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In  this  paper  we  exactly  calculate  the  Lyapunov  exponents  and  two
kinds  of  spreading  rates  for  elementary  cellular  automaton  (ECA)  rule
40.  One spreading  rate,  simply  called  the  spreading  rate,  is  defined by
following A. Ilachinski [1],  and the other one originally defined in this
paper  is  called  the  strict  spreading  rate.  For  the  Lyapunov  exponents,
we use M. A. Shereshevsky’s definition [2]. For an arbitrarily given ra-
tional number between 1 ê 2 and 1, we specifically construct a configu-
ration having the Lyapunov exponent equal to the rational number. For
rule  40,  the  Lyapunov exponent  is  equal  to  the  spreading rate  but  not
necessarily to the strict spreading rate. For the strict spreading rate, it is
proved  that  for  an  arbitrarily  given  real  number  between  1 ê 2  and  1,
there exists a configuration having the strict spreading rate equal to the
given  real  number.  This  theorem is  proved  by  construction.  These  dy-
namical  properties  are  observed  on  the  set  of  configurations  of  a  spe-
cific type. We formally prove that the Bernoulli measure of this set is 0,
which is why these dynamical properties have not been observed in com-
puter simulations.   

1. Introductory Preliminaries   

Using computer simulations, S. Wolfram [3] has classified cellular au-
tomata  (CAs)  into  four  classes.  He  defined  class  I  as  the  set  of  CAs
that generate space-time patterns that eventually die out for randomly
given initial configurations.  

This paper,  a continuation of F.  Ohi [4] in which we showed that
elementary cellular automaton (ECA) rule 40 of Wolfram’s class I has
a  Devaney  chaotic  dynamical  subsystem,  exactly  evaluates  the  Lya-
punov exponents, and evaluates two kinds of spreading rates for ECA
rule  40.  One  spreading  rate  is  defined  by  following  A.  Ilachinski  [1]
and is simply called the spreading rate. The other one is originally de-
fined in this paper and is called the strict spreading rate. For the Lya-
punov exponents we use M. A. Shereshevsky’s definition [2]. 

It  is  shown  that  for  an  arbitrarily  given  rational  number  between
1 ê 2  and  1,  there  exists  a  configuration  having  the  Lyapunov  expo-
nent  equal  to  the  rational  number.  For  rule  40,  the  Lyapunov  expo-
nent  is  equal  to  the  spreading  rate,  but  not  necessarily  to  the  strict
spreading rate. For the strict spreading rate, it is proved that for an ar-
bitrarily  given  real  number  there  exists  a  configuration  having  the
strict spreading rate equal to the given real number.Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
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It  is  shown  that  for  an  arbitrarily  given  rational  number  between
1 ê 2  and  1,  there  exists  a  configuration  having  the  Lyapunov  expo-
nent  equal  to  the  rational  number.  For  rule  40,  the  Lyapunov  expo-
nent  is  equal  to  the  spreading  rate,  but  not  necessarily  to  the  strict
spreading rate. For the strict spreading rate, it is proved that for an ar-
bitrarily  given  real  number  there  exists  a  configuration  having  the
strict spreading rate equal to the given real number.

These chaotic properties of rule 40 are shown on a set of configura-
tions of a specific type. We also explain why these specific configura-
tions could not be observed in computer simulations by showing that
the Bernoulli probability measure of the set is 0.

An  ECA is  defined  to  be  a  tuple  H80, 1<, gL,  where  g  is  a  mapping
from 80, 1<3 to 80, 1< and is called a local transition function. An ECA
is completely determined by g and we simply call it ECA g. 

There  exist  28 ‡ 256 ECAs and each  of  them has  the  unique  rule
number ⁄a,b,c gHa, b, cL 2a 22+b 2+c. We write the local transition func-

tion having the rule number r as gr. The local transition function g40
of rule 40 is given by Table 1. 

Ha, b, cL H1, 1, 1L H1, 1, 0L (1, 0, 1L H1, 0, 0L

g40 Ha, b, cL 0 0 1 0

Ha, b, cL H0, 1, 1L H0, 1, 0L H0, 0, 1L H0, 0, 0L

g40 Ha, b, cL 1 0 0 0

Table 1.

It  is  difficult  to  determine  that  rule  40 has  chaotic  properties  and
diverse  Lyapunov  exponent  values  by  observing  space-time  patterns
generated by computer simulation for randomly given initial configu-
rations. The patterns typically die out in a finite number of time steps. 

An  ECA  g  defines  the  global  transition  function  g  from
A ª 80, 1<Z to A as 

x ‡ H… , x-1, x0, x1, …L œ A,
HgHxLLi ‡ gHxi-1, xi, xi+1L, i œ Z.

We usually use a bold letter to show the corresponding global tran-
sition function. An element of A is called a configuration. Z is the set
of all integers. 

The left- and right-shift transformations are written as sL : A Ø A
and sR : A Ø A, respectively. 

Defining a metric d on A as 

x, y œ A, dHx, yL ‡ ‚

i‡-¶

¶ †xi - yi§

2 i
,

we  have  a  topological  dynamical  system  HA, gL  that  defines  an  orbit
of an arbitrarily given initial configuration x œ A as 

g0HxL ‡ x, gt+1HxL ‡ gIgtHxLM, t ¥ 0.
The  space-time  pattern  generated  by  g  for  an  initial  configuration
x œ A  is  the  set  9It, gtHxLM, t ¥ 0=.  Our  general  problem is  to  analyze
the dynamical system and characterize the space-time patterns. 

324 F. Ohi

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.4.323



The  space-time  pattern  generated  by  g  for  an  initial  configuration
x œ A  is  the  set  9It, gtHxLM, t ¥ 0=.  Our  general  problem is  to  analyze
the dynamical system and characterize the space-time patterns. 

A  dynamical  system  HS, gL  is  called  a  dynamical  subsystem  of
HA, gL if S Œ A and gHSL Œ S. HS, dL is a metric subspace of HA, dL. 

A topological dynamical system HS, gL  is called the Devaney chaos
when it has a dense orbit and the class of all periodic configurations is
dense in S. See G. Cattaneo, et al. [5]. 

In this paper we use the notations in Section 1.1 for our rigorous ex-
amination of the space-time patterns generated by rule 40. 

1.1 Notations  
(1) For ai œ 80, 1<ni , bi œ 80, 1<mi , ni ¥ 1, mi ¥ 1, i œ Z, we define 

Hai, biLi‡-¶
+¶ ‡ I… , a1

-1, … , an-1
-1 , b1

-1, … , bm-1
-1 , a1

0,

… , an0
0 , b1

0, … , bm0
0 , a1

1, … , an1
1 , b1

1, … , bm1
1 , …M,

where ai ‡ Ia1
i , … , ani

i M, bi ‡ Ib1
i , … , bmi

i M, i œ Z. 
(2) 0 means one of the three types H… , 0, 0, 0, …L, H… , 0, 0L, and

H0, 0, …L.  It  is  clear  from  the  context  which  type  of  0  is  meant.  We
also use the terminology 0n ‡ H0, … , 0

n

L, n œ N, where N is the set of

all non-negative integers. 1 and 1n  are interpreted similar to 0 and 0n,
respectively. When n ‡ 0, the blocks are empty. 

(3) We write the set of all configurations consisting of 01 or 011 as 

S2 ‡ 9 I0, 1pi
Mi‡-¶
¶ pi ‡ 1 or 2 = ‡

9 I… , 0, 1p-1 , 0, 1p0 , 0, 1p1 , …M pi ‡ 1 or 2 ,

i ‡ … , -1, 0, 1, …=.

2. Spreading Rates and Lyapunov Exponents  

Following [2],  for  an ECA g  the Lyapunov exponent of  x œ A  is  de-
fined by the following procedure. For s œ Z, let  

Ws
+HxL ª 8y œ A " i ¥ s, yi ‡ xi<,

L
è

t
+
HxL ª min 9s gtIW0

+HxLM Õ Ws
+IgtHxLM=,

Lt
+HxL ª maxjœZ :L

è
t
+
JsL

j xN>,
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Ws
-HxL ª 8y œ A " i § s, yi ‡ xi<,

L
è

t
-
HxL ª max 9s gtHW0

-HxLL Õ Ws
-IgtHxLM=,

Lt
- HxL ª minjœZ :L

è
t
-
JsL

j xN>,

where sL
j ‡ sR

-j for j < 0. When 

lim
tØ¶

Lt
+ HxL

t
and lim

tØ¶

Lt
- HxL

t

exist, we call them the right and left Lyapunov exponents of x, respec-
tively. 

For x, y œ A, we set 

DFRHx, yL ª sup 8i xi ¹≠ yi< and DFLHx, yL ª inf 8i xi ¹≠ yi<.

DFRHx, yL is the coordinate number of the rightmost different site be-
tween  x  and  y.  DFLHx, yL  similarly  means  the  coordinate  number  of
the  leftmost  different  site.  Lemma  1  relates  the  spreading  rates  and
the Lyapunov exponents. 
Lemma 1. For ECA g, configuration x œ A and t œ N, we have 

max
yœW0

+ HxL
DFRIgtHxL, gtHyLM ‡ min 9s gtIW0

+HxLM Õ Ws
+IgtHxLM=-1,

min
yœW0

- HxL
DFLIgtHxL, gtHyLM ‡ max 9s gtHW0

-HxLL Õ Ws
-IgtHxLM=+1.

Following  [1],  the  spreading  rate  of  a  configuration  x œ A  is  de-
fined by using the function nj : A Ø A Hj œ ZL defined as 

x œ A, InjHxLMi ‡
xi, i ¹≠ j,

xi, i ‡ j.

nj  reverses the state of the jth  site in the configuration x.  For ECA g,
letting 

Gt
+ HxL ª max

jœZ
9DFRIgtHxL, gtInjHxLM - j= ,

Gt
- HxL ª min

jœZ
9DFLIgtHxL, gtInjHxLM - j= ,

when 

g+HxL ‡ lim
tØ¶

Gt
+HxL

t
and g-HxL ‡ lim

tØ¶

Gt
-HxL

t

exist, we call them the right and left spreading rates of x, respectively. 
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Theorem 1. For ECA g, at x œ A and t œ N, we have 

H1L Lt
+HxL ‡ max

jœZ
max

yœWj
+HxL

9DFRIgtHxL, gtHyLM - j= + 1,

Gt
+HxL § Lt

+HxL.

H2L Lt
-HxL ‡ min

jœZ
min

yœWj
-HxL

9DFRIgtHxL, gtHyLM - j= - 1,

Lt
-HxL § Gt

-HxL.

The spreading rate  does not  generally  coincide with the Lyapunov
exponent, but when the ECA is leftmost or rightmost permutive, they
are generally equivalent. Rule 40 is neither rightmost nor leftmost per-
mutive,  but for the configurations of S2  the Lyapunov exponent and
the spreading rate are the same. 

Changing the order of maximization and taking limits in the defini-
tion  of  the  spreading  rate,  the  right  and  left  strict  spreading  rates,
s g+HxL  and  s g-HxL  respectively,  of  x  are  defined  by  the  following,
when the limit values exist: 

s g+HxL ª max
jœZ

lim
tØ¶

DFRIgtHxL, gtInjHxLM - j

t
,

s g-HxL ª min
jœZ

lim
tØ¶

DFLIgtHxL, gtInjHxLM - j

t
.

The  expression  in  the  upper  curly  brackets  is  the  right  extending
rate  of  the  rightmost  different  site  due  to  the  change  of  the  state  xj,
and s g+HxL is the maximal rate over j œ Z. 

Theorem 2 holds evidently. 

Theorem 2. For ECA g, at x œ A and t œ N, if the limiting values exist,
then we have 

s g+HxL § g+HxL § lim
tØ¶

Lt
+HxL

t
, lim

tØ¶

Lt
-HxL

t
§ g-HxL § s g-HxL.

For rule 40 the spreading rate and the Lyapunov exponent of each
configuration  in  S2  are  coincident  with  each  other,  but  the  strict
spreading  rate  is  not  necessarily  equal  to  them.  These  examinations
are shown next in Section 3. 

3. Dynamical Properties of Rule 40  

Following [4], we have Lemma 2.  
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Lemma 2. (1) For every configuration x œ S2, g40HxL ‡ sLHxL, then S2
is a subshift. 

(2) For 

x ‡ H… , 0, 1m-2 , 0, 1m-1 , 0
\
j

, 0
\

j+1

, …L,

mi ‡ 1 or 2, i ‡ -1, -2, … ,

we have 

g40
t HxL ‡ H… , 0, 1m-2 , 0, 1m-1 , 0

\
j-t

, 0, … , 0
\
j

, 0
\

j+1

, …L.

(3) For 

x ‡ H… , 0, 0
\
j

, 0, 1, 0, 1m1 , 0, 1m2 , …L,

mi ‡ 1 or 2 , i ‡ 1, 2, … ,

we have 

g40HxL ‡ H… , 0, 0
\
j

, 0, 0, 1m1 , 0, 1m2 , …L.

(4) For 

x ‡ H… , 0, 0
\
j

, 0, 1, 1, 0, 1m1 , 0, 1m2 , …L,

mi ‡ 1 or 2 , i ‡ 1, 2, … ,

we have 

g40HxL ‡ H… , 0, 0
\
j

, 0, 1, 0, 1m1 , 0, 1m2 , …L,

g40
2 HxL ‡ H… , 0, 0

\
j

, 0, 0, 1m1 , 0, 1m2 , …L.

Lemma 2 part  (2)  tells  us  that  the  block 00 extends  to  the  left  by
one  site  at  every  time  step,  whatever  the  neighborhood  around  the
block is. Lemma 2 parts (3) and (4) show us that the block 01 on the
right-hand side of the block 00 disappears in one step, the block 011
disappears in two steps, and the block 00 extends to the right by one
site to be the block 000 (see Figure 1). 
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Figure 1.  An  example  time-development  of  a  configuration  of  S2,  where
white and black boxes mean the 0 and 1 state cells, respectively.   

3.1 Dynamical Properties of x Œ S2 and nj IxM  

For  x ‡ I… , 0, 1m0 , 0, 1m1 , 0, 1m2 , 0, …M, " i œ Z, 1 § mi § 2,  and
j œ Z, we may classify njHxL into the following cases.  

(1) When xj ‡ 1, 

(1-i) x ‡ H… , 1, 0, 1
\
j

, 0, 1m1 , 0, 1m2 , 0, …L,

njHxL ‡ H… , 1, 0, 0
\
j

, 0, 1m1 , 0, 1m2 , 0, …L,

(1-ii) x ‡ H… , 1, 0, 1
\
j

, 1, 0, 1m1 , 0, 1m2 , 0, …L,

njHxL ‡ H… , 1, 0, 0
\
j

, 1, 0, 1m1 , 0, 1m2 , 0, …L,

(1-iii) x ‡ H… , 1, 0, 1, 1
\
j

, 0, 1m1 , 0, 1m2 , 0, …L,

njHxL ‡ H… , 1, 0, 1, 0
\
j

, 0, 1m1 , 0, 1m2 , 0, …L.

For  case  (1-ii),  following the  local  rule  g40,  we  have  the  next-step
configurations as 

g40HxL ‡ H… , 1, 0, 1, 1
\
j

, 0, 1m1 , 0, 1m2 , 0, …L,

g40HnjHxLL ‡ H… , 1, 0, 0, 0
\
j

, 0, 1m1 , 0, 1m2 , 0, …L.
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(2) When xj ‡ 0, 

(2-i) x ‡ H… , 0, 1, 1, 0
\
j

, 1, 0, 1m1 , 0, 1m2 , 0, …L,

njHxL ‡ H… , 0, 1, 1, 1
\
j

, 1, 0, 1m1 , 0, 1m2 , 0, …L,

(2-ii) x ‡ H… , 1, 0, 1, 0
\
j

, 1, 0, 1m1 , 0, 1m2 , 0, …L,

njHxL ‡ H… , 1, 0, 1, 1
\
j

, 1, 0, 1m1 , 0, 1m2 , 0, …L,

(2-iii) x ‡ H… , 0, 1, 1, 0
\
j

, 1, 1, 0, 1m1 , 0, 1m2 , 0, …L,

njHxL ‡ H… , 0, 1, 1, 1
\
j

, 1, 1, 0, 1m1 , 0, 1m2 , 0, …L,

(2-iv) x ‡ H… , 1, 0, 1, 0
\
j

, 1, 1, 0, 1m1 , 0, 1m2 , 0, …L,

njHxL ‡ H… , 1, 0, 1, 1
\
j

, 1, 1, 0, 1m1 , 0, 1m2 , 0, …L.

For case (2-i), 

g40HxL ‡ H… , 1, 0, 1
\
j

, 0, 1m1 , 0, 1m2 , 0, …L,

g40HnjHxLL ‡ H… , 1, 0, 0
\
j

, 0, 1m1 , 0, 1m2 , 0, …L.

For case (2-ii), 

g40HxL ‡ H… , 1, 0, 1
\
j

, 0, 1m1 , 0, 1m2 , 0, …L,

g40HnjHxLL ‡ H… , 1, 1, 0
\
j

, 0, 1m1 , 0, 1m2 , 0, …L.

For case (2-iii), 

g40HxL ‡ H… , 1, 0, 1
\
j

, 1, 0, 1m1 , 0, 1m2 , 0, …L,

g40HnjHxLL ‡ H… , 1, 0, 0
\
j

, 0, 0, 1m1 , 0, 1m2 , 0, …L.
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For case (2-iv), 

g40HxL ‡ H… , 1, 0, 1
\
j

, 1, 0, 1m1 , 0, 1m2 , 0, …L,

g40HnjHxLL ‡ H… , 1, 1, 0
\
j

, 0, 0, 1m1 , 0, 1m2 , 0, …L.

For  visual  depictions  of  one-step  developments  for  cases  (1)  and
(2), see Figures 2 through 5. 

Figure 2.  Time-development for cases (1-i) and (1-ii).   

Figure 3.  Time-development for cases (1-iii) and (2-i).   
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Figure 4.  Time-development for cases (2-ii) and (2-iii).   

Figure 5.  Time-development for case (2-iv).   

By  Lemma  2  parts  (1)  and  (2),  we  easily  have  the  following.  For
cases (2-i) and (2-iii): 

DFLIgtHxL, gtInjHxLM ‡ j - t + 1.

For cases (1), (2-ii), and (2-iv): 

DFLIgtHxL, gtInjHxLM ‡ j - t.

Thus, we have Theorem 3. 

Theorem 3.  The  left  Lyapunov  exponent,  the  left  spreading,  and  the
left strict spreading rates are -1 for every configuration of S2. 

From cases (1) and (2), for every x œ S2 and every j œ Z, 

(1)x ‡ H… , 1
\
j

, 0, 1m1 , 0, 1m2 , 0, …L,

(2)njHxL ‡ H… , 0
\
j

, 0, 1m1 , 0, 1m2 , 0, …L,
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or  

g40HxL ‡ H… , 1
\

j or j+1

, 0, 1m1 , 0, 1m2 , 0, …L,

g40HnjHxLL ‡ H… , 0
\

j or j+1

, 0, 1m1 , 0, 1m2 , 0, …L.

DFRIx, njHxLM  and  DFRIgHxL, gInjHxLM  differ  by  at  most  one,  and
this difference tends to zero by taking the limit in the definition of the
right spreading rates and the right Lyapunov exponents, then it is suf-
ficient to examine them for cases (1) and (2). 

A configuration x œ S2 is generally written as 

(3)x ‡ IH01Lpi
, H011Lqi

Mi‡-¶
¶ , pi ¥ 1, qi ¥ 1, i œ Z.

Then, noticing Lemma 2 parts (1), (3), and (4), we have Lemma 3. 

Lemma 3. For 

x ‡ H… , 1
\
j

, H01Lp1
, H011Lq1

, H01Lp2
, H011Lq2

, …L,

njHxL ‡ H… , 0
\
j

, H01Lp1
, H011Lq1

, H01Lp2
, H011Lq2

, …L,

we have the following.   
(i) For ⁄i‡1

k Hpi + 2 qiL § t < ⁄i‡1
k Hpi + 2 qiL + pk+1, 

DFR Ig40
t HxL, g40

t InjHxLMM - j ‡ ‚

i‡1

k

Hpi + qiL + t -‚

i‡1

k

Hpi + 2 qiL.

(ii) For ⁄i‡1
k Hpi + 2 qiL + pk+1 § t < ⁄i‡1

k+1 Hpi + 2 qiL, 

DFR Ig40
t HxL, g40

t InjHxLMM - j ‡

‚

i‡1

k

Hpi + qiL + pk+1 +
t -⁄i‡1

k Hpi + 2 qiL - pk+1

2

where @ D is the Gaussian symbol.  
Figure 6 shows us the time-development of the configuration njHxL

in Lemma 3 and how the rightmost different site between g40
t HxL  and

g40
t InjHxLM  extends  to  the  right  as  t Ø ¶,  which  is  marked  by  thick

lines in the figure. 

Exact Calculation of Lyapunov Exponents and Spreading Rates 333

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.4.323



Figure 6. p1  01-blocks disappear in p1  time steps and the rightmost  different
site  j  moves  over  p1  sites  to  the  right.  p2  011-blocks  disappear  in  2 p2  time
steps  and the  rightmost  different  site  j + p2  moves  over  p2  sites  to  the  right.
The  rightmost  different  sites  between  g40

t HxL  and  g40
t InjHxLM  are  marked  by

thick lines. 

4. Right Lyapunov Exponents, Right Spreading, and Right Strict 
Spreading Rates of Configurations in S2  

Theorem 4. For rule 40, the spreading rate and the Lyapunov exponent
of each configuration in S2 are equivalent. 

Proof.   Noticing 

Gt
+HxL ‡ max

jœZ
9DFRIgtHxL, gtInjHxLM - j=,
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Lt
+HxL ‡ max

jœZ
max

yœWj+1
+ HxL

9DFRIgtHxL, gtHyLM - j=,

we prove the inequality Lt
+H xL § Gt

+HxL. 
For  y œ Wj+1

+ HxL,  letting  i0 ª max 8 i xi ¹≠ yi, i œ Z <,  we  have

i0 § j and then we may write 

x ‡ I… , xi0 , xi0+1, … , xj, …M,

y ‡ I… , yi0 , xi0+1, … , xj, …M, xi0 ¹≠ yi0 .

Noticing the dynamical properties of rule 40, we have 

DFRIg40
t HxL, g40

t HyLM § DFRIg40
t HxL, g40

t Ini0 HxLMM.

Since i0 § j, 

DFRIg40
t HxL, g40

t HyLM - j § DFRIg40
t HxL, g40

t Ini0 HxLMM - i0 § Gt
+HxL

holds for every y œ Wj+1
+ HxL, and then the intended inequality holds. ·

Theorem 5. For every rational number v ê u between 1 ê 2 and 1, where
the fraction is  irreducible and v  and u  are positive integers,  there ex-
ists a configuration in S2 whose right Lyapunov exponent is v ê u. 

Proof.    When  pi ‡ p  and  qi ‡ q with Hi ‡ 1, 2, …L  in  equation  (3),
we have from Lemma 3 parts (i) and (ii), 

lim
tØ¶

Gt
+HxL

t
‡

p + q

p + 2 q
.

Then, setting p ‡ 2 v - u and q ‡ u - v, 

lim
tØ¶

Gt
+HxL

t
‡

v

u
. ·

Example 1. This configuration x shows us that the right spreading and
the strict spreading rates are not necessarily equivalent: 

x ‡ I… , 0, 1, 0, 1, 0, 1, H01Lp,

H011Lq, H01Lp, H011Lq, H01Lp, H011Lq, …M,

where p ‡ 2 v - u,  q ‡ u - v,  and 1 ê 2 § v ê u § 1 is irreducible and u
and v are positive integers. For this x 

" j œ Z, lim
tØ¶

DFRIg40
t HxL, g40

t InjHxLMM - j

t
‡

v

u
,
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which means that the strict spreading rate of the configuration is v ê u.
Otherwise, noticing Lemma 3 and Figure 6, 

" t ¥ 0, $ j<< - t, DFRIgtHxL, gtInjHxLMM - j ‡ t,

and then 

" t ¥ 0, sup
jœZ

DFRIgtHxL, gtInjHxLMM - j

t
‡ 1.

Thus, the spreading rate and the Lyapunov exponent of this configura-
tion are 1. 

Next, we prove a property of the strict spreading rate of a configu-
ration in S2. The proof requires Lemma 4. 

Lemma 4. For 

x ‡ H… , 1
\
j

, H01Lp1
, H011Lq1

, H01Lp2
, H011Lq2

, …L,

njHxL ‡ H… , 0
\
j

, H01Lp1
, H011Lq1

, H01Lp2
, H011Lq2

, …L,

if  

lim
iØ¶

pi + qi

pi + 2 qi
‡ a and lim

kØ¶

pk+1

⁄i‡1
k Hpi + 2 qiL

‡ 0

then  

lim
tØ¶

DFRIg40
t HxL, g40

t InjHxLMM - j

t
‡ a.

Proof.   We only prove Lemma 4 for Lemma 3, case (i). Let 

‚

i‡1

k

Hpi + 2 qiL § t < ‚

i‡1

k

Hpi + 2 qiL + pk+1.

From Lemma 3, case (i) we have 

DFRIg40
t HxL, g40

t InjHxLMM - j

t
‡

⁄i‡1
k Hpi + qiL

t
+ 1 -

⁄i‡1
k Hpi + 2 qiL

t
.
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Noticing the given condition for t, 

⁄i‡1
k Hpi + 2 qiL

⁄i‡1
k Hpi + 2 qiL + pk+1

<
⁄i‡1

k Hpi + 2 qiL

t
§

⁄i‡1
k Hpi + 2 qiL

⁄i‡1
k Hpi + 2 qiL

‡ 1.

The leftmost term tends to 1 as j Ø ¶ by the condition of this lemma.
Then, 

lim
jØ¶

⁄i‡1
k Hpi + 2 qiL

t
‡ 1.

We also have 

⁄i‡1
k Hpi + qiL

⁄i‡1
k Hpi + 2 qiL + pk+1

<
⁄i‡1

k Hpi + qiL

t
§

⁄i‡1
k Hpi + qiL

⁄i‡1
k Hpi + 2 qiL

.

From the conditions of this lemma, 

lim
kØ¶

⁄i‡1
k Hpi + qiL

⁄i‡1
k Hpi + 2 qiL + pk+1

‡ a, lim
kØ¶

⁄i‡1
k Hpi + qiL

⁄i‡1
k Hpi + 2 qiL

‡ a

holds, and then 

lim
tØ¶

⁄i‡1
k Hpi + qiL

t
‡ a.

Thus, we finally have 

(4)lim
tØ¶

DFRIg40
t HxL, g40

t InjHxLMM - j

t
‡ a.

The proof is similar for Lemma 3, case (ii). ·

Theorem 6. For every real number a between 1 ê 2 and 1, there exists a
configuration whose strict spreading rate is a. 

Proof.    We  construct  8pi<i¥1  and  8qi<i¥1  satisfying  the  conditions  of
Lemma 4. 

Let  8vi ê ui<i¥1  be  a  series  of  rational  numbers  that  converges  to  a,
and  each  term  satisfies  1 ê 2 § vi ê ui § 1.  Then,  2 vi - ui > 0  and
ui - vi > 0. 
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For a sequence of  positive numbers 8ei<i¥1  that  converges to 0,  we
take a series of integers 9ij=j¥1 as 

2 vk+1 - uk+1

⁄j‡1
k ij uj

< ek, k ‡ 1, 2, ….

Using the series 9ij=j¥1, we define 8pi<i¥1 and 8qi<i¥1 as 

pi1+º⋯+ij-1+1 ‡ º⋯ ‡ pi1+º⋯+ij ‡ 2 vj - uj,

qi1+º⋯+ij-1+1 ‡ º⋯ ‡ qi1+º⋯+ij ‡ uj - vj, j ‡ 1, 2, …

where we promise i0 ‡ 0. 
For ij-1 < k § ij, pk ‡ 2 vj - uj and qk ‡ uj - vj. Then we have 

pk + qk

pk + 2 qk
‡

vj

uj
Ø a,

as k Ø ¶ and then j Ø ¶. 
For ij-1 < k < ij, 

pk+1

⁄i=1
k Hpi + 2 qiL

=

2 vj - uj

⁄l=1
j-1 ij-1 uj-1 + Ik - ij-1M 2 vj

<
2 vj - uj

⁄l=1
j-1 ij-1 uj-1

< ej

and for k ‡ ij 

pk+1

⁄i=1
k Hpi + 2 qiL

=
2 vj+1 - uj+1

⁄l=1
j ij uj

< ej+1.

Hence,  noticing  ei Ø 0,  the  constructed  8pi<i¥1  and  8qi<i¥1  satisfy  the
conditions  of  Lemma 4  and  then  define  a  configuration  whose  strict
spreading rate is a. ·

5. Bernoulli Measure of S2 is 0  

In this section we prove that the Bernoulli measure of S2 is 0. This the-
orem  explains  why  the  configuration  in  S2  could  not  be  observed,
making  the  left-shift  dynamical  property  of  rule  40  undetectable  by
computer simulations for randomly given initial configurations. 
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Let Hq, pL be a probability distribution on 80, 1< and P be the prod-
uct probability measure Hq, pLZ  on HA, F L, where F  is the s field gen-
erated by the set of all cylinder subsets of A. 

We prove PHS2L ‡ 0, using the following notations: 

A- ‡ 8H… , x-2, x-1L xi œ 80, 1<, i ‡ -1, -2, …<,

@a0, a1, … , anD ‡ 8Hx0, … , xn, xn+1, …L xi ‡ ai H0 § i § nL,
xi ‡ 0 or 1 Hi ¥ n + 1L<,

A ‡ 8a , b< , An ‡ 8a , b<n , a ‡ H0, 1L , b ‡ H0, 1, 1L .

It is easily seen that  

" a œ An, @a, bD Õ @a, aD,

then  

a, b œ An, a ¹≠ bï @a, aD › @b, aD ‡ f,

Ê
aœAn+1 @aD ‡ Ê

aœAn @a, aD,

and noticing the independence property of the product measure P, we
have  

P JA-äÊ
aœAn+1 @aDN ‡ ‚

aœAn

PHA-ä @a, aDL ‡

‚

k‡0

n n
k

Iq p2M
k
Hq pLn-k Hq pL ‡ q pIq p + q p2M

n ‡

pn+1 qn+1 H1 + pLn ‡ pn+1 H1 - pL I1 - p2M
n.

The following inclusion is easily verified for every n ¥ 1:  

S2 Œ JA-äÊ
aœAn+1 @aDN ‹

JA-ä 8H1
\
0

L<äÊ
aœAn+1 @aDN ‹ JA-ä 8H1

\
0

, 1L<äÊ
aœAn+1 @aDN.

Hence,   

PHS2L § pn+1H1 - pL I1 - p2M
n + p pn+1H1 - pL I1 - p2M

n +

p2 pn+1H1 - pL I1 - p2M
n Ø 0 Hn Ø ¶L,

and we finally have Theorem 7.  

Theorem 7. PHS2L ‡ 0. 
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When a configuration is randomly given, the state of each cell is de-
termined  to  be  0  or  1  with  probability  1 ê 2,  which  is  the  case  of
p ‡ q ‡ 1 ê 2 for the stated product probability measure. 

Theorem 7  tells  us  that  the  configurations  in  S2  are  not  observed
in  a  computer  simulation  when  an  initial  configuration  is  randomly
given. 

6. Concluding Remarks  

In  this  paper,  elementary  cellular  automaton  (ECA)  rule  40  in  Wol-
fram’s class I is examined and configurations of S2  are shown to have
diverse Lyapunov exponent values. Spreading rates of a configuration
are  calculated  by  a  practical  construction  given  any  exponents  and
rates.  Furthermore,  the  Lyapunov  exponents  are  shown  to  be  the
spreading rates for rule 40 and may not generally reflect the complex-
ity of space-time patterns generated by other ECAs.  

The Lyapunov exponents and the spreading rates for rule 40 are es-
sentially  determined  by  the  relative  frequencies  of  the  special  blocks
010 and 011 in configurations of S2. 

We  typically  think  that  the  space-time  patterns  generated  by  rule
40 die out in a finite number of time steps and that the rule does not
have  a  left-shift  dynamical  subsystem  HS2, sLL.  Since  the  Bernoulli
measure  of  S2  is  0  as  shown in  Section 5,  it  is  natural  that  this  left-
shift  dynamical  subsystem  has  not  been  observed.  Our  work,  how-
ever, suggests that even ECAs in Wolfram’s classes I or II can have in-
teresting space-time patterns under intense examination. 

It  is  possibly true that one rule can show different kinds of  space-
time patterns depending on the patterns of initial configurations, and
in this sense, generally, one rule may have some different rules embed-
ded in it; for example, rule 40 is left-shift on S2 and has the unique at-
tractor 80< on A\S2. However, we need more evidence to support this
assertion for future work. 

Furthermore,  we  still  have  the  problem  of  calculating  the  Lya-
punov  exponents  of  F.  Bagnoli  and  R.  Rechtman  [6],  which  are  de-
fined by using Boolean derivatives. It will be an interesting problem to
determine  what  kind  of  values  can  be  used  as  the  Lyapunov  expo-
nents. 
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