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In this paper we exactly calculate the Lyapunov exponents and two
kinds of spreading rates for elementary cellular automaton (ECA) rule
40. One spreading rate, simply called the spreading rate, is defined by
following A. Ilachinski [1], and the other one originally defined in this
paper is called the strict spreading rate. For the Lyapunov exponents,
we use M. A. Shereshevsky’s definition [2]. For an arbitrarily given ra-
tional number between 1/2 and 1, we specifically construct a configu-
ration having the Lyapunov exponent equal to the rational number. For
rule 40, the Lyapunov exponent is equal to the spreading rate but not
necessarily to the strict spreading rate. For the strict spreading rate, it is
proved that for an arbitrarily given real number between 1/2 and 1,
there exists a configuration having the strict spreading rate equal to the
given real number. This theorem is proved by construction. These dy-
namical properties are observed on the set of configurations of a spe-
cific type. We formally prove that the Bernoulli measure of this set is 0,
which is why these dynamical properties have not been observed in com-
puter simulations.

| 1. Introductory Preliminaries

Using computer simulations, S. Wolfram [3] has classified cellular au-
tomata (CAs) into four classes. He defined class I as the set of CAs
that generate space-time patterns that eventually die out for randomly
given initial configurations.

This paper, a continuation of F. Ohi [4] in which we showed that
elementary cellular automaton (ECA) rule 40 of Wolfram’s class I has
a Devaney chaotic dynamical subsystem, exactly evaluates the Lya-
punov exponents, and evaluates two kinds of spreading rates for ECA
rule 40. One spreading rate is defined by following A. Ilachinski [1]
and is simply called the spreading rate. The other one is originally de-
fined in this paper and is called the strict spreading rate. For the Lya-
punov exponents we use M. A. Shereshevsky’s definition [2].

It is shown that for an arbitrarily given rational number between
1/2 and 1, there exists a configuration having the Lyapunov expo-
nent equal to the rational number. For rule 40, the Lyapunov expo-
nent is equal to the spreading rate, but not necessarily to the strict
spreading rate. For the strict spreading rate, it is proved that for an ar-
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bitrarily given real number there exists a configuration having the
strict spreading rate equal to the given real number.

These chaotic properties of rule 40 are shown on a set of configura-
tions of a specific type. We also explain why these specific configura-
tions could not be observed in computer simulations by showing that
the Bernoulli probability measure of the set is 0.

An ECA is defined to be a tuple ({0, 1}, g), where g is a mapping
from {0, 1}3 to {0, 1} and is called a local transition function. An ECA
is completely determined by g and we simply call it ECA g.

There exist 28 = 256 ECAs and each of them has the unique rule
number Yabc 8 b, c)2° 22+b2+¢ We write the local transition func-

tion having the rule number 7 as g,. The local transition function g4
of rule 40 is given by Table 1.

(a, b, ¢ (1,1, 1) |(1,1,0) |(1,0, 1) | (1,0, 0)
g40 (a, b, © 0 0 1 0
(a, b, ¢ 0,1, 1) |0, 1,0) |0, 0, 1) |0, 0, 0)
840 (a, b, ©) 1 0 0 0

Table 1.

It is difficult to determine that rule 40 has chaotic properties and
diverse Lyapunov exponent values by observing space-time patterns
generated by computer simulation for randomly given initial configu-
rations. The patterns typically die out in a finite number of time steps.

An ECA g defines the global transition function g from
A =10, 1}2 to A as
X = (ccoy X_15 X0y X5 -..) € A,
(8(x)); = glx;—1, %j5 X;11), 1 € Z.
We usually use a bold letter to show the corresponding global tran-
sition function. An element of A is called a configuration. Z is the set

of all integers.
The left- and right-shift transformations are written as o : A » A

and og : A - A, respectively.
Defining a metric d on A as
x, ye A, dx,y) = Z

i=—00

lx; — il
2lil

we have a topological dynamical system (A, g) that defines an orbit
of an arbitrarily given initial configuration x € A as

g =x gl =glg'w) t=0.
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The space-time pattern generated by g for an initial configuration
x € A is the set {(t, gt(x)), t= O}. Our general problem is to analyze
the dynamical system and characterize the space-time patterns.

A dynamical system (S, g) is called a dynamical subsystem of
(A, g)if Sc Aand g(S) C S. (S, d) is a metric subspace of (A, d).

A topological dynamical system (S, g) is called the Devaney chaos

when it has a dense orbit and the class of all periodic configurations is
dense in S. See G. Cattaneo, et al. [5].

In this paper we use the notations in Section 1.1 for our rigorous ex-
amination of the space-time patterns generated by rule 40.

l 1.1 Notations
(1) For ¢; € {0, 1Y%, B; € {0, 1", n; = 1, m; = 1, i € Z, we define

-1 -1 —1 -1 0
(aia ﬂi ;:iooz("'sa'] 9""an_13 B] "'-3Bm_1’ala
0 0 0 1 1 1 1
s @iy Bls ooy Bings @1s o5 s Bl oo s By ),

where @; = (a"l, cees aili), B = ( ’i, cees ﬁﬁni), ie”.

(2) 0 means one of the three types (..., 0, 0, 0, ...), (..., 0, 0), and
0, 0, ...). It is clear from the context which type of 0 is meant. We
also use the terminology 0,, = (0, ..., 0), n € N, where N is the set of

n
all non-negative integers. 1 and 1,, are interpreted similar to 0 and 0,,,
respectively. When # = 0, the blocks are empty.
(3) We write the set of all configurations consisting of 01 or 011 as

S ={(0 1) [ pi=Tor2}=
{(~,0,1,_,0,15,0,1,,..) | pi=1or2,
i=..,-1,0,1,..}.

I 2. Spreading Rates and Lyapunov Exponents

Following [2], for an ECA g the Lyapunov exponent of x € A is de-
fined by the following procedure. For s € Z, let

Wix)=s{yeA|Vizs, y; =x;},
/~\:(x) = min {s | g(Wix) c W_j(gt(x))},

Af (x) = maxjez {A:(Ui x)} ’
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Wi ={yeA|Viss, y;=x,
A; (x) = max {s | g(Wyx)) c Ws_(gt(x))},
A; (x) = minjcy {[\;(0'2 x)},
where O'/L = O'I_J for j < 0. When
Af (x) Ay (x)

lim and lim
-0 t t—>00 t

exist, we call them the right and left Lyapunov exponents of x, respec-
tively.
For x, y € A, we set

DFR(x, y) = sup{i | x; # y;} and DFL(x, y) = inf {i | x; # y;}.

DFR(x, v) is the coordinate number of the rightmost different site be-
tween x and y. DFL(x, y) similarly means the coordinate number of
the leftmost different site. Lemma 1 relates the spreading rates and
the Lyapunov exponents.

Lemma 1. For ECA g, configuration x € A and t € N, we have

max DFR(g'(x), g'(y)) = min{s | g (W} (x)) ¢ W{(g'))} -1,
yeWy (x)

min DFL(g'(x), g'(y)) = max {s | g"(Wy(x) c W;(gt(x))} +1.
yeWy (x)

Following [1], the spreading rate of a configuration x € A is de-
fined by using the function 7; : A — A(j € Z) defined as

X, ER

X, =]

xedA, (nx), = {

n; reverses the state of the /M site in the configuration x. For ECA g,

letting
I} (x)= max {DFR(g' (%), g'(n;(x) - j} ,
Iy (x)= [;éi; {DFL(g" ), g'(nj(x)) - j} ,
when
o= T = o

exist, we call them the right and left spreading rates of x, respectively.
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Theorem 1. For ECA g, at x € A and ¢ € N, we have

(1) Af (x) = max max {DFR(g'(x), g’()-j}+1,
JEZ yeW} (x)

I (x) < Af (x).

(2) Aj(x)= min min {DFR(g'(x), g'¥)-j} -1,
j€Z yeW; (x)

A7 (%) < T ().

The spreading rate does not generally coincide with the Lyapunov
exponent, but when the ECA is leftmost or rightmost permutive, they
are generally equivalent. Rule 40 is neither rightmost nor leftmost per-
mutive, but for the configurations of S, the Lyapunov exponent and
the spreading rate are the same.

Changing the order of maximization and taking limits in the defini-
tion of the spreading rate, the right and left strict spreading rates,
syt (x) and sy~ (x) respectively, of x are defined by the following,
when the limit values exist:

{ mwﬁn§Ww%}

lim
t—>o0 t

syT(x) = max
jeEZ

lim
1—00 t

, DFL(g'(x), g'(n;(x)) - j
sy (x) =min .
jeZ
The expression in the upper curly brackets is the right extending
rate of the rightmost different site due to the change of the state x;,
and sy*(x) is the maximal rate over j € Z.

Theorem 2 holds evidently.

Theorem 2. For ECA g, at x € A and ¢t € N, if the limiting values exist,
then we have
Af(x)  Af(x)

syT(x) = y'(x) < lim , lim <y (x) <sy (x).
t—o0 t t—oo t

For rule 40 the spreading rate and the Lyapunov exponent of each
configuration in S, are coincident with each other, but the strict
spreading rate is not necessarily equal to them. These examinations
are shown next in Section 3.

| 3. Dynamical Properties of Rule 40

Following [4], we have Lemma 2.
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Lemma 2. (1) For every configuration x € S, g40(x) = 01.(x), then S,
is a subshift.
(2) For

—_

+

i
2= (s 0, Ly, 0,1, 0, 0, 00),

~

m;=1or2, i=-1,-2, ...,

we have

]
8400 = (s 0,1y, 0,1, 1, 0,0,...,0, 0, ..0).
(3) For
!
K= (s 0,0,0,1,0, 1y, 0, 1, 00),
m;=1or2,i=1,2, ...,
we have
i
840 = (.05 0,0,0,0, 1, 0, 1, ..0).
(4) For
i
K= (s 0,0,0,1,1,0, 1,0, 1y, ..),
m;=1or2,i=1,2,...,
we have
j
240 =5 0,0,0,1,0, 1, 0, 1, ..0),
]

gézlo(x):( b) 09 09 09 Os 1m15 09 1m29 )

Lemma 2 part (2) tells us that the block 00 extends to the left by
one site at every time step, whatever the neighborhood around the
block is. Lemma 2 parts (3) and (4) show us that the block 01 on the
right-hand side of the block 00 disappears in one step, the block 011
disappears in two steps, and the block 00 extends to the right by one
site to be the block 000 (see Figure 1).
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Figure 1. An example time-development of a configuration of S;, where
white and black boxes mean the 0 and 1 state cells, respectively.

I 3.1 Dynamical Properties of x € Sz and n; (x)
For x = (..., 0, Ly, 0, 11, 0, 11, 0, ...), Vi€ Z, 1 <m; <2, and
j € Z, we may classify 7;(x) into the following cases.

(1) When x; =1,

(1) %=y 1,0, 1,0, 1y, 0, 1), 0, ..0),
1) = (oeey 1,0,0,0, Ly, 0, 1y, 0, ..0),

(1) x=(ey 1,0,1,1,0, 1, 0, Ly, 0, ..,
)= (cor s 1,0, 0, 1,0, Ly, 0, Ly, 0, .20,

(i) x=(ry 1,0,1,1,0, 1, 0, 1), 0, ...),
!
R0 = (e s 1,0, 1,0, 0, Ly, 0, Ly, 0, ..

For case (1-ii), following the local rule g4, we have the next-step
configurations as

]
g4()(x)=("' ) 13 Oa 19 19 03 1m13 Oa 17}123 09 )a

i

84001/ = (.., 1,0, 0,0, 0, 1y, 0, 1, 0, ...).
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(2) When x; =0,

i

(2-)  x=(ry 0,1,1,0,1,0, 1y, 0, 1, 0, ..0),
nj(x)z("' bl 0) ]" 1’ I’ ]‘) O’ 1m1’ 0’ 1m2’ 09 "‘),

!
(2-4i)  x=(ey 1,0,1,0,1,0, 1,0, 1), 0, ..0),
n](x)z( ] 13 Os 13 i) 13 Oa 1m1a Os 1m23 0) )3

(2-iii)  x=(
nj(x) = (
(2-1v) x=(

nj(x) = (

For case (2-1),

g40(x) = (

For case (2-11),

g40(x) = (

For case (2-1i1),

g40(x) = (

840(nj(x)) = (...

]

s 0,1,1,0,1,1,0, 1, 0, 1, 0, ..,
i

s 0,1, 1, 1,1, 1,0, 1, 0, 1, 0, .0,
i

s 1,0,1,0,1,1,0, 1, 0, 1, 0, ..,
]

s 1,0, 1,1,1,1,0, 1y, 0, 1, 0, ).

i

bl 1’ Oa 17 07 177117 0, lmza Oa "-)a

i

1 1,0,0,0, 1,50, 1), 0, ..0).

-

bl 1’ Oa 17 07 177117 0, lmza Oa "-)a

bl ]‘) ]" 0’ 0’ 1m1’ 0) 1m2) O’ "')‘

> 1’ Oa 17 17 o, lml, Oa lmza 07 '-')7

i

> 13 Oa Oa 0: 03 lm]a Oa 1m2’ Oa )
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For case (2-1v),

g40(x)=("' ) 19 O’ 1) 19 09 1m19 O’ 171’12’ O) "')’

i

g40(”,(x)) =("' 5 1, 1’ 03 09 0, 1m1’ O’ lmza 07 ---)-

For visual depictions of one-step developments for cases (1) and
(2), see Figures 2 through 5.

(1-1) _ (1-ii)
:v EEE B @ EE BN
ny(e)  CECC W] n(@) (]

g H N EEE g HEE W
gyo(ni(z)) T T T A guo(ni(z) LT T M

Figure 2. Time-development for cases (1-i) and (1-ii).

(1-iii) | (2-1)

x EE B x HE B BN
@) OO nye) ]
guo(z)  EC gz HE N EE
s0(n;(x) T T INCIC)] EEE B |

Figure 3. Time-development for cases (1-iii) and (2-i).
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(2-ii) | (2-iii) |

x H B NN z B N
ny(z) W] ni(@)
g [N EEME gl HEC W)
9ao(n;(z) (LT W T 9uo(n; () M LT T W

Figure 4. Time-development for cases (2-ii) and (2-iii).

(2-iv)

z (I
ni(x) O
gz H N NN
gao(nj(z)) [ H  HEN |

Figure 5. Time-development for case (2-iv).

By Lemma 2 parts (1) and (2), we easily have the following. For
cases (2-i) and (2-iii):

DFL(g"(x), g'(nj(x)) = j—t+1.
For cases (1), (2-ii), and (2-iv):
DFL(g'(x), g'(n;j(x)) = j - .
Thus, we have Theorem 3.

Theorem 3. The left Lyapunov exponent, the left spreading, and the
left strict spreading rates are — 1 for every configuration of S,.

From cases (1) and (2), for every x € S; and every j € Z,
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or
jorvj+1
200 =Cey 1,0, 1, 0, 1), 0, .0),
jorj+1
8401 = (e 0,0, 1, 0, 1y, 0, ..0).

DFR(x, nj(x)) and DFR(g(x), g(n]-(x)) differ by at most one, and

this difference tends to zero by taking the limit in the definition of the
right spreading rates and the right Lyapunov exponents, then it is suf-
ficient to examine them for cases (1) and (2).

A configuration x € S, is generally written as

x = ((01)!,1_, (011)%);;_00, pi=1,q,=21,ieZ. (3)
Then, noticing Lemma 2 parts (1), (3), and (4), we have Lemma 3.

Lemma 3. For
!
x=C(.., 1, (Ol)pl’ (Oll)ql, (Ol)pz, (Oll)qz, )y

j
n/(x) = ('“ ] 09 (Ol)pla (Oll)qla (01)p23 (011)q29 '“)9

we have the following.
(i) For Y&, (p; +2g) <t < T& | (i +2d) + brar,

k k
DEFR (gho(x), gho(n;(x))) - j = Z Pi+q)+t- Z Pit+24q,)).
=1 i=1
(ii) For XX, (p; +2g) + prar < t < X (p; +2 g,
DEFR (ghy(x), g4o(r(%))) —j =

t= % (0 +24) - Prst
2

k
Z (Bi+4j) +Pr1 +
=1
where [ ] is the Gaussian symbol.

Figure 6 shows us the time-development of the configuration 7;(x)
in Lemma 3 and how the rightmost different site between gf,(x) and
gf;o(”j(x)) extends to the right as ¢ - co, which is marked by thick
lines in the figure.
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L p; 0l-blocks P 011-blocks
nzy WM EEHENESEE NN BN BN BN

g (n;(x)) ] I B BN BN B

o pa 011-blocks

[ ] [ N . \ \

EEEmEmEE B B -
T Ommm | -
T O | —
T OmT | —
@) 11 1 T ] —

J+p1+p2

Figure 6. p1 01-blocks disappear in pq time steps and the rightmost different
site ; moves over pq sites to the right. po 011-blocks disappear in 2 p, time
steps and the rightmost different site j + p» moves over p sites to the right.

The rightmost different sites between g} (x) and gf‘o(ni(x)) are marked by
thick lines.

4. Right Lyapunov Exponents, Right Spreading, and Right Strict
Spreading Rates of Configurations in S»

Theorem 4. For rule 40, the spreading rate and the Lyapunov exponent
of each configuration in S, are equivalent.

Proof. Noticing
I/ (x) = max {DFR(g' ), g'((x)) - j},

jEL
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Af(x)=max max {DFR(gt(x), gt(y)) - j},

JEZ yeW! | (x)

we prove the inequality Af(x) < I'f (x).
For ye W;;l(x), letting ip = max{i | x; #vy;, i€ Z}, we have
ip < j and then we may write
x=(..., Xigs Xigtls =+ > Xjs ),
Y= (e Vigs Xigals o> Xjo +o)s Xig # Vi -
Noticing the dynamical properties of rule 40, we have
DFR(g(x), g40(») = DFR(gho (), gho(r;, (x))).
Since iy < j,
DFR(gho(x), g40(») =/ = DFR(gho(x), gho(n,(x))) —ip = T (%)
holds for every y € W;;l(x), and then the intended inequality holds. O

Theorem 5. For every rational number v/« between 1/2 and 1, where
the fraction is irreducible and v and u are positive integers, there ex-
ists a configuration in S, whose right Lyapunov exponent is v / u.

Proof. When p; =p and q; = qwith(i =1, 2, ...) in equation (3),
we have from Lemma 3 parts (i) and (ii),

- T p+q
lim = .
tmeo p+2q

Then, settingp =2v—-wuand g = u — v,

Ifx) v

lim
1—00 t u

Example 1. This configuration x shows us that the right spreading and
the strict spreading rates are not necessarily equivalent:

x=(...,0,1,0,1,0, 1, (01),,
(011)g, (01)p, (011)g, (01, (011)g, -..),

where p =2v-u,q=u-v,and 1/2 <v/u <1 is irreducible and «
and v are positive integers. For this x
DFR(gho(x), gho(ni®))) =/ v

Y ] (S Z, hm = )
t—o0 t u
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which means that the strict spreading rate of the configuration is v/ u.
Otherwise, noticing Lemma 3 and Figure 6,

¥t=0, j<<-t, DFR(g"x), g'(n;(x)) -/ =t,
and then
DFR(g'(x), g'(n;(x))) - j

Vit=0, sup =1.
jeZ t

Thus, the spreading rate and the Lyapunov exponent of this configura-
tion are 1.

Next, we prove a property of the strict spreading rate of a configu-
ration in S,. The proof requires Lemma 4.

Lemma 4. For

i
x=(cy 1,01),,, (011),, (01)p,, (011),,, ...),

i
(@) = (..., 0, (01), (011)y, (01)p,, (011)y, ...),
if
pitqi Pr+1

lim =aand Ilm ——— =0
im0 p;+2 g, k—co 25;1 Pi+24q)

then

 DFR(gho@), gho(n;)) - j
im =
>0 t

Proof. We only prove Lemma 4 for Lemma 3, case (i). Let

k k

Dii+2a) <t <> (0i+24)+Pre1-
i=1 i=1

From Lemma 3, case (i) we have
DFR(gho®), gho(nj))) — j
; =
k +q. k . .
zli:l (pl+ql) 1 Zj;l (p1+2qz)

+1- .
t t
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Noticing the given condition for ¢,
S (pi+24)) <zgum+2%><zﬁum+2%>
Y i +2d) + Prst t Yk pi+2q)

The leftmost term tends to 1 as j > oo by the condition of this lemma.
Then,

. Z{;l (pz +2 qi)
lim —mMM =
j—o0 t
We also have
Y i+a) . Yk i+a) B Yk i+
YR (i +20)+ Prat t Y pi+2q)

From the conditions of this lemma,

S i+ ) S @i+ a)

lim — =, fim —= =g
koo 3R L Di+24) + Prea koo 3 L i+ 24))

holds, and then

i Zf:l i +4q))
m— = Q.
00 t

Thus, we finally have

. DFR(gZO(x)a gflo(nl(x))) _j
lim =@ “
t—00 t

The proof is similar for Lemma 3, case (ii). O

Theorem 6. For every real number o between 1/2 and 1, there exists a
configuration whose strict spreading rate is a.

Proof. We construct {p;};~1 and {g;};~1 satisfying the conditions of
Lemma 4.

Let {v;/u;};s1 be a series of rational numbers that converges to a,
and each term satisfies 1/2 <v;/u; <1. Then, 2v;—u; >0 and
u; —v; > 0.
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For a sequence of positive numbers {€;};.; that converges to 0, we

take a series of integers {z]-}/zl as
2Vp1q — g1
. <% k=1,2, ...
21 iU
Using the series {if}jzl’ we define {p;},~1 and {g,};>1 as
pi1+~~-+i,-_1+1 = =pi1+~-+ii = 27//‘ —uj,
igttij 41 = 7 = Gigeeti; = U~ V) =12, ..

where we promise iy = 0.
Fori;_y <k =<ij, pp =2vj—u;and q; = u; - v;. Then we have
Petdr Y

=— s«

Pe+2qr uj

bl

as k - oo and then j - oo.

Fori;_y <k <i,
Ph+1

Sy (pi+24)

21/,'—1/!]' 21/1'—14,'

j—1 . . j—1 .
Zl:l L1 Ui + (k - li_l) 2 vj Zl:l L1 U1
and for k = i
Pr+1 20j41 — Uiy

Z{_Q:l (pl +2 ql) Z;:l Z] M]'

<€/‘+1.

Hence, noticing €; » 0, the constructed {p;};»1 and {g;};~1 satisfy the
conditions of Lemma 4 and then define a configuration whose strict
spreading rate is . O

| 5. Bernoulli Measure of S; is 0

In this section we prove that the Bernoulli measure of S, is 0. This the-
orem explains why the configuration in S, could not be observed,
making the left-shift dynamical property of rule 40 undetectable by
computer simulations for randomly given initial configurations.

Complex Systems, 19 © 2011 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.19.4.323



Exact Calculation of Lyapunov Exponents and Spreading Rates 339

Let (g, p) be a probability distribution on {0, 1} and P be the prod-
uct probability measure (g, p)Z on (A, F), where F is the o field gen-

erated by the set of all cylinder subsets of A.
We prove P(S,) = 0, using the following notations:

A ={(...,x9,x_1) | x,€{0,1}, i=-1,-2, ...},
[ag, ats s anl ={(x0s v s Xigs X1 --) | % = a;(0 =i < n),
x;=0o0rl(G=n+1)
A=f{a, b}, A={a, b}, a=0,1),b=(0,1,1).
It is easily seen that
YaecA”, [a,b] cla, a],
then

a, Be A", a + p=|a,al[B, al = ¢,

UHGA”+1 ] = UaeA” [, al,

and noticing the independence property of the product measure P, we
have

P(A x|,y [@]) = 3 PA x[a, a)) =

acA”
o (7 2\k n—k 2\n
Z(k)(qp) @p)" ™ @p =qplqp+qpr®) =
k=0
pn+l qn+l a +p)n :pn+1 (1—P) (1 _pZ)n.

The following inclusion is easily verified for every n > 1:
82 S (ﬂ_ x LjozeA"H [a']) U
0 U
(A AN e @) U (AU, D¢,y L.

Hence,
PSy) = p" ' A=p)(L-p*)" +pp™ (A =p) (1-p?)"+
PP A=p)(1-p?)" = 0 (2 = o),
and we finally have Theorem 7.

Theorem 7. P(S,) = 0.
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When a configuration is randomly given, the state of each cell is de-
termined to be 0 or 1 with probability 1/2, which is the case of
p = q = 1/2 for the stated product probability measure.

Theorem 7 tells us that the configurations in S, are not observed

in a computer simulation when an initial configuration is randomly
given.

I 6. Concluding Remarks

In this paper, elementary cellular automaton (ECA) rule 40 in Wol-
fram’s class I is examined and configurations of S, are shown to have
diverse Lyapunov exponent values. Spreading rates of a configuration
are calculated by a practical construction given any exponents and
rates. Furthermore, the Lyapunov exponents are shown to be the
spreading rates for rule 40 and may not generally reflect the complex-
ity of space-time patterns generated by other ECAs.

The Lyapunov exponents and the spreading rates for rule 40 are es-
sentially determined by the relative frequencies of the special blocks
010 and 011 in configurations of S,.

We typically think that the space-time patterns generated by rule
40 die out in a finite number of time steps and that the rule does not
have a left-shift dynamical subsystem (S,, o). Since the Bernoulli
measure of Sy is 0 as shown in Section 3, it is natural that this left-
shift dynamical subsystem has not been observed. Our work, how-
ever, suggests that even ECAs in Wolfram’s classes I or II can have in-
teresting space-time patterns under intense examination.

It is possibly true that one rule can show different kinds of space-
time patterns depending on the patterns of initial configurations, and
in this sense, generally, one rule may have some different rules embed-
ded in it; for example, rule 40 is left-shift on S, and has the unique at-
tractor {0} on A\S,. However, we need more evidence to support this
assertion for future work.

Furthermore, we still have the problem of calculating the Lya-
punov exponents of F. Bagnoli and R. Rechtman [6], which are de-
fined by using Boolean derivatives. It will be an interesting problem to
determine what kind of values can be used as the Lyapunov expo-
nents.
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