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The results of simulating a prisoner’s dilemma round-robin tournament
are presented. In the tournament, each participating strategy played an
iterated prisoner’s dilemma against each of the other strategies (round-
robin)  and  as  a  variant  also  against  itself.  The  participants  of  a  tour-
nament  are  all  deterministic  strategies  and have  the  same memory size
regarding their own and their opponent’s past actions. Memory sizes of
up to three of the most recent actions of their opponent and up to two
of  their  own  are  discussed.  The  investigation  focused  on  the  influence
of  the  number  of  iterations,  the  details  of  the  payoff  matrix,  and  the
memory size. The main result for the tournament as carried out here is
that different strategies emerge as winners for different payoff matrices.
This is true even for different payoff matrices that are judged to be simi-
lar  if  they  fulfill  relations  T + S ‡ P + R  or  2 R > T + S.  As  a  conse-
quence  of  this  result,  it  is  suggested  that  whenever  the  iterated  prison-
er’s dilemma is used to model a real system that does not explicitly fix
the  payoff  matrix,  conclusions  should  be  checked  for  validity  when  a
different payoff matrix is used. 

1. Introduction and Motivation  

The prisoner’s dilemma [1, 2] is probably the most prominent and dis-
cussed example from game theory, which is a result of its standing as
the model of the formation of cooperation in the course of biological
as well as cultural evolution [2, 3].  

A naive interpretation of Darwin’s theory might suggest that evolu-
tion favors nothing but direct battle and plain competition. However,
numerous observations of cooperation in the animal kingdom oppose
this  idea  by  plain  evidence.  While  such  examples  among animals  are
impressive, clearly the most complex and complicated interplay of co-
operation  and  competition  occurs  with  humans,  a  fact  that  becomes
obvious when a large number of humans gather as a crowd in spatial
proximity.  There are astonishing and well-known examples for both:
altruism among strangers under dangerous external conditions [4–11]
as  well  as  fierce  competition  for  goods  with  very  limited material
value often linked with a lack of  information [12,  13].  For examples
of  behavior  between  these  two  extremes,  see  the  overviews  in  [14,
15].  In  relation  to  these  events,  and  possible  similar  future  events  of
pedestrian and evacuation dynamics [16], the widespread naive inter-
pretation of the theory of evolution in a sense poses a danger. It might
give people in such situations the wrong idea of what their surround-
ing  fellows  are  going  to  do  and  suggest  overly  competitive  or  dan-
gerous  behavior.  Knowledge  of  certain  historic  events,  together  with
theories that suggest why cooperation against immediate maximal self-
benefit can be rational, hopefully can immunize against such destruc-
tive thoughts and actions. 

Complex Systems, 19 © 2011 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.19.4.363



A naive interpretation of Darwin’s theory might suggest that evolu-
tion favors nothing but direct battle and plain competition. However,
numerous observations of cooperation in the animal kingdom oppose
this  idea  by  plain  evidence.  While  such  examples  among animals  are
impressive, clearly the most complex and complicated interplay of co-
operation  and  competition  occurs  with  humans,  a  fact  that  becomes
obvious when a large number of humans gather as a crowd in spatial
proximity.  There are astonishing and well-known examples for both:
altruism among strangers under dangerous external conditions [4–11]
as  well  as  fierce  competition  for  goods  with  very  limited material
value often linked with a lack of  information [12,  13].  For examples
of  behavior  between  these  two  extremes,  see  the  overviews  in  [14,
15].  In  relation  to  these  events,  and  possible  similar  future  events  of
pedestrian and evacuation dynamics [16], the widespread naive inter-
pretation of the theory of evolution in a sense poses a danger. It might
give people in such situations the wrong idea of what their surround-
ing  fellows  are  going  to  do  and  suggest  overly  competitive  or  dan-
gerous  behavior.  Knowledge  of  certain  historic  events,  together  with
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From the beginning, the prisoner’s dilemma was investigated in an
iterated  way  [17,  18].  Often  included  was  the  ability  of  strategies  to
hark  back  on  the  course  of  tournament  events  [2,  19]  without  limit,
that is, their memory potentially included every one of their own and
their opponents’ steps. Despite the possibility of using more memory,
the  first  strategy  to  emerge  as  a  winner,  tit-for-tat  (TFT),  got  along
with a memory of only the most recent action of their opponent. An-
other famous and successful  strategy,  Pavlov,  also uses a small  mem-
ory:  it  just  needs  to  remember its  own and the  opponent’s  action.  In
this  paper  the  effect  of  extending  memory  up  to  the  three  latest  ac-
tions of the opponent and up to their own two latest actions is investi-
gated. 

In  the  course  of  discussing  the  prisoner’s  dilemma  a  number  of
methods  have  been  introduced  such  as  probabilistic  strategies  to
model  errors  (“noise”)  [20],  evolutionary (ecologic)  investigation [2],
spatial  relations  (players  only  play  against  neighboring  opponents)
[21–30],  and  creating  strategies  by  genetic  programming  [3,  20,
31–33].  Most  of  these  can  be  combined.  For  an  overview on further
variants, see [34, 35]. 

Contrary to more elaborate methods, a main focus in this work is
to avoid arbitrary and probabilistic decisions such as choosing a sub-
set of strategies of a class, or to locate strategies spatially in neighbor-
hoods.  Such  spatial  variants,  as  well  as  genetic  approaches,  are  ex-
cluded.  Instead,  each  strategy  of  the  class  participates  and  plays
against  each  other.  A  consequence  of  investigating  complete  classes
and avoiding arbitrariness is that using probabilistic strategies is diffi-
cult.  In  general,  infinitely  many  rules  could  be  constructed  from  a
memory state with the infinitely many real numbers that can serve as
values  for  the  probability.  Selecting  some  of  the  numbers  to  be  used
and rejecting others would have to be based on elementary reasoning
to avoid arbitrariness. It can be argued that there are elementary ways
to calculate the probability for cooperation, for example, a linear func-
tion of  the  ratio  of  cooperation of  the  opponent.  Nevertheless,  while
some ways to calculate the probability are more elementary than oth-
ers,  it  is  not  clear  which  calculations  are  still  elementary  and  which
are not.  Therefore,  in this  contribution no probabilistic  strategies  are
considered. 
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The round-robin model as well—at least in parts—is a consequence
of  avoiding  arbitrariness.  For  example,  drawing  lots  to  choose  pairs
of competitors as in a tournament would bring in a probabilistic ele-
ment.  In  other  words:  the  source  code  written  for  this  investigation
does not at any point make use of random numbers. It is a determinis-
tic  brute  force  calculation of  a  large  number  of  strategies  and a  very
large number of single games. The relevance lies not in modeling a spe-
cific system of reality, but in the completeness of the investigated class
and in  general  the  small  degree  of  freedom (arbitrariness)  of  the  sys-
tem. 

By the strictness and generality of the procedure, a strategy can be
seen as a Mealy automaton or the iterative game between two strate-
gies  as  a  Moore  machine  [36–39];  respectively,  a  spatially  zero-
dimensional cellular automaton [40, 41] (see Section 3). 

2. Definition of a Strategy  

In  the  sense  of  this  paper  a  strategy  with  a  memory  size  n  has  n + 1
substrategies  to define the action in the first,  second,  ...  nth,  and any
further iteration. The substrategy for the first iteration decides how to
start the tournament, the substrategy for the second iteration depends
on the action(s) of the first iteration, the substrategy for the third iter-
ation depends on the actions in the first and second iterations (if mem-
ory size is larger than one), and the substrategy for the HN > nLth itera-
tion  depends  on  the  actions  in  the  HN - nL  to  HN - 1Lst  iterations
(compare Figure 1).  

A similar approach was followed in [42],  but there are differences
in the definition of the class concerning behavior in the first n - 1 itera-
tions. Most importantly their approach did not use a round-robin tour-
nament with all strategies of a class, but was combined with a genetic
approach. 

Another  investigation  dealing  with  the  effects  of  memory  size  is
[43], but their strategies were probabilistic and therefore not all strate-
gies participated in the process. 

2.1 Data Size of a Strategy, Number of Strategies, and Number 
of Games  

In the first round of an iterated game there is no information from the
opponent, so the strategy consists of deciding how to begin (one bit).
In the second round, there is only information on one past step from
the  opponent,  so  the  strategy  includes  deciding  how  to  react  (two
bits).  The third round is  still  part  of  the starting phase and therefore
also has its own part of the strategy (four bits, if the decision does not
depend  on  a  strategy’s  own  preceding  action).  Therefore,  there  are
128  strategies  when  using  a  no-own-two-opponent  memory. Finally,
there are eight more bits with size-three memory. An example of calcu-
lating the number combination (1/2/12/240) from the TFT strategy is
shown in Figure 1. These 15 bits lead to a total of N ‡ 32 768 differ-
ent  strategies.  If  each  strategy  plays  against  every  other  strategy  and
against  itself,  there  are  N ÿ HN + 1L ë 2 ‡ 229  different  iterated  prison-
er’s dilemmas to calculate.  
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ent  strategies.  If  each  strategy  plays  against  every  other  strategy  and
against  itself,  there  are  N ÿ HN + 1L ë 2 ‡ 229  different  iterated  prison-
er’s dilemmas to calculate.  

Figure 1. TFT  as  strategy  (1/2/12/240).  The  part  (1/2/12)  applies  during  the
starting phase when only zero, one, or two earlier states of the opponent ex-
ist. Cooperation is coded with a “1”, defection with a “0”. If a strategy also
remembers its own past actions the information is always stored in the lower
bits.  For  example,  with  the  triples  the  leftmost  would  indicate  a  strategy’s
own preceding action and the middle and right would indicate the second-to-
last and last action of the opponent (“low to high” is “left to right”).  

Table  1  summarizes  these  numbers  for  different  memory sizes.  To
remember the last n actions of a pair of strategies, 2 n bits are needed.
For the results of a strategy over the entire course of iterations a few
bytes are needed for each pair of strategies, depending on the kind of
evaluation. The number of pairs of strategies—and this is the limiting
component—grows  at  least  approximately  like  22n+2-3.  On  today’s
common PCs RAM demands are therefore trivial up to a memory size
of n ‡ 2, in the lower range of 64-bit technology (some GBs of RAM)
for n ‡ 3, and totally unavailable for n ‡ 4 and larger (more than an
exabyte). 
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Memory Size 
self /other #Bits #Strategies #Games in One Iteration

0 / 0 1 2 1 resp. 3 
0 / 1 3 8 28 resp. 36 
1 / 1 5 32 496 resp. 528 
0 / 2 7 128 8128 resp. 8256 
1 / 2 13 8192 º 33.55 ÿ 106 
2 / 1 13 8192 º 33.55 ÿ 106 
0 / 3 15 32 768 º 536.8 ÿ 106 
2 / 2 21 2 097 152 º 2.199 ÿ 109 
1 / 3 29 536 870 912 º 144.1 ÿ 1015 
3 / 1 29 536 870 912 º 144.1 ÿ 1015 
0 / 4 31 2 147 483 648 º 2.306 ÿ 1018

Table 1. Number of bits (b) to represent a strategy, number of strategies (2b),
and number of prisoner’s dilemma games in an iteration step in a round-robin
tournament I2b-1 I2b ± 1MM  for different memory sizes. This leads to the com-
putational effort shown in Table 2.

Memory Size 
self /other RAM Time

0 / 0 10 B insignificant 
0 / 1 100 B insignificant 
1 / 1 10 KB s .. min 
0 / 2 100 KB s .. min 
1 / 2 100 MB min .. d 
2 / 1 100 MB min .. d 
0 / 3 10 GB h .. weeks 
2 / 2 10 TB d .. year 
1 / 3 1 EB > year 
3 / 1 1 EB > year 
0 / 4 10 EB decade(s) (?) 

Table 2. Magnitudes  of  computational  resource  requirements  (on  a  double
quad  core  Intel  Xeon 5320).  The  computation  time  depends  significantly  on
the number of different payoff matrices being investigated. Large scale simula-
tions with parallel computing of the iterated prisoner’s dilemma has also been
dealt with in [44].    
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3. The Cellular Automata Perspective   

This  section  presents  the  system  in  terms  of  cellular  automata.  This
can help obtain a visual  depiction of  the system dynamics.  However,
the reader may well skip this and proceed to Section 4.  

Wolfram’s  elementary  cellular  automata  are  defined  (or  inter-
preted) to exist in one spatial plus one temporal dimension. However,
the  rules  can  also  be  applied  to  a  point-like  cellular  automaton  with
memory as shown in Figure 2. This system can be interpreted as a cel-
lular  automaton  that  has  a  memory  and  a  binary  state,  or  as  an  au-
tomaton  that  can  have  one  of  eight  states  with  restricted  transitions
between  the  states.  For  the  full  set  of  256  rules  each  state  can  be
reached  in  principle  from  two  other  states.  Also,  from  a  particular
state  two  states  can  be  reached.  Choosing  a  specific  rule  is  selecting
one incoming and one outgoing state.  This is  exemplified in Figure 3
for rule 110. For the iterated prisoner’s dilemma two such cellular au-
tomata need to interact  and determine their  next  state  from the data
of the other automaton as shown in Figure 4. It  is  of course possible
to interpret two interacting cellular automata as one single point-like
cellular  automaton  with  a  larger  set  of  states.  Then,  Figure  4  would
translate  into  Figure  5.  A  transition  graph  could  be  drawn  (with  64
nodes that all  have one of four possible incoming and outgoing links
or a specific combination of rules) for further theoretical analysis. For
now  we  abandon  these  basic  and  theoretical  considerations  and  just
adhere to the fact that the implementation of the process can be seen
as a cellular automaton. Or, more precisely,  as an enormous number
of combinations of interacting very simple cellular automata. 

Figure 2. Rule 110 applied self-referentially to a point-like cellular automaton
with  memory.  Note:  as  time  increases  toward  the  right  and  the  most  recent
state is meant to be stored in the highest bit, but higher bits are written to the
left, we have to reverse the bits compared to Wolfram’s standard notation.  
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Figure 3. Transition  graph  for  rule  110  (black  links)  and  possible  links  or
other rules (gray links).  

Figure 4. Rules 184 and 110 interacting. For the iterated prisoner’s dilemma,
the  dependence  here  models  the  situation  when  a  prisoner  remembers  the
three preceding moves of the opponent but none of its own.  
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Figure 5. Figure 4 depicted as a single cellular automaton. If the states of both
automata are white (black) the state here is shown as well as white (black). If
184 is white (black) and 110 black (white), the state here is yellow (red).  

4. Payoff Matrix  

The four values T, R, P, and S of the payoff matrix (see Table 3) need
to fulfill the relation  

(1)T > R > P > S

to be faced with a prisoner’s dilemma. For the purpose of this contri-
bution  S ‡ 0  can  be  chosen  without  loss  of  generality,  as  whenever
the payoff matrix is  applied all  strategies have played the same num-
ber of games. In addition to equation (1) it is often postulated that  

(2)2 R > T

holds.  

CH2L DH2L

CH1L R R S T

DH1L T S P P

Table 3. General payoff matrix.    

The equation 

(3)T + S ‡ P + R

marks a special set of payoff matrices with values that can be seen as
a model of a trading process. Here, the exchanged good has a higher
value for the buyer i than the seller j:  

(4)pi j ‡ a + bdi - gdj

with d ‡ 1 if  a  player  cooperates  and d ‡ 0 for  defection.  Therefore,
b  can  be  interpreted  as  the  “gain  from  receiving”  value  and  g  the
“cost of giving” value. a is a constant to guarantee pi j ¥ 0. For techni-
cal  convenience,  T,  R,  P,  and  S  can  be  calculated  from  these:
T ‡ a + b,  R ‡ a + b - g,  P ‡ a,  and  S ‡ a - g.  Aside  from  the  de-
scriptive interpretation as gain from receiving and cost of giving, this
reparametrization has the advantage that the original condition equa-
tion  (1)  and  the  additional  conditions  equation  (2) and  S ‡ 0  reduce
to  b > g ‡ a.  Furthermore,  it  is  the  form  of  the  basic  equation  in
G. Price’s model for the evolution of cooperation [45, 46].  
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to  b > g ‡ a.  Furthermore,  it  is  the  form  of  the  basic  equation  in
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Because  we  want  to  investigate  more  than  payoff  matrices,  where
equations (2) and (3) hold, we rewrite  

(5)T ‡ H1 + a + bL P,

(6)R ‡ H1 + aL P,

(7)a ‡
a

P
- 1 > 0,

(8)b ‡
b

P
> 0.

In principle, we could set P ‡ 1 without loss of generality. However,
we  cannot  set  P ‡ 1  while  requiring  that  T  and  R  are  integers  and
that all combinations of hold or do not hold in equations (2) and (3)
are generated.  

Now, equation (3) can be written as 

(9)b ‡ 1

and  investigated  as  one  variant  next  to  b > 1  and  b < 1.  And  equa-
tion (2) can be written as  

(10)a + 1 > b.

a + 1 ‡ b  and  a + 1 < b  will  also  be  investigated  (always  taking  care
that  a > 0  and  b > 0  hold).  Finally,  a H<,‡,>L 1  and  a H<,‡,>L b  are
relevant conditions, if it is possible to distinguish in this way.  

Obviously, not all combinations of these conditions can hold simul-
taneously.  For  example,  (a + 1 < b,  b < 1)  has  no  allowed  solution.
The allowed combinations and the values for T,  R,  and P  are shown
in Table 4. For each combination of conditions an infinite number of
values  could  have  been  found.  One  could  have  chosen  to  interpret
“>” as  “much greater  than” but  then selecting specific  numbers  in  a
way  would  have  been  arbitrary.  So  the  smallest  numbers  to  fulfill  a
set of conditions have been chosen as representatives. 
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Cond. 1 Cond. 2 Cond. 3 T R P T ‡ R + P 2 R > T
b ‡ 1 a ‡ 1 3 2 1 holds holds
b ‡ 1 a > 1 4 3 1 holds holds
b ‡ 1 a < 1 5 3 2 holds holds
b < 1 a ‡ 1 5 4 2 holds
b < 1 a > 1 6 5 2 holds
b < 1 a < 1 b ‡ a 4 3 2 holds
b < 1 a < 1 b > a 6 4 3 holds
b < 1 a < 1 b < a 6 5 3 holds
b > 1 b < a + 1 a > 1 5 3 1 holds
b > 1 b < a + 1 a ‡ 1 7 4 2 holds
b > 1 b < a + 1 a < 1 9 5 3 holds
b > 1 b ‡ a + 1 a ‡ 1 4 2 1 
b > 1 b > a + 1 a ‡ 1 5 2 1 
b > 1 b ‡ a + 1 a > 1 6 3 1 
b > 1 b > a + 1 a > 1 7 3 1 
b > 1 b ‡ a + 1 a < 1 6 3 2 
b > 1 b > a + 1 a < 1 7 3 2 

Table 4. Investigated variants of payoff matrix values.

5. Iteration, Tournament, and Scoring    

In  an  iteration  step  all  strategies  play  a  prisoner’s  dilemma  against
any  of  the  other  strategies  and  themselves.  A  strategy  calculates  its
action from the preceding actions of the specific opponent. How often
strategy i received a T, R, P, or S payoff playing against a specific strat-
egy j is tracked by the counters Ni j

t , Ni j
r , Ni j

p , Ni j
s , that is, in each itera-

tion step for each i and each j one of the four Ni j
x  is increased by 1.

Now, all the payoff matrices from Table 4 are applied one after the
other to calculate the total payoff Gi

1  for each payoff matrix and each
strategy i: 

(11)
Gi

1 ‡ ‚

j

T Ni j
T + R Ni j

R + P Ni j
P .

The strategy (or set of strategies) i to yield the highest Gi
1  is one of

the main results for a specific iteration round and a specific payoff ma-
trix. 

Then,  the  tournament  begins.  Each  tournament  round g  is  started
by calculating the average payoff of the preceding tournament round:  

(12)Gg ‡
⁄ i Gi

g di
g

⁄ i di
g
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where  di
g ‡ 1,  if  strategy  i  was  still  participating  in  round  g  and

di
g ‡ 0  otherwise.  Then,  di

g+1  is  set  to  0,  if  di
g ‡ 0,  or  if  a  strategy

scored below average:  

(13)Gi
g < Gg.

The payoff for the next tournament round g + 1 is then calculated for
all strategies still participating:  

(14)Gi
g+1 ‡ ‚

j

IT Ni j
T + R Ni j

R + P Ni j
P M dj

g+1.

The tournament ends if  only one strategy remains or if  all  remaining
strategies  score  equally  in  a  round (i.e.,  they  have  identical  Gi

g).  The
strategies that manage to emerge as winners of such a tournament are
the second main result for a specific iteration step and a specific pay-
off matrix.  

Such an elimination tournament can be interpreted as an evolution-
ary  tournament,  where  the  frequency  values  for  the  strategies  can
only take the values f ‡ 0 and f ‡ 1. 

To state  it  explicitly:  all  strategies  participate  in  the  next  iteration
step  for  another  first  round  of  the  tournament.  The  elimination
process  takes  place  within  a  step  and  not  across  iteration  steps.  No
prisoner’s dilemma game is played during or between the rounds of a
tournament.  Because  all  strategies  are  deterministic,  this  procedure  is
equivalent to playing the prisoner’s dilemma a fixed number of itera-
tions, evaluating the scores, eliminating all strategies that score below
average,  and  again  playing  a  fixed  number  of  iterations  with  the  re-
maining strategies, and so on. 

6. Results  

In this section we investigate all payoff matrices listed in Table 4. The
strategies are given that have the highest payoff Gi

1  in the first round
of the tournament for large numbers of iterations. The winning strat-
egy is given if the system stabilizes to one winner. Additionally, the it-
eration round that the winning strategy first appears in is given. This
implies that for a certain payoff matrix the number of iterations prior
to  finding  the  winning  strategy  is  important  for  determining  which
strategy will emerge as the best (in the sense described in Section 5).  

6.1 Results for No-Own-One-Opponent Memory  
With  only  one  action  to  remember,  there  are  just  eight  strategies
(named  (0/0)  to  (1/3)  where  (0/0)  never  cooperates  and  (1/3)  always
cooperates). The strategy TFT is (1/2). The simulation ran for 1000 it-
erations. It is safe to say that this is sufficiently long, as the results—
shown  in  Tables  5  and  6—stabilize  at  the  latest  in  iteration  16
(respectively 179).  
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With  only  one  action  to  remember,  there  are  just  eight  strategies
(named  (0/0)  to  (1/3)  where  (0/0)  never  cooperates  and  (1/3)  always
cooperates). The strategy TFT is (1/2). The simulation ran for 1000 it-
erations. It is safe to say that this is sufficiently long, as the results—
shown  in  Tables  5  and  6—stabilize  at  the  latest  in  iteration  16
(respectively 179).  

T R P First It. Gi
1 Tournament 

3 2 1 8 (0/0) (1/2)
4 3 1 4 (0/0) (1/2)
5 3 2 16 (0/0) (1/2)
5 4 2 6 (0/0) (1/2)
6 5 2 4 (0/0) (1/2)
4 3 2 10 (0/0) (1/2)
6 4 3 14 (0/0) (1/2)
6 5 3 6 (0/0) (1/2)
5 3 1 4 (0/0) (0/0)
7 4 2 4 (0/0) (0/0)
9 5 3 4 (0/0) (0/0)
4 2 1 4 (0/0) (0/0)
5 2 1 4 (0/0) (0/0)
6 3 1 4 (0/0) (0/0)
7 3 1 4 (0/0) (0/0)
6 3 2 4 (0/0) (0/0)
7 3 2 4 (0/0) (0/0)

Table 5. Results  for  (no own /  one opponent)  memory,  if  strategies  also play
against themselves. “First It.” denotes the iteration round after which the re-
sults remain the same until iteration 1000. TFT wins the tournament if b § 1
(regardless of a), while a comparison of the whole set of strategies is won by
defect always (ALLD).

6.2 Results for One-Own-One-Opponent Memory  
Beginning  with  the  second  iteration  step  under  this  configuration,
strategies base their decision on two bits; one (the higher bit) encodes
the  previous  action  of  their  opponent  and  the  other  remembers  their
own action. Table 7 gives an overview of strategy numbers and com-
pares their behavior.  

For  this  and  all  further  settings  10 000  iterations  (and  in  special
cases  more)  have  been  simulated.  Results  are  shown  in  Tables  8
and 9. 
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T R P First It. Gi
1 Tournament

3 2 1 8 (0/0) (0/0) 
4 3 1 8 (0/0) (0/0) 
5 3 2 12 (0/0) (0/0) 
5 4 2 162 (2) (0/0) (0/2), (1/2) 
6 5 2 179 (2) (0/0) (0/2), (1/2) 
4 3 2 108 (2) (0/0) (0/0), (0/2) 
6 4 3 168 (2) (0/0) (0/0), (0/2) 
6 5 3 80 (2) (0/0) (0/0), (0/2) 
5 3 1 4 (0/0) (0/0) 
7 4 2 7 (0/0) (0/0) 
9 5 3 8 (0/0) (0/0) 
4 2 1 4 (0/0) (0/0) 
5 2 1 4 (0/0) (0/0) 
6 3 1 4 (0/0) (0/0) 
7 3 1 4 (0/0) (0/0) 
6 3 2 8 (0/0) (0/0) 
7 3 2 4 (0/0) (0/0) 

Table 6. Results  for  (no  own  /  one  opponent)  memory,  if  strategies  do  not
play against themselves. The numbers in parentheses in the “First It.” column
denote period length,  if  the results  oscillate.  If  a rule is  only among the win-
ners  of  the  tournament  every  other  iteration,  then  it  is  displayed  in  italics.
This  setting  is  much  less  prone  to  lead  to  cooperation  than  if  strategies  also
play against themselves.    

Strategy Number Latest Own Latest Opponent
(?/1) D D
(?/2) C D
(?/4) D C
(?/8) C C

Table 7. A strategy cooperates if its number is composed of elements from this
table. For example, the strategy TFT is (1/12) (cooperate, if line three or line
four is remembered: (1/4+8)).    

In Table  8 the set  of  4 consists  of  the strategies  (0/0),  (0/2),  (0/8),
and (0/10).  All  winning strategies  cooperate  in  the  first  iteration and
at  least  continue  to  cooperate  upon  mutual  cooperation  (1/¥8).  If
b > a + 1 then,  (1/12)  (TFT) is  not  among the winners.  Strategy (?/9)
continues  its  behavior  if  the  opponent  has  cooperated,  or  changes  it,
that is, it is Pavlovian. (1/8) can also be seen as a Pavlovian strategy,
but  somewhat  more  content  than  (1/9).  It  is  happy  with  anything
other  than  S  and  thus  repeats  its  previous  behavior  unless  it  receives
an S.  If  the  opponent  defects,  no cooperating rule  is  among the  win-
ners.  (Strategy  (0/2)  would  do  so,  but  never  reaches  a  cooperative
state.)    
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T R P First It. Gi
1 Tournament 

3 2 1 8 set of 4 (1/8), (1/12)
4 3 1 66 (1/8) (1/8), (1/9), (1/12), (1/13)
5 3 2 18 set of 4 (1/8), (1/12)
5 4 2 21 (1/8) (1/8), (1/12)
6 5 2 18 (1/8) (1/8), (1/9), (1/12), (1/13) 
4 3 2 12 set of 4 (1/8), (1/12)
6 4 3 21 set of 4 (1/8), (1/12)
6 5 3 27 (1/8) (1/8), (1/12)
5 3 1 8 set of 4 (1/8), (1/12)
7 4 2 15 set of 4 (1/8), (1/12)
9 5 3 18 set of 4 (1/8), (1/12)
4 2 1 1398 set of 4 (1/12)
5 2 1 10 set of 4 (1/8)
6 3 1 30 set of 4 (1/8), (1/12)
7 3 1 6 set of 4 (1/8)
6 3 2 645 set of 4 (1/12), (1/8)
7 3 2 15 set of 4 (1/8)

Table 8. Results for (one own / one opponent) memory, if strategies also play
against themselves. 

T R P First It. Gi
1 Tournament 

3 2 1 34 set of 4 (1/8), (1/12) 
4 3 1 29 (1/8) (1/8), (1/12) 
5 3 2 30 set of 4 (1/8), (1/12) 
5 4 2 42 (1/8) (1/8), (1/12) 
6 5 2 18 (1/8) (1/8), (1/12) 
4 3 2 23 set of 4 (1/8), (1/12) 
6 4 3 39 set of 4 (1/8), (1/12) 
6 5 3 53 (1/8) (1/8), (1/12) 
5 3 1 363 set of 4 (1/8), (1/12) 
7 4 2 57 set of 4 (1/8), (1/12) 
9 5 3 163 set of 4 (1/12), (1/8) 
4 2 1 49 set of 4 set of 4 
5 2 1 69 set of 4 set of 4 
6 3 1 9 set of 4 set of 4 
7 3 1 7 set of 4 set of 4 
6 3 2 66 set of 4 set of 4, (0/4) 
7 3 2 141 set of 4 set of 4 altern. ((0/4), (1/4))

Table 9. Results  for  (one  own  /  one  opponent)  memory,  if  strategies  do  not
play  against  themselves.  The  set  of  4  consists  of  the  strategies  (0/0),  (0/2),
(0/8), and (0/10).    
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6.3 Results for No-Own-Two-Opponent Memory  
We  used  10 000  iterations  for  this  configuration.  Again,  this  is  far
more  than  the  largest  number  of  iterations  before  the  process  settles
down in some way. Now TFT is (1/2/12) and tit-for-two-tat (TF2T) is
(1/3/14). Results are shown in Tables 10 and 11.  

Table  10 shows that  for  6-3-1  strategy  (1/0/2)  wins  for  two itera-
tions and then (0/1/2) and (0/3/2) win. For 7-3-1 it is similar, but strat-
egy  (0/3/2)  never  wins.  Compared  to  Table  5  TFT  (1/2/12)  (or  even
more  cooperative  strategies)  mostly  reappears,  only  disappears  as
winner of the tournament for 6-5-3, but newly wins 9-5-3. Thus, the
general tendency that payoff matrices with b § 1 produce more coop-
eration is kept, but is less pronounced. The most cooperative strategy
to co-win a tournament is (1/3/14), which only defects if it remembers
two  defections  of  the  opponent.  Overall—compared  to  the  settings
with  smaller  memory—the  dominance  of  ALLD  has  vanished,  espe-
cially in the first round of the tournament.    

T R P First It. Gi
1 Tournament 

3 2 1 383 (1/2/2) (1/2/10), (1/3/10),
(1/2/12), (1/3/12)

4 3 1 350 (1/2/2) (1/3/10), (1/2/14)
5 3 2 179 (0/0/2) (1/2/10), (1/3/10),

(1/2/12), (1/3/12)
5 4 2 422 (1/2/2) (1/2/10), (1/3/10), (1/2/12), 

(1/3/12), (1/2/14), (1/3/14) 
6 5 2 397 (1/2/2) (1/2/10), (1/3/10), (1/2/12), 

(1/3/12), (1/2/14), (1/3/14) 
4 3 2 53 (0/0/0) (1/2/10), (1/3/10), (1/2/12), 

(1/3/12), (1/2/14), (1/3/14) 
6 4 3 35 (0/0/0) (1/2/8), (1/3/8), (1/2/10), 

(1/3/10), (1/2/12), (1/3/12) 
6 5 3 1076 (0/0/0) (1/3/10) 
5 3 1 215 (1/2/2) (0/3/2)
7 4 2 527 (1/2/2) (0/3/2)
9 5 3 2123 (1/2/2) (1/3/10), (1/3/12)
4 2 1 719 (2) (1/2/2) (1/2/4) altern. (0/3/4)
5 2 1 1283 (2) (0/0/2) (0/2/4) altern. (0/3/4)
6 3 1 299 (4) (1/2/2) (1/0/2)
7 3 1 395 (4) (1/2/2) (1/0/2)
6 3 2 41 (2) (0/0/2) (1/2/4) altern. (0/3/4)
7 3 2 127 (2) (0/0/2) (1/2/4) altern. (0/3/4)

Table 10. Results for (no own / two opponent) memory, if strategies also play
against themselves. 
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 Table 11 shows that for payoff matrices 7-4-2 and 9-5-3 strategy
(0/2/4)  co-wins  in  two  out  of  three  rounds.  The  comparison  to
Table 6 reveals that increasing memory size makes cooperative strate-
gies much more successful for almost all payoff matrices. None of the
payoff  matrices  that  produced  oscillating  results  with  size-one  mem-
ory do so with size-two memory and vice versa.    

T R P First It. Gi
1 Tournament 

3 2 1 959 (1/2/2) (1/3/10), (1/3/12)
4 3 1 219 (1/2/2) (1/3/10), (1/3/12), (1/3/14)
5 3 2 179 (0/0/2) (1/3/10), (1/3/12)
5 4 2 720 (1/2/2) (1/3/10)
6 5 2 619 (1/2/2) (0/3/14)
4 3 2 276 (0/0/0) (1/2/10), (1/3/10), (1/2/12), 

(1/3/12), (1/2/14), (1/3/14) 
6 4 3 38 (0/0/0) (1/2/8), (1/3/8), (1/2/10), 

(1/3/10), (1/2/12), (1/3/12) 
6 5 3 422 (0/0/0) (1/3/10), (1/0/12), (0/3/14) 
5 3 1 359 (1/2/2) (0/3/2)
7 4 2 1224 (3) (0/0/2) (1/2/4), (0/2/4)
9 5 3 1644 (3) (0/0/2) (1/2/4), (0/2/4) 
4 2 1 2891 (2) (0/0/2) (0/2/4), ((1/2/4) alt. (0/3/4))
5 2 1 13 (2) (0/0/2) (0/2/4), (0/3/4) 
6 3 1 515 (4) (1/2/2) (1/0/2) 
7 3 1 731 (1/2/2) (1/0/2)
6 3 2 85 (2) (0/0/2) (0/2/4), ((1/2/4) alt. (0/3/4))
7 3 2 115 (2) (0/0/2) (0/2/4), ((1/2/4) alt. (0/3/4))

Table 11. Results  for  (no  own  /  two  opponent)  memory,  if  strategies  do  not
play against themselves.

6.4 Results for One-Own-Two-Opponent Memory  
In this case, the size of the strategy can be reduced because there is no
need to distinguish between strategies  that  cooperate  or  defect  in  the
second  iteration,  if  hypothetically  they  cooperated  in  the  first  itera-
tion, when in fact they defected. The number of strategies was not re-
duced to the subset of distinguishable ones for this simulation. Doing
so  would  have  introduced  an  error  in  the  source  code,  and  at  this
stage,  the  effect  on  required  computational  resources  is  negligible.
Thus,  for  each  strategy  there  are  three  more  that  yield  exactly  the
same results against each of the strategies. Just the smallest of the four
equivalent strategies is given in Table 12. This means that in the case
of initial defection adding 2, 8, or 10 to the middle number gives the
equivalent  strategies  and  in  the  case  of  initial  cooperation,  it  is  1,  4,
or  5.  Therefore,  the  TFT strategy  is  (1/8/240),  (1/9/240),  (1/12/240),
and/or (1/13/240). Even when the results are reduced by naming only
one of four strategies linked in this way, this is the first configuration
that is too complicated to be understandable at a glance.  
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In this case, the size of the strategy can be reduced because there is no
need to distinguish between strategies  that  cooperate  or  defect  in  the
second  iteration,  if  hypothetically  they  cooperated  in  the  first  itera-
tion, when in fact they defected. The number of strategies was not re-
duced to the subset of distinguishable ones for this simulation. Doing
so  would  have  introduced  an  error  in  the  source  code,  and  at  this
stage,  the  effect  on  required  computational  resources  is  negligible.
Thus,  for  each  strategy  there  are  three  more  that  yield  exactly  the
same results against each of the strategies. Just the smallest of the four
equivalent strategies is given in Table 12. This means that in the case
of initial defection adding 2, 8, or 10 to the middle number gives the
equivalent  strategies  and  in  the  case  of  initial  cooperation,  it  is  1,  4,
or  5.  Therefore,  the  TFT strategy  is  (1/8/240),  (1/9/240),  (1/12/240),
and/or (1/13/240). Even when the results are reduced by naming only
one of four strategies linked in this way, this is the first configuration
that is too complicated to be understandable at a glance.  

In  Table  12  the  “Ó”  is  used  as  the  common  meaning  of  “or”.
(1/10/160) cooperates in the first and second iterations and then con-
tinues to cooperate, if both strategies have cooperated, otherwise it de-
fects. This implies that it does not make use of the information of the
second-to-last iteration and is therefore simpler than possible.  Except
for that it always cooperates in the second iteration, it is strategy (1/8)
from  the  (one  /  one)  setting.  The  set  of  4  strategies  consists  of
(0/0/1Ó9Ó129Ó137),  which all  use  information about  the  opponent’s
second-to-last  action.  The  set  of  22  is  (1/8Ó10/176Ó180Ó
208Ó212Ó240Ó244),  (1/8/144Ó146Ó148Ó150Ó178Ó182Ó210Ó214Ó
242Ó246)  and  includes  TFT.  The  set  of  13  is  (1/10/148),
(1/8Ó10/132Ó140Ó164Ó196Ó204Ó228).  The  set  of  17  includes  the
set of 13, (1/8/168Ó172Ó232), and (1/10/144). The set of 30 contains
the  set  of  13,  (1/8Ó/10/128Ó136Ó160Ó192Ó200Ó224),  (1/8/130Ó
162Ó194Ó226),  and  (1/10/144).  The  set  of  37  consists  of  the  set  of
30,  (1/8Ó10/168Ó172Ó232),  and (1/10/236).  The remaining four sets
(20,  39,  25,  and  29)  share  in  common  (1/10/168Ó172Ó184Ó
188Ó204Ó232Ó236Ó248Ó252), including TF2T. A total of 41 further
strategies  appear  as  members  of  these  sets,  of  which  a  majority  (28)
have been omitted from the table.

There  are  even  more  strategies  that  yield  identical  results  when
combined with any other player. For all strategies that continue to de-
fect  (cooperate)  after  an  initial  defection (cooperation),  there  are  ele-
ments that determine what to do following a cooperation (defection).
These elements are never applied and their values have no effect. This
phenomenon  leads  to  a  large  number  of  winning  strategies.  Interest-
ingly,  for  some  of  the  payoff  matrices  the  number  of  winners  is
smaller—around 20 or 30 iterations—than at larger numbers of itera-
tions. 

For this memory configuration there is  almost no difference in the
results  whether  strategies  play  against  themselves  or  not.  The  strate-
gies with the most points in the first round of the tournament and the
number  of  strategies  winning  the  tournament  are  the  same  in  both
cases. If the number of winning strategies is large, a small number of
strategies  might  be  exchanged,  causing  differences  in  the  iteration
round when results become stable. In iteration rounds before stability,
there  can  be  larger  differences,  however.  We  refrain  from  giving  a
table  of  the  results  for  the  case  when  strategies  do  not  play  against
themselves. 
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T R P First It. Gi
1 Tournament 

3 2 1 1436 set of 4 set of 22, set of 17
4 3 1 998 set of 4 set of 22, set of 20
5 3 2 134 set of 4 set of 22, set of 13
5 4 2 234 set of 4 set of 22, set of 19
6 5 2 804 (1/10/160) set of 22, set of 39
4 3 2 1838 set of 4 set of 22, set of 37
6 4 3 794 set of 4 set of 22, set of 30 
6 5 3 929 (1/10/160) set of 22, set of 25 
5 3 1 2188 set of 4 set of 22, (1/10/148)
7 4 2 39 set of 4 set of 22, (1/10/148)
9 5 3 45 set of 4 set of 22, (1/10/148)
4 2 1 412 set of 4 (0/1Ó5/180Ó244),

(0/5/176Ó244)
5 2 1 278 set of 4 (0/1/180) 
6 3 1 133 (2) set of 4 (0/1Ó5/180Ó244), 

(0/5/176Ó244), (0/1/244)
7 3 1 2174 set of 4 (0/1/180)
6 3 2 324 set of 4 (0/1Ó5/180Ó244),

(0/5/176Ó244)
7 3 2 422 set of 4 (0/1/180)

Table 12. Results  for  (one  own  /  two  opponent)  memory,  if  strategies  also
play against themselves. 

6.5 Results for Two-Own-One-Opponent Memory  
This configuration is interesting because a strategy considers an oppo-
nent’s action as a reaction to its own remembered action. While TFT
is  (1/8/240),  a  strategy  that  also  cooperates  in  this  case  would  be
(1/8/244).  As  Table  13  shows,  sometimes  only  TFT  appears  among
the  winners  of  the  tournament,  sometimes  both  of  these  strategies.
Only with payoff  matrix 6-5-2 does the more forgiving strategy win,
but not TFT. It  is  the more tricky strategy (1/8/228) that applies this
kind of forgiveness, which is more successful than TFT.  

In  this  setting  as  well,  if  a  strategy  plays  against  itself  or  not  has
only  minor  effects.  Therefore,  the  results  for  the  case  when  they  do
not is omitted. 

In  Table  13  for  the  payoff  matrices  from  the  top  down  to  5-3-1
strategy (1/8/228)  is  always  among the  winners.  This  strategy almost
always  plays  tit-for-tat,  but  does  not  cooperate  if  the  opponent  has
cooperated and it has defected two times itself. However, it does coop-
erate if  the opponent has defected after  it  has defected,  even if  it  has
cooperated in the most recent game. The history for the winning strat-
egy (0/1/4) of the first round of the tournament shows that is the only
case when it cooperated. 20 000 iterations were calculated for the pay-
off matrices 5-3-2 and 7-4-2 to verify the late stability, respectively pe-
riod 4.    
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In  Table  13  for  the  payoff  matrices  from  the  top  down  to  5-3-1
strategy (1/8/228)  is  always  among the  winners.  This  strategy almost
always  plays  tit-for-tat,  but  does  not  cooperate  if  the  opponent  has
cooperated and it has defected two times itself. However, it does coop-
erate if  the opponent has defected after  it  has defected,  even if  it  has
cooperated in the most recent game. The history for the winning strat-
egy (0/1/4) of the first round of the tournament shows that is the only
case when it cooperated. 20 000 iterations were calculated for the pay-
off matrices 5-3-2 and 7-4-2 to verify the late stability, respectively pe-
riod 4.    

T R P First It. Gi
1 Tournament 

3 2 1 539 (2) (0/1/4) (1/8Ó10/164Ó228), 
(1/10/set of 13 altern. set of 14)

4 3 1 338 (0/1/4) (1/8/228Ó229)
5 3 2 8367 (0/1/4) (1/8/228)
5 4 2 107 (0/1/4) (1/8Ó10/224Ó228Ó240Ó244),

(1/10/set of 14)
6 5 2 111 (0/1/4) (1/8/228Ó229Ó244)
4 3 2 3768 (0/1/4) (1/8Ó10/224Ó228Ó240),

(1/10/set of 11)
6 4 3 242 (0/1/4) (1/8Ó10/164Ó224Ó228Ó240),

(1/10/set of 12)
6 5 3 483 (0/1/4) (1/8/224Ó228Ó240Ó244)
5 3 1 106 (0/1/4) (1/8Ó10/164Ó228), 

(1/10/160Ó161Ó176Ó177Ó224Ó225Ó240Ó241)
7 4 2 5989 (4) (0/1/4) (1/8Ó10/160Ó176Ó224), (1/10/240)
9 5 3 350 (0/1/4) (1/8Ó10/160Ó176Ó224), (1/10/240)
4 2 1 32 (2) (0/1/4) (1/8/224Ó160Ó176)
5 2 1 32 (0/1/4) (0/5/224)
6 3 1 407 (2) (0/1/4) (1/8/160Ó161Ó176Ó177Ó224Ó225), 

altern. (0/5/224Ó225)
7 3 1 29 (0/1/4) (0/5/224Ó225)
6 3 2 37 (2) (0/1/4) (1/8/160Ó176Ó224), altern. (0/5/224)
7 3 2 35 (0/1/4) (0/5/224)

Table 13. Results  for  (two  own  /  one  opponent)  memory,  if  strategies  also
play against themselves. 

6.6 Results for No-Own-Three-Opponent Memory  
This setting has the largest number of strategies investigated in this pa-
per.  The  number  of  iterations  until  the  results  settle  varies  greatly
among the various payoff  matrices.  In fact,  for  some payoff  matrices
they  did  not  stabilize  before  iteration  30 000.  At  that  point  we  re-
frained  from further  calculations  and  accepted  the  (non-)result  as  an
open issue for  future  investigations.  However,  even for  payoff  matri-
ces  that  have  reached  apparently  stable  results  it  cannot  be  excluded
that  after  some  10 000  further  iterations  more  different  winners
would result, as in the more volatile cases. Another surprising observa-
tion was that  the  results  sometimes  appeared to have reached a  final
state but then started changing again.  After all,  for remembering one
opponent’s action, stable results appeared after approximately 10 iter-
ations,  and  for  remembering  two  opponents’  moves  it  was  about
1000  iterations. So,  it  is  not  unrealistic  to  assume  that  remembering
three  opponents’  actions  may  need  100 000  or  even  more  iterations
until the results do not change anymore.  
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per.  The  number  of  iterations  until  the  results  settle  varies  greatly
among the various payoff  matrices.  In fact,  for  some payoff  matrices
they  did  not  stabilize  before  iteration  30 000.  At  that  point  we  re-
frained  from further  calculations  and  accepted  the  (non-)result  as  an
open issue for  future  investigations.  However,  even for  payoff  matri-
ces  that  have  reached  apparently  stable  results  it  cannot  be  excluded
that  after  some  10 000  further  iterations  more  different  winners
would result, as in the more volatile cases. Another surprising observa-
tion was that  the  results  sometimes  appeared to have reached a  final
state but then started changing again.  After all,  for remembering one
opponent’s action, stable results appeared after approximately 10 iter-
ations,  and  for  remembering  two  opponents’  moves  it  was  about
1000  iterations. So,  it  is  not  unrealistic  to  assume  that  remembering
three  opponents’  actions  may  need  100 000  or  even  more  iterations
until the results do not change anymore.  

Further  difficulties  may  arise  from  precision  issues  in  the  calcula-
tion.  During  the  tournament,  which  strategies  may  participate  in  the
next  round is  decided  by  comparing  the  average  of  their  points.  The
average  is  calculated  by  dividing  one  very  large  number  by  another
very  large  number.  As  a  consequence,  the  size  comparison  between
average and individual results may be faulty. In fact, if a strategy has
exactly  achieved the  average of  points  it  is  kicked out  of  the  tourna-
ment.  Another  possible  resource  problem  is  that  the  sum  of  points
may produce an overflow in the corresponding integer variable. Such
considerations are generally known to be relevant when dealing with
such  large  numbers  during  complex  simulations.  There  was  no
explicit hint in our results that such issues really occurred, except the
surprisingly  long  instability  of  results  that  could,  in  principle,  be
attributed  to  them.  Ruling  those  considerations  out  would  require  a
second computer  system with  a  different  architecture  or  a  very  thor-
ough understanding of the CPU and the compiler being used. None of
these were sufficiently available. Additionally, each simulation run cur-
rently  takes  days  to  arrive  at  the  number  of  iterations  where  these
issues  could  be  relevant.  When  using  up-to-date  standard  computer
systems  the  no-own-three-opponent-memory  case  is  at  the  edge  of
accessibility.  Definitely  ruling  out  negative  effects  that  falsify  the
results with a maintainable effort remains to be done in the future. 

Calculating  the  payoff  and  evaluating  the  tournament  takes  more
computation time than calculating the results  of  the dilemma. There-
fore, payoff calculation and tournament evaluation were only carried
out for the last 100 iterations before each full 1000th  iteration if there
were more than 10 000 iterations in total. This in turn implies that we
can  only  approximate  the  iteration  round  after  which  the  results  are
stable. 

Having said all this, it becomes obvious that the results of this sec-
tion need to be considered as preliminary—even more so the later the
assumed stability was observed. 

A  different  problem  is  that  in  some  cases  the  number  of  tourna-
ment winners is too large to give all of them in this paper. However,
the remaining cases should be sufficient to demonstrate the types and
variants of strategies that win.

A majority of strategies that win the first round of a tournament co-
operate when the earliest remembered opponent’s action was coopera-
tion, and any other defection. This trend was already present with the
two-opponent-memory, but it was not as pronounced. This strategy is
interesting  because  it  uses  the  last  chance  to  avoid  breaking  entirely
with  the  opponent.  To  find  a  catchy  name  for  this  strategy,  recall
Mephisto’s  behavior  toward  God  in  the  “Prologue  in  Heaven”  of
Faust  I:  “The  ancient  one  I  like  sometimes  to  see,  And  not  to  break
with  him  am  always  civil,”  where  even  considering  all  the  competi-
tion  between the  two, Mephisto  avoids  entirely  abandoning  coopera-
tion. The German original “Von Zeit zu Zeit seh ich den Alten gern,
und hüte mich mit ihm zu brechen” even more stresses the occasional
character of the cooperative interaction.
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A majority of strategies that win the first round of a tournament co-
operate when the earliest remembered opponent’s action was coopera-
tion, and any other defection. This trend was already present with the
two-opponent-memory, but it was not as pronounced. This strategy is
interesting  because  it  uses  the  last  chance  to  avoid  breaking  entirely
with  the  opponent.  To  find  a  catchy  name  for  this  strategy,  recall
Mephisto’s  behavior  toward  God  in  the  “Prologue  in  Heaven”  of
Faust  I:  “The  ancient  one  I  like  sometimes  to  see,  And  not  to  break
with  him  am  always  civil,”  where  even  considering  all  the  competi-
tion  between the  two, Mephisto  avoids  entirely  abandoning  coopera-
tion. The German original “Von Zeit zu Zeit seh ich den Alten gern,
und hüte mich mit ihm zu brechen” even more stresses the occasional
character of the cooperative interaction.

If  Mephisto  is  extrapolated  to  even  larger  memory  sizes,  coopera-
tion  diminishes,  although  there  is  some  basic  cooperative  tendency
kept  in  the  strategy.  This  raises  the  following  two  questions.  Would
this  trend  actually  continue  infinitely  if  memory  size  were  increased
further?  What  does  it  mean  when  winners  of  the  first  round  of  the
tournament  have  entirely  different  characteristics?  For  example,  the
case of one-own-two-opponent-memory-size strategies. 

The results are shown in Table 14. 

T R P First It. Gi
1 Tournament 

3 2 1 º 24 000 (1/2/2/2) 138 strategies
4 3 1 º 27 000 (0/0/0/9) (1/0/10/246), (1/0/14/230),

(1/0/11/230Ó246), (1/0Ó1/14/236Ó246), 
(1/0Ó1/15/228Ó230Ó236Ó246)

5 3 2 º 9000 (0/0/0/2) 117 strategies e.g.
(1/2Ó3/12Ó13Ó14Ó15/162Ó164Ó228Ó240)

5 4 2 - (1/2/2/2) (0/2/7/230), 
(0/0/15/230), (0/2/230Ó238)

6 5 2 º 21 000 (1/2/2/2) (0/1Ó3/10Ó11/230Ó246Ó254),
(0/0Ó1Ó2Ó3Ó8Ó9Ó10Ó11/230Ó246Ó254)

4 3 2 º 22 000 (0/0/0/2) 136 strategies e.g.
(1/2/12/166), (1/3/8/240), (1/3/15/252)

6 4 3 º 22 000 (0/0/0/2) 207 strategies e.g.
(1/2/12/160), (1/3/8/240), (1/3/15/248)

6 5 3 º 9000 (0/0/0/2) (0/1Ó3/10Ó11/230Ó246Ó254),
(0/3/0Ó1Ó8Ó9Ó10Ó11/230)

5 3 1 678 (0/0/0/9) 74 strategies e.g.
(1/2Ó3/12Ó13Ó14Ó15/162Ó176Ó228Ó240)

7 4 2 º 9000 (1/2/10/2) 78 strategies e.g.
(1/2Ó3/12Ó13Ó14Ó15/162Ó176Ó228Ó240)

9 5 3 º 12 000 (0/0/0/2) 80 strategies e.g.
(1/2Ó3/12Ó13Ó14Ó15/162Ó176Ó228Ó240)

4 2 1 609 (2) (0/0/0/2) (1/3/8Ó9/226) alt. (0/3/13Ó15/226)
5 2 1 1695 (0/0/0/2) (0/3/13/226)
6 3 1 1923 (2) (1/2/10/2) (1/3/8Ó9/226) alt. (0/3/13Ó15/226)
7 3 1 º 9000 (1/2/10/2) (0/3/13/226)
6 3 2 º 9000 (2) (0/0/0/2) (0/3/15/226) alt.

(1/3/8Ó9/226), (1/3/9/240)
7 3 2 1229 (0/0/0/2) (0/3/13/226)

Table 14. Results  for  remembering  three  preceding  opponents’  actions.
(Strategies do play against themselves.) For payoff matrix 5-4-2-0 after a vary-
ing number of iterations (roughly 10) another result with 14 tournament win-
ning strategies appears. These do not include the six given here.    
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7. Summary and Outlook  

The calculations presented in this paper reveal a strong dependence of
tournament results on the details of the payoff matrix. It is not suffi-
cient to distinguish if T + S ‡ R + P and 2 R > T + S hold or not. This
means that if the prisoner’s dilemma is used as a toy model for some
real  system,  care  should  be  taken  when  drawing  conclusions.  Of
course,  because  this  work  was  restricted  to  strategies  with  limited
memory  sizes,  there  might  be  strategies  relying  on  infinite  memory
that  outperform  all  of  these  regardless  of  the  payoff  matrix  details.
So, the main result of this paper is not that everything changes with a
different payoff  matrix,  but that the precise choice of the payoff  ma-
trix may be irrelevant.  

As expected, the two basic relations T + S ‡ R + P and 2 R > T + S
clearly  have  an  influence  on  the  results.  Subsets  of  strategies  appear
among  the  winners  depending  on  if  these  relations  hold  or  not.  The
picture is a bit different for a winner of the first round of the tourna-
ment,  when  all  strategies  participate.  There  are  fewer  strategies  that
win the first round, but if there is more than one for a memory config-
uration, there is no obvious pattern based on these relations that tells
which  strategy  wins  if  a  specific  payoff  matrix  is  applied.  In  total,  it
cannot be claimed that the details of the payoff matrix will dominate
each element of the results in any case. However, in general it can be
said  that  the  results  do  depend  on  the  specific  choice  of  the  payoff
matrix.  Furthermore,  it  is  impossible  to find one generally  best  strat-
egy (or a set of generally best strategies) but when comparing the win-
ners of the first  round to the tournament as a whole,  even for a spe-
cific payoff matrix, it cannot be decided in general if cooperating is a
good or bad idea. This depends on the kind of result that decides the
winner. 

For  these  reasons  it  is  usually  not  possible  to  use  the  prisoner’s
dilemma as some kind of proof that in some real  system cooperating
yields  the  best  payoff.  The  results  of  this  work,  like  many  preceding
works, remind us that cooperating might be the better idea, even if at
first  glance  it  gives  the  opposite  impression.  The  iterated  prisoner’s
dilemma is obviously an abstract and simplified model for any real so-
cial system and the four entries of the payoff matrix often are not set
quantitatively  by  the  real  system.  In  such  cases,  conclusions  drawn
from calculations  can  only  be  valid  if  the  results  do  not  significantly
depend on details of the payoff matrix. 

In some cases, the results stabilized only after a very large number
of  iterations,  a  number  far  larger  than,  for  example,  the  number  of
iterations in the tournaments performed by Axelrod [2]. This does not
necessarily mean that it is useless to investigate cases with fewer itera-
tions. Before the results stabilize they often oscillate between two sets
or  between  a  set  and  a  proper  subset.  Because  the  number  of  itera-
tions  for  stability  grows  with  the  number  of  participating  strategies
and as the number of participating strategies  is  already quite  large in
some cases, when stability only occurs beyond 1000 iterations, it can
be  assumed  that  the  number  of  iterations  was  sufficiently  high  for
most  investigations of  the iterated prisoner’s  dilemma that  have been
published so far. Still, the results in this paper indicate that an investi-
gation on the effect of having ±20 iterations usually should be worth
the effort. 
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In some cases, the results stabilized only after a very large number
of  iterations,  a  number  far  larger  than,  for  example,  the  number  of
iterations in the tournaments performed by Axelrod [2]. This does not
necessarily mean that it is useless to investigate cases with fewer itera-
tions. Before the results stabilize they often oscillate between two sets
or  between  a  set  and  a  proper  subset.  Because  the  number  of  itera-
tions  for  stability  grows  with  the  number  of  participating  strategies
and as the number of participating strategies  is  already quite  large in
some cases, when stability only occurs beyond 1000 iterations, it can
be  assumed  that  the  number  of  iterations  was  sufficiently  high  for
most  investigations of  the iterated prisoner’s  dilemma that  have been
published so far. Still, the results in this paper indicate that an investi-
gation on the effect of having ±20 iterations usually should be worth
the effort. 

The results show a tendency that for increased memory size, some-
what  cooperative  strategies  score  better.  There  have  been  investiga-
tions  on  the  dependency  of  good  memory  and  scoring  in  an  iterated
prisoner’s dilemma [47, 48], however, the facing work is rather indif-
ferent on this issue. The number of strategies also increases with mem-
ory size and cooperative strategies find more strategies that cooperate
as  well.  Comparing  Tables  5  and  6  supports  this  idea,  showing  that
cooperative  strategies  benefit  when  there  is  one  more  cooperative
counterpart  (themselves)  participating  in  the  tournament.  With  in-
creasing memory size,  whether or not strategies  play themselves does
not play any further role. These cases show that some strategies are re-
lated to others in such a way that playing against them has the same
effect as playing against themselves. On the other hand, if  the size of
memory does not matter, that is, if it is not necessary to make use of
more  than  recent  information  to  win,  then  in  the  cases  with  princi-
pally  long-lasting  memory  there  should  be  more  winning  strategies.
The reason for this is that there are many strategies that only differ in
their  reaction  to  long-past  events,  but  which  have  identical  reactions
to recent memory. In physical words, the strategies are degenerate. 

In this paper the main results have been presented and—despite its
considerable  extent—only  scarcely  analyzed  and discussed.  There  are
plenty of possibilities to discuss the success or poor performance of a
specific  strategy  in  a  specific  memory  configuration  with  a  specific
payoff matrix in analytical terms. The results can be investigated sta-
tistically for settings that yield large sets of tournament winners. Once
stronger  computational  resources  are  available,  larger  memories  can
be investigated and the case of remembering three actions of an oppo-
nent can be investigated more reliably. 

The idea for this paper was to simulate as many rounds as are nec-
essary to yield stable results.  The development of the results over the
rounds  was  not  considered  and  thus  could  be  investigated  in  further
studies. 

Many variants can be tried for the tournament itself. For example,
only eliminate those strategies scoring worst in an iteration, or elimi-
nate (as far as possible) exactly half of the strategies still running. It is
also possible to allow initial population weights different than one.  

Finally, the role of the payoff matrix can be investigated in greater
depth. No two payoff matrices always gave the same result (although
the results of 7-4-2 and 9-5-3 were always at least similar). Is it possi-
ble  for  two  payoff  matrices  that  are  not  related  trivially  to  yield  the
same  results? If  this  is  the  case,  what  is  (if  it  exists)  the  simplest
parametrization and set of relations between the parameters to gener-
ate all payoff matrices that yield all possible results? Can the winning
strategies or the number of iterations until stability be derived analyti-
cally? 
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Finally, the role of the payoff matrix can be investigated in greater
depth. No two payoff matrices always gave the same result (although
the results of 7-4-2 and 9-5-3 were always at least similar). Is it possi-
ble  for  two  payoff  matrices  that  are  not  related  trivially  to  yield  the
same  results? If  this  is  the  case,  what  is  (if  it  exists)  the  simplest
parametrization and set of relations between the parameters to gener-
ate all payoff matrices that yield all possible results? Can the winning
strategies or the number of iterations until stability be derived analyti-
cally? 

The  differences  between  the  results  with  different  payoff  matrices
might  be  reduced if  the  tournament  were  not  carried out  in  a  binary
way. If the frequency of a strategy could take a real value and frequen-
cies of a round were dependent on the score (fitness) of the preceding
round, it would then be possible for a strategy to score below average
in the first round, but recover in subsequent rounds. 
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