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The  four  classes  or  states  of  discrete  systems—chaos,  complexity,  and
two types of order—have been established by S. Wolfram in [1]. We de-
scribe how the ratio d/c of two parameters, differentiation and central-
ity,  explains  changes  among  these  states.  Both  parameters  were  devel-
oped  in  the  social  sciences  and  have  been  used  to  explain  changes  of
state in social  systems, which are also discrete systems [2].  Differentia-
tion  is  the  variety  within  the  structure  of  a  discrete  system.  Centrality
measures the variety of outside information presented to a discrete sys-
tem.  Although  these  ideas  can  be  applied  to  cellular  automata  (CAs),
the range of these two variables is very limited for a given CA. In this pa-
per we use the idea of a global cellular automaton (GCA), as developed
by  Wolfram  in  [3],  and  a  GCA  network  (GCAN),  as  developed  by
S. Chandler in [4], to show how changes in the state of abstract discrete
systems are related to changes in the ratio d/c.

1. Introduction

For  his  book A New Kind of  Science  (NKS),  S.  Wolfram [1]  studied
billions  of  discrete  systems  composed  of  many  individual  cells  that
evolve  over  time  based  on  a  set  of  rules.  This  immense  amount  of
work established that the behavior of such systems over time falls into
one of four classes: classes 1 and 2 are ordered, class 3 is chaotic, and
class 4 is complex. These classes are sometimes called the states of the
system. Social systems are discrete systems and later we introduce the
term  type  of  focusing,  where  focusing  refers  to  the  output  of  social
systems  in  terms  of  the  four  classes  or  states.  Based  on  Wolfram’s
studies,  we  argue  that  there  are  only  four  possible  states  or  types  of
focusing: two kinds of order, chaos, or complexity.

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.3.211



Our purposes in this paper are twofold. 
1. Introduce  two  concepts  from  social  science,  centrality  and  differentia-

tion,  as  the  parameters  that  together  determine  the  resulting  class  or
state of the system. Differentiation is the variety within the structure of
a  discrete  system.  Centrality  measures  the  variety  of  outside  informa-
tion presented to a discrete system. 

2. Show how the centrality  and differentiation parameters  can be applied
to  abstract  discrete  systems  as  successfully  as  we  have  used  them  to
study  social  systems.  In  particular,  we  apply  these  parameters  to  ab-
stract  discrete  systems  that  are  in  some  ways  more  complicated  than
those  studied  by  Wolfram.  The  systems  studied  are  global  cellular  au-
tomata  (GCAs),  suggested  by  Wolfram  in  [3],  and  GCA  networks
(GCANs), developed by S. Chandler in [4].

A GCA is  a  one-dimensional  CA that  contains  two or more rules.
A  GCAN is  a  network  connecting  many  GCAs.  At  each  time  step  a
GCA selects  which rule  to  use  based on global  information from the
network. Increasing the number of rules in the GCA increases differen-
tiation (d).

Centrality  (c)  includes  the  initial  conditions  for  any  CA,  and  for
GCANs, the information flowing from the network to each GCA. Cen-
trality can be lowered by simplifying this information. 

The  experiments  vary  d  and  c  independently.  The  results  confirm
that increasing d/c moves chaotic GCAs toward order and vice versa,
decreasing d/c tends to move ordered GCAs closer to chaos.

With  the  CAs  and  many  other  discrete  systems  studied  by
Wolfram, the system outcome is changed by using different initial con-
ditions  and/or  by  applying  a  different  rule.  We  argue  that  the  initial
conditions  and  the  rules  are  instances  of  the  broader  parameters,  c
and d respectively,  that we are proposing.  The GCAs as studied here
offer additional insight into how the variables c and d affect the behav-
ior of discrete systems.

First, we introduce the variables and explain how the ratio of differ-
entiation divided by centrality (d/c) predicts which class of output will
appear  in  social  systems.  We  next  show how the  output  state  corre-
sponds  to  another  concept  from  social  systems,  the  focusing  of  out-
put. We then relate all three variables—centrality, differentiation, and
social  focusing—to  what  happens  in  more  abstract  discrete  systems
such as CAs.

2. The d/c Ratio as a Predictor of Social Focusing

We now introduce a new theory from the social sciences that seems to
explain many types of changes in social systems. The theory states, in
brief,  that  the  ratio  of  differentiation to centrality,  the  d/c  ratio,  pre-
dicts the state of a social system. The implication is that by manipulat-
ing the two variables c and d, it is possible to “tune” a social system
so that it moves from state to state (for a more extensive discussion of
d/c, see [2]).We begin by defining each variable as it is used with social systems;
then,  since  we wish  to  apply  this  theory  to  abstract  discrete  systems,
we relate the variables of our theory to what happens in a CA.
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We begin by defining each variable as it is used with social systems;
then,  since  we wish  to  apply  this  theory  to  abstract  discrete  systems,
we relate the variables of our theory to what happens in a CA.

The term centrality comes from Bavelas’s classic study of communi-
cation  in  small  groups  [5].  He  was  interested  in  how access  to  other
people  in  a  group affected the  behavior  and attitude of  each individ-
ual,  as well  as the overall  effectiveness of group problem solving. So,
for  example,  the  individual  or  node  that  is  in  touch  with  all  other
members has high centrality  while  an individual  who is  connected to
only one other member has low centrality. In general, Bavelas discov-
ered  that  individuals  with  high  centrality  have  higher  morale  than
those with low centrality. At the same time, systems with unequal cen-
trality,  that  is,  where  some  individuals  have  very  high  centrality  and
most  have  low,  are  not  as  efficient  when  creative  problem solving  is
required.

Since Bavelas’s initial studies of real social groups, the idea of cen-
trality has been applied to a vast range of social networks, from inter-
locking  corporate  boards  to  trade  patterns  among  nations.  As  well,
graph  theory  has  been  used  to  define  more  precisely  the  different
types of centrality. Degree centrality, for example, is the total number
of links to any one node,  while  betweenness  centrality  refers  to links
that join two subsets of nodes, and closeness  centrality takes account
of direct and indirect links [6].

For  our  purposes  we  define  centrality  more  abstractly  as  the  vari-
ety, not volume or quantity, of information coming from outside that
affects  the  behavior  of  a  node  or,  in  general,  any  system.  A node  or
system with high centrality is subject to a wide variety of outside infor-
mation,  while  low  centrality  systems  receive  information  that  has
little  variety.  Centrality  can  be  measured  indirectly  by  counting  the
number  of  links  to  other  systems,  or  directly  by  counting  the  varied
types of information crossing the boundaries of the system.

For social systems, increasing the level of centrality tends to move a
system from a state of order to one closer to chaos.  The new incom-
ing information makes the output less predictable.

What,  then,  corresponds to centrality  in  a  CA? It  must  be the ini-
tial  conditions:  the value of each cell  at  time zero.  This is  the variety
of information with which the system has to work. 

For  a  CA,  the  centrality  is  presented  only  once,  at  time  zero,
through the  initial  conditions.  The lowest  possible  centrality,  beyond
the  trivial  case  of  all  initial  cells  being  the  same,  is  a  single  different
cell,  say one black cell,  with all  the rest  white.  Centrality  rises  as  we
add  variety  to  the  initial  conditions,  say  in  the  form  of  an  arrange-
ment of a few black cells. The highest centrality is a random distribu-
tion  of  black  and  white  cells  as  the  initial  condition.  Wolfram
explored  this  wide  range  of  initial  conditions  for  a  huge  number  of
CAs and many other discrete  systems.  For a given rule,  changing the
initial  conditions—centrality—may change  the  output  state,  although
the results vary depending upon the specific rule. For GCAs as nodes
in  GCANs,  as  discussed  later,  centrality  becomes  more  complicated,
and we will discuss it further at that point.
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For  a  CA,  the  centrality  is  presented  only  once,  at  time  zero,
through the  initial  conditions.  The lowest  possible  centrality,  beyond
the  trivial  case  of  all  initial  cells  being  the  same,  is  a  single  different
cell,  say one black cell,  with all  the rest  white.  Centrality  rises  as  we
add  variety  to  the  initial  conditions,  say  in  the  form  of  an  arrange-
ment of a few black cells. The highest centrality is a random distribu-
tion  of  black  and  white  cells  as  the  initial  condition.  Wolfram
explored  this  wide  range  of  initial  conditions  for  a  huge  number  of
CAs and many other discrete  systems.  For a given rule,  changing the
initial  conditions—centrality—may change  the  output  state,  although
the results vary depending upon the specific rule. For GCAs as nodes
in  GCANs,  as  discussed  later,  centrality  becomes  more  complicated,
and we will discuss it further at that point.

The concept of differentiation, the “d” in the d/c ratio, comes origi-
nally from biology where it refers to the variety, not quantity, of spe-
cialized  internal  structures  that  appear  as  the  organism  develops.  As
used in the social  sciences,  differentiation refers  to the internal  struc-
ture  of  any  social  system:  the  variety  of  specialized  occupations  and
skills  found  in  a  social  system  such  as  a  city  or  organization.
Differentiation  can  be  measured  by  counting  the  variety  of  internal
subsystems such as institutions or trades.

A more elaborate  measure of  differentiation takes account of  how
the variety is organized, that is,  the structure of internal connections.
Hierarchical  arrangements of different occupations behave differently
than a cluster  of  different  skills  that  interact  in a more random way.
For  a  business  corporation,  differentiation is  both  the  variety  of  spe-
cialized  sections  as  well  as  the  way  in  which  the  managers  organize
those specialists.

In  social  systems,  the  behavior  becomes  more  predictable  as
differentiation  rises,  both  from  a  simple  increase  in  the  number  of
specialized  subsystems,  and  with  a  more  organized  structure.  More
predictable means more orderly, so more highly differentiated systems
appear more ordered than less differentiated ones. 

What corresponds to differentiation in CAs? CAs with the same ini-
tial  conditions  have  very  different  outputs  depending  upon  the  rule
used.  Hence,  for  CAs,  differentiation  must  be  related  to  the  internal
rules that organize the output. At some deeper level, some rules must
represent a higher level of differentiation, since they lead to a more or-
dered  output,  but  it  is  not  clear  how specific  rules  are  related  to  the
level of internal variety, or differentiation, in the system.

Hence, in a simple CA operating with a single rule, any changes in
behavior can only be controlled through changes in centrality (the ini-
tial conditions). Thus, for CAs with a single rule, there is no ability to
change differentiation in a systematic way that corresponds to chang-
ing  the  variety  of  skills  in  a  social  system,  and  how  those  skills  are
managed.

As  we  show  later,  by  definition  a  GCA  is  a  system  that  contains
more than one rule and, therefore, it is possible to measure the inter-
nal  variety  (the  level  of  differentiation)  by  counting  the  number  of
rules  available.  We will  demonstrate  that  for  GCAs as  for  social  sys-
tems,  increasing  the  number  of  rules  (the  level  of  differentiation)  in-
creases the likelihood of order.

We  now  turn  to  focus,  the  variable  in  social  systems  that  corre-
sponds to the output state of the system.

Just  what  is  it  that  changes  when  social  systems  undergo  change?
What  is  it  that  outsiders  see  when  they  observe  a  system  such  as  a
small community? Social scientists interested in social change have sev-
eral  words to describe the eventual  state  of  the system after  a  period
of change. Solidarity versus conflict is one of the dichotomies used to
describe  the  extreme  overall  state  of  a  system  such  as  a  society  or  a
small  group.  Solidarity  represents  greater  order,  while  conflict  corre-
sponds to more chaotic behavior.
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Just  what  is  it  that  changes  when  social  systems  undergo  change?
What  is  it  that  outsiders  see  when  they  observe  a  system  such  as  a
small community? Social scientists interested in social change have sev-
eral  words to describe the eventual  state  of  the system after  a  period
of change. Solidarity versus conflict is one of the dichotomies used to
describe  the  extreme  overall  state  of  a  system  such  as  a  society  or  a
small  group.  Solidarity  represents  greater  order,  while  conflict  corre-
sponds to more chaotic behavior.

Since  we  wish  to  generalize  our  ideas  to  all  systems,  social  and
nonsocial, we use the more general term of “focus” to describe the fi-
nal state of any system. One can imagine systems that are sharply fo-
cused or ordered, that is, in a clearly identifiable state that remains un-
changing. At the other extreme are systems that keep changing and do
not  come  into  focus;  they  are  more  chaotic.  Thus  focusing  can  vary
from high to low focus, or in Wolfram’s terms, from order to chaos.

On the  basis  that  Wolfram’s  findings  apply  to  all  discrete  systems
we have combined his terms for the four classes with the term focus.
So,  fixed  ordered  focusing  refers  to  systems  that  change  little  over
time; they are class 1 ordered systems, sharply focused. The term repet-
itive  ordered  focusing  describes  systems  that  repeat  the  same  pattern
over  and  over;  they  are  class  2  ordered  systems.  Chaotically  focused
systems  are  unpredictable  and  change  constantly;  they  represent
class  3  systems.  Finally,  complex  focused  systems  are  a  mixture  of
some ordered patterns along with some unpredictable variation in pat-
terns; they are class 4 systems.

Using  the  three  variables  centrality,  differentiation,  and  focus,  we
now present the theory of the d/c ratio.

It  makes  intuitive  sense  that  the  final  state  of  a  system will  be  re-
lated to centrality, or to the incoming variety of information to which
it is exposed.  We would expect the final state of focusing to be more
chaotic for systems exposed to an increased variety of incoming infor-
mation—to  higher  centrality.  So,  the  higher  the  centrality,  the  less
focused the final pattern should be. There is an inverse relationship be-
tween centrality and focusing.

For some CAs, the greater the variety contained in the initial condi-
tions,  the  more  likely  the  output  is  to  be  less  focused,  to  be  chaotic,
which  supports  the  relationship  between  higher  centrality  and  more
chaos. Many CAs, however, do not change focus with higher central-
ity, which must be related to the other parameter, the level of differen-
tiation.

In terms of differentiation, we might expect that the more differenti-
ated the internal structure, the more likely it is to end up with ordered
focusing, implying a direct relationship between differentiation and fo-
cusing. The system is able to “handle” more incoming variety because
the  new  information  is  slowed  down  and  organized  by  the  compli-
cated internal structure.

For  CAs,  the  differentiation  is  contained in  the  particular  rule  ap-
plied. Hence, for a given centrality, initial condition, the behavior of a
CA depends entirely on the rule.  Since the rule does not change over
time  for  CAs,  the  output  focusing  does  not  change,  either.  Again,  as
discussed later, GCAs draw upon a number of rules and we would ex-
pect  there  to  be  more  ordered  focusing  in  GCAs  containing  more
rules.

These  two  variables,  then,  centrality  and  differentiation,  form  the
d/c ratio and our hypothesis is that this determines which of the four
classes  of  focusing  is  obtained.  Very  ordered  focusing  happens  when
the system has relatively low centrality and relatively high differentia-
tion, a high d/c ratio. Conversely, relatively high centrality and low dif-
ferentiation, a low d/c ratio, should lead to a more chaotically focused
output.
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These  two  variables,  then,  centrality  and  differentiation,  form  the
d/c ratio and our hypothesis is that this determines which of the four
classes  of  focusing  is  obtained.  Very  ordered  focusing  happens  when
the system has relatively low centrality and relatively high differentia-
tion, a high d/c ratio. Conversely, relatively high centrality and low dif-
ferentiation, a low d/c ratio, should lead to a more chaotically focused
output.

We now present two theories from the social sciences that support
these  intuitive  conclusions:  Ashby’s  law  of  requisite  variety,  and
Young’s theory of community solidarity (again, these are discussed in
greater detail in [2]).

R. Ashby developed his law of requisite variety [7, pp. 202–218] to
help  him  understand  the  science  of  cybernetics  (how  to  control  sys-
tems). He speculated that all such systems could be reduced to models
showing the variety of information entering the systems as inputs, pro-
cessed through thruputs to produce outputs. His law, then, stated that 

Variety of Input

Variety of Thruput
= Variety of Output.

He  gives,  among  other  examples,  the  history  of  war,  where  new
weapons (input variety) must be met with a greater variety of defenses
(variety of thruput) to keep the state of the system constant (variety of
output  low).  For  Ashby,  systems  whose  output  is  too  unpredictable
are more unstable and do not survive. Another of his examples is the
survival of life. The output of organisms, measured by such indicators
as temperature and blood pressure, must be kept within certain limits
of  variety  for  the  organism to  stay  alive.  To do this,  organisms need
to use internal thruput structures to resist the impact of such external
inputs as varying temperatures and diseases.

Young’s  theory of community solidarity [8,  9]  is  closely related to
Ashby’s  law.  It  uses  the  variables  of  differentiation  and  centrality  to
“explain”  why  some  human  communities  are  more  unified,  or  have
higher solidarity in the terminology of  the social  sciences.  His  theory
can be stated as the inverse of Ashby’s law of requisite variety, where
thruput  corresponds  to  differentiation,  input  to  centrality,  and  low
output variety to high solidarity: 

Differentiation

Centrality
= Solidarity.

In  his  research  Young  discovered  that  communities  that  had  been
bypassed by a  railway,  that  is,  those  that  had lost  centrality,  became
more  unified.  They  had  the  same  variety  of  skills  but  there  was  no
longer as great a demand for these skills with their lowered centrality,
so  residents  had  more  time  to  talk  to  each  other,  about  their  loss  of
business, for example. The resulting interaction among the overly dif-
ferentiated residents led to higher unity or solidarity.

On  the  other  hand,  when  a  new  road  was  built  into  an  isolated
community,  the  sudden  increase  in  centrality  overwhelmed  the  low
differentiation, and the community became more chaotic.
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On  the  other  hand,  when  a  new  road  was  built  into  an  isolated
community,  the  sudden  increase  in  centrality  overwhelmed  the  low
differentiation, and the community became more chaotic.

Whether  we  use  Ashby’s  law  or  its  inverse,  Young’s  theory,  we
predict  that  the  class  or  focusing  state  of  a  discrete  system  will  be
determined by the ratio d/c. As differentiation increases with constant
centrality, we move toward order and as centrality increases with con-
stant differentiation, we move toward chaos. 

Figure 1 illustrates the effect of increasing d/c on the state of the sys-
tem as it moves from chaos to order.

Figure 1. The relationship of CA class and d/c.

Elsewhere,  we  show how the  principle  of  d/c  can  explain  changes
in social  systems ranging from small  groups [10]  to  cycles  in  art  his-
tory  [11],  as  well  as  business  cycles  for  corporations,  social  move-
ments, and other examples of social change [2].

In what follows we first apply d/c to simple CAs and subsequently
to the more complicated GCAs arranged in a GCAN to show how dis-
crete  systems  may  be  changed  from  one  class  to  another  by
altering d/c.

3. Simple Cellular Automata and d/c

For  simple  CAs  (e.g.,  two-color  cells  where  rules  apply  to  neighbors
only) there are only two parameters that can alter the patterns: the ini-
tial  conditions,  the  arrangement  of  the  black  and  white  cells  on  the
first line (the zero time step), and the rules that govern the next step.
It  seems apparent  that  the  initial  conditions  must  correspond to  cen-
trality,  the external information for the CA, and that the rules repre-
sent differentiation, the internal variety.

Changing the States of Abstract Discrete Systems 217

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.3.211



3.1 Centrality as Initial Conditions
We can change centrality for simple CAs by changing the initial condi-
tions. These initial conditions can range from a high variety of central-
ity by randomly assigning the two colors to the cells to low centrality
with a  single  black cell.  As  Figure  2 shows,  the  output  is  chaotic  for
rule  126  with  random  initial  conditions  (higher  centrality).  In  con-
trast, with an initial condition of one black cell, representing low cen-
trality,  the  output  is  type  2  order.  In  this  case,  decreasing  centrality
does make the output pattern more ordered.

HaL HbL

Figure  2. Rule  126  comparing  (a)  random  and  (b)  single  black  cell  initial
conditions.

For many of the 256 rules of simple CAs, however, changes in ini-
tial conditions do not change the class of the CA. For example, rule 4
maintains its type 1 order state regardless of the initial conditions, as
shown  in  Figure  3  by  comparing  the  high  centrality  on  the  left  with
random  initial  conditions  to  low  centrality  on  the  right.  Similarly,
rule 30 remains chaotic even with a single black cell as its initial condi-
tion.

It  could  be  argued  that  the  kind  of  order  produced  with  the  high
centrality  initial  conditions  (Figures  3(a)  and  3(c))  is  more  compli-
cated, that is, it has more variety in it, hence it is less focused. Never-
theless,  even  the  extremely  high  centrality  of  random  initial  condi-
tions  is  incapable  of  moving  the  rule  4  system  out  of  type  1  order.
The differentiation level  of  rule  4  is  high enough to continue to  pro-
duce  order  type  1  even  with  this  high  centrality.  On the  other  hand,
rule 30 displays chaos even with the low centrality of the simplest ini-
tial condition indicating it has relatively low differentiation.
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Figure 3. (a) and (b) Rule 4, (c) and (d) rule 30 comparing random and a sin-
gle black cell initial conditions.

Wolfram has studied the relationship of initial conditions to output
class  for  a  very  large  number  of  CAs.  This  fascinating  detail  may be
found at [1, p. 948 ff]. In all cases the effects of centrality and differen-
tiation, as discussed here, are confirmed.

We  conclude  that  for  simple  CAs  changing  from a  random initial
condition to a single  cell,  representing a major decrease in centrality,
may or may not be sufficient to result in a change in class for the CA.
The  results  seem  to  depend  upon  the  differentiation  inherent  in  the
rule being applied. In the majority of the simple CAs this differentia-
tion  prevents  a  change  in  class  even  with  higher  centrality.  Further-
more, it is difficult to demonstrate that such behavior is a function of
both differentiation and centrality, the d/c ratio, with a CA controlled
by a single rule.

3.2 Differentiation as Rules
For  simple  CAs,  the  differentiation  must  be  the  rule  itself  since,  like
differentiation in social systems, the rule represents both internal vari-
ety  and  the  way  in  which  that  variety  is  organized.  Hence,  the  only
way we can change differentiation is by changing the rule for the CA.
This, of course, is what Wolfram did with his extensive study of CAs,
demonstrating  that  each  rule  leads  in  almost  all  cases  to  one  of  the
four  classes,  where  the  specific  type  of  output  is  determined  by  the
rule.

A  number  of  researchers  including  Langton  [12]  and  Miller  and
Page [13] have explored the “rule space” to determine if one could de-
fine  what  Miller  and  Page  called  a  “complexity  dial”  that  would  al-
low predicting rule behavior, but concluded that the underlying micro
structure of rules makes this impossible even for simple CAs. So, for a
CA  running  under  a  single  rule  we  have  no  measure  of  the  level  of
this micro structure so that we can test whether increasing the variety
of the internal structure will produce more ordered output. We know
the output focus is related to the rules but we are unable to show a sys-
tematic  relationship  between  rule  differentiation  and  the  class  of
output.
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A  number  of  researchers  including  Langton  [12]  and  Miller  and
Page [13] have explored the “rule space” to determine if one could de-
fine  what  Miller  and  Page  called  a  “complexity  dial”  that  would  al-
low predicting rule behavior, but concluded that the underlying micro
structure of rules makes this impossible even for simple CAs. So, for a
CA  running  under  a  single  rule  we  have  no  measure  of  the  level  of
this micro structure so that we can test whether increasing the variety
of the internal structure will produce more ordered output. We know
the output focus is related to the rules but we are unable to show a sys-
tematic  relationship  between  rule  differentiation  and  the  class  of
output.

4. Global Cellular Automata, Global Cellular Automata Networks, 
and d/c

To fully  explore how centrality  and differentiation affect  the class  or
state of discrete systems requires a system that allows wider variation
of these two parameters. One such system is a GCAN as developed by
S. Chandler [4].

In Chandler’s GCANs each cell (or node) follows a GCA rule with
network connectivity between each cell. Each GCA is a single discrete
system where the evolution of each cell within the GCA is a function
not only of the values of the cell’s neighbors, as in the simple CAs al-
ready discussed,  but also depends upon certain global  features  of  the
entire GCA structure.  An example of an arbitrary global feature that
can  be  used  to  decide  which  of  two  rules  should  be  applied  for  the
next time step is to determine whether the length of the longest run of
either ones or zeros in the current time step is an odd or even number.
The first rule will be chosen if the length of the longest run, of either
ones  or  zeros,  is  an  even  number  and  the  second  rule  if  it  is  odd.
These runs in a time step are determined by the rule being applied in
that  time  step  as  well  as  the  cell  values  in  the  preceding  time  steps,
hence representing a global feature of the entire GCA. 

In Sections 4.1 and 4.2 we relate the parameters of GCAs to central-
ity and differentiation.

4.1 Centrality in a Global Cellular Automata Network
A GCAN consisting of a number of GCAs provides an opportunity to
vary centrality in the d/c ratio. It is important here to note that we are
using the term “centrality” in a slightly different way than we used it
for  simple  CAs.  There,  centrality  referred  to  the  initial  conditions  at
the beginning of the process. Here, centrality refers not only to the ini-
tial conditions but also to the external information that each GCA re-
ceives at each time step that is utilized to decide which rule to use at
the next step.

Perhaps  an  analogy  to  a  business  corporation may help  make  this
subtle distinction. Management, representing the differentiation struc-
ture  within  the  business  system,  decides  which  specialists  and  proce-
dures are used at any given time. That process of choosing procedures
and  carrying  them  out  refers  to  the  variable  of  differentiation,  dis-
cussed in Section 4.2.
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Perhaps  an  analogy  to  a  business  corporation may help  make  this
subtle distinction. Management, representing the differentiation struc-
ture  within  the  business  system,  decides  which  specialists  and  proce-
dures are used at any given time. That process of choosing procedures
and  carrying  them  out  refers  to  the  variable  of  differentiation,  dis-
cussed in Section 4.2.

As  well,  however,  management  also  must  deal  with  the  circum-
stances presented at each instant in time (the time step), and this sec-
ond process is also related to centrality. When the decision making of
the manager is affected and determined by outside forces, such as de-
mands for different products or government regulations, then that ex-
ternal information represents centrality, or increased input variety, for
the company.

So,  to  vary  centrality  in  our  experiment,  each  GCA  is  presented
with new outside information at each time step that the GCA utilizes
to decide which rule is to be used at the next step. To summarize, for
the GCAN in our experiment, we are not changing centrality by sub-
stituting different types of initial conditions in each GCA (they are all
random),  as  we  suggested  for  simple  CAs.  We  are,  instead,  altering
centrality  by  presenting  each  GCA  with  new  incoming  information
from the GCAN at each time step, which it utilizes to choose the rule
for  the  next  step.  That  varying  input  information  is,  by  definition,
centrality.

Each  GCA  in  the  GCAN,  then,  uses  the  input  from  other  con-
nected GCAs to decide which rule is to be used at the next time step.
This centrality from external sources can be varied in several ways.

† Centrality can be varied by changing the number of connections to each
GCA. Increasing the number of connections increases centrality since it
increases the variety of information available to determine the rule used.

† Centrality can be changed by varying the variety of information (the de-
gree  of  difference  in  the  information  provided  by  each  connection).  If
all  the  connected  GCAs  start  from  the  same  initial  condition  and
employ the same rules, then all connections will provide the same infor-
mation. If each connected GCA has a different initial condition, then cen-
trality  is  increased as  different  information is  provided from each con-
nection, again, utilized by each GCA to decide on the next rule chosen. 

† Centrality  is  even  further  increased  if  not  only  initial  conditions  but
also the rules used are different at each of the connected GCAs. 

One arbitrary way of deciding which rule each GCA uses is to look
at  the  middle  cells  in  the  latest  time  step  of  each  of  the  GCAs  con-
nected  to  it  and  decide  which  of  two  rules  it  should  apply  based  on
the relative number of ones or zeros among these middle cells.

There are other procedures that could be used by the GCA to make
choices among the rule set but they perform in a similar manner. The
important point is that we are presenting a variety of external informa-
tion  from  the  output  of  other  GCAs  in  the  GCAN  to  be  utilized  by
the  GCA  in  its  rule  choice.  We  are  able  to  set  centrality  so  that  it
varies from a lower to a higher variety.
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4.2 Differentiation in a Global Cellular Automaton
Within  a  GCA,  the  most  direct  way  to  increase  differentiation  is  by
providing a choice from more than two rules that the GCA can use at
each time step.  With  larger  rule  sets,  the  internal  variety,  differentia-
tion, increases.

There is  another  way to alter  differentiation within the GCA. The
particular GCA we are studying can be provided with a more compli-
cated process when using the output of the connected GCAs to deter-
mine which rule applies at the next time step. 

Using ones and zeros provided by the other GCAs, as described in
Section 4.1, is  adequate for selecting between two rules,  but we wish
to test the use of many rules. Therefore, we use a technique developed
by Chandler and use the ones and zeros as the initial state of what we
call  a  processing CA operating under a certain rule.  That CA is  then
run a  sufficient  number  of  steps  to  involve  all  the  cells.  We then use
the values of the first cells in the final time step of this processing CA
as a basis for selecting which rule the GCA will use.

One arbitrary way to apply the values of the first cells is to convert
them to a binary number since the cells are a sequence of ones and ze-
ros. The number of these first cells selected is such that the maximum
binary value they could yield is the number of rules minus one in the
GCA. Since the binary numbers start from 0, we add 1 to get the rule
number. For example, if  the GCA needs to choose from 16 rules, we
use  four  cells.  The  maximum  value  is  when  all  four  cells  are  ones
H1, 1, 1, 1L,  the  binary equivalent  of  15,  hence we would choose  rule
15 + 1 = 16 in the rule set.

This process that the GCA uses to select the next rule is the manage-
ment structure or process that the GCA uses to decide which rule, its
own differentiation, should be chosen to handle the incoming central-
ity.  We could  call  this  its  differentiation  management  process,  and  it
is  clearly  connected  to  the  differentiation  of  the  GCA  we  are  inter-
ested in.

We  can  vary  the  differentiation  management  process  by  selecting
different rules for this CA. For much of our work we use rule 30, the
well-known  class  3  rule  for  generating  chaos.  Running  under  other
rules may affect the differentiation level, although, as we report in our
results, not in a simple way.

5. The Experimental Strategy

The behavior of simple abstract discrete systems and of social systems
is predominately type 1 or type 2 order. That is to say, these discrete
systems  appear  to  have  a  level  of  differentiation  sufficient  to  handle
the  centrality  presented  to  the  system.  For  the  simple  CAs,  the  total
complex and chaotic  outcomes are  less  than 20%. As the  number of
colors  and/or  the  number  of  neighbors  consulted  by  each  cell in  the
CA are increased, the fraction of chaotic outcomes in abstract systems
increases to more than 50%.

Each node on a GCAN is a GCA and the individual GCAs are the
systems under study. We wish to determine the effect of changing cen-
trality and differentiation on the behavior of these individual GCAs in
the  GCAN.  A  simple  10  node  network  with  one  to  five  connections
per  node  is  shown  in  Figure  4.  Typically,  we  use  300  nodes  in  a
GCAN. Connections to each GCA are usually about 10 except when
we specifically use one or two connections.
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Each node on a GCAN is a GCA and the individual GCAs are the
systems under study. We wish to determine the effect of changing cen-
trality and differentiation on the behavior of these individual GCAs in
the  GCAN.  A  simple  10  node  network  with  one  to  five  connections
per  node  is  shown  in  Figure  4.  Typically,  we  use  300  nodes  in  a
GCAN. Connections to each GCA are usually about 10 except when
we specifically use one or two connections.

Figure 4. An example of a 10 node network with one to five connections per
node.

The CA rules  used in  all  GCANs studied in  these  experiments  are
the Boolean rules from Wolfram’s original 256 simple CAs.

5.1 Varying Centrality to Change Focus
We begin  by  testing  the  hypothesis  that  decreasing  centrality  and  in-
creasing  the  d/c  ratio  with  constant  differentiation  leads  to  more  or-
der.  To  keep  differentiation  constant,  we  use  GCAs  with  the  mini-
mum  two  rule  set.  Still,  even  with  the  minimum  differentiation  of  a
two rule set, the number of possible permutations of unordered pairs
using 256 rules is a large number (65 536) so we take a sufficient num-
ber  of  random  samples  to  give  us  a  statistically  relevant  number  of
two rule sets.

We  first  do  this  with  the  maximum  amount  of  centrality  that  we
can  present  to  a  GCA  within  a  GCAN.  Therefore,  we  use  the  300
node GCAN with about  10 connections  to  each GCA. Each of  these
connections  is  to  another  GCA that  has  a  different  two  rule  set  and
each such GCA starts from a different initial condition. This presents
the highest centrality possible for an individual GCA in a GCAN.

As with other simpler discrete systems, most of the GCAs produce
ordered  output  even  with  this  highest  centrality,  but  some  show
chaotic  behavior.  We  then  select  those  systems  that  demonstrate
chaotic behavior.  Using these chaotic systems, we examine the effects
of  reducing  centrality  to  determine  if  more  focused ordered behavior
appears with reduced centrality, that is, as d/c increases. 
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To reduce centrality we can make all GCAs have the same two step
rule.  We can further reduce centrality by having all  GCAs start  from
the same initial conditions. Finally, we can reduce the 10 connections
per GCA to one. Our basic test for the effect of centrality is to deter-
mine if reductions in centrality produce order. 

5.2 Varying Differentiation to Change Focus
For  the  second  part  of  our  experiment,  we  keep  centrality  constant
but vary differentiation to see if this changes focus in the predicted di-
rection;  we  want  to  establish  if  increasing  differentiation  reduces
chaotic output. The two rule sets studied are the lowest possible differ-
entiation  for  a  GCA.  We  increase  differentiation  by  increasing  the
number  of  rules  available  to  the  GCA.  In  this  discussion,  a  two rule
set means a pair of rules selected from the set of all possible combina-
tions of two rules, a four rule set means four rules selected, and so on.

Again,  for  each  rule  set  of  a  certain  size  the  number  of  possible
combinations  of  rules  is  very  large.  For  a  given  rule  set  of  a  certain
size,  we  wish  to  determine  the  fraction  of  all  possible  rule  combina-
tions  that  will  have  chaotic  behavior.  Then,  we  increase  the  rule  set
size  to  see  what  fraction  of  those  is  now  chaotic.  By  increasing  the
rule  set  size  we  are  increasing  differentiation,  and  the  number  of
chaotic outcomes should decline, since d/c is larger.

To  determine  how  many  of  each  rule  sets  of  a  certain  size  are
chaotic, we establish a GCAN with maximum centrality, about 10 con-
nections per GCA. We also maximize simple centrality by assigning to
each GCA its own random initial conditions. Although each GCA for
a given rule set has the same number of rules, each has a different com-
bination  of  the  rules  in  its  rule  set.  Thus,  we  are  using  the  same
GCAN, the same connections, and the same initial conditions at each
GCA for all rule sets. The only change made is to increase the size of
the rule  set  available  for each GCA; we are increasing differentiation
then measuring the effect on output focus.

The GCAN is constructed to have sufficient GCAs to give a statisti-
cally  significant  sample  of  the  population  of  all  possible  rule  combi-
nations  for  a  given  size  of  rule  set.  At  each  stage,  the  rule  sets  of  a
certain size are assigned randomly to each GCA from the total popula-
tion of all combinations of rules for that rule set.

In  summary,  our  objective  for  the  second  set  of  experiments  is  to
determine  if  increasing  the  number  of  rules  in  the  GCAs of  our  con-
stant  high  centrality  GCAN  causes  a  reduction  in  the  fraction  of
chaotic outcomes. We are testing the hypothesis that when the d/c ra-
tio increases, the system tends to move closer to order.

We now have  described  the  techniques  used  for  varying  centrality
in  the  entire  GCAN  and  to  vary  differentiation  within  each  GCA  in
the network. The results of such changes in the d/c ratio are discussed
next.
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6. The Experimental Results

Before  experimenting  with  altering  centrality  and  differentiation,  we
wanted  to  see  if  there  were  inherent  relationships  between  the  out-
come and the selection of rule sets. Simple CAs, once started, develop
output  patterns  depending  only  upon  the  initial  conditions  and  the
rule used. In the case of GCAs, each step changes as a result of which
rule  is  selected  for  the  next  step.  We  might  expect  the  results  to  be
chaotic no matter what rule was chosen at each step, but, in fact, the
general output behavior of GCAs resembles that of other discrete sys-
tems by having output patterns of all  four classes of outcomes.  Since
Wolfram found that each rule produces a certain class of output, one
might suspect that there is some relatively simple relationship between
the output classes of the rules used in the experiment and the output
class of a GCA. 

This is not the case. One cannot predict the outcome based on the
rule  sets  employed.  The  best  test  of  this  is  to  study  many  two  rule
GCAs,  some  consisting  of  two  ordered  rules,  some  with  two  chaotic
rules, and some mixed.

Wolfram discovered  that  for  the  256  simple  CAs,  about  222  pro-
duced order  when started  with  random initial  conditions,  or  roughly
87%. For the 300 pairs used in our test, about 75% of the pairs con-
tained two of these ordered CA rules. 

To determine  if  there  is  any  simple  relationship  between the  Wol-
fram class  of  different  combinations of  CA rules  in the rule  pair  and
the  output  focus  of  the  GCA,  we  ran  a  GCAN  of  300  GCAs  each
with about 10 other GCAs connected to it,  each with a separate rule
pair and its own random initial conditions. 

When we used ordered rule pairs, only 70% produced types 1 or 2
ordered  outcomes.  The  remaining  30%  of  these  ordered  pairs  pro-
duced chaotic outcomes, counting chaos and complexity together. Of
those  pairs  where  one  is  chaotic  and  one  ordered,  63%  produced
chaotic  behavior  and  the  remainder  produced  order.  Only  four  pairs
contained  two  chaotic  rules;  two  produced  order  and  two  produced
chaos.

The essential  point  is  that  GCA outcomes are  a  complicated func-
tion of  the  rules  used,  the  input  from connected GCAs,  and the  pro-
cess  used  to  select  the  rule  for  each  time  step.  Chaotic  or  ordered
behavior can arise from all types of pairings in two rule sets. Thus, be-
havior is the result of a complicated deterministic process in the same
way as for all CAs and, indeed, all abstract discrete systems. Wolfram
calls  this  computational  irreducibility.  While  we  will  show that  both
centrality and differentiation, as we have defined them here, affect out-
put  patterns  in  somewhat  predictable  ways,  the  relationship  is  not
linear.
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6.1 Effects of Changing Centrality on the Output Focus
To study the effects  of  changing centrality we use the rule set  with a
minimum  differentiation—the  two  rule  set—and  then  alter  centrality
from high to low by going from random to homogeneous initial condi-
tions, and by using many and then fewer connections. We have exam-
ined many different pairs of rules.

We begin by running a two rule GCAN with the highest centrality,
that  is,  each  of  the  300  GCAs  (nodes)  operates  with  a  randomly  se-
lected pair of simple CA rules. Each GCA in the GCAN has 10 other
GCAs connected to it  and each GCA begins with a different random
initial condition. Thus, for each GCA, each of the GCAs connected to
it  has  a  different  rule  set  and  each  has  a  different  initial  condition.
This  is  the high centrality  condition.  Figure 5 shows results  for three
typical nodes.

HaL HbL HcL

Figure  5. Three  typical  nodes  from  the  set  of  300  for  the  two  rule  pairs:
(a) {160, 27} order, (b) {122, 249} order, and (c) {145, 71} chaos.

with  the  original  high  centrality,  that  is,  with  each  GCA  having
unique random initial  conditions (top row of Figure 6)  to each GCA
having identical random initial conditions and therefore lower central-
ity  (the  bottom  row  of  Figure  6).  The  results  are  striking  as  all  the
GCAs  in  case  one  show  chaotic  behavior  and  all  GCAs  in  case  two
show order, as the d/c ratio would predict.
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More than half  of  the GCAs in this  300 GCA GCAN set  produce
ordered  output  patterns  that  appear  to  contain  sufficient  differentia-
tion to keep d/c high even with this high level of centrality. The num-
ber of chaotic and complex nodes is about 115 (±7.9 with a 95% con-
fidence  interval).  We  can  choose  any  of  these  chaotic  GCAs  and
repeat  the  experiment  to  examine  the  effect  of  reducing  centrality—
we expect increasing order. 

Figure 6 shows what happened when we selected the rule pair {46,
90} that had chaotic output in the high centrality condition, and then
reduced  centrality  by using  the  same  initial  condition  for  each  GCA.
We ran a GCAN with every GCA in the 300 nodes using just this pair 
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Figure 6 shows what happened when we selected the rule pair {46,
90} that had chaotic output in the high centrality condition, and then
reduced  centrality  by using  the  same  initial  condition  for  each  GCA.

of rules and about 10 connections per node. We compared the GCAs
with  the  original  high  centrality,  that  is,  with  each  GCA  having
unique random initial  conditions (top row of Figure 6)  to each GCA
having identical random initial conditions and therefore lower central-
ity  (the  bottom  row  of  Figure  6).  The  results  are  striking  as  all  the
GCAs  in  case  one  show  chaotic  behavior  and  all  GCAs  in  case  two
show order, as the d/c ratio would predict.
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Figure 6. (a) through (c) Typical chaotic GCAs for the rule pair {46, 90} with
unique random initial conditions at each GCA. (d) through (f) Each GCA has
the same initial conditions.

These same results  occurred with the majority of  the chaotic pairs
tested; while all of these selected pairs showed chaotic behavior under
high centrality, most produced order with lower centrality from using
the  same  initial  conditions.  True,  a  few  pairs  continued  to  show
chaotic behavior even with this reduced centrality, but overall the re-
sults support the hypothesis that lowering centrality with fixed differ-
entiation moves the system toward order.
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These same results  occurred with the majority of  the chaotic pairs
tested; while all of these selected pairs showed chaotic behavior under
high centrality, most produced order with lower centrality from using
the  same  initial  conditions.  True,  a  few  pairs  continued  to  show
chaotic behavior even with this reduced centrality, but overall the re-
sults support the hypothesis that lowering centrality with fixed differ-
entiation moves the system toward order.

For a GCAN where each GCA has the same rule pair and different
initial conditions, reducing centrality by reducing the number of con-
nections  per  GCA  to  two  does  not  make  chaotic  behavior  more  or-
dered.  But,  with  one  connection  per  GCA,  there  is  a  change  to  or-
dered focusing, although the output patterns are not identical because
we allow different initial conditions for each GCA.

The first set of studies on the effects of reducing centrality, the vari-
ety of information received, involved going from random initial condi-
tions to giving all GCAs, each with the same rule pair, in the GCAN
the  same  initial  conditions.  This  lowering  of  centrality  changed
chaotic  GCAs  in  the  GCAN  into  order.  The  second  set  of  studies
showed  the  effect  of  reducing  centrality  by  changing  to  one  connec-
tion, while using different initial conditions at each node shows order
for  all  GCAs.  Two  connections  restored  chaotic  behavior  to  the
GCAs. Together, the two sets of studies show that reducing centrality
tends to change chaotic GCAs to ordered ones.

6.2 Effects of Changing Differentiation on Output Focus 
We begin the second part of the experimental results on the effect of
changing differentiation on output by looking at what happens when
each GCA uses a different processing CA to process the incoming in-
formation from other GCAs.

Recall  that  in  our  experiment  we  used  what  we  call  a  processing
CA  as  a  scheme  for  managing  differentiation,  changing  the  way  in
which we choose the rule once the external information is received by
the GCA. Usually, we use rule 30 as a processing CA. What is the ef-
fect of using different processing CAs?

With  rule  4,  normally  order  type  1,  as  the  processing  rule  in  a
GCAN with high centrality, we see a mix of ordered and chaotic pat-
terns, that is, complex focusing as in Figure 7.
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Figure  7. Using rule  4  (order  type  1)  as  the  processing  CA shows some com-
plex behavior.

If we use rule 50 (order type 2) as in Figure 8 we again get chaos,
similar to the results of using rule 30 as the processing rule.

HaL HbL HcL

Figure  8. Using  rule  50  (order  type  2)  as  the  processing  CA  shows  chaotic
behavior.
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Thus,  varying  the  rule  for  the  processing  CA  (the  differentiation
management process) does not appear to have a consistent effect. Us-
ing a chaotic rule 30 yields chaos, as does the type 2 ordered rule 50.
Using  the  most  extreme  type  1  ordered  CA,  such  as  rule  4,  changes
some chaotic GCAs to complex behavior, appearing to generate some-
what more order.

To  see  if  these  results  were  biased  by  the  way  in  which  we  pro-
cessed incoming centrality to affect the choice of rules, we ran the sys-
tem with an entirely different process. Instead of using a separate pro-
cessing  CA,  we examined the  middle  cells  of  the  GCAs connected to
each GCA to determine the longest run of either ones or zeros. If the
length  of  this  run  was  even,  we  used  rule  1  in  the  next  time  step;  if
odd, we used rule 2. The results were similar to those found when us-
ing a processing CA to manage the centrality: sometimes chaotic, some-
times more ordered. 

Much  more  research  needs  to  be  done  on  the  management  struc-
ture  of  differentiation.  In  the  meantime,  we  will  continue  to  use
rule 30 as the processing rule for our experiments on varying  differen-
tiation. 

At this point, we attempt to change differentiation more directly by
increasing the size of the rule set.

Differentiation is represented in the GCAN as the number of rules
available  to  cope  with  centrality,  the  information  presented  as  input
to each GCA. This allows us to examine the effect on output focus of
increasing differentiation.

In  this  experiment,  we  established  maximum  centrality  within  the
GCAN and kept that constant during the experiment on the effects of
increasing  differentiation.  Thus,  for  the  300  GCAs  in  the  GCAN we
used  about  10  connections  per  GCA,  each  with  a  unique  initial
condition.

We then selected rule sets over the range 2, 4, 8, 16, 32, and 64 so
that differentiation increased. To give us a large sample of results, we
assigned  these  rule  sets  randomly  to  different  GCAs.  Since  we  used
300 GCAs in  the  GCAN we had 300 individual  random rule  sets  of
the  same number  of  rules  in  this  sample  from the  very  large  popula-
tion of combinations of rules.

We then determined the fraction of GCAs in the GCAN that show
chaotic behavior. Table 1 lists the results and the relationship is plot-
ted in Figure 9.
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Rule Set Chaotic Fraction
Range

H95% Confidence IntervalL

2 rules ê GCA 0.383 0.082

4 rules ê GCA 0.347 0.053

8 rules ê GCA 0.19 0.044

16 rules ê GCA 0.043 0.023

32 rules ê GCA 0.023 0.017

64 rules ê GCA 0.02 0.015

Table 1.  

Figure 9.  GCAN chaotic fraction and rule set size.

It  is  apparent  that  with  constant  centrality,  increasing  the  size  of
the available rule set—increasing differentiation—reduces the amount
of chaotic behavior. This supports the d/c hypothesis.

7. Conclusions

For  the  abstract  discrete  systems  known  as  simple  cellular  automata
(CAs),  it  is  possible  to  show  that  by  increasing  the  variety  of  initial
conditions,  the  external  variety  of  centrality,  it  is  sometimes  possible
to change the  class  of  output  from order  to  chaos,  the  direction pre-
dicted by the ratio of differentiation over centrality, the d/c ratio.

It  is,  however,  difficult  to  demonstrate  that  changes  in  differentia-
tion for simple CAs, the internal rule, will change the output class, be-
cause a single rule governs behavior, and it is not clear how each rule
is  related  to  differentiation,  defined  as  the  internal  structure  of  vari-
ety. 

Changing the States of Abstract Discrete Systems 231

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.3.211



It  is,  however,  difficult  to  demonstrate  that  changes  in  differentia-
tion for simple CAs, the internal rule, will change the output class, be-
cause a single rule governs behavior, and it is not clear how each rule
is  related  to  differentiation,  defined  as  the  internal  structure  of  vari-
ety. 

A more  recent  modification  of  CAs  known as  global  CAs  (GCAs)
connected into networks (GCANs) allow more flexibility in changing
both centrality and differentiation.

These  results  demonstrate  that  for  the  GCAs  within  GCANs,  de-
creasing centrality by presenting a smaller variety of information does
create  order,  as  the  d/c  ratio  predicts.  Specifically,  when  each  GCA
has  the  same  rule  set,  and  the  initial  conditions  in  the  connected
GCAs  are  the  same  (representing  lower  centrality),  the  reduced  vari-
ety of external information often does produce an ordered pattern of
output. Similarly, when the number of connections joining each GCA
in the network is reduced all the way down to one, the reduced vari-
ety of external information produces an ordered pattern of output.

When  differentiation  in  GCANs  is  raised  by  using  larger  rule  set
sizes at  each GCA, again,  more order is  obtained and chaotic behav-
ior  is  greatly  reduced.  Combined  with  the  results  for  altered  central-
ity, increasing the ratio of differentiation over centrality does seem to
move these abstract discrete systems into more ordered output states.

This  study  demonstrates  that  the  parameters  of  centrality  and
differentiation  can  directly  control  the  behavior  of  abstract  discrete
systems  just  as  they  do  for  social  systems.  We  are  in  the  process  of
testing  our  results  using  greater  than  two-color  CAs.  For  three-color
systems, centrality is  higher since the possible combinations of colors
presented  as  initial  conditions  or  by  connected  cells  are  greatly
increased.  Therefore,  the  proportion  of  chaotic  GCAs  in  the  high
centrality GCAN case is greater for three-color GCAs and even more
for  four-color  GCAs.  Increasing  differentiation  by  increasing  rule  set
size  reduces  the  proportion  of  chaotic  outcomes  but  not  to  the  same
low level as with two-color GCAs. Much more work needs to be done
with these more complicated GCAs.

The next step,  of course,  is  to fine tune the values of our parame-
ters  to  investigate  shifts  into  the  boundary  layer  between  order  and
chaos, the region of complexity. We believe that we have shown that
the  d/c  ratio  may  eventually  solve  the  problem  of  how  to  develop  a
“complexity dial” to control change in abstract discrete systems over
the four Wolfram states.

If the d/c ratio applies to all systems, then it should also work with
agent-based  models.  One  of  our  colleagues,  in  fact,  is  using  d/c  to
move the output of such systems among the four classes of chaos, com-
plexity, and the two kinds of order.

We  look  forward  to  more  discussion  and  applications  of  our
approach.
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