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We explore the ability of a locally informed individual agent to predict
the  future  state  of  a  cell  in  systems  of  varying  degrees  of  complexity
using  Wolfram’s  one-dimensional  binary  cellular  automata.  We  then
compare the agent’s performance to that of two small groups of agents
voting by majority rule.  We find stable rules  (class  I)  to be highly pre-
dictable, and most complex (class IV) and chaotic rules (class III) to be
unpredictable.  However,  we  find  rules  that  produce  regular  patterns
(class II) vary widely in their predictability. We then show that the pre-
dictability of  a class  II  rule depends on whether it  produces vertical  or
horizontal  patterns.  We  comment  on  the  implications  of  our  findings
for the limitations of collective wisdom in complex environments. 

1. Introduction  

Market  economies  and  democratic  political  systems  rely  on  collec-
tions  of  individuals  to  make  accurate  or  nearly  accurate  predictions
about  the  value  of  variables  in  the  future.  Explanations  of  aggregate
predictive  success  take  two  basic  forms.  Social  science  explanations
tend  to  rely  on  a  statistical  framework  in  which  independent  errors
cancel (for a survey see [1]; see also [2, 3]). Computer science and sta-
tistical  models  rely  on  a  logic  built  on  diverse  feature  spaces  [4].
These two approaches can be linked by showing that if agents rely on
diverse predictive models of binary outcomes then the resulting errors
will be negatively correlated [5]. In the statistical approach to predic-
tion,  the  probability  that  a  signal  is  correct  captures  the  difficulty  of
the predictive task.  Yet,  given the assumptions of the models,  if  each
individual  is  correct  more  than  half  of  the  time,  then  the  aggregate
forecast will become perfectly accurate as the number of predictors be-
comes  large.  This  statistical  result  runs  counter  to  experience.  Some
processes  are  very  difficult  to  predict.  In  [6]  it  is  shown that  experts
fare  only  slightly  better  than random guesses  on complex policy  pre-
dictions.  

In  this  paper,  we  explore  the  relationship  between  the  complexity
of a process and the ability of a locally informed agent to predict the
future state of that process. We then compare the forecast ability of a
single  agent  to  small  groups  of  agents.  We  presume  that  more
complex phenomena will be harder to predict. To investigate how com-
plexity  influences  predictability,  we  sweep  over  all  256  possible  one-
dimensional nearest neighbor rules [7]. These rules have been catego-
rized as either stable (class I), periodic (class II), chaotic (class III), or
complex (class IV).
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In  this  paper,  we  explore  the  relationship  between  the  complexity
of a process and the ability of a locally informed agent to predict the
future state of that process. We then compare the forecast ability of a

We first  consider the ability of  a locally informed agent to predict
the  future  state  of  a  single  cell.  This  agent  knows  the  initial  state  of
the cell  and the states of the two neighboring cells.  Its task is to pre-
dict  the state of  the center cell  a  fixed number of  steps in the future.
We  then  add  other  agents  who  also  have  local  knowledge.  Two  of
these  agents  are  informed  about  neighboring  cells,  and  two  of  these
agents know the initial  states of random cells.  We find that for com-
plex predictive tasks, the groups of agents cannot predict any more ac-
curately,  on  average,  than  the  individual  agent.  This  occurs  because
their  predictions are not independent of  the individual  agent’s  nor of
one another’s predictions and because these other agents are not very
accurate. 

Our  analysis  of  predictability  as  a  function  of  process  complexity
yields one very surprising result.  We find that three classes—ordered,
complex,  and  chaotic—sort  as  we  expected.  Most  chaotic  rules  can-
not  be  predicted  with  more  than  50% accuracy.  Complex  rules  also
prove difficult  to predict,  while stable rules are predicted with nearly
perfect  accuracy.  Performance  on  periodic  rules,  however,  was  not
what  we expected.  We found that  performance  runs  the  gamut  from
nearly perfect to no better than random. By inspection of the various
rules in class II, we can explain this variation. Some class II rules pro-
duce vertical  patterns.  Under these rules,  the initial  local  information
produces an ordered sequence. Considering the rule that switches the
state  of  the  cell,  the  rule  can  be  predicted  with  100% accuracy  with
only  local  information.  Contrast  this  to  the  rule  that  copies  the  state
of the cell on the left. This rule produces a diagonal pattern, yet it can-
not be predicted with local information. To know the state of a cell in
100  steps  requires  knowing  the  initial  state  of  the  cell  100  sites  to
the left. 

2. The Model  

We  construct  a  string  of  binary  cellular  automata  of  length  L  with
periodic boundary conditions (creating a cylinder) and random initial
conditions [7]. Each cell updates its state as a function of its state and
the  state  of  its  two  neighboring  cells.  Therefore,  256  rules  exist.  For
each of these, we test the ability to predict the state of a cell K steps in
the  future,  knowing  only  the  initial  state  of  the  cell  and  the  initial
states of its two neighbors.  

We first consider a single agent who constructs a predictive model.
This  agent  knows  only  the  initial  state  of  a  single  cell  as  well  as the
states of the two neighboring cells. In other words, this agent has the
same  information  as  does  the  cell  itself.  Following  standard  practice
for the construction of predictive models, we create a learning stage in
which the agent develops its model, and then create a testing stage in
which we evaluate the model’s accuracy. 
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We first consider a single agent who constructs a predictive model.
This  agent  knows  only  the  initial  state  of  a  single  cell  as  well  as the
states of the two neighboring cells. In other words, this agent has the
same  information  as  does  the  cell  itself.  Following  standard  practice
for the construction of predictive models, we create a learning stage in
which the agent develops its model, and then create a testing stage in
which we evaluate the model’s accuracy. 

2.1 The Learning Stage  
During  the  learning  stage,  the  agent  keeps  a  tally  of  outcomes  given
its initial state. Over a number of training runs, these tallies accumu-
late, allowing the agents to predict final states based on frequency dis-
tributions of outcomes. Recall that the agent looks at the initial state
of  a  single  cell  as  well  as  the  states  of  the  two  cells  on  its  left  and
right. These three sites create a set of eight possible initial states.  

The agent follows this procedure in the learning stage: note the cel-
l’s  and its  neighbors’  initial  states,  then keep tallies  of  the  cell’s  state
in step K (either 0 or 1). After the learning stage is complete, the agen-
t’s prediction given the initial states corresponds to the final state with
the most tallies. 

For  example,  consider  the  following partial  data  from 1000 train-
ing runs. The first column denotes the initial states of the cell and its
neighbors.  The second and third columns correspond to the frequen-
cies of a cell starting from that initial state, being in states 0 and 1 at
step  K.  The  agent’s  predictions,  which correspond to  the  more  likely
outcome, appear in the rightmost column. 

Initial Outcome after K Periods Best
State 0 1 Prediction

000 63 75 1
001 82 75 0
010 47 101 1
ª ª ª ª

Thus, when asked to predict the future state given an initial state of
000, the agent would choose 1 because it was the more frequent out-
come  during  the  learning  phase.  If  it  saw  the  initial  state  001,  it
would predict 0 for the same reason. 

We  next  consider  cases  in  which  we  include  predictions  by  the
agents centered on the cell to the left and right of the cell of the first
agent.  For ease of  explanation,  we refer  to this  as  the central  cell.  In
these  cases  as  well,  the  agents  also  look  at  the  initial  states  of  their
two neighboring cells. However, these agents do not predict the state
of  the cell  on which they are centered but  of  the central  cell.  To test
the  accuracy  of  the  three  predictors—the  agent  and  its  two  neigh-
bors—we rely on simple majority rule. 

Finally, we also include agents who look at the initial state of two
random cells as well as of the central cell. The random cells chosen re-
main  fixed  throughout  the  learning  stage. These  agents’  predictive
models consider the eight possible initial states for the three cells and
then form a predictive model based on the frequency of outcomes dur-
ing a training stage. These agents using random predictors can be com-
bined with the other agents to give five total predictors. We define the
collective prediction to be the majority prediction. 
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Finally, we also include agents who look at the initial state of two
random cells as well as of the central cell. The random cells chosen re-
main  fixed  throughout  the  learning  stage. These  agents’  predictive
models consider the eight possible initial states for the three cells and
then form a predictive model based on the frequency of outcomes dur-
ing a training stage. These agents using random predictors can be com-
bined with the other agents to give five total predictors. We define the
collective prediction to be the majority prediction. 

2.2 The Testing Stage  
At the completion of the learning stage, each of the agents has a pre-
dictive  rule.  These  predictive  rules  map  the  initial  state  into  a  pre-
dicted outcome. To assess the accuracy of these predictions, we create
M  random initial  conditions.  All  L  cells  iterate for K  steps according
to whichever of the 256 rules is being studied. The state of the central
cell is then compared to the prediction.  

We define the accuracy  of an agent or a collection of agents using
majority rule to be the percentage of correct predictions. 

To summarize, for each of the 256 rules, we perform the following
steps. 

† Step 1. Create N random initial conditions and evolve the automaton K
steps, keeping tallies of outcomes. 

† Step 2. From the tallies, make predictions by selecting the majority out-
come. 

† Step 3. Create M additional random initial conditions and evolve the au-
tomaton K steps. 

† Step 4. Compare predictions from the training stage to actual outcomes
from testing and compute accuracy. 

There is a concern that our testing stage is unfair to agents attempt-
ing  to  predict  future  states  because  we  randomly  re-initialize  au-
tomata before testing. Our goal, however, is to test an agent’s ability
to learn rules based on multiple outcomes of the same process, rather
than  learning  from  a  single  instance  of  a  process.  Thus,  we  do  not
bias our results by randomizing initial test states rather than continu-
ing the evolution of training states. Furthermore, for the vast majority
of rules, the automata reach a steady state (or steady distribution) be-
fore  the  Kth  step.  If  we  attempt  to  test  automata  while  initializing
them in their steady state (or distribution), we would expect that their
predictive power would simply be the predictability of whatever distri-
bution of states the rule produces. For rules that do not reach a steady
state quickly and are still in a random configuration after K steps, con-
tinuing to evolve automata from this state is no different than re-ran-
domizing.  As  a  check,  we  have  implemented  both  re-randomization
and  continued  evolution  algorithms  and  find  that  they  are  in  agree-
ment under our measures of accuracy. 
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3. Results  

We present our results in three parts. We first present analytic results
for rule 232, which is the majority rule. We calculate the expected ac-
curacy for the single agent located at the central cell as well as for the
group  of  three  agents  that  includes  the  two  agents  on  either  side  of
the central  cell.  We then examine all  256 rules computationally.  Our
analytic results provide a check on our computational analysis as well
as  insights  into  the  difficulties  of  making  accurate  predictions  given
only local information.  

The puzzle that arises from our computational results concerns or-
dered, or what are called class II, rules. Some of these rules are as diffi-
cult to predict as chaotic rules (class IV). In the third part, we analyze
rule  170,  otherwise  known  as  “pass  to  the  left.”  This  rule  creates  a
pattern  so  it  belongs  to  class  II,  but  the  long  run  future  state  of  the
central cell appears random to our locally informed agents. We show
why that is the case analytically. 

3.1 Analytic Results for Rule 232: Majority Rule  
In rule 232, the cell looks at its state and the state of the two neighbor-
ing cells and matches the state of the majority. We denote the central
cell by x  and the two neighboring cells by w  and y.  It can be written
as follows:  

Rule 232
wt xt yt 000 001 010 011 100 101 110 111 

xt+1 0 0 0 1 0 1 1 1 

In six of the eight initial states, the central cell and one of its neigh-
bors are in the same state.  In those cases,  the state of the central cell
and  that  neighbor  remain  fixed  in  that  state  forever.  In  those  cases,
the  predictive  rule  for  the  agent  located  at  the  central  cell  will  be  to
predict  an  unchanging  state.  That  rule  will  be  correct  100%  of  the
time. 

In the two other cases 010 and 101, the eventual state of the cen-
tral  cell  depends on the states  of  its  neighbors.  To compute the opti-
mal  prediction  and  its  accuracy  in  these  cases,  we  need  to  compute
probabilities  of  neighboring  states.  Note  that  by  symmetry,  we  need
only consider the case where x and its neighbors are in states 010. We
construct the following notation. Let {i be the ith cell to the left of 010
and  ri  be  the  ith  cell  to  the  right.  Thus,  we  can  write  the  region
around  010  as  {3 {2 {1 010 r1 r2 r3.  Consider  first  the  case  where
r1 ‡ 0. By convention, we let a question mark ? denote an indetermi-
nate state. The states of the automaton iterate as follows: 

{3 {2 {1 0 1 0 0 r2 r3 
{3 {2 {1 ? 0 0 0 r2 r3 
{3 {2 {1 ? 0 0 0 r2 r3 

By  symmetry,  if  {1 ‡ 0,  x  will  also  be  in  state  0.  Therefore,  the
only  case  left  to  consider  is  where  {1 ‡ r1 ‡ 1.  Suppose  in  addition
that r2 ‡ 1. The states iterate as follows: 
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By  symmetry,  if  {1 ‡ 0,  x  will  also  be  in  state  0.  Therefore,  the
only  case  left  to  consider  is  where  {1 ‡ r1 ‡ 1.  Suppose  in  addition
that r2 ‡ 1. The states iterate as follows: 

{3 {2 1 0 1 0 1 1 r3 
{3 {2 ? 1 0 1 1 1 r3 
{3 {2 ? ? 1 1 1 1 r3 
{3 {2 ? ? 1 1 1 1 r3 

It  follows then that if  either r2  or {2  is  in state 1,  then the central
cell will be in state 1 in step K. 

Given these calculations, we can determine the probability distribu-
tion  over  the  state  of  the  central  cell  if  it  and  its  neighbors  start  in
states  010.  From the  preceding,  unless  r1 ‡ {1 ‡ 1,  then x  will  be  in
state  0.  Therefore,  with  probability  3 ê 4,  it  locks  into  state  0  in  one
step.  With  probability  1 ê 4,  it  does  not  lock  into  state  0.  In  those
cases, r1 ‡ {1 ‡ 1. And, as found earlier, with probability 3 ê 4, x will
lock into state 1. It follows that the probability that x ends up in state
0 with initial condition 010 is given by the following infinite sum: 

PrHx ‡ 0 w x y ‡ 010L ‡
3

4
+

1

4

1

4

3

4
+

1

4

1

4

3

4
+

1

4

1

4
º⋯ .

This  expression  takes  the  form  p + q p + q2 p2 + q3 p3 +º⋯ .  A
straightforward calculation gives that the value equals

1

61
64

+
3

4
- 1 ‡

64

61
-

1

4
‡ 0.799.

Given  this  calculation,  we  can  characterize  the  agent’s  predictions
in the case where the training set is infinitely large as follows: 

Rule 232: Optimal Predictions at x and Accuracy
w x y 000 001 010 011 100 101 110 111 
Prediction 0 0 0 1 0 1 1 1 
Accuracy 1.0 1.0 0.8 1.0 1.0 0.8 1.0 1.0 

Summing over all cases gives that, on average, the agent’s accuracy
equals 95%. 

3.1.1 Predictions by Agents at Neighboring Cells  

We next  consider  the  predictions  by the  two agents  on either  side  of
the central cell. By symmetry, we need only consider the neighbor on
the  left,  denoted  by  w.  If  w  and  x  have  the  same  initial  state,  then
they  remain  in  that  state  forever.  In  those  four  cases,  the  agent  at  w
can predict the state of cell x with 100% accuracy.  

This  leaves  the  other  four  initial  states  centered  at  w  denoted  by
001, 110, 101, and 010. By symmetry these reduce to two cases. First,
consider  the initial  state  001.  To determine the future state  of  cell  x,
we need to know the state of the cell centered on y. If y ‡ 1, then by
construction  x  will  be  in  state  1  forever.  Similarly,  if  y ‡ 0,  then
x ‡ 0 forever. Therefore, the prediction by the agent at w can be cor-
rect only 50% of the time in these two initial states. 
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This  leaves  the  other  four  initial  states  centered  at  w  denoted  by
001, 110, 101, and 010. By symmetry these reduce to two cases. First,
consider  the initial  state  001.  To determine the future state  of  cell  x,
we need to know the state of the cell centered on y. If y ‡ 1, then by
construction  x  will  be  in  state  1  forever.  Similarly,  if  y ‡ 0,  then
x ‡ 0 forever. Therefore, the prediction by the agent at w can be cor-
rect only 50% of the time in these two initial states. 

Next, consider the initial state 101. To calculate the future state of
the  central  cell,  we  need  to  include  the  states  for  both  y  and  r1.  We
can write the initial states of these five cells as 101 y r1. If y ‡ 1, then
x ‡ 1  forever.  If  y ‡ 0,  then  the  value  of  x  will  depend  on  r1.  If
r1 ‡ 0,  then  x ‡ 0,  but  if  r1 ‡ 1,  then  the  value  will  depend  on  the
neighbors of r1. Therefore, the probability that x will end up in state
1 given {1 w x ‡ 101 equals 

PrHx ‡ 1 {1 w x ‡ 010L ‡
1

2
+

1

4

1

4

3

4
+

1

4

1

4

3

4
+

1

4

1

4
º⋯

which by a calculation similar to that in Section 3.1 equals 0.549. We
can now write the optimal predictions by an agent at cell w for the fi-
nal state of cell x and the accuracy of those predictions.  

Rule 232: Optimal Predictions at w and Accuracy
w x y 000 001 010 011 100 101 110 111 
Prediction 0 0 0,1 1 0 1 0,1 1 
Accuracy 1.0 0.5 0.55 1.0 1.0 0.55 0.5 1.0 

The  average  accuracy  of  an  agent  at  w  equals  76.2%.  By  symme-
try, that also equals the accuracy of an agent at y. We can now com-
pare the accuracy of the individual agent located at the central cell to
the accuracy of  the group of  three agents.  Recall  that  we assume the
three agents vote, and the prediction is determined by majority rule.

By symmetry, we need only consider the cases where x ‡ 0. There
exist 16 cases to consider as shown in the following table. We denote
the cases in which an agent’s prediction is accurate only half the time
by H. We let G denote the majority prediction with two random pre-
dictors and one fixed predictor of 0. 
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Rule 232: Comparison between x and Majority Rule of w, x, and y

w x y
 Prediction

of x Accuracy 
Predictions of 
w x y Majority Accuracy 

00000 0 1.0 0 0 0 0 1.00 
00001 0 1.0 0 0 0 0 1.00 
00010 0 1.0 0 0 0 0 1.00 
00011 0 1.0 0 0 H 0 1.00 
01000 0 1.0 0 0 0 0 1.00 
01001 0 1.0 0 0 0 0 1.00 
01010 1 0.2 0 1 0 0 0.80 
01011 1 1.0 0 1 H H 0.50 
10000 0 1.0 0 0 0 0 1.00 
10001 0 1.0 0 0 0 0 1.00 
10010 0 1.0 0 0 0 0 1.00 
10011 0 1.0 0 0 H 0 1.00 
11000 0 1.0 H 0 0 0 1.00 
11001 0 1.0 H 0 0 0 1.00 
11010 1 1.0 H 1 0 H 0.50 
11011 1 1.0 H 1 H G 0.75 

A calculation yields that the group of three predictors has an accu-
racy of 91%. Recall  from Section 3.1 that the single agent located at
the  central  cell  has  an  accuracy  of  95%.  The  group  is  less  accurate
than  the  individual.  This  result  occurs  for  two  reasons.  First,  the
agents  located at  w  and y  are  not  nearly  as  accurate  as  the agent  lo-
cated at the central cell. Second, their predictions are not independent
of the central agent. If all three predictions were independent then the
group of three would be correct approximately 94% of the time. 

3.2 Computational Results  
We now describe  results  from computational  experiments  on all  256
rules relying on automata having 20 sites and periodic boundary con-
ditions. For each of the 256 rules, automata undergo a learning stage
of 1000 steps. Automata were trained and tested on the prediction of
their  state,  K ‡ 53  steps  in  the  future.  (A  prime  number  was  chosen
to avoid any periodicities that may affect prediction results. For good
measure, K ‡ 10, 20, 25, 40, and 100 were also tested and found to
yield  similar  results  in  almost  all  cases.)  Once  the  agents  had  been
trained, we computed their accuracy during a testing phase consisting
of 500 trials.  

3.2.1 Predictability of Automaton by a Single Agent  

We first show our findings for the accuracy of the single agent located
at the central cell. Figure 1 shows a sorted distribution of this agent’s
accuracy.  
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Two  features  stand  out.  First,  some  rules  can  be  predicted  accu-
rately  100% of  the  time  while  in  other  cases,  learning  does  not  help
prediction  at  all  (guessing  randomly  guarantees  ability  of  50%).  Ex-
amples of the former would be rules 0 and 255 which map every ini-
tial state to all 0s and all 1s, respectively. These rules can be predicted
perfectly.  The  majority  of  rules  lie  on  a  continuum of  predictability.
Though  the  graph  reveals  some  minor  discontinuities,  the  plot  does
not  reveal  a  natural  partition  of  the  256  rules  into  Wolfram’s  four
classes. Therefore, the categories do not map neatly to predictability. 

Figure 1. A single agent’s ability to predict its future state given the 256 rules.
Rule  predictability  can  range  from  being  no  better  than  a  fair  coin  flip  to
100% accuracy depending on the dynamics of the rule. The x axis (rule num-
ber) does not correspond to Wolfram’s numbering.  

To see why the categories do not map, we return to Wolfram’s clas-
sification [7] which classifies the rules as follows. 

† Class I. Almost all initial conditions lead to exactly the same uniform fi-
nal state. 

† Class II.  There are many different possible final states,  but all  of them
consist  just  of  a  certain  set  of  simple  structures  that  either  remain  the
same forever or repeat every few steps. 

† Class III. Nearly all initial conditions end in a random or chaotic final
state. 

† Class IV. Final states involve a mixture of order and randomness. Sim-
ple structures move and interact in complex ways. 

We  give  our  classification  of  rules  used  in  Appendix  A.  We  have
not found a complete listing elsewhere. 

Figure 2 shows the sorted ability of the individual agent to make ac-
curate  predictions  by class  of  rule.  From this  data  we find that  three
of  Wolfram’s  classes are  informative  of  a  rule’s  predictability  while
one is not. Class I (rules that converge to homogeneous steady states)
are  predictable  with  very  high  accuracy  while  the  random  and  com-
plex  rules  falling  in  classes  III  and  IV  are  nearly  impossible  to  accu-
rately  predict.  For  the  intermediate  class  II  rules,  however,  there  is  a
large  spectrum  of  ability.  Some  class  II  rules  appear  easy  to  predict
while others fair worse than some class III rules. These results suggest
that the regular patterns characterizing class II rules are not informa-
tive to a rule’s predictability and that further classification refinement
is needed for a better description. 
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Figure 2 shows the sorted ability of the individual agent to make ac-
curate  predictions  by class  of  rule.  From this  data  we find that  three
of  Wolfram’s  classes are  informative  of  a  rule’s  predictability  while
one is not. Class I (rules that converge to homogeneous steady states)
are  predictable  with  very  high  accuracy  while  the  random  and  com-
plex  rules  falling  in  classes  III  and  IV  are  nearly  impossible  to  accu-
rately  predict.  For  the  intermediate  class  II  rules,  however,  there  is  a
large  spectrum  of  ability.  Some  class  II  rules  appear  easy  to  predict
while others fair worse than some class III rules. These results suggest
that the regular patterns characterizing class II rules are not informa-
tive to a rule’s predictability and that further classification refinement
is needed for a better description. 

Figure 2. Using  local  predictors  sorted  according  to  fitness,  we  color  code
rules  based  on  the  class  assigned  by  Wolfram.  While  classes  I,  III,  and  IV
prove to be informative,  class  II  rules  show huge variation in their  ability  to
be predicted.  

These  visual  clues  can  be  shown  statistically.  The  following  table
gives  the  mean  accuracy  for  the  agent  located  at  the  central  cell  for
each class of rules. The standard deviation is given in parentheses. 

Class I Class II Class III Class IV
Agent at x 0.998 (0.004) 0.759 (0.180) 0.545 (0.0927) 0.554 (0.061) 

Notice  that  complex  rules  are,  on  average,  just  as  difficult  to  pre-
dict  as  chaotic  rules  for  a  single  agent.  Note  also  enormous  variance
in the predictability of the class II rules. 

3.2.2 Individuals versus Groups

We  next  compare  the  ability  of  the  single  agent  to  that  of  small
groups. Our main finding is that the small groups are not much more
accurate.  A statistical  analysis,  given in  the  following table  (standard
deviation in parentheses), shows no meaningful difference in accuracy
for any of the classes. Were we to ramp up our sample sizes, we might
gain  statistical  significance  for  some  of  these  results,  but  the  magni-
tude of the differences is small—most often much less than 1%.  
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We  next  compare  the  ability  of  the  single  agent  to  that  of  small
groups. Our main finding is that the small groups are not much more
accurate.  A statistical  analysis,  given in  the  following table  (standard
deviation in parentheses), shows no meaningful difference in accuracy
for any of the classes. Were we to ramp up our sample sizes, we might
gain  statistical  significance  for  some  of  these  results,  but  the  magni-
tude of the differences is small—most often much less than 1%.  

Class I Class II Class III Class IV

Agent at x
0.998 H0.005L 0.733 H0.153L 0.551 H0.0923L 0.545 H0.040L

Agent at x Plus Local
0.997 H0.006L 0.739 H0.153L 0.550 H0.0932L 0.543 H0.039L

Agent at x Plus Random
0.998 H0.004L 0.720 H0.123L 0.550 H0.0920L 0.539 H0.037L

All Five Agents 

0.997 H0.005L 0.723 H0.132L 0.551 H0.0920L 0.547 H0.040L

This  aggregate  data  demonstrates  that,  on  average,  adding  predic-
tors does not help. That is true even for the rules in classes II and IV.
We found this to be rather surprising. 

This  aggregate  data  masks  differences  in  the  predictability  of  spe-
cific  rules.  Figure  3  displays  the  variance  in  prediction  ability  across
all combinations of predictors. For most rules, we find that this vari-
ance is very low. In those cases where predictability does vary, differ-
ent  combinations  of  predictors  give  better  predictability.  Note  that
this  has  to  be  the  case  given  that  average  accuracy  is  approximately
the same for all combinations of predictors. 

Figure 3. The variance in  ability  between four  combinations  of  predictors  re-
veals that for many rules, all predictors perform equally.  

Detailed  analysis  of  specific  rules,  such  as  the  one  we  performed
for rule 232, can reveal why adding local predictors for some rules in-
creases  or  decreases  predictability,  but  no  general  patterns  exist. The
data  shows  that  adding  local  predictors,  random  predictors,  or  both
over  all  rules  does  not  help  with  overall  predictability.  This  finding
stands  in  sharp  contrast  to  statistical  results  that  show  the  value  of
adding more predictors (Figure 4).
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Detailed  analysis  of  specific  rules,  such  as  the  one  we  performed
for rule 232, can reveal why adding local predictors for some rules in-
creases  or  decreases  predictability,  but  no  general  patterns  exist. The
data  shows  that  adding  local  predictors,  random  predictors,  or  both
over  all  rules  does  not  help  with  overall  predictability.  This  finding
stands  in  sharp  contrast  to  statistical  results  that  show  the  value  of
adding more predictors (Figure 4).

Figure 4. Various combinations of predictors are sorted by the ability of local
predictors. While the x axis (rule number) does not correspond to Wolfram’s
numbering, all predictors can be easily compared to the use of only local pre-
dictors.  

3.3 Class II Rules  
We now present an explanation for the variation of the predictability
of class II rules. We show that class II rules can be separated into two
groups:  those  displaying  vertical  patterns  in  time,  and  those  that  are
horizontal. The former are easy to predict. The latter are not.  

Vertical  temporal  patterns  form  under  rules  where  evolution  can
lock  automata  into  stationary  states,  creating  vertical  stripes  during
their evolution (Figure 5). In contrast,  some class II rules pass bits to
the  left  or  right,  creating  diagonal  stripes  in  time.  From the  perspec-
tive of a single automaton, we will show that vertical patterns provide
an  opportunity  to  learn  dynamics  and  make  accurate  predictions,
while horizontal patterns make information gathering much more dif-
ficult.  Finally,  we  show  that  accurately  predicting  the  future  given
each  of  these  patterns  requires  automata  acquiring  different  types  of
information. 

3.3.1 Rule 170: Pass to the Left  

As shown in Figure 5, Rule 170 generates horizontal patterns in time.
These horizontal  patterns differ  from vertical  patterns in that  no sin-
gle cell locks into a stationary state. From an individual cell’s point of
view,  vertical  patterns  correspond  to  a  world  that  settles  to  a  pre-
dictable  equilibrium state.  Horizontal  rules  on the  other  hand would
seem random, as tomorrow may never be the same as today.  
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HaL Vertical Pattern - Rule 232 HbL Horizontal Pattern - Rule 170

Figure 5. A pair of class II rules is shown. Rule 232 displays a vertical pattern
where individual cells, starting from a random initial condition, lock into sta-
tionary states. Rule 170, by contrast, generates patterns that continually shift
to the left, never settling into a stationary state.

This randomness makes a prediction based on an initial state diffi-
cult and often unsuccessful for rules that generate horizontal patterns.
There is, however, some useful information in these patterns. While in-
dividual stationary states are not reached, the distribution of bits (the
number of 0s and 1s) does become stationary in horizontal patterns. 

We can see this by considering rule 170, informally named “pass to
the left,” as  shown in the following table.  This  rule  simply tells  each
cell  to  take  on  the  state  of  the  cell  to  their  left  in  the  next  step.  For
any  random  initial  state,  half  of  the  automata  should  be  in  state  0,
with the other half in state 1. Under rule 170, these initial bits simply
rotate around the torus. 

Rule 170
wt xt yt 000 001 010 011 100 101 110 111 

xt+1 0 1 0 1 0 1 0 1 

Though  individual  cells  cycle  from  0  to  1  as  the  pattern  rotates,
this rule preserves the distribution of bits. There are always the same
number  of  0s  and  1s  as  in  the  random  initial  state.  Other  rules,
though  also  displaying  horizontal  patterns,  alter  the  distribution  of
bits, introducing more of one state. For example, rule 2 visibly results
in  patterns  favoring  more  0  bits  as  large  strings  of  1s  flip  to  0s
(Figure 6). 

HaL Rule 170 HbL Rule 2

Figure 6. Although  horizontal  patterns  never  result  in  individual  stationary
states, they do create different equilibrium distributions of bits. 

Given rule 170, an agent trying to predict the central cell’s state in
step  K  learns  nothing  of  value  from  the  cell’s  initial  condition.  The
agent should do no better than 50% accuracy. 
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Given rule 170, an agent trying to predict the central cell’s state in
step  K  learns  nothing  of  value  from  the  cell’s  initial  condition.  The
agent should do no better than 50% accuracy. 

Alternatively,  consider  rule  2,  00000010.  Under  this  rule,  there  is
only one initial condition (001) that can result in an “on” state in the
next  round.  Because  of  this,  the  equilibrium  distribution  has  many
more 0s  than 1s.  Because  automata are  initialized randomly,  this  oc-
curs with probability 1 ê 8. Thus, we expect 1 ê 8 to be the fraction of
1s  in  our  equilibrium  distribution.  Knowing  this,  any  cell  will  cor-
rectly  predict  its  outcome 87.5% (7 ê 8)  of  the  time by  always  guess-
ing 0. 

We find near perfect  agreement between these analytic  results  and
those obtained through computation. For rule 170, we find individual
cells can correctly guess their final state with accuracy 50 ±1%, while
rule 2 allows accuracy of 87.5 ±1%. 

In most cases, we expect the lack of stationary states for individual
cells  to  impede  predictive  ability.  Many  of  the  equilibrium  distribu-
tions of horizontal rules are complex and arise from many non-trivial
initial states. For this reason we expect class II rules that generate hori-
zontal patterns to have relatively low predictability compared to rules
generating vertical patterns. Figure 7 confirms our expectations. 

Finally,  we  note  that  in  cases  with  horizontal  patterns,  each  cell’s
neighbors are in the same situation and thus cannot provide any use-
ful information to help with prediction. We find that rules with hori-
zontal  patterns  display  the  same  levels  of  predictability  regardless  of
the  specific  combination  of  predictors  (e.g.,  neighbor,  random,  or
both),  whereas  for  vertical  patterns,  neighbors  may provide  some in-
formation, good or bad. 

Figure 7. Rules  are  sorted  based  on  predictability  fulfilling  our  expectations
that  rules  generating  vertical  patterns  are  more  easily  predicted  using  induc-
tive reasoning than horizontal patterns.  
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4. Discussion  

In  this  project,  we  tested  whether  an  individual  agent  could  predict
the future state of a dynamic process using local information. We con-
sidered a classic set of 256 dynamic processes that have been catego-
rized  according  to  the  type  of  dynamics  they  create.  We  then  com-
pared an individual agent to small  groups of agents who had slightly
different  local  information.  These  agents  used  predictive  models  that
they  created  inductively.  During  a  training  period,  our  agents
observed outcomes K  steps  in  the  future  as  well  as  initial  states.  The
accuracy of their resulting predictive models was then calculated dur-
ing a testing phase.

We  found  three  main  results.  First,  classifications  of  cellular  au-
tomata  rules  based  on  the  nature  of  the  dynamics  that  they  produce
corresponds  only  weakly  to  their  predictability  by  locally  informed
agents of the type we construct. We found predictability lies on a con-
tinuum  from  difficult  to  trivial.  This  itself  is  not  surprising.  What
does seem surprising is that some of the processes that cannot be pre-
dicted  are  ordered.  Moreover,  it  is  these  ordered  rules  that  range  in
their  predictability,  and  not  the  rules  that  produce  complex  fractal
patterns. Through more careful examination of these rules, we found
those  that  generate  stationary  patterns  in  time are,  on average,  more
predictable than those that generate stationary distributions,  but pat-
terns that are periodic in time.

Second, we found that small groups of agents are not much better
than individuals. This is true even though the additional agents had di-
verse  local  information  and  constructed  their  models  independently.
This finding suggests that the large literature on collective predictions
might  benefit  from  a  deeper  engagement  into  complexity  in  general
and Wolfram’s rules in particular. 

Third,  we  found that  ordered  rules  can  take  two forms.  They  can
produce  horizontal  patterns  or  they  can  produce  vertical  patterns.
The latter produce future states based on current states of local cells,
so they can be predicted with some accuracy. The former produce fu-
ture  states  based  on  current  states  of  nonlocal  cells.  Therefore,  they
cannot  be  predicted  by  a  locally  informed  agent.  This  insight  shows
why the complexity of a pattern does not correspond neatly to its pre-
dictability. 

Many social processes are complex. Outcomes emerge from interac-
tions  between  locally  informed  agents  following  rules.  In  this  paper,
we have seen that those outcomes may be difficult to predict for both
individuals  and  small  groups.  Whether  larger  groups  can  leverage
their diversity of information to make accurate predictions is an open
question that is worth exploring. 
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