of  each other,
the  Galois  connection  such  that  R*HXL Œ Y ñ X Œ S*HYL  no  longer
holds. Despite the double indiscernibility, the Galois connection holds
if  subsets  are  chosen  from  a  collection  of  fixed  points  such  that
LT = 8X Œ U THXL = X<.  It  is  revealed  that  a  collection  of  fixed
points with respect to T or K can constitute a stable structure.

Figure  2  shows  an  example  of  a  lattice  defined  as  XLT ; Œ\  with
LT = 8X Œ U THXL = X<.  Given  two  equivalence  relations,  a
collection  of  fixed  points  with  respect  to  T  constitutes  a  lattice.  It  is
clear  that  there  exists  a  lattice  isomorphism  between  LT  and  LK.  In
fact,  it  is  possible  to  show  that  a  map  f : LT Ø LK  is  a  lattice
homomorphism,  where  for  X œ LT ,  fHXL = R*HXL,
LT = 8X Œ U THXL = X<,  and  LK = 8X Œ U KHXL = X<.  It  can  also
be verified that any lattice can be represented as a collection of fixed
points  with  respect  to  operator  T  or  K.  This  is  a  representation
theorem [16].
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Figure  2. Hasse  diagram  of  a  lattice  (right)  defined  as  a  collection  where
THXL = X. The equivalence classes of R are represented as loops, and those of
S are represented as polygons (left).

3. Lattice for Automata

Svozil  proposes  a  method  for  constructing  a  lattice  for  a  given
automaton and shows that the Moore automaton revealing computa-
tional  complementarity  is  expressed  as  an  orthocomplemented  lattice
[17,  18].  An  automaton  is  defined  by  the  transition  of  an  internal
state d : Q µ S Ø Q and an output function f : Q Ø O, where S is a fi-
nite set of input alphabets, Q is a finite set of states, and O is a finite
set  of  output  symbols.  Computational  complementarity  found  in
some specific automata is defined as follows: there exists an automa-
ton such that  any pair  of  its  states  is  distinguishable,  while  there  are
no  experiments  (i.e.,  giving  an  input  sequence)  that  can  determine
what state the automaton had been in at the beginning of the experi-
ment.  In  other  words,  an  automaton  has  the  property  of  computa-
tional complementarity if internal states cannot be distinguished from
each other by any sequence of input symbols.

Moore automata are known as examples that reveal computational
complementarity,  where  Q = 81, 2, 3, 4<,  S = 80, 1<,  O = 80, 1<,  the
transitions  are  defined  as  d0H1L = d0H3L = 4,  d0H2L = 1,  d0H4L = 2,
d1H1L = d1H2L = 3,  d1H3L = 4,  d1H4L = 2  and  the  output  function  is  de-
fined as f H1L = f H2L = f H3L = 0 and f H4L = 1. The transitions d0  and d1
represent transitions due to input 0 and 1, respectively.

Intrinsic  propositional  calculus  [17]  is  expressed  as  a  partition  of
states due to the transition so as to see computational complementar-
ity. A partition under the input k is expressed as 88a, b<, 8c, d<<  if and
only  if  dkHaL = dkHbL  and  dkHcL = dkHdL.  In  the  mentioned  Moore
automaton,  we  obtain  three  partitions,  namely  881, 3<, 82<, 84<<,
881, 2<, 83<, 84<<, and 881, 2, 3<, 84<< that depend on the input symbols.
The  first  partition  is  derived  from  d0  and  the  second  one  is  derived
from  d1.  The  third  partition  is  derived  from  the  output  function.  In
the first  partition the states 1 and 3 cannot be distinguished, while 1
and 2 can be discriminated. The second partition shows the contrary
case (the third condition is useless in this point of view). Since there is
complementarity between distinction 1 from 2 and 1 from 3, states 1,
2,  and  3  cannot  be  distinguished  by  giving  any  sequence  of  input
symbols.
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The  first  partition  is  derived  from  d0  and  the  second  one  is  derived
from  d1.  The  third  partition  is  derived  from  the  output  function.  In
the first  partition the states 1 and 3 cannot be distinguished, while 1
and 2 can be discriminated. The second partition shows the contrary
case (the third condition is useless in this point of view). Since there is
complementarity between distinction 1 from 2 and 1 from 3, states 1,
2,  and  3  cannot  be  distinguished  by  giving  any  sequence  of  input
symbols.

Each partition can reveal a set lattice (Boolean lattice) whose atoms
are  represented  as  elements  of  partitions.  The  method  proposed  by
Svozil  for  constructing  lattices  is  based  on  pasting  Boolean  lattices.
A lattice for an automaton is constructed by collecting all elements of
the  set  lattices  that  are  derived  from the  partitions.  Order  is  defined
by inclusion existing in  some lattices  derived from the partitions.  Al-
though Svozil  refers to his method as “intrinsic” propositional calcu-
lus,  an  observer  who  constructs  a  lattice  knows  all  states  of  the  au-
tomaton. There is also a double standard. Thus, the observer can deal
with  each  partition  depending  on  the  other  partitions  and  can  paste
them.  An  intrinsic  observer  is,  however,  destined  to  know  the  states
of  the  automaton  only  through  a  partition  depending  on  the  input
[19|21]. In other words, an observer must be faced with an uncontrol-
lable boundary between the internal stance at which the internal state
can be seen and the external stance at which the internal state cannot
be  seen.  Therefore,  we  cannot  assume  that  an  observer  can  prepare
the states of the automaton, and two experiments dependent on the in-
put  cannot  be  conducted  in  a  parallel  fashion.  This  shows  that  two
partitions cannot be distributed and must be ordered in a sequence.

By adopting this idea, two partitions can be regarded as two kinds
of equivalence relations (i.e., the elements of a partition form an equiv-
alence  class).  Regarding  the  Moore  automaton,  we  believe  that  the
equivalence  relations  S  and  R  are  defined  as  881, 3<, 82<, 84<<  and
881, 2<, 83<, 84<<,  respectively.  Since  the  two  experiments  (partitions)
must be ordered in a sequence, the lattice derived from the Moore au-
tomaton  can  be  obtained  as  a  collection  of  fixed  points,  such  as
LT = 8X Œ X THXL = X<.  The  lattice  is  simply  a  distributive  lattice
(Heyting algebra) and does not exhibit the properties of an orthocom-
plemented lattice obtained with the construction provided by Svozil.

Conversely,  if  experiments  with  an automaton must  be  ordered in
a sequence, and if the lattice is obtained only from the composition of
two partitions,  an  orthocomplemented  lattice  reveals  a  more  compli-
cated automaton. Figure 3 shows an example of an automaton that re-
veals  an  orthocomplemented  lattice.  The  one  represented  as  loops
shows  the  transition  d0,  and  the  other  partition,  represented  as  ar-
rows, shows the transition d1. These partitions have the following re-
markable features: (i) For any a  in d0HQL  and d1HQL,  there exists x  in
Q  such that d0HxL = d1HxL = a  and (ii)  if  d0HxL = a  and d1HxL = b, then
there exists y in Q such that d0HyL = b and d1HyL = a. It can be shown
that  the  automaton  satisfying  these  features  reveals  a  complemented
lattice, where the two equivalence relations R and S are defined by d0
and  d1  such  that  R = 9Xx, y\ œ Q µ Q d0HxL = d0HyL=  and
S = 8Xx, y\ œ Q µ Q d1HxL = d1HyL<. This recipe for constructing a lat-
tice is now applied to ECAs.
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two partitions,  an  orthocomplemented  lattice  reveals  a  more  compli-
cated automaton. Figure 3 shows an example of an automaton that re-
veals  an  orthocomplemented  lattice.  The  one  represented  as  loops
shows  the  transition  d0,  and  the  other  partition,  represented  as  ar-
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markable features: (i) For any a  in d0HQL  and d1HQL,  there exists x  in
Q  such that d0HxL = d1HxL = a  and (ii)  if  d0HxL = a  and d1HxL = b, then
there exists y in Q such that d0HyL = b and d1HyL = a. It can be shown
that  the  automaton  satisfying  these  features  reveals  a  complemented
lattice, where the two equivalence relations R and S are defined by d0
and  d1  such  that  R = 9Xx, y\ œ Q µ Q d0HxL = d0HyL=  and
S = 8Xx, y\ œ Q µ Q d1HxL = d1HyL<. This recipe for constructing a lat-
tice is now applied to ECAs.

Figure 3. Hasse diagram of a lattice (upper left) defined as a collection where
THXL = X  for an automaton defined by a transition (right).  In the transition,
the partition represented as loops is the equivalence relation R, and the other
partition represented as arrows is the other equivalence relation S. The binary
relation between two quasi-sets divided by each equivalence class is shown as
a matrix.

4. Elementary Cellular Automata and Lattices

ECAs are analyzed by using a lattice derived from a rough set in order
to grasp the macroscopic properties of their behaviors. The transition
rule of an ECA fr : 80, 1<3 Ø 80, 1< such that ci

t+1 = frIci-1
t , ci

t, ci+1
t M is

numbered  by  r  following  Wolfram.  Since  a  lattice  derived  from  a
rough set consists of equivalence classes, a set of states is divided into
equivalence classes in terms of a transition. A set of states 80, 1< in an
ECA  is  too  small  to  construct  a  lattice  consisting  of  equivalence
classes. Thus, we replace the state space with a set of triplets of 80, 1<,
such  as  8H0, 0, 0L, H0, 0, 1L, … , H1, 1, 1L<.  Given  an  ECA  with  a
transition  ci

t+1 = frIci-1
t , ci

t, ci+1
t M,  it  is  regarded  as  the  following

automata:
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Q 8H0, 0, 0L, H0, 0, 1L, … , H1, 1, 1L<,
S 8H0, 0L, H0, 1L, H1, 0L, H1, 1L<.

For  any  internal  state  qt = Iq0, q1, q2M œ Q  and  input  symbol
pt = Ip0, p1M œ S,  qt+1 œ Q  is  determined  by  the  transition
dr : Q µ S Ø Q such that

qt+1 = drIqt; ptM = drIIq0, q1, q2M, Ip0, p1MM =

IfrIp0, q0, q1M, frIq0, q1, q2M, frHq1, q2, p1LM.

We  define  a  pair  of  equivalence  relations  Ra b  and  RS-a b  derived
from  transition  dr.  Given  an  input  pair  Ha, bL œ S,  P = Q µ S+,
S+ = S - 8Ha, bL< is defined, and Ra b  and RS-a b  are defined as subsets
of P µ P. The equivalence relation Ra b is defined as

Ra b =

9HHq, Hc, dLL, Hs, He, f LLL œ P µ P drHq, Ha, bLL = drHs, Ha, bLL,

q, s œ Q, Hc, dL, He, f L œ S+=.

The other equivalence relation, namely RS-a b, is expressed as

RS-a b =

9HHq, Hc, dLL, Hs, He, f LLL œ P µ P drHq, Hc, dLL =ex dr Hs, Hc, dLL,

q, s œ Q, Hc, dL, He, f L œ S+=.

where  the  equivalence  relation  =ex Œ Q µ Q,  which  cannot  be
uniquely determined, is defined under the following conditions.

1. q = s fl q=ex s,

2. IdrIq, Hc, dLM, drIs, Ie, f MMM – =ex,  for  Iq, Hc, dLM, Is, Ie, f MM œ Ra b  such
that drIq, Hc, dLM ≠ drIs, Ie, f MM with Hc, dL, Ie, f M œ S+,

3. IdrIq, Hc, dLM, drHs, Ha, bLLM – =ex,  for  Iq, Hc, dLM, Is, Ie, f MM œ Ra b  such
that drIq, Hc, dLM ≠ drHs, Ha, bLL with Hc, dL œ S+,

4. IdrIq, Ha, bLM, drHw, Ha, bLLM – =ex, for Iq, Hc, dLM, Iw, Ie, f MM – Ra b,

5. P ë Ra b @ Q ë =ex.
Finally, we can construct a lattice as a collection of fixed points with
respect  to  the  upper  and  lower  approximations  such  that
LT = 9X Œ P Ra b* RS-a b

* HXL = X=.

We show the case of f90 such that

f90H0, 0, 0L = f90H1, 0, 1L = f90H0, 1, 0L = f90H1, 1, 1L = 0

and 
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and 

f90H0, 0, 1L = f90H1, 0, 0L = f90H0, 1, 1L = f90H1, 1, 0L = 1. 

The transition d90 for input H0, 0L is expressed as

d90HH0, 0, 0L, H0, 0LL If90H0, 0, 0L, f90H0, 0, 0L, f90H0, 0, 0LM = H0, 0, 0L,

d90HH0, 0, 1L, H0, 0LL If90H0, 0, 0L, f90H0, 0, 1L, f90H0, 1, 0LM = H0, 1, 0L,

d90HH0, 1, 0L, H0, 0LL If90H0, 0, 1L, f90H0, 1, 0L, f90H1, 0, 0LM = H1, 0, 1L,

ª

d90HH1, 1, 0L, H0, 0LL = If90H0, 1, 1L, f90H1, 1, 0L, f90H1, 0, 0LM = H1, 1, 1L,

d90HH1, 1, 1L, H0, 0LL = If90H0, 1, 1L, f90H1, 1, 1L, f90 H1, 1, 0LM = H1, 0, 1L.

A quotient set divided by equivalence relation R00 is expressed as

P ë R00 = 99H0, Hc, dLL, H5, Hc, dLL Hc, dL œ S+=,

9H2, Hc, dLL, H7, Hc, dLL Hc, dL œ S+=,

9H1, Hc, dLL, H4, Hc, dLL Hc, dL œ S+=,

9H3, Hc, dLL, H6, Hc, dLL Hc, dL œ S+==,

where  a  triplet  Ha, b, cL œ Q  is  expressed  as  a  decimal  number  by
HabcL2.  It  is  easy  to  see  HH0, Hc, dLL, H5, Hc, dLLL œ R00  since
d90H0, H0, 0LL = d90H5, H0, 0LL = 0. Similarly,

d90 H0, H0, 1LL d90 H5, H0, 1LL = 1,

d90 H0, H1, 0LL d90 H5, H1, 0LL = 4, and

d90 H0, H1, 1LL d90 H5, H1, 1LL = 5,

condition  2  states  that  1,  4,  and  5  must  be  distinguished  from  each
other,  and  condition  3  states  that  0 =ex 1,  0 =ex 4,  and  0 =ex 5  are
not allowed. From condition 4, each output dependent on input H0, 0L
must be distinguished from other such output. Thus, one of the equiv-
alence relations =ex  satisfying conditions 1 through 5 gives a quotient
set Q ê=ex = 880, 3<, 82, 1<, 85, 6<, 84, 7<<.

Due to the equivalence relation =ex, P ë RS-00 is expressed as 

P ë RS-00 =

88H1, H0, 1LL, H4, H0, 1LL H3, H1, 0LL, H6, H1, 0LL, H2, H1, 1LL,
H7, H1, 1LL<, 8H0, H0, 1LL, H5, H0, 1LL H2, H1, 0LL, H7, H1, 0LL,
H3, H1, 1LL, H6, H1, 1LL<, 8H3, H0, 1LL, H6, H0, 1LL H1, H1, 0LL,
H4, H1, 0LL, H0, H1, 1LL, H5, H1, 1LL<, 8H2, H0, 1LL,
H7, H0, 1LL H0, H1, 0LL, H5, H1, 0LL, H1, H1, 1LL, H4, H1, 1LL<<.
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Figure 4. Construction of a lattice derived from the lower and upper approxi-
mations defined as ECA 90. The central box represents an element of P ë R00,
and  P ë R00 @ 8a, b, c, d<.  Here,  Q ê=ex 880, 3<, 82, 1<, 85, 6<, 84, 7<< =
8A, B, C, D<. An element of P ë RS-00  is represented as a collection of sources
whose arrows reach an element of Q ê=ex  where input is omitted. An element
8H1, H0, 1LL, H4, H0, 1LL, H3, H1, 0LL, H6, H0, 1LL, H2, H1, 1LL, H7, H1, 1LL<  in  P ëRS-00
is expressed as a collection of sources of arrows whose target is a box A, such
as 82, 7, 1, 4, 3, 6<. The binary relation between P ë R00  and P ë RS-00  is rep-
resented in  terms of  the  box in  the  upper-right  corner.  The  derived lattice  is
represented as a Hasse diagram.

For  the  two  equivalence  relations  R00  and  RS-00,  a  collection  of
fixed  points  such  that  LT = 9X Œ P R00* RS-00

* HXL = X=  is  a  lattice,
as  shown  in  Figure  4.  It  is  clear  that
9H0, Hc, dLL, H5, Hc, dLL Hc, dL œ S+= is an element of LT :

For  the  two  equivalence  relations  R00  and  RS-00,  a  collection  of
fixed  points  such  that  LT = 9X Œ P R00* RS-00

* HXL = X=  is  a  lattice,
as  shown  in  Figure  4.  It  is  clear  that  8H0, Hc, dLL, H5, Hc, dLL
Hc, dL œ S+= is an element of LT :

R00* RS-00
* I9H0, Hc, dLL, H5, Hc, dLL Hc, dL œ S+=M =

R00* I8H0, H0, 1LL, H5, H0, 1LL H2, H1, 0LL, H7, H1, 0LL,

H3, H1, 1LL, H6, H1, 1LL, H3, H0, 1LL, H6, H0, 1LL H1, H1, 0LL,
H4, H1, 0LL, H0, H1, 1LL, H5, H1, 1LL, H2, H0, 1LL, H7, H0, 1LL
H0, H1, 0LL, H5, H1, 0LL, H1, H1, 1LL, H4, H1, 1LL<=M =

9H0, Hc, dLL, H5, Hc, dLL Hc, dL œ S+=.

We estimate all 256 ECAs in terms of a lattice derived from upper
and  lower  approximation  operators.  More  specifically,  we  examine
whether a derived lattice  is  a  distributive lattice.  In our lattice  analy-
sis,  each  element  of  a  lattice  is  a  collection  of  binary  sequences.  If  a
pattern generated by an ECA is reduced to an atomistic view, the pat-
tern  is  described  as  a  combination  of  elementary  subpatterns.  Since
the  reduction  is  based  on  a  distributive  law  such  that
Ha Ô Hb Ó cLL = Ha Ô bL Ó Ha Ô cL,  we believe that an ECA of class 1 or 2
can yield a distributive lattice in our lattice analysis.
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We estimate all 256 ECAs in terms of a lattice derived from upper
and  lower  approximation  operators.  More  specifically,  we  examine
whether a derived lattice  is  a  distributive lattice.  In our lattice  analy-
sis,  each  element  of  a  lattice  is  a  collection  of  binary  sequences.  If  a
pattern generated by an ECA is reduced to an atomistic view, the pat-
tern  is  described  as  a  combination  of  elementary  subpatterns.  Since
the  reduction  is  based  on  a  distributive  law  such  that
Ha Ô Hb Ó cLL = Ha Ô bL Ó Ha Ô cL,  we believe that an ECA of class 1 or 2
can yield a distributive lattice in our lattice analysis.

Figure 5 shows the distributivity of all synchronous legal automata
with respect to all pairs of equivalence relations dependent on the in-
put.  Each  row  represents  a  corresponding  rule  denoted  by  its  Wol-
fram rule  number,  and each column represents  a  pair  of  two equiva-
lence  relations,  where  R01 R00+10+11  is  a  pair  of  R01  and  RS-01.  A
filled cell indicates that the derived lattice is distributive, and a vacant
cell  indicates  that  it  is  nondistributive.  Class  1  automata  show  dis-
tributive lattices independent of equivalence relations, and class 3 au-
tomata  exhibit  nondistributive  lattices.  Class  2  features  intermediate
properties.  The  results  for  class  4  rules,  which  are  asymmetric,  are
also shown, and it is clear that they are similar to those of class 3.

Figure 5. Distributivity of a lattice derived from upper and lower approxima-
tion operators. See the text.

Figure  6  shows  examples  of  Hasse  diagrams  of  lattices  derived
from  ECAs.  The  Hasse  diagram  of  rule  18  (class  3)  contains  a  pen-
tagon sublattice (shaded elements), indicating that the lattice is nondis-
tributive. From the results of the estimation with respect to distributiv-
ity,  we conclude  that  the  lattice  of  class  3  automata  showing mixing
subpatterns  is  a  nondistributive  lattice,  as  well  as  that  if  the  patterns
are stable, then the distributivity is increased.
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Figure  6. Two examples  of  Hasse  diagrams  of  lattices  derived  from an  ECA.
The  left  and  right  ECAs  correspond  to  rule  18,  exhibiting  a  class  3  pattern,
and rule 50, exhibiting a class 2 pattern.

5. Inducing Class 4 Behavior by Introducing a Discrepancy between 
Microscopic and Macroscopic Properties

As mentioned in  Section  1,  we  propose  a  model  of  class  4  automata
based on the dynamical negotiation between microscopic and macro-
scopic  layers.  Since  an ECA is  based on local  deterministic  rules,  the
macroscopic  phase  is  excluded  from  the  process  of  pattern  develop-
ment.  While  the  macroscopic  properties  of  an  ECA can  be  described
in terms of a lattice derived from upper and lower approximations, as
mentioned  in  Section  4,  there  is  no  discrepancy  between  the  ECA
rules and the properties exhibited by a lattice. We introduce a virtual
macroscopic property independent of the ECA rules and superimpose
it  on  the  ECA,  which  results  in  a  discrepancy  between  microscopic
and  macroscopic  properties.  We  estimate  whether  such  a  recipe  in-
duces class 4 behavior.

Given a class 3 ECA rule, first we prepare a lattice derived from up-
per  and  lower  approximations,  which  is  expected  to  behave  as  a
nondistributive  lattice.  Then,  we search  for  a  lattice  characterized  by
greater  distributivity  (i.e.,  the  distributive  law  holds  for  more  ele-
ments), as well as for a minor modification to allow for the implemen-
tation  of  such  a  lattice.  The  minor  modification  is  implemented  as  a
transition  for  binary  strings  larger  than  triplets  and reveals  a  middle
layer  between  the  macroscopic  layer  described  by  the  lattice  and  the
microscopic layer implemented by the ECA rule.
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Given a class 3 ECA rule, first we prepare a lattice derived from up-
per  and  lower  approximations,  which  is  expected  to  behave  as  a
nondistributive  lattice.  Then,  we search  for  a  lattice  characterized  by
greater  distributivity  (i.e.,  the  distributive  law  holds  for  more  ele-
ments), as well as for a minor modification to allow for the implemen-
tation  of  such  a  lattice.  The  minor  modification  is  implemented  as  a
transition  for  binary  strings  larger  than  triplets  and reveals  a  middle
layer  between  the  macroscopic  layer  described  by  the  lattice  and  the
microscopic layer implemented by the ECA rule.

We present a recipe for preparing a class 4 automaton from a class
3  automaton using  rule  146 (Figure  7).  Also,  for  the  construction  of
the  relation  between R00  and RS-00  of  rule  90,  we  prepare  a  binary
relation between P ë R00  and P ë RS-00, as shown in the matrix in the
upper  right  corner  in  Figure  7,  where  P ë R00 @ 8a, b, c, d, e<  and
P ë RS-00 @ 8A, B, C, D, E<.  A  set  LT = 9X Œ P R00* RS-00

* HXL = X=

reveals  a  nondistributive  lattice  containing  a  sublattice  of  the  pen-
tagon.  As mentioned earlier,  a  nondistributive  lattice  can reveal  class
3 behavior.

Figure 7. Transition of rule 146 for triplets under input 00 (a through d) and
under 01, 10, and 11 (A through D) (upper left) and time development (lower
left).  The  matrix  in  the  upper  panel  represents  the  binary  relation  between
P ë R00  and  P ë RS-00  revealing  the  macroscopic  properties  of  rule  146.  A
nondistributive  lattice  is  shown on  the  right.  The  matrix  and  the  Hasse  dia-
gram  in  the  lower  panel  represent  the  virtual  relation  and  its  corresponding
lattice.

Our  search  for  a  lattice  with  greater  distributivity  resulted  in  the
following  operation.  If  the  binary  relation  J  between  P ë R00  and
P ë RS-00 is modified by erasing certain filled cells in the matrix in the
upper-right  corner,  represented by the shaded (not  black)  cells  in  the
middle  matrix,  then  a  modular  orthomodular  lattice  is  revealed,  as
shown by the Hasse diagram in the lower-right corner of Figure 7. Re-
garding the implementation of the operation, since the top row where
Ha, AL, Ha, CL, Ha, DL, and Ha, EL œ J indicates that
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d146Hq, H0, 0LL = 0 and

d146Hq, Hc, dLL = 0, 5, 7, 4, 6, 1, and 3, for Hc, dL œ S+,

the  operation  of  erasing  Ha, AL  from  J  can  be  expressed  as
d146Hq, Hc, dLL ≠ 0. Since q = 0, 5 one of the possible operations is ex-
pressed as 

d146Hq, H0, 1LL = 1,  d146Hq, H1, 0LL = 4,  d146Hq, H1, 1LL = 5

which  can  reveal  d146Hq, Hc, dLL ≠ 0.  The  operation  of  erasing  Hb, CL,
Hb, DL, Hb, EL œ J is also implemented as

d146Hq, Hc, dLL = 2, for Hc, dL œ S+, q = 1, 4, 7.

Those operations are defined as transitions for triplets and are incon-
sistent  with  the  original  ECA rule  146.  They  represent  the  transition
for  the  intermediate  layer,  which  is  neither  a  microscopic  ECA  rule
nor  a  macroscopic  modular  orthomodular  lattice.  The  transition  of
the  intermediate  layer  can  be  implemented  as  d146Hq, Hc, dLL ≠ 0 with
q = 0, 5, or as d146Hq, Hc, dLL = 2, q = 1, 4, 7. The former operation is

ISj=-2
2 ci+j

t M 11 or 1 fl ci+1
t+1 = 1,

ISj=-2
2 ci+j

t M 26 or 16 fl ci-1
t+1 = 1,

ISj=-2
2 ci+j

t M 27 or 17 fl ci-1
t+1 = 1, ci+1

t+1 = 1.

Thus, the dynamics of a class 4 automaton originating from rule 146
are described as  follows:  (i)  the transition of  rule  146 is  applied to a
binary sequence, (ii) the transition of the intermediate layer is applied
to a binary sequence if the neighbors with radii = 2 satisfy the condi-
tions for the intermediate layer.

Figure 8 shows the development of such dynamics with both class
3 behaviors and periodic patterns featuring gliders.

We apply the same recipe to other class 3 ECAs, in which elements
of  the  binary  relation  between  P ë R00  and  P ë RS-00  are  erased  and
added. This results  in class 4 behavior,  while the dynamics contain a
discrepancy  between  the  microscopic  and  macroscopic  phases
(Figure 9). This is especially true for rule 54 where there are six possi-
bilities  to  realize  a  virtual  lattice.  All  six  intermediate  transitions  re-
sulting from the six possibilities exhibit class 4 behavior.
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Figure 8. Time development of rule 146 with the transition for the intermedi-
ate layer.

Figure 9. Time development of rule 54 with the transition for the intermediate
layer. Some elements of the binary relation between P ë R00  and P ë RS-00  are
erased (pale blue cells), and some are added (blue cells).
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6. Conclusion

We  propose  a  recipe  for  preparing  class  4  automata  as  heterarchies.
Since the recipe is based on lattice analysis, first we review our lattice
construction  derived  from  a  rough  set.  Next,  we  classify  all  elemen-
tary cellular automata (ECAs) with respect to our lattice analysis. An
ECA transition is re-interpreted as a transition whose state is a triplet
that  gets  divided  into  two  transitions  depending  on  the  input.  These
two  transitions  result  in  two  equivalence  relations,  and  consequently
it is possible to define approximation operators and a lattice of ECAs.

Estimating  lattice  analysis  for  ECAs,  we  obtain  the  result  that
classes  1  and  2  yield  a  distributive  lattice  and  class  3  CAs  yield  a
nondistributive  lattice.  This  is  consistent  with  our  assumption  that
classes  1  and  2  can  be  reduced  to  combinations  of  simple  local  pat-
terns  (where  the  distributive  law  holds)  while  class  3  cannot  be  re-
duced in such a way, and the patterns are continuously mixed as time
progresses.  Subsequently,  we  construct  class  4  automata  by  superim-
posing  the  transition  for  triplets  on  the  class  3  transition.  Since  the
transition for triplets is not concordant with the ECA transition, it in-
troduces a discrepancy between the microscopic and macroscopic lay-
ers, which can result in class 4 behavior.
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