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The  concepts  of  a  fixed  string  and  a  skew fixed  string  greatly  affect  a
cellular  automaton’s  evolution  if  its  initial  configuration  contains  one
or both.  Interesting properties  are proved using the theory of symbolic
dynamics  and  formal  languages.  After  that,  a  natural  classification  of
elementary cellular automata is introduced and corresponding classifica-
tion tables are provided. 

1. Introduction

Cellular  automata  (CAs),  originating  from  von  Neumann’s  work  on
formalizing  the  self-reproductivity  phenomena  in  living  systems,  are
classes of mathematical systems consisting of a regular lattice of sites
and characterized by discreteness (in space, time, and state values), de-
terminism,  and  local  interaction  [1].  CAs  have  been  widely  used  to
model  a  variety  of  dynamical  systems  in  physics,  biology,  chemistry,
and  computer  science  [2].  Though  their  local  rules  are  simple,  CAs
can display a rich and complex evolution [3].

A  one-dimensional  CA  consists  of  a  double  infinite  line  of  sites
whose values are taken from an alphabet, that is,  a finite set of sym-
bols  Ak ‡ 80, 1, … , k - 1<.  The  symbols  of  each  site  update  syn-
chronously  according  to  a  function  of  the  values  of  the  neighboring
sites at the previous time step. The general form of a one-dimensional
CA is given by 

f : Ak
2 r+1öAk,

xi
t+1 ‡ f Ixi-r

t , … , xi
t, … , xi+r

t M,

where  xi
t  denotes  the  value  of  site  i  at  time  t,  f  represents  the  local

rule defining the automaton, and r is a non-negative integer specifying
the  radius  of  the  rule.  Therefore,  f  can  induce  a  function
G : Ak

ZöAk
Z,

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.3.243



where  xi
t  denotes  the  value  of  site  i  at  time  t,  f  represents  the  local

rule defining the automaton, and r is a non-negative integer specifying
the  radius  of  the  rule.  Therefore,  f  can  induce  a  function
G : Ak

ZöAk
Z,

HGHxLLi ‡ f Hxi-r xi-r+1 … xi … xi+rL

where x ‡ º⋯ x-2 x-1 x0 x1 x2 º⋯ œ Ak
Z  is a double infinite symbol se-

quence.  We  call  x  the  configuration  and  G  the  global  rule  of  a  CA.
The  simplest  CAs  are  those  with  alphabet  k ‡ 2  and  r ‡ 1,  which
were named by Wolfram as elementary CAs [4, 5].

In  this  paper,  we  outline  several  influencing  factors  on  the  evolu-
tion of elementary cellular automata (ECAs), and introduce the useful
conceptions of fixed string and skew fixed string. Then, some proper-
ties of the concepts are discussed. Finally, we give a simple classifica-
tion of all ECAs. 

This  paper  is  organized  as  follows.  In  Section  2,  we  outline  some
useful notations that are used later. Fixed string and skew fixed string
are  introduced  and  discussed  in  Sections  3  and  4,  respectively.  In
Section  5,  we  categorize  all  ECAs  into  four  classes,  and  detailed
characteristics  and  properties  of  each  class  are  discussed.  A  general-
ized conception of fixed string (skew fixed string) is also put forward
in Section 5. 

2. Notations

An  ECA  is  a  one-dimensional  CA  with  binary  states  A ‡ 80, 1<  and
r ‡ 1. There are a total of 223 ‡ 256 ECAs. For convenience, the 256
ECAs can be numbered by a non-negative integer among 0 to 255 [4].
Let  e  be  the  empty  string,  that  is,  the  string  consisting  of  zero  sym-
bols. We use f  as the local rule of the CA and extend its domain to A*

as follows:

c1 c2 … cm #

e, Hm § 2L;

f Hc1 c2 c3L f Hc2 c3 c4Lº⋯ f Hcm-2 cm-1 cmL, Hm ¥ 2 r + 1L.

where  ci œ AH1 § i § mL.  That  is  to  say,  any  string  (finite  configura-
tion) can be mapped by f .

The set consisting of all finite strings over an alphabet set A  is de-
noted  by  A*.  Any  subset  of  A*  is  called  a  formal  language  (or  lan-
guage) over A. Refer to [6, 7] for formal language theory and some im-
portant  results  concerning  regular  expressions  and  regular  languages
that appear later in this paper. Some theorems will be expressed using
formal language theory. 

†x§  is denoted as the length of the string, that is,  the number of all
symbols  of  x;  for  example,  if  x ‡ a1 a2 … an,  the  length  of  x  is
†x§ ‡ n.  Of  course,  the  length  of  the  empty  string  e  is  zero.  Clearly,
†x§ - †f HxL§ ‡ 2,  if  †x§ ¥ 2.  An  operator  p  on  nonempty  strings  is  de-
fined  in  this  paper  as  the  operator  where  p x  Hx pL  is  the  string  ob-
tained from x by removing its first (last) symbol. 
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†x§  is denoted as the length of the string, that is,  the number of all
symbols  of  x;  for  example,  if  x ‡ a1 a2 … an,  the  length  of  x  is
†x§ ‡ n.  Of  course,  the  length  of  the  empty  string  e  is  zero.  Clearly,
†x§ - †f HxL§ ‡ 2,  if  †x§ ¥ 2.  An  operator  p  on  nonempty  strings  is  de-
fined  in  this  paper  as  the  operator  where  p x  Hx pL  is  the  string  ob-
tained from x by removing its first (last) symbol. 

3. Fixed String

The  influencing  area  of  one  site  in  a  configuration  gets  increasingly
larger  as  an  ECA  evolves.  The  influencing  area  can  form  into  an
isosceles triangle by the local rule (see Figure 1(a)). In general, there is
the  public  part  between  the  two  triangular  areas  for  two  sites.  The
interaction  property  can  lead  to  complicated  behaviors  of  the  ECA
despite  the  fact  that  the  rule  is  simple  and local.  On the  other  hand,
the  site  in  the  evolutive  configuration  has  the  reversal  triangle  in
which each line can determine it (see Figure 1(b)). However, both the
influencing  area  and  determinable  area  can  be  changed  if  the  given
ECA has some special properties. The examples can be found through
the concept of a fixed string that some authors call wall, partition, or
barrier [8, 9].

HaL HbL

Figure 1. (a) The influencing area and (b) the determinable area of a site in a
configuration.

Definition 1.  Let  x  be  a  nonempty string.  We call  x  a  fixed string  of  a
CA  with  map  f  if  f Ha x bL ‡ x,  for  every  a  and  b œ A ‡ 80, 1<.  If  an
ECA has a fixed string, we also call it fixed. 

If  a  fixed  string  exists  in  a  configuration,  an  upright  cylinder  will
form like a wall that remains fixed as the configuration evolves, what-
ever the states of other sites in its neighborhood may change into. Fur-
thermore, the wall divides the evolution area of the configuration into
two parts that are not mutually affected. So, the influencing and deter-
minable  areas  of  the  site  between  the  two  fixed  strings  have  both
changed (see Figure 2). If two fixed strings exist in one configuration,
the  influencing and determinable  areas  will  both become a band (see
Figure 3). Since the string in the band will evolve like a finite CA with
fixed  boundary  conditions,  it  will  become eventually  periodic,  show-
ing  that  the  fixed  string  can  greatly  influence  the  evolution  of  a  CA.
To describe the details, we first define the vertical map of an ECA. 
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If  a  fixed  string  exists  in  a  configuration,  an  upright  cylinder  will
form like a wall that remains fixed as the configuration evolves, what-
ever the states of other sites in its neighborhood may change into. Fur-
thermore, the wall divides the evolution area of the configuration into
two parts that are not mutually affected. So, the influencing and deter-
minable  areas  of  the  site  between  the  two  fixed  strings  have  both
changed (see Figure 2). If two fixed strings exist in one configuration,
the  influencing and determinable  areas  will  both become a band (see
Figure 3). Since the string in the band will evolve like a finite CA with
fixed  boundary  conditions,  it  will  become eventually  periodic,  show-
ing  that  the  fixed  string  can  greatly  influence  the  evolution  of  a  CA.
To describe the details, we first define the vertical map of an ECA. 

HaL HbL

Figure 2. (a) The influencing area and (b) the determinable area of a site in a
configuration has changed, if x is a fixed string. 

HaL HbL

Figure 3. (a) The influencing area and (b) the determinable area of a site in a
configuration both become bands when x and y are both fixed strings.

Definition 2. Let a be the last symbol of a fixed string x and b the first
symbol  of  another  fixed  string  y.  Then  the  vertical  map  Va b  of  an
ECA with local rule f  between x and y is defined as Va bHzL ‡ f Ha z bL. 

Then, Theorem 1 holds. 

Theorem 1.  Let  Va b  be  a  vertical  map  of  an  ECA  and
zi+1 ‡ Va bHziL Hi ‡ 1, 2, …L. Then the sequence 8zi<i‡1

¶  is eventually pe-
riodic. 

Now we will discuss some properties of fixed strings. 
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Definition 3.  For  any  b œ A,  if  a  string  a1 a2  with  length  2  satisfies
f Hb a1 a2L ‡ a1Hf Ha1 a2 bL ‡ a2L,  then  we  say  that  a1 a2  is  left  (right)
fixed. 

According to Definition 1, Lemmas 1 and 2 hold. 

Lemma 1.  a1 a2 œ A2  is  a  fixed  string  if  and  only  if  a1 a2  is  both  left
and right fixed. 

By Lemma 1,  the  string 00 is  fixed if  and only  if  the  local  rule  of
the  ECA  satisfies  000, 001, 100 Ø 0,  that  is,  f H000L ‡ f H001L ‡
f H100L = 0. 

Lemma 2.  Let †x§ > 2; x  is  fixed if  and only if  x  satisfies the following
three conditions: 

1. the prefix of x with length 2 is left fixed; 
2. the suffix of x with length 2 is right fixed; and
3. f HxL ‡ p x p. 

Lemmas  1  and  2  give  us  an  easy  way  to  check  whether  the  given
string is fixed or not. 
Lemma 3.  If  00  is  the  prefix  (suffix)  of  some  fixed  string,  00  is  also
fixed. 

Proof. We suppose that the fixed string x ‡ 00 y. Then, the local rule
of  an  ECA  should  satisfy  000 Ø 0  and  100 Ø 0  because  00  is  left
fixed. If y ‡ 0n  Hn ¥ 0L, 00 must be right fixed. Therefore, 00 is fixed.
If  y ‡ 0n 1 z,  the  rule  should  satisfy  001 Ø 0.  Then,  00  is  fixed  as
well. ·

Similarly, Lemmas 4 and 5 also hold. 

Lemma 4.  If  11  is  the  prefix  (suffix)  of  some  fixed  string,  11  is  also
fixed. 
Lemma 5. If 01 is the prefix and suffix of some fixed string, 01 is also
fixed. The same is true for the string 10. 

Theorem 2.  If  fixed  strings  exist  for  an  ECA,  then  the  length  of  the
shortest fixed string (S-FS) for this ECA is not more than 4. 

Proof. Let x be a fixed string and †x§ > 4. Using Lemmas 4 and 5, we
may suppose x ‡ 01 y 10, where †y§ > 0. Therefore, 01 is left fixed, 10
is  right  fixed,  and f H01 y 10L ‡ 1 y 1.  If  0  is  the  prefix  or  suffix  of  y,
then f H010L ‡ 1, showing that 010 is fixed. If 1 is both the prefix and
suffix of y, then f H011L ‡ 1 and f H110L ‡ 1. The string 0110 leads to
be fixed. ·

Theorem  2  gives  us  an  easy  and  effective  method  for  checking
whether a given ECA has fixed strings or not. 
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Theorem 3. For a given ECA, we let F ‡ 8x x is a fixed string<; then F
is a regular language. 

The  result  shows  that  the  set  consisting  of  all  the  fixed  strings
forms a regular language that is the simplest one in Chomsky’s hierar-
chy  [6].  To  prove  Theorem 3  we  need  two  tools  from the  theory  of
formal languages: the natural equivalence relation RL and the Myhill–
Nerode theorem [6]. 

Definition 4.  If  a  language  L Õ A*  is  given,  where  A  is  the  alphabet,
then a natural equivalence relation RL  is introduced by L into A*: for
x, y œ A*, x RL y  holds if  and only if  for any z œ A*, x z œ L  exactly
when y z œ L. 

Myhill–Nerode theorem. The language L is regular if and only if RL  is
of  finite  index,  that  is,  the number of  equivalence classes  of  RL  is  fi-
nite. 

Proof  of  Theorem 3.  We  divide  the  A*  into  the  following  eight  sets:
A1 ‡ 8e<,  A2 ‡ 80<,  A3 ‡ 81<,  A4 ‡ 8†x§ ¥ 2 f HxL ¹≠ p x p  or the prefix
of x with length 2 is not left fixed<, A5 ‡ 8†x§ ¥ 2 f HxL ‡ p x p, the pre-
fix  of  x  with  length  2  is  left  fixed  and  00  is  the  suffix  of  x<,
A6 ‡ 8†x§ ¥ 2 f HxL ‡ p x p,  the  prefix  of  x  with  length  2  is  left  fixed
and  01  is  the  suffix  of  x<,  A7 ‡ 8†x§ ¥ 2 f HxL ‡ p x p,  the  prefix  of  x
with  length  2  is  left  fixed  and  10  is  the  suffix  of  x<,
A8 ‡ 8†x§ ¥ 2 f HxL ‡ p x p,  the  prefix  of  x  with  length  2  is  left  fixed
and 11 is the suffix of x<. We will prove that any two strings from the
same set  are  equivalent.  It  is  trivial  for  A1,  A2,  and A3  because  they
are single element sets. Let x, y œ A4; for any z, the strings x z and y z
are both not fixed according to the definition of A4. So all the strings
in A4  belong to one equivalence class. Let x, y œ A5;  for any z,  if  x z
is fixed, then f Hx zL ‡ p x z p and the suffix of x z with length 2 is right
fixed.  Therefore,  f Hy zL ‡ p y z p  and the suffix  of  y z  with length 2 is
also right fixed; hence, y z  is also fixed. If y z  is fixed, x z  would also
be fixed by a similar method. Therefore, all the strings in A5  also be-
long  to  one  equivalence  class,  as  do  A6,  A7,  and  A8  by  a  similar
discussion. Hence, the number of equivalence classes of RF  is at most
8, which shows that the language F is regular. ·

Definition 5. Let x1 ‡ y1 w and x2 ‡ w y2  be two strings, where w can
be  the  empty  string,  while  x1  and  y1  are  nonempty  strings.  Then,
string y1 w y2 is called a generalized combination. 

There may be more than one generalized combination of the string
x  and  y.  For  example,  if  x ‡ 010 ‡ y,  all  the  generalized  combina-
tions of x and y are 01010 and 010010. Lemma 6 is self-evident. 
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Lemma 6. Let x and y be two fixed strings of one ECA; then any gener-
alized combination of x and y is also fixed. 

Now we define the generalized combination of finite strings. 

Definition 6.  Let  x1, x2, … xn  be  nonempty strings  that  can be  written
as 

xi ‡ wi yi wi+1,  Hi ‡ 1, 2, … , nL.

Then  x ‡ w1 y1 w2 y2 w3 … wn yn wn+1  is  a  generalized  combination
of x1, x2, … xn.

Definition 7.  Let  a  language  L  be  a  set  L ‡ 8x x  is  a  nonempty  string
and is a generalized combination of any finite strings coming from the
strings  y1, y2, … , yn<;  then  we  call  y1, y2, … , yn  the  generators
(GEs) of language L and L is denoted by Hy1 + y2 +º⋯ + ynL

‡. 

For example,  if  L ‡ 80n n > 0<  and its  regular expression is  0†,  it
only has one GE, that is, 0. If L ‡ 80n n > 1<  and its regular expres-
sion is 00†, then 00 is the only GE. 

Theorem 4.  Let  x1, x2, … , xn  be  fixed  strings;  then  any  element  in
Hx1 + x2 +º⋯ + xnL

‡ is also fixed.

It is convenient to express the fixed string set by GEs. Examples are
given in Section 5. 

4. Skew Fixed String

Another kind of string that also influences the evolution of an ECA is
the skew fixed string.

Definition 8. Let x be a nonempty string. If f Ha b xL ‡ x, for every a and
b œ A,  we  call  x  a  left  skew  fixed  string  of  a  CA  with  map  f .  If
f Hx a bL ‡ x, for every a and b œ A, we call x a right skew fixed string
of a CA with map f . If an ECA has a left (right) skew fixed string, we
also call it left (right) skew fixed or simply skew fixed. 

When  a  configuration  with  a  skew  fixed  string  evolves,  the  skew
string  will  form into  a  skew wall  (Figure  4).  Clearly,  the  skew fixed
string  also  affects  the  influencing  and  determinable  areas.  Typical
cases are shown in Figure 5. The property of a skew fixed string is sim-
pler than a fixed string’s. 
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Figure 4. (a)  Left  skew  fixed  string  forms  a  skew  wall.  (b)  Right  skew  fixed
string forms a skew wall.

HaL HbL

Figure 5. (a) The influencing area and (b) the determinable area when the ini-
tial configuration contains a left skew fixed string.

Theorem 5.  If  an  ECA  has  skew  fixed  strings,  then  the  length  of  the
shortest string is 1. 

Proof.  First,  note  that  if  f HxL ‡ y,  the  equation  f Hx pL ‡ y p  holds.
Therefore, if x is a left skew string, all the nonempty prefixes of x are
left skew fixed strings. ·

It is easy to judge whether an ECA has skew fixed strings or not by
Theorem 5.  Similar  to  the  fixed  string,  Theorems  6  and  7  about  the
skew fixed string also hold. 

Theorem 6.  For  a  given  ECA,  we  let  S ‡ 8x x  is  a  left  (right)  fixed
string<; then S is a regular language. 

Theorem 7.  Let  x1, x2, … , xn  be  skew fixed strings;  then any element
in Hx1 + x2 +º⋯ + xnL

‡ is also skew fixed. 

If a is left skew fixed, so is a a. Every string at the right side of a a
will  evolve as  shown in Figure 6.  For convenience,  we define the left
skew map of an ECA. 
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Figure 6. The  evolution  of  string  y1  with  a  left  side  that  is  a  left  skew  fixed
string a a.

Definition 9.  If an ECA has a left skew fixed string a  with local rule f ,
the left skew map of f  is defined as La aHyL ‡ f Ha a yL for any y œ A*. 

Similarly, we can define a right skew map Ra a for an ECA with the
right  skew  fixed  string  a a.  According  to  the  definition,  we  have
La aHyiL ‡ yi+1 as shown in Figure 6. 

Theorem 8.  Let an ECA have a left  skew fixed string a  with local  rule
f .  For  any  y0 œ A*,  the  sequence  8yi<i‡0

¶  that  is  generated  by
La aHyiL ‡ yi+1,  Hi ‡ 0, 1, …L  is  eventually  periodic  and  the  period  is
one. 

Proof. We prove the second part because the first part is obvious. We
assume that a ‡ 0 is the left skew fixed string, which means that 

000, 010, 100, 110 Ø 0.

Let †y0§ ‡ n. Now we use mathematical induction on n.
1. When n ‡ 0, that is, y0 ‡ e, the result holds. 
2. Suppose that when n ‡ k, the result holds; then when n ‡ k + 1,

let y0 ‡ z0 b0, where †z0§ ‡ k and †b0§ ‡ 1. By induction, assume that
there  exists  an  N,  such  that  zN ‡ zN+1 ‡ º⋯ ,  when  i r N.  Denote
c1 c2  as  the  suffix  of  00 zN.  If  bN ‡ 0,  which  is  skew  fixed,  the
yN ‡ yN+1 ‡ º⋯  holds,  meaning  that  the  sequence  8yi<  is  eventually
fixed. If bN ‡ 1, we will have yN ‡ yN+1 ‡ º⋯ when f Hc1 c2 1L ‡ 1 or
yN+1 ‡ yN+2 ‡ º⋯ when f Hc1 c2 1L ‡ 0. These both show the result is
correct. Hence, we have completed the proof. ·

5. A Simple Classification of Elementary Cellular Automata

The problem of classifying CAs is a basic one among the 20 problems
that were posed by Wolfram in [10]. Using the concepts of fixed and
skew string, we give a natural classification of the ECAs in Table 1. 
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Class A: Class B: Class C: 
Fixed and Skew Fixed Skew Fixed Only Fixed Only 

0, 8, 32, 40, 128, 136,
160, 168

2, 10, 34, 42, 130,
138, 162, 170

4, 5, 12, 13, 28, 29, 36, 44,
72, 73, 76, 77, 78, 94, 104,
108, 132, 140, 156, 164,
172, 200, 204, 232

Class D: 
Neither Fixed nor Skew Fixed

1, 3, 6, 7, 9, 11, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 30, 33, 35, 37, 38,
41, 43, 45, 46, 50, 51, 54, 56, 57, 58, 60, 62, 74, 90, 105, 106, 110, 122,
126, 134, 142, 146, 150, 152, 154, 178, 184

Table 1. The classification of the ECAs.

Class  A  contains  the  ECAs  that  are  both  fixed  and  skew  fixed.
Class B contains the ECAs that only have skew fixed strings. Class C
contains  the  ECAs that  only  have  fixed strings.  Class  D contains  the
ECAs that are neither fixed nor skew fixed. By Theorems 2 and 5, it
is easy to judge which class any ECA belongs to. There are 256 ECAs,
and  many  of  them  are  mutually  equivalent  [5].  So  the  number  256
can be reduced to 88. We now discuss each class. 

5.1 Class A: Fixed and Skew Fixed
There  are  eight  ECAs  in  Class  A  and  each  one  has  both  fixed  and
skew fixed strings. Their typical evolution can be seen in Figure 7.

HaL HbL

Figure 7. The evolution of ECAs (a) 160 and (b) 168, which both have fixed
and left skew fixed strings.

By Theorems  3  and  6,  all  the  fixed  strings  and  skew fixed  strings
are easy to find and each of the two sets can be expressed by a regular
expression or generalized combinations of some GEs (see Table 2 for
detailed  information).  All  of  the  results  in  Table  2  should  be  proved
rigorously. Proposition 1 helps us to know why the information con-
tained in Table 2 is correct. 
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Rule 
Number S-FS GE of FS All the FS S-SFS GE of SFS All the SFS 

0 0 0 0† 0 0 0†

8 0 0 0† 0 0 0†

32 00 00 00† 0 0 0†

40 00 00 00† 0 0 0†

128 0 0 0† 0 0 0†

136 0 0 0† 0 0 0†

160 00 00 00† 0 0 0†

168 00 00 00† 0 0 0†

Table 2. The fixed strings (FS) and skew fixed strings (SFS) of the eight ECAs
that comprise Class A.

Proposition 1.  Suppose  that  an  ECA  has  fixed  strings  and  skew  fixed
strings and a œ A is the S-FS; then (1) a a is fixed, (2) a†  is the regular
expression of all the skew fixed strings, and (3) either a†  or a a†  is the
regular expression of all the fixed strings. 

Proof.  We might as well  let  the ECAs have left  skew fixed strings.  If
†x§ ‡ n   Hn ¥ 1L  is  the  fixed  string,  we  will  prove  that  x ‡ an.  Let
y ‡ an be the left skew string. Both x and y appear in the initial config-
uration (see Figure 8).  Several  time steps later,  the fixed string x  and
skew  fixed  string  y  will  meet.  However,  they  both  should  remain
fixed and this leads to x ‡ y ‡ an. By Lemmas 3 and 4, we know a a
must be a fixed string. Therefore, if a is the S-FS, all the fixed strings
can be written as a†; if a a is the S-FS, all the fixed strings can be writ-
ten as a a†. ·

Figure 8. If x is a fixed string and y is a skew fixed string, they will influence
each other.
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Proposition 2. (1) ECAs 0 and 8 will eventually evolve to 0¶ for any ini-
tial configuration. 

(2) ECAs 128 and 136 will eventually evolve to 1¶ if the initial con-
figuration is 1¶ and to 0¶ otherwise. 

(3) ECAs 32 and 40 will eventually evolve to H01L¶ if the initial con-
figuration is H01L¶ and to 0¶ otherwise. 

(4) ECAs 160 and 168 will eventually evolve to H01L¶  if the initial
configuration is H01L¶, to 1¶  if the initial configuration is 1¶, and to
0¶ otherwise. 

Proposition 2 says that all the ECAs in Class A will evolve to a spa-
tially homogeneous state from almost every initial configuration, that
is, every site is in the same state, which is exactly the Class I in Wol-
fram’s classification scheme. 

5.2 Class B: Skew Fixed Only
There are eight ECAs in Class B and each one is skew fixed. Their typ-
ical  evolution  can  be  seen  in  Figure  9.  Detailed  information  about
Class  B  is  listed  in  Table  3.  The  proofs  of  the  results  in  Table  3  are
easy so we just prove the result for ECA 138 as our typical example.

HaL HbL

Figure 9. The  evolution  of  ECAs  (a)  10  and  (b)  138,  which  only  have  left
skew fixed strings.

Proof of the result of ECA 138 in Table 3. The local rule of ECA 138
is  defined  as  001, 011, 111 Ø 1,  others  Ø 0.  On  the  one  hand,  it  is
easy to verify that 0 and 001n   Hn > 0L are all left skew fixed. On the
other  hand,  we  will  show any  left  fixed  string  †x§ > 1 can  be  written
as  the  generalized  combination  of  strings  0  and  001n Hn > 0L,  that  is
to say, 00 is a prefix of x  and 101 is not a substring of x.  Note that
all the prefixes of a left skew fixed string are also left skew fixed. So,
00 must be the prefix of x if †x§ > 1. Because 101 Ø 0, 101 cannot ap-
pear in the string x. ·
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Rule Number S-SFS GEs All the SFS 

2 0 0, 001 0† I010†M* He + 01L

10 0 0, 001, 0011 0† I0 H1 + 11L 0†M* He + 01 + 011L

34 0 0, 01 0† I10†M* He + 1L

42 0 0, 01, 011 0† IH1 + 11L 0†M* He + 1 + 11L

130 0 0, 001 0† I010†M* He + 01L

138 0 0, 001n Hn > 0L 0† I01† 0†M* He + 01L

162 0 0,01 0† I10†M* He + 1L

170 0,1 0, 1 H0 + 1L†

Table 3. The skew fixed strings (SFS) of the eight ECAs that comprise Class B.

By  Theorem  8,  we  know  the  evolution  of  every  configuration  for
any ECA in Class B will eventually be a (left) shift. 

5.3 Class C: Fixed Only
There  are  24  ECAs  in  Class  C  and  each  one  is  not  skew  fixed  but
fixed.  Their  typical  evolution  can  be  seen  in  Figure  10.  The  S-FS  of
ECAs in Class C can be seen in Table 4, in which the GEs and regular
expressions  are  also  listed.  Theoretically,  all  these  results  should  be
proved  rigorously  one  by  one.  However,  these  proofs  are  easy  and
therefore we just select the proof for ECA 73 as our typical example.

HaL HbL

Figure 10. The  evolution  of  ECAs  (a)  4  and  (b)  73,  which  only  have  fixed
strings.
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Rule Number S-FS GEs Regular Expression of FS 

4 0 0, 010 0† I10†M*

5 010 010 010 H10 + 010L*

12 0 0, 01 H0 + 01L†

13 01 01, 010 01 H0 + 01L*

28 01 01 H01L†

29 01 01 H01L†

36 00 00, 00100 00† I100†M*

44 00 00, 001 00† I1 + 00†M*

72 0 0, 0110 0† I110†M*

73 0110 0110 0110 H0110 + 110L*

76 0 0, 01, 10 H0 + 01 + 10 + 101L†

77 01,10 01, 10 H01 + 10 + 010 + 101L† 

78 10 10, 101 H10 + 101L†

94 101 101 101 H101 + 01L*

104 00 00, 001100 00† I1100†M*

108 00 00, 100, 001 H00 + 100 + 001 + 000 +

0001 + 1000 + 1001L†

132 0 0, 010 0† I10†M* 

140 0 0, 01 H0 + 01L†

156 01 01 H01L†

164 00 00, 00100 00† I100†M* 

172 00 00, 001 00† I100†M* He + 1L 

200 0 0, 11 H0 + 11 + 111L†

204 0,1 0, 1 H0 + 1L†

232 00,11 00,11 I00† + 11†M†

Table 4. The fixed strings (FS) of the 24 ECAs that comprise Class C.

Proof of the results of ECA 73 in Table 4. The local rule of ECA 73 is
defined as 

110, 011, 000 Ø 1, others Ø 0.

It is easy to verify that 0110 is the S-FS. Now, by Theorem 4, we will
prove  that  any  fixed  string  y  can  be  written  as  the  generalized
combination of finite 0110s. To begin with, only 01 may be left fixed
and 10 may be right fixed. Therefore, 01 should be its prefix and 10
the  suffix. Then, because  000 Ø 1, 010 Ø 0, 111 Ø 0,  that  is,  the
three  strings  do  not  satisfy  f HxL ‡ p x p,  the  three  strings  cannot
appear in the fixed string y. Therefore, y must be written as the gener-
alized combination of finite 0110s. ·
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It is easy to verify that 0110 is the S-FS. Now, by Theorem 4, we will
prove  that  any  fixed  string  y  can  be  written  as  the  generalized
combination of finite 0110s. To begin with, only 01 may be left fixed
and 10 may be right fixed. Therefore, 01 should be its prefix and 10
the  suffix. Then, because  000 Ø 1, 010 Ø 0, 111 Ø 0,  that  is,  the
three  strings  do  not  satisfy  f HxL ‡ p x p,  the  three  strings  cannot
appear in the fixed string y. Therefore, y must be written as the gener-
alized combination of finite 0110s. ·

By Theorem 1, any string between two fixed strings will eventually
evolve  to  periodic  sequences  and  the  period  may  be  1  or  the  other
positive  integers.  We  can  categorize  Class  C  into  three  subclasses
according to their different periods (see Table 5 for details). 

Subclass C1: Subclass C2: Subclass C3: 
Period‡1 Period‡1 or 2 Period‡1, 2, 3, … 
4, 12, 13, 36,  44, 72, 76, 5, 28, 29 94, 73 
77, 78, 104, 132, 140, 164, 108, 156 
172, 200, 204, 232 

Table 5. The three subclasses of Class C.

Figure 10(a) shows the evolution of ECA 4, which is in Subclass C1
and Figure 10(b) shows ECA 73, belonging to Subclass C3. The typi-
cal  evolution  of  an  ECA  Subclass  C2  can  be  seen  in  Figure  11(a).
These proofs of the properties of Subclasses C1  and C2  are not diffi-
cult but are lengthy if we prove them one by one. Because of this, they
are omitted. By computer search for ECA 94, we find that the strings
10100101  and  10111101  on  the  vertical  map  are  periodic  with  pe-
riod  2,  while  strings  1011001101,  1010000101,  and  1011111101
have period 3. It can be proved that all the periods are 1, 2, 3, and 6.
Similarly,  for  ECA  73,  the  period  of  strings  011000110  and
011010110  is  2,  the  period  of  string  0110111111110110  is  5,  and
the period of string 011009 0110 is 18. Clearly, the evolution is more
complicated than for ECA 94. Knowing whether or not the set consist-
ing of all the periods is finite is still an open question. 

HaL HbL

Figure 11. The  evolution  of  ECAs  (a)  5  and  (b)  94,  which  belong  to  Classes
C2 and C3, respectively.

An interesting study on ECA 73 is to predict the appearance of the
fixed  string  0110  (see  Table  6).  This  is  equivalent  to  studying  the
preimages  of  0110.  For  a  given  string  x œ A*,  let
PkHxL ‡ 9y f k HyL ‡ x=  be  the  set  containing  all  the  k-step  preimages
of  x.  Let  nkHxL ‡ Ò HPkHxLL  be  the  cardinality  of  PkHxL.  Using  com-
puter search, we get nkH0110L for k ‡ 1, 2, … , 14. 
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An interesting study on ECA 73 is to predict the appearance of the
fixed  string  0110  (see  Table  6).  This  is  equivalent  to  studying  the
preimages  of  0110.  For  a  given  string  x œ A*,  let
PkHxL ‡ 9y f k HyL ‡ x=  be  the  set  containing  all  the  k-step  preimages
of  x.  Let  nkHxL ‡ Ò HPkHxLL  be  the  cardinality  of  PkHxL.  Using  com-
puter search, we get nkH0110L for k ‡ 1, 2, … , 14. 

k 1 2 3 4 5 6 7

nk 5 25 103 426 1764 7180 29 606

nk+1 ê nk 5 4.12 4.1359 4.1408 4.0703 4.1234 4.0746

k 8 9 10 11

nk 120 632 488 419 1 987 973 8 019 142

nk+1 ê nk 4.0488 4.0702 4.0338 4.0303

k 12 13 14

nk 32 319 505 130 031 847 523 421 555

nk+1 ê nk 4.0233 4.0253

Table 6. The number of 0110 k-step preimages for ECA 73.

The set PkH0110L is rather complex if k ¥ 3. Because 0110 is fixed,
the  set  9x1 0110 x2 x1, x2 œ Ak=  must  be  the  subset  of  PkH0110L.
Therefore,  nkH0110L ¥ 4k.  This  leads  to  limkØ¶ nk+1 ê nk ‡ 4.  The
string 104 k 1 will evolve to 0110 after 2 k - 1 steps. Table 7 gives the
ck ‡ n1I104 k 1M found through computer search. 

k 1 2 3 4 5 6 
ck 5 14 40 122 373 1147
ck+1 ê ck 2.8 2.8571429 3.05 3.0573770 3.0750670 3.0775937

k 7 8 9 10 11 
ck 3530 10869 33470 103072 317418
ck+1 ê ck 3.0790368 3.0794001 3.0795339 3.0795754 3.0795890

k 12 13 14 15
ck 977517 3010355 9270674 28549925
ck+1 ê ck 3.0795935 3.0795949 3.0795954 3.0795956

Table 7. The number of 104 k 1 preimages for ECA 73.

We can  prove  that  limkØ¶ n1I104 Hk+1L 1M ë n1I104 k 1M ‡ l4,  where

l ‡ II9 - 69 M ë 18M1ê3 + II9 + 69 M ë 18M1ê3  is  the  real  root  of  the
equation l3 ‡ l + 1. 

258 J. Zhisong and Q. Dakang

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.3.243



We can  prove  that  limkØ¶ n1I104 Hk+1L 1M ë n1I104 k 1M ‡ l4,  where

l ‡ II9 - 69 M ë 18M1ê3 + II9 + 69 M ë 18M1ê3  is  the  real  root  of  the
equation l3 ‡ l + 1. 

The  double  fixed  string  01100110  is  strange,  because  its  k-step
preimage set  PkH01100110L  is  exactly 9x1 01100110 x2 x1, x2 œ Ak=,
which  means  the  fixed  string  01100110  cannot  be  produced.  Cer-
tainly, nkH01100110L ‡ 4k. 

5.4 Class D: Neither Fixed nor Skew Fixed
There are 48 ECAs in Class D and each one has neither fixed strings
nor  skew  fixed  strings  (see  Table  1).  Their  typical  evolution  can  be
seen in Figure 12. From the evolution of these 48 ECAs, we find that
there  are  still  some  simple  ones,  such  as  ECA  51,  which  are  neither
fixed strings nor skew strings. However, for any x, f 2HxL ‡ p x p. So it
has  a  very  simple  dynamic  behavior,  that  is,  every  initial  configura-
tion will evolve to a periodic orbit with period 2. Another example is
ECA  15;  for  any  x,  it  satisfies  f 2HxL ‡ p p x.  Its  dynamic  behavior  is
also  simple  (Figure  13).  So  we  categorize  Class  D  into  several  sub-
classes.  Now  we  introduce  a  new  definition  whose  special  cases  are
fixed and skew fixed strings. 

HaL HbL

Figure 12. The  evolution  of  ECAs  (a)  27  and  (b)  18,  which  are  both  in
Class D.

Definition 10. Let x be a nonempty string and -T b n b T  both be inte-
gers.  If  for  any  †x1§ ‡ T - n  and  †x2§ ‡ T + n,  the  equation
f THx1 x x2L ‡ x always holds. Then, x is called a periodic fixed string
with period T  and right  shift  n  (or  left  shift  -n,  when n < 0),  or  we
simply say x is a periodic fixed string with parameters HT, nL. 
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Without  special  explanations,  the  period  T  refers  to  the  minimal
one.  Clearly,  string  x  being  periodic  fixed  with  parameters  H1, 0L
means  that  x  is  fixed.  String  x  being  periodic  fixed  with  parameters
H1, 1L  means that x  is right skew fixed. For ECA 51, every nonempty
string x is periodic fixed with parameters H2, 0L, while for ECA 15, ev-
ery  nonempty  string  x  is  also  periodic  fixed  but  with  parameters
H2, 2L. By the way, one can easily obtain many results that are similar
to (skew) fixed ECA. Now we can divide Class D into two subclasses: 

Subclass D1: 1, 3, 7, 15, 19, 23, 27, 33, 38, 50, 51, 178. 
Subclass  D2:  6,  9,  11,  14,  18,  22,  24,  25,  26,  30,  35,  37,  41,  43,

45, 46, 54, 56, 57, 58, 60, 62, 74, 90, 105, 106, 110, 122, 126, 134,
142, 146, 150, 152, 154, 184. 

HaL HbL

Figure 13. The  evolution  of  ECAs  (a)  51  and  (b)  15,  which  are  both  in
Class D but have simple dynamic behaviors.

Each ECA in Subclass D1  has periodic fixed strings with period 2,
while  those  in  Subclass  D2  do  not.  Detailed  information  about  peri-
odic fixed strings of Subclass D1 found by computer search is given in
Table 8. For any given ECA in Subclass D1, the evolution will be even-
tually  periodic  if  the  initial  configuration  is  randomly  selected.  By
computer  search,  we  have  not  found  any  periodic  fixed  string  with
period 2, 3, 4, 5, and 6 for ECAs in Subclass D2. But we cannot claim
that all the ECAs in Subclass D2 do not have a periodic fixed string. 

As far as the subclass D2  is concerned, it is too big and we hope it
can be divided further. Some of the ECAs have simple dynamic behav-
iors while others have chaotic behaviors, but we have not yet found a
better mathematical warrant. 
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Rule Number Parameter S-PFS GEs 

1 (2,0) 1 1,000 

3 (2,1) 1 1,00 

7 (2,1) 11 11,000 

15 (2,2) 0,1 0,1 

19 (2,0) 00,11 00,11 

23 (2,0) 00,11 00,11 

27 (2,1) 111 111, 0n 111, 10 111, 100 111, etc. 

33 (2,0) 000 000, 0001n 000 

38 (2,-2) 0 0,001,0011 

50 (2,0) 01,10 01,10 

51 (2,0) 0,1 0,1 

178 (2,0) 01,10 01,10 

Table 8. The shortest periodic fixed string (S-PFS) and GEs of Subclass D1.
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