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Several  highway  traffic  models  based  on  cellular  automata  have  been
proposed.  The simplest  one is  elementary cellular  automaton rule  184.
We extend this  model  to  city  traffic  with cellular  automata coupled at
intersections  using  only  rules  184,  252,  and  136.  We  study  the  model
properties by simulating a single intersection. We describe the different
dynamical phases of the model with velocity-density and flux-density di-
agrams. The model is useful for studying the problem of traffic light co-
ordination for very large systems.

1. Introduction

A mathematical model is  an abstraction of a system. Ideally,  such an
abstraction should be as simple as possible, provided that the essential
properties  of  the  system  are  preserved.  Hence,  the  complexity  of  a
model faces a compromise between simplicity and usefulness. A com-
plex model provides an accurate description of the system’s behavior,
but  may  also  bring  added  difficulty  to  its  representation,  computa-
tion,  and  analysis.  In  the  study  of  vehicular  traffic,  for  example,  nu-
merous  models  have  appeared  in  the  literature  [1–10].  Such  models
are useful for different purposes depending on their complexity. Here
we propose a vehicular model that is as simple as possible while repro-
ducing city  traffic  behavior.  The purpose of  our model  is  not  predic-
tive but explanatory.

Our  model  is  based  on  elementary  cellular  automata  (ECAs),
which we briefly present in Section 2. This is followed by a summary
of  previous  traffic  models  based  on  cellular  automata  (CAs)  in  Sec-
tion 3. Our model is presented in Section 4 and our results are shown
in Section 5. Potential refinements to the model are given in Section 6
and conclusions close the paper in Section 7. 
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2. Elementary Cellular Automata

CAs  were  perhaps  first  studied  by  Stanisław  Ulam  and  John  von
Neumann [11] as a tool for modeling biological  systems. Later,  John
Conway devised his well-known “Game of Life” [12] using such a for-
malism.  More  recently,  the  work  of  Stephen  Wolfram  [13,  14]
showed  applications  to  many  areas  of  science,  further  increasing  the
interest  in  CAs.  As  a  modeling  tool,  CAs  are  especially  valuable  be-
cause of the simplicity of their specification, on the one hand, and the
complexity in their behavior, on the other hand.

An ECA is  a  collection of  cells  arranged on a one-dimensional  ar-
ray. A cell in such an automaton has only two possible states (0 or 1,
say).  Time is  discrete  and all  cells’  states  are  updated synchronously.
Moreover, the state of a cell in the next time step, or “tick,” depends
only  on  the  present  states  of  that  cell  and  those  of  its  nearest  neigh-
bors. As a result, the behavior of an ECA can be described by a table
specifying  the  state  a  given  cell  will  have  in  the  next  “generation”
based on the state of the cell to its left, the state of the cell itself, and
the state  of  the cell  to its  right.  Such a table  has as  input these three
current states and as output the state of a cell in the next generation.
Wolfram names each ECA with the binary numeral, called its “rule,”
resulting  from  reading  the  output  of  the  table  when  the  inputs  are
lexicographically  ordered.  Because  cells’  states  are  updated
synchronously, an ECA can be readily simulated with only two arrays
of bits. 

3. Models of Vehicular Traffic and Cellular Automata

In this section, we first give an account of vehicular traffic models in
general and then proceed to summarize models based on CAs.

In empirical observations of highway traffic, it is possible to notice
two different  regimes  [15].  For  low densities  (number of  vehicles  per
length unit), the flux (number of vehicles per time unit) shows an ap-
proximately  linear  behavior.  For  higher  densities,  however,  the  flux
exhibits  strong  fluctuations  resulting  in  a  complex  behavior  that  is
still not clearly understood [7]. First, such fluctuations prevent the use
of a functional model. Second, hysteresis has been noticed, where the
flux  is  greater  when  the  density  increases  than  when  the  density  de-
creases.  Third,  metastable  states  (i.e.,  states  in  a  precarious  equilib-
rium)  have  been  observed.  Authors  normally  distinguish  between  at
least two different congested (jammed) regimes: the synchronized and
the stop-and-go phases [7]. 

As a result of this complexity, myriad highway traffic models have
appeared in the literature.  Macroscopic models view traffic  as a one-
dimensional  compressible  fluid  [7].  The  microscopic  approaches,  by
contrast, model each individual vehicle. Within the microscopic treat-
ments,  kinetic  theories  model  traffic  as  a  gas  in  which  each  particle
represents a vehicle [16]. The class of follow-the-leader models repre-
sents  each  vehicle  with  a  motion  equation  in  a  system  of  interacting
classical particles [7]. Coupled-map lattice models treat time as a dis-
crete variable and the dynamical equations for each vehicle become a
discrete  dynamical  map  [17].  Finally,  CA  models  play  a  prominent
role.  One  of  the  main  reasons  is  that  these  models  are  computation-
ally cheap. 
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As a result of this complexity, myriad highway traffic models have
appeared in the literature.  Macroscopic models view traffic  as a one-
dimensional  compressible  fluid  [7].  The  microscopic  approaches,  by
contrast, model each individual vehicle. Within the microscopic treat-
ments,  kinetic  theories  model  traffic  as  a  gas  in  which  each  particle
represents a vehicle [16]. The class of follow-the-leader models repre-
sents  each  vehicle  with  a  motion  equation  in  a  system  of  interacting
classical particles [7]. Coupled-map lattice models treat time as a dis-
crete variable and the dynamical equations for each vehicle become a
discrete  dynamical  map  [17].  Finally,  CA  models  play  a  prominent
role.  One  of  the  main  reasons  is  that  these  models  are  computation-
ally cheap. 

Possibly  the  first  traffic  model  that  could  be  viewed  as  a  CA was
that  of  Cremer  and  Ludwig  [18].  By  using  binary  one-dimensional
arrays,  this  model  represents  the  presence/absence  of  a  vehicle  with
each of  the two states  of  a  cell,  so that  each vehicle  occupies  exactly
one cell. These authors used bitwise Boolean operations together with
shifts to update the state of the automaton. Successive applications of
different  operations  can  simulate  acceleration,  deceleration,  lane
changing,  passing,  and  turning.  Observe  that  updating  the  state  of
each cell  requires the state of neighbors that are not the nearest ones
to such a cell. This CA, therefore, is not elementary. 

ECAs,  nonetheless,  can  model  traffic  as  well.  We can assume that
whether a vehicle moves forward or not depends only on the presence
or  absence  of  another  vehicle  just  in  front.  Supposing  that  a  vehicle
moves  one  cell  to  the  right  if  and  only  if  such  a  cell  to  the  right  is
empty,  then  rule  184  corresponds  to  traffic  moving  to  the  right  [9].
Apparent movement is created as follows: if the state of a cell is 1 and
that of its right neighbor is 0, then this rule assigns 0 to the cell’s state
in  the  next  generation,  eliminating  the  vehicle  from  the  current  cell
(which accounts for 110 and 010). Similarly, if the current cell’s state
is 0 and its left neighbor is 1, then the cell’s next state is 1, thus appar-
ently making the vehicle in the left neighbor move one cell to the right
(covering  cases  100  and  101).  Two  other  situations  must  be  dealt
with. First, a vehicle cannot move if there is another vehicle directly in
front (i.e., 111 and 011). Second, if there is no vehicle in the cell or its
left neighbor, then in the next generation the cell will have no vehicle
either (i.e., 001 and 000), see Table 1 and Figure 3 in Section 4.1. 

By  randomly  placing  vehicles  on  the  streets,  this  CA  exhibits  two
kinds of behavior, that is, phases, depending on the initial density r of
vehicles.  For  r < 50%, vehicles  stabilize  in  a  flow phase,  without  in-
teracting with each other and are constantly moving. By contrast, for
r > 50%, the traffic flow is jammed, as congestion waves move to the
left,  that  is,  in  the  opposite  direction  of  traffic.  The  temporal  evolu-
tion of rule 184 in both phases is shown in Figure 1. Average veloci-
ties and fluxes for different densities are shown in Figure 2.

Rule 184 has also been used to model surface deposition [19], bal-
listic  annihilation  [20],  context-free  parsing  (for  r ‡ 50%)  [14],  and
surface heating [21]. 

A Model of City Traffic Based on Elementary Cellular Automata 307

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.4.305



HaL HbL

Figure 1. Evolution  of  rule  184.  Black  cells  (1)  represent  vehicles,  white  cells
(0)  represent  spaces.  Traffic  flows  to  the  right,  time  flows  to  the  bottom.
(a) In  the  free-flow phase  (r ‡ 0.25 shown) all  vehicles  flow at  a  velocity  of
one cell per tick. (b) In the jammed phase (r ‡ 0.75 shown) jams move to the
left, as vehicles can only advance when there is a free space ahead of them.

HaL HbL

HcL HdL

Figure 2. Simulation  results  for  rule  184:  (a,b)  average  velocity  Xv\  and
(c,d) average flux XJ\  for different densities r:  (a,c) single runs and (b,d) box
plots of 50 runs per density.

The traffic model of Nagel and Schreckenberg [22] (NaSch) can be
seen as an elaboration of rule 184 with the following extensions: (1) a
variable (discrete) velocity is associated with each vehicle, (2) accelera-
tion  (tending  to  attain  the  maximum  velocity),  (3)  deceleration  (due
to the presence of other vehicles), and (4) a random tendency to slow
down (an attempt to model a human tendency to overreact when de-
celerating).  The  NaSch  model  reproduces  the  appearance  of  sponta-
neous,  also  called  “phantom,”  traffic  jams.  Depending  both  on  the
global  density  and  the  probability  to  slow  down,  such  spontaneous
traffic jams either disappear or survive indefinitely. 
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The traffic model of Nagel and Schreckenberg [22] (NaSch) can be
seen as an elaboration of rule 184 with the following extensions: (1) a
variable (discrete) velocity is associated with each vehicle, (2) accelera-
tion  (tending  to  attain  the  maximum  velocity),  (3)  deceleration  (due
to the presence of other vehicles), and (4) a random tendency to slow
down (an attempt to model a human tendency to overreact when de-
celerating).  The  NaSch  model  reproduces  the  appearance  of  sponta-
neous,  also  called  “phantom,”  traffic  jams.  Depending  both  on  the
global  density  and  the  probability  to  slow  down,  such  spontaneous
traffic jams either disappear or survive indefinitely. 

Note  that  a  vehicle  can  have  a  velocity  greater  that  one  cell  per
tick. This fact implies that the NaSch traffic model, just as that of Cre-
mer and Ludwig, is not an ECA. The reason is that the next state of a
cell depends not only on those of its immediate neighbors, but also on
those of other cells. 

Many variants of the NaSch model have appeared, each with differ-
ent  degrees  of  realism.  For  example,  Nagel  and Paczuski  [23]  inhibit
the random slowdown for vehicles traveling at the maximum velocity.
This  variation  eliminates  spontaneous  traffic  jams  for  the  free-flow
regime by representing automatic cruise control. 

Fukui  and Ishibashi  [24],  by contrast,  only  have a  random behav-
ior component for vehicles traveling at the maximum velocity. Such a
random  slowdown  of  maximum-velocity  vehicles  attempts  to  model
the fact that drivers traveling at high velocity (without cruise control)
cannot  continue  at  that  speed  indefinitely.  In  addition,  accelerations
in this model are instantaneous. 

A  two-dimensional  CA  modeling  traffic  was  devised  by  Biham,
Middleton, and Levine [25] (BML). This model is interesting because
of  being  remarkably  simple  and  yet  exhibiting  self-organization  as
well  as  two  distinct  phases.  Cells  form  a  bidimensional  array.  Each
cell  can be viewed as  representing either  an empty space or a vehicle
that  is  traveling  either  to  the  right  or  upwards.  Except  for  the  initial
random placement  of  the  vehicles  (i.e.,  the  initial  condition)  this  au-
tomaton  is  deterministic.  Boundary  conditions  are  periodic,  so  that
the number of vehicles of each kind is preserved. On even ticks, only
upward-facing vehicles move, whereas on odd ticks, only vehicles fac-
ing right do so, unless there is a nonempty space just in front. 

Self-organization emerges when consecutive rows or columns have
vehicles  moving  one  cell  ahead  or  behind  the  next  row  or  column,
thus forming a diagonal of vehicles. This pattern minimizes collisions
and therefore maximizes speed. Above a certain density, a global clus-
ter appears that rapidly includes all vehicles, showing a “sharp” phase
transition. 

The  BML  model  is  interesting  because  it  exhibits  complex  behav-
ior,  but  it  is  not  a  realistic  model  of  city  traffic.  More  realistic  city
traffic models have been developed as a common generalization of the
NaSch and BML models [26–29]. Such generalizations are essentially
extensions of the BML model so that streets have an arbitrary length
(instead of  only one cell),  and vehicles  traveling in between crossings
behave according to the NaSch model. Traffic lights are incorporated
by making vehicles decelerate or halt not only because of a vehicle be-
ing in front, but also because of approaching a red traffic light. 
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The  BML  model  is  interesting  because  it  exhibits  complex  behav-
ior,  but  it  is  not  a  realistic  model  of  city  traffic.  More  realistic  city
traffic models have been developed as a common generalization of the
NaSch and BML models [26–29]. Such generalizations are essentially
extensions of the BML model so that streets have an arbitrary length
(instead of  only one cell),  and vehicles  traveling in between crossings
behave according to the NaSch model. Traffic lights are incorporated
by making vehicles decelerate or halt not only because of a vehicle be-
ing in front, but also because of approaching a red traffic light. 

An approach closer to ours is that of Chopard, Luthi, and Queloz
[30]. Each street has two lanes, each of which is bound for the oppo-
site direction. Traffic within streets follows rule 184. At intersections,
however,  roundabouts  mimic  traffic  lights  as  follows.  On  the  one
hand, vehicles within a roundabout have priority. On the other hand,
each vehicle stays in the roundabout for a certain number of ticks, af-
ter which it leaves. This model exhibits metastability and gridlocks. A
vehicle entering a roundabout must check not only the state of a cell,
but also its “flag,” indicating whether or not the vehicle in such a cell
is  to  remain  in,  or  exit  from,  the  roundabout.  Therefore,  this  CA  is
not  elementary  nor  does  it  deal  with  traffic  lights,  our  main  purpose
of study. 

4. An Elementary Cellular Automata Model of an Intersection 

In  this  section,  we  first  extend  the  highway  traffic  model  consisting
only of rule 184 [7, 9, 31]. Next, we show how to measure the value
of  several  parameters  in  such  an  extended  model.  Finally,  we  relate
the scale of our model with that of real traffic.

4.1 Extension
The behavior  of  streets  has  already been modeled  by  rule  184.  If  we
draw the cells horizontally, the vehicles will flow to the east. We can
obtain  the  other  directions  by  rotating  the  street  arrays  by  90,  180,
and 270 degrees. Our extension lies in modeling traffic lights at the in-
tersections.  We  can  include  traffic  lights  by  considering  several  cou-
pled  inhomogeneous  ECAs,  where  rules  change  around  the  intersec-
tion, depending on the state of the traffic light.

Note that the combination of ECAs has to be conservative [32–34],
that  is,  the  number  of  ones  needs  to  be  constant.  Otherwise,  the
model would be equivalent to having vehicles appearing or disappear-
ing in the middle of the simulation. 

If a street has a green light, then all its cells use rule 184. If there is
a  red  light,  then  all  cells  also  use  rule  184,  with  two exceptions:  the
cells immediately before and after the intersection. Let L be the cell im-
mediately before the intersection. L has to stop traffic from going into
the  intersection.  If  there  is  a  vehicle  in  L  (cases  010,  011,  110,  111,
where  the  value  of  L  is  in  the  middle),  it  will  stay  there,  so  the  next
state of L will continue to be 1. If there is no vehicle in L and there is
a  vehicle  in  the  previous  cell  (100,  101),  then  that  vehicle  will  ad-
vance, so the next state of L will also be 1. Only if there are no vehi-
cles  in  L  or  its  previous  cell  will  the  next  state  remain  0.  This  is
rule 252. The cell immediately after the intersection has to allow vehi-
cles  to leave,  but  must  not  allow vehicles  in the intersection (flowing
in the perpendicular direction) to enter. Thus, the next state will be 1
only if its state is already 1 and the cell immediately ahead is blocked
(011, 111). This is rule 136. Table 1 lists the transition tables for the
three rules used by the model. Figure 3 shows the corresponding rule
icons. 
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If a street has a green light, then all its cells use rule 184. If there is
a  red  light,  then  all  cells  also  use  rule  184,  with  two exceptions:  the
cells immediately before and after the intersection. Let L be the cell im-
mediately before the intersection. L has to stop traffic from going into
the  intersection.  If  there  is  a  vehicle  in  L  (cases  010,  011,  110,  111,
where  the  value  of  L  is  in  the  middle),  it  will  stay  there,  so  the  next
state of L will continue to be 1. If there is no vehicle in L and there is
a  vehicle  in  the  previous  cell  (100,  101),  then  that  vehicle  will  ad-
vance, so the next state of L will also be 1. Only if there are no vehi-
cles  in  L  or  its  previous  cell  will  the  next  state  remain  0.  This  is
rule 252. The cell immediately after the intersection has to allow vehi-
cles  to leave,  but  must  not  allow vehicles  in the intersection (flowing
in the perpendicular direction) to enter. Thus, the next state will be 1
only if its state is already 1 and the cell immediately ahead is blocked
(011, 111). This is rule 136. Table 1 lists the transition tables for the
three rules used by the model. Figure 3 shows the corresponding rule
icons. 

The intersection cell is a special case, as it has four potential neigh-
bors.  The  rule  never  changes  (184).  What  changes  is  the  neighbor-
hood,  that  is,  it  takes  as  nearest  neighbors  only  the  two  cells  on  the
street  with a green light (also using rule 184).  A diagram of the cells
around an intersection is shown in Figure 4. 

HaL 184

HbL 252

HcL 136

Figure 3. Rule icons for (a) 184, (b) 252, and (c) 136. Taken from
http://atlas.wolfram.com.

t - 1 t184 t252 t136
000 0 0 0 
001 0 0 0 
010 0 1 0 
011 1 1 1 
100 1 1 0 
101 1 1 0 
110 0 1 0 
111 1 1 1 

Table 1. ECA rules used in the model. 
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Figure 4. Diagram for different rules (shown within cells)  and neighborhoods
(indicated by ovals)  used around intersections,  depending on the  state  of  the
traffic light. For green lights (indicated by a green solid cell), rule 184 is used,
and  the  intersection  cell  has  as  neighbors  cells  on  the  street  with  the  green
light.  For  red  lights  (indicated  by  a  diagonally  red  striped  cell),  rule  252  is
used for the cell before the intersection and rule 136 for the cell after the inter-
section. The rest of the cells use rule 184.

If at time t a traffic light is meant to switch, the model needs to en-
sure that the intersection cell is empty. Otherwise, the vehicle in the in-
tersection  would  “turn”  into  the  crossing  street.  To  avoid  this  situa-
tion,  the  actual  switching  of  rules  and  neighborhood  is  made  only
when the intersection is clear. 

Certainly,  cells  using rules 252 and 136 could be simplified to de-
pend only on two cells, as their state is not affected by the intersection
cell.  However,  we  prefer  to  have  redundancy  in  the  rules  but  homo-
geneity in the neighborhood sizes. 

To  model  flow  in  different  directions,  we  could  use  mirror  rules
(e.g., 226 is equivalent to rule 184 by reflection, with vehicles flowing
to the left), but it is simpler to invert neighborhoods. Thus, the model
is reduced to the combination of only three ECA rules. 

It  is  also worth noting that  rules  252 and 136 belong to the same
equivalence class. To be more specific, they belong to the same semi-
asymmetric  rule  cluster  [35,  p.  23],  that  is,  rule  252  results  from
rule 136  by  performing  negative  and  reflective  transformations,  or
vice versa [35, pp. 21–22]. The behavior of rules 252 and 136 is com-
plementary,  since rule  252 prevents  vehicles  from moving into an in-
tersection,  while  rule  136  prevents  vehicles  from  appearing  after  an
intersection.  From this  rule  cluster,  rules  192 and 238 could  be  used
together with rule 226 to model traffic flowing to the left.  The other
four rules in the cluster (rules 3, 17, 63, and 119) do not conserve den-
sity,  so  they  are  not  useful  for  traffic  modeling.  This  is  also  the  case
for  the  other  two  rules  in  the  fully  asymmetric  cluster  of  rules  184
and 226 (rules 71 and 29) [35, p. 24]. 

From  all  256  ECA  rules,  there  are  88  equivalence  classes  [35,
p. 21].  One  might  wonder  how  many  of  these  or  combinations  of
these  could  be  relevant  to  traffic  modeling.  In  our  current  model  we
use only three, but this does not prevent the use of more or different
rules or combinations of rules. Still, the resulting system has to be con-
servative [32–34], that is, the density must remain constant for all ini-
tial conditions. This restricts considerably the rule space for potential
models of traffic. 
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From  all  256  ECA  rules,  there  are  88  equivalence  classes  [35,
p. 21].  One  might  wonder  how  many  of  these  or  combinations  of
these  could  be  relevant  to  traffic  modeling.  In  our  current  model  we
use only three, but this does not prevent the use of more or different
rules or combinations of rules. Still, the resulting system has to be con-
servative [32–34], that is, the density must remain constant for all ini-
tial conditions. This restricts considerably the rule space for potential
models of traffic. 

Just like in the rule 184 model of highway traffic, there is a certain
symmetry between vehicles and spaces. This is a quantitatively unreal-
istic  property,  but  it  has  provided  us  with  interesting  qualitative  in-
sights of city traffic [36]. 

4.2 Measures
The behavior of the model will depend strongly on the vehicle density
r œ @0, 1D. Trivial cases are the extremes r ‡ 0, where there are no ve-
hicles  and r ‡ 1,  where  all  cells  are  occupied by vehicles,  so  there  is
no space to move and flow is stopped. The density can be easily calcu-
lated by dividing the number of cells with 1 (i.e., total number of vehi-
cles, S si) by the total number of cells (†S§): 

(1)r ‡
S si

†S§
.

The  performance  of  the  system  can  be  measured  with  velocity
v œ @0, 1D, which is simply the number of cells that changed from 0 to
1 divided by the total number of vehicles: 

(2)v ‡
S Isi

£ > 0M

S si

where si
£  is the derivative of state si. If si

£ ‡ 1, the cell changed from 0
to 1. If si

£ ‡ -1, the cell changed from 1 to 0. si
£ ‡ 0 when there is no

change in the state of si, that is, either there is no vehicle in si, or the
vehicle in si has stopped.

The flux of the system represents how much of the space is used by
moving vehicles. It can be obtained by multiplying the vehicle density
by the velocity: 

(3)J ‡ r v.

In the rule 184 highway traffic model,  the maximum possible flux
is J ‡ 0.5, at a density r ‡ 0.5. This is because vehicles need at least
one  cell  between  them  to  move.  If  there  are  fewer  vehicles,  the  flux
will  be  lower,  since  there  is  no  movement  in  free  space.  If  there  are
more vehicles, then the flux will also be lower, since stopped vehicles
do not move (see Figures 2(c) and 2(d)). 

A Model of City Traffic Based on Elementary Cellular Automata 313

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.4.305



From  equation  (2),  the  average  waiting  time  and  the  number  of
stopped vehicles can be inferred as

(4)twait ‡ ‡ H1 - vL dt

and

(5)vehiclesstopped ‡ H1 - vL S si.

The average waiting time of equation (4) is calculated by integrat-
ing over time the complement of the velocity (1 - v). At every tick, if a
vehicle is not flowing, then it is waiting, so 1 - v  captures how many
vehicles are waiting. 

The number of stopped vehicles from equation (5) is calculated by
counting  all  vehicles  (1)  in  the  environment  (S si)  and  multiplying
such a quantity by the complement of velocity (1 - v), which indicates
how many vehicles are not moving. 

The percentage of stopped vehicles would be simply: 

(6)% vehiclesstopped ‡ 100 H1 - vL.

These measures  can be efficiently  calculated from the states  of  the
automaton. 

4.3 Scale
Even  when  the  time  and  space  are  abstract  and  discrete,  we  can  as-
sume that one cell represents 5 meters, roughly the space occupied by
a stopped vehicle. Thus, 1 kilometer of a street is represented by 200
cells. If each tick represents 1/3 second, then a velocity of one cell per
tick is equivalent to 15 m/s, that is, 54 km/h, roughly the speed limit
in  cities  (e.g.,  in  continental  Europe it  is  50 km/h in  many countries;
in Russia it is 60 km/h). A maximum density of r ‡ 1 is equivalent to
200 vehicles per kilometer.

5. Simulations

We  developed  a  computer  simulation  in  NetLogo  [37]  to  implement
our  model.  The  reader  is  invited  to  access  the  simulation  via  web
browser  at  http://turing.iimas.unam.mx/~cgg/NetLogo/trafficCA.html
(for  short,  http://tinyurl.com/trafficCA).  The  environment  consists  of
two  cyclic  streets  with  periodic  boundaries:  one  eastbound  and  one
southbound. Each street is 160 cells long, with one cell shared: the in-
tersection. Thus, a maximum density r ‡ 1 implies 319 vehicles.

A fixed period T ‡ 160 ticks was used for the traffic light. This im-
plies  that  the  eastbound  street  has  a  green  light  for  80  ticks  and  the
southbound street has a green light for the following 80 ticks. Thus, if
a single vehicle in the simulation encounters a red light, it will stop un-
til the light turns green. Afterward, the vehicle will always flow, since
the time required to go once around the torus is equal to the period T. 
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A fixed period T ‡ 160 ticks was used for the traffic light. This im-
plies  that  the  eastbound  street  has  a  green  light  for  80  ticks  and  the
southbound street has a green light for the following 80 ticks. Thus, if
a single vehicle in the simulation encounters a red light, it will stop un-
til the light turns green. Afterward, the vehicle will always flow, since
the time required to go once around the torus is equal to the period T. 

For  the  experiments,  each  run  consisted  of  an  initial  30  minute
(5400 ticks)  simulation for  random initial  conditions.  Since  the  vehi-
cles are placed randomly, one street may have a slightly higher density
than  another.  After  these  initial  5400  ticks,  the  system  is  considered
to have stabilized, that is, gone through a transient, so another 30 min-
utes  are  simulated.  The  velocities  of  the  second 30 minutes  are  aver-
aged  to  obtain  the  average  velocity  Xv\  and  average  flux  XJ\.  The  re-
sults are shown in Figure 5.

HaL HbL

HcL HdL

Figure 5. Simulation results for a single intersection: (a,b) average velocity Xv\
and  (c,d)  average  flux  XJ\  for  different  densities  r:  (a,c)  single  runs  and
(b,d) box plots of 50 runs per density.

It can be seen that the phase transition from free-flow (v ‡ 1) to an
intermittent  phase  occurs  at  r ‡ 0.25.  Recall  that  for  a  single  street
with  no  intersections,  that  is,  using  rule  184  as  a  model  of  highway
traffic, a similar transition (to jammed traffic) occurs at r ‡ 0.5 when
there is exactly one free cell between vehicles. However, when an inter-
section  is  added,  vehicles  coming  from both  streets  pass  through  the
intersection cell. They have to share this resource, reducing the maxi-
mum  flux  to  J ‡ 0.25.  Thus,  in  order  to  have  free-flowing  traffic
(apart from setting T  carefully), there should be space available in one
street  while  vehicles  in  the  other  street  are  crossing.  Otherwise,  they
have to stop behind a red light, leading to intermittent traffic. Notice
that  the  average  velocity  and  flux  are  reduced  slightly  before  the
phase transition at r ‡ 0.25. This is because there is a certain proba-
bility that one street will have a density r > 0.25. Thus, not all the ve-
hicles on that street will be able to cross the intersection in one period
and will have to wait, while the other street will have free-flow. 
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intermittent  phase  occurs  at  r ‡ 0.25.  Recall  that  for  a  single  street
with  no  intersections,  that  is,  using  rule  184  as  a  model  of  highway
traffic, a similar transition (to jammed traffic) occurs at r ‡ 0.5 when
there is exactly one free cell between vehicles. However, when an inter-
section  is  added,  vehicles  coming  from both  streets  pass  through  the
intersection cell. They have to share this resource, reducing the maxi-
mum  flux  to  J ‡ 0.25.  Thus,  in  order  to  have  free-flowing  traffic
(apart from setting T  carefully), there should be space available in one
street  while  vehicles  in  the  other  street  are  crossing.  Otherwise,  they
have to stop behind a red light, leading to intermittent traffic. Notice
that  the  average  velocity  and  flux  are  reduced  slightly  before  the
phase transition at r ‡ 0.25. This is because there is a certain proba-
bility that one street will have a density r > 0.25. Thus, not all the ve-
hicles on that street will be able to cross the intersection in one period
and will have to wait, while the other street will have free-flow. 

There is a second phase transition at r ‡ 0.75 toward an interfered
phase.  This  occurs  when  the  traffic  jams  (traveling  in  the  opposite
direction of traffic at the velocity of one cell per tick) are long enough
to  reach  the  intersection  around the  torus  and  block  it  momentarily.
This interference affects vehicles in the crossing street, reducing notice-
ably  the  average  flux  J ‡ 0.25  before  the  phase  transition  to
J < 0.125 after it. The difference lies in the fact that when the interfer-
ence  of  one  street  is  dissipated,  that  same  street  will  have  the  green
light  again,  so  in  practice  the  traffic  in  one  street  will  be  completely
stopped. This explains why the flux J is reduced to 0.5. 

In  the  intermittent  phase  (0.25 < r < 0.75),  traffic  jams  form  be-
hind red lights and travel in the opposite direction of vehicles, but the
jams dissipate before reaching the intersection around the torus again.
This  phase  is  characterized  by  a  flux  equal  to  the  maximum  of  the
model J ‡ 0.25, that is, there are always vehicles crossing the intersec-
tion. 

Since  there  is  always  some  free  space  if  r < 1,  the  gridlock  situa-
tion (v ‡ 0) is only reached when r ‡ 1. 

Observe that the variance is small for both the free-flow and inter-
mittent  phases,  compared  with  that  of  the  phase  transitions  and  the
interfered phase. As a consequence, few simulations are needed to ob-
tain significant values for both of these first two phases. 

We  performed  experiments  where  T  was  varied,  as  shown in  Fig-
ure 6. It can be seen in Figure 6(a) that the value of T  affects the exis-
tence of a free-flow phase. The appearance of such a phase requires a
synchronization  of  the  traffic  light  period  T  with  the  travel  time
around the torus. This is achieved in our model only when T is a mul-
tiple of the street length (T ‡ 80, 160), a condition for free-flow. Oth-
erwise, the period of the traffic light and the period of the vehicles are
not  synchronous.  In  this  case,  vehicles  need  to  wait  for  a  green  light
and  the  average  velocity  is  less  than  1.  In  spite  of  this  lack  of  syn-
chrony, the average velocity is constant for low densities.  The reason
is  that  platoons  are  small,  and  the  velocity  does  not  depend  on  the
density.  We  will  call  this  the  constant-velocity,  intermittent  phase.
Once  the  density  reaches  a  certain  threshold,  however,  the  velocity
does decrease as the density increases. 

Note however, that now the flux is independent of the density (see
Figure 6(b)). We will therefore call this the constant-flux, intermittent
phase. Remark that there is a symmetry in the flux diagram: the T val-
ues  that  reach  the  maximum  flux  capacity  earlier  will  degrade  later,
that  is,  values  that  reach  the  constant-flux,  intermittent  phase  earlier
will reach the interfered phase later. Interestingly, there is a density in-
terval  for  which  the  flow is  constant  not  only  with  respect  to  r,  but
also with respect to T.  For this density interval,  the velocity v  is  also
independent  of  T.  This  is  because  there  is  always  a  vehicle  crossing
the  intersection.  Statistically,  it  does  not  matter  which  street  has  a
green  light.  Some  vehicles  will  be  moving  and  some  will  be  stopped,
but on average the flux and velocity will be the same. 
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Note however, that now the flux is independent of the density (see
Figure 6(b)). We will therefore call this the constant-flux, intermittent
phase. Remark that there is a symmetry in the flux diagram: the T val-
ues  that  reach  the  maximum  flux  capacity  earlier  will  degrade  later,
that  is,  values  that  reach  the  constant-flux,  intermittent  phase  earlier
will reach the interfered phase later. Interestingly, there is a density in-
terval  for  which  the  flow is  constant  not  only  with  respect  to  r,  but
also with respect to T.  For this density interval,  the velocity v  is  also
independent  of  T.  This  is  because  there  is  always  a  vehicle  crossing
the  intersection.  Statistically,  it  does  not  matter  which  street  has  a
green  light.  Some  vehicles  will  be  moving  and  some  will  be  stopped,
but on average the flux and velocity will be the same. 

There  is  a  peculiarity  for  T ‡ 120.  Unlike  for  other  values  of  T,
the velocity decreases slightly before leaving the constant-velocity, in-
termittent  phase.  This  phenomenon  can  be  explained  as  follows.
When T ‡ 120 and the density is small (i.e., r < 0.2), vehicles go one
time  around  the  torus  without  stopping  and  another  time  stopping.
This  is  because  vehicles  take  160  ticks  to  go  around  the  torus.  If  a
vehicle starts at time t ‡ 0 when the light just switched to green, that
is,  phase  j ‡ 0,  it  will  next  cross  the  intersection  when  the  phase
j ‡ 40,  that  is,  160 mod 120,  still  with  a  green  light.  The  second
time,  however,  there  will  be  a  red  light  because
j ‡ 320 mod 120 ‡ 80,  so  it  will  have  to  wait  until  t ‡ 360,  that  is,
j ‡ 360 mod 120 ‡ 0. Hence, vehicles will go twice around the torus
every three periods T ‡ 120. This leads to the formation of three pla-
toons  in  each  street  in  the  constant-velocity,  intermittent  phase.  The
interaction  of  these  platoons  with  the  traffic  light  causes  platoons  to
alternate position: the first two platoons will go through the intersec-
tion,  but  the  third  one  will  not.  After  the  first  two  platoons  go
through the intersection and around the torus, the light changes, and
the  third  platoon,  which  was  last  in  the  queue,  now  appears  at  the
head of the queue. The reason is that each of the three groups of vehi-
cles  are  synchronized  with  a  different  phase  of  the  period  T ‡ 120.
When  the  density  reaches  a  certain  threshold,  two  of  the  three  pla-
toons merge,  leaving a  total  of  two platoons.  This  causes  some vehi-
cles  to  wait  slightly  more  than  in  the  three-platoon  case,  being  de-
layed one phase of the three occupied by platoons with T ‡ 120. This
leads to a phase particular of T ‡ 120 between the constant-velocity,
intermittent  and  constant-flux,  intermittent,  where  there  is  intermit-
tent traffic but neither velocity nor flux are constant. 

When platoons are even larger, then a phase transition occurs from
the intermittent to the interfered phases. Beyond such a transition, the
synchronization of T  with vehicular travel  time is  counterproductive,
because  in  most  cases  one  street  will  be  blocked.  The  other,  unsyn-
chronized,  T  values  give  a  better  performance  because—even  when
flow  is  interfered—all  vehicles  are  able  to  move.  As  a  consequence,
there  is  no  single  T  value  that  gives  the  best  performance  across  all
densities r. 
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Figure 6. Simulation results for a single intersection varying period T. (a) Aver-
age velocity Xv\ and (b) average flux XJ\ for different densities r.

6. Possible Refinements

Our traffic  model  is  as  simple as  possible  while  preserving the essen-
tial  properties  of  flow  around  an  intersection  with  a  traffic  light.
These  are  possible  improvements  that  could  be  made  to  contemplate
more realistic traffic situations.

† There are no yellow lights in the current model. The behavior theory be-
hind  yellow  lights  is  equivalent  to  red  lights,  that  is,  vehicles  should
stop. This could be implemented in our model by adding a “red-only”
phase, where both streets have a red light to allow clearing the intersec-
tion. This can be achieved as follows: (a) the cell previous to an intersec-
tion on a street with a light that is about to turn red should change its
rule  (184 Ø 252)  and  (b)  the  intersection  should  change  its  rule
(184 Ø 136).  During  the  red-only  phase,  the  cell  after  the  intersection
continues  using  rule  184,  to  allow  clearing  the  intersection  of  vehicles
in that direction.  At the end of the red-only phase (and if  the intersec-
tion is cleared): (a) the cell after the intersection should change its value
(184 Ø 136),  (b)  the  intersection  and  cells  in  the  street  that  is  turning
green should change their  rules  to  184,  and (c)  the  intersection should
change neighbors to those in the street with the green light. 

† Turns  can  be  modeled  with  the  rules  already  implemented  in  this
model. The rules should be rearranged to allow a turning vehicle to tem-
porarily  switch  the  rules  for  the  cell  directly  after  the  intersection  for
the street it was on before the turn (184 Ø 136) and the cell which the
vehicle  will  turn  into  (136 Ø 184).  This  change  is  restored  when  the
turning vehicle leaves the intersection. 

† Multiple-lane  streets  could  be  modeled  with  parallel  arrays  of  CAs,
with further rules for lane changing; for examples, see [38]. This would
also  increase  the  number  of  cells  that  form  intersections,  so  more
changes should be made to ensure the clearance of vehicles in the direc-
tion they were heading. 
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7. Conclusions

There  are  several  advantages  of  simple  traffic  models.  Such  models
are,  on  the  one  hand,  easy  to  implement  and  reproduce,  and  on  the
other  hand,  computationally  cheap.  Also,  by abstracting most  details
from real traffic, one can observe properties more clearly.

The  simplicity  of  our  cellular  automaton  (CA)  model  allows  for
simulations with many intersections.  In [36] we report simulation re-
sults comparing two traffic-light control methods: an optimized fixed
cycle method and a self-organizing method. We simulated a Manhat-
tan-style  grid  with  100 intersections.  The  dynamical  phases  of  a  sys-
tem  with  several  intersections  can  be  much  richer  than  that  for  the
single  intersection case,  since  there  is  feedback between intersections.
For  example,  the  self-organizing  method  exhibits  six  phase  transi-
tions [36]. 

With  our  simple  model  we  do  not  aim  to  make  realistic  predic-
tions. Our goal is to find better explanations of city traffic properties.
It is possible, nonetheless, to improve the realism of our model while
at the same time preserving its simplicity. Kanai [39] proposes associ-
ating  each  cell  of  a  CA  with  more  than  one  vehicle.  Each  cell  then
represents a number of vehicles varying between one and two. Repre-
senting  more  than  two  vehicles  per  cell  is  unnecessary,  because  it  is
possible in such a situation to reduce the cell size by one-half. By cali-
brating  our  model  using  Kanai’s  method,  we  plan  to  obtain  more
realistic  simulations  within  the  simplicity  of  elementary  cellular  au-
tomata (ECAs). 
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