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Logic is a foundation for many things. But what are the foundations of
logic itself? 

In  symbolic  logic,  one  introduces  symbols  like  p  and  q  to  stand  for
statements  (or  “propositions”)  like  “this  is  an  interesting  essay”.  Then
one  has  certain  “rules  of  logic”,  like  that,  for  any  p  and  any  q,
NOT (p AND q) is the same as (NOT p) OR (NOT q).
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A Discovery about Basic Logic

Logic  is  a  foundation  for  many  things.  But  what  are  the  foundations
of logic itself?

In symbolic logic, one introduces symbols like p and q to stand for
statements  (or  “propositions”)  like  “this  is  an  interesting  essay”.
Then  one  has  certain  “rules  of  logic”,  like  that,  for  any  p  and  any  q,
NOT (p AND q) is the same as (NOT p) OR (NOT q).

But where do these “rules of logic” come from? Well, logic is a for-
mal  system.  And,  like  Euclid’s  geometry,  it  can  be  built  on  axioms.
But  what  are  the  axioms?  We  might  start  with  things  like
p AND q = q AND p,  or  NOT NOT p = p.  But  how  many  axioms  does  one
need? And how simple can they be?

It was a nagging question for a long time. But at 8:31pm on Satur-
day,  January  29,  2000,  out  on  my  computer  screen  popped  a  single
axiom. I had already shown there couldn’t be anything simpler, but I
soon established that this one little axiom was enough to generate all
of logic:

((p · q) · r) · (p · ((p · r) · p)) ⩵ r

But how did I know it was correct? Well, because I had a computer
prove it. And here’s the proof, as I printed it in 4-point type in A New
Kind  of  Science  (and  it’s  now  available  in  the  Wolfram  Data
Repository):
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With the latest version of the Wolfram Language, anyone can now
generate  this  proof  in  under  a  minute.  And  given  this  proof,  it’s
straightforward to verify each step. But why is the result true? What’s
the explanation?

That’s  the  same  kind  of  question  that’s  increasingly  being  asked
about all sorts of computational systems, and all sorts of applications
of  machine  learning  and  AI.  Yes,  we  can  see  what  happens.  But  can
we understand it?

I think this is ultimately a deep question—that’s actually critical to
the  future  of  science  and  technology,  and  in  fact  to  the  future  of  our
whole intellectual development. 

But  before  we  talk  more  about  this,  let’s  talk  about  logic,  and
about the axiom I found for it.

The History

Logic  as  a  formal  discipline  basically  originated  with  Aristotle  in  the
4th  century  BC.  As  part  of  his  lifelong  effort  to  catalog  things
(animals,  causes,  etc.),  Aristotle  cataloged  valid  forms  of  arguments,
and created symbolic templates for them which basically provided the
main content of logic for two thousand years.

By  the  1400s,  however,  algebra  had  been  invented,  and  with  it
came  cleaner  symbolic  representations  of  things.  But  it  was  not  until
1847  that  George  Boole  finally  formulated  logic  in  the  same  kind  of
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way as algebra, with logical operations like AND and OR being thought
of as operating according to algebra-like rules. 

Within a few years, people were explicitly writing down axiom sys-
tems for logic. A typical example was:

p ANDq ⩵ q ANDp

p ORq ⩵ q ORp

p AND (q OR (NOTq)) ⩵ p

p OR (q AND (NOTq)) ⩵ p

p AND (q OR r) ⩵ (p ANDq) OR (p AND r)

p OR (q AND r) ⩵ (p ORq) AND (p OR r)

But  does  logic  really  need  AND  and  OR  and  NOT?  After  the  first
decade  of  the  1900s  several  people  had  discovered  that  actually  the
single  operation  that  we  now  call  NAND  is  enough,  with  for  example
p OR q  being  computed  as  (p NAND p) NAND (q NAND q).  (The
“functional  completeness”  of  NAND  could  have  remained  forever  a
curiosity  but  for  the  development  of  semiconductor  technology—
which  implements  all  the  billions  of  logic  operations  in  a  modern
microprocessor  with  combinations  of  transistors  that  perform  none
other than NAND or the related function NOR.) 

But,  OK,  so  what  do  the  axioms  of  logic  (or  “Boolean  algebra”)
look  like  in  terms  of  NAND?  Here’s  the  first  known  version  of  them,
from Henry Sheffer in 1913 (here dot · stands for NAND):

(p · p) · (p · p) ⩵ p

p · (q · (q · q)) ⩵ p · p

(p · (q · r)) · (p · (q · r)) ⩵ ((q · q) · p) · ((r · r) · p)

Back  in  1910  Whitehead  and  Russell’s  Principia  Mathematica  had
popularized the idea that perhaps all of mathematics could be derived
from  logic.  And  particularly  with  this  in  mind,  there  was  significant
interest in seeing just how simple the axioms for logic could be. Some
of the most notable work on this was done in Lviv and Warsaw (then
both  part  of  Poland),  particularly  by  Jan  Łukasiewicz  (who,  as  a  side
effect  of  his  work,  invented  in  1920  parenthesis-free  Łukasiewicz  or
“Polish”  notation).  In  1944,  at  the  age  of  66,  Łukasiewicz  fled  from
the approaching Soviets—and in 1947 ended up in Ireland. 

Meanwhile,  the  Irish-born  Carew  Meredith,  who  had  been  edu-
cated  at  Winchester  and  Cambridge,  and  had  become  a  mathematics
coach  in  Cambridge,  had  been  forced  by  his  pacifism  to  go  back  to
Ireland  in  1939.  And  in  1947,  Meredith  went  to  lectures  by
Łukasiewicz in Dublin, which inspired him to begin a search for sim-
ple axioms, which would occupy most of the rest of his life. 

Already by 1949, Meredith found the two-axiom system:
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(p · (q · r)) · (p · (q · r)) ⩵ ((r · p) · p) · ((q · p) · p)

(p · p) · (q · p) ⩵ p

After nearly 20 years of work, he had succeeded by 1967 in simpli-
fying this to:

p · (q · (p · r)) ⩵ ((r · q) · q) · p

(p · p) · (q · p) ⩵ p

But  could  it  get  any  simpler?  Meredith  had  been  picking  away  for
years  trying  to  see  how  a  NAND  could  be  removed  here  or  there.  But
after  1967  he  apparently  didn’t  get  any  further  (he  died  in  1976),
though in 1969 he did find the three-axiom system:

p · (q · (p · r)) ⩵ p · (q · (q · r))

(p · p) · (q · p) ⩵ p

p · q ⩵ q · p

I  actually  didn’t  know  about  Meredith’s  work  when  I  started
exploring  axiom  systems  for  logic.  I’d  gotten  into  the  subject  as  part
of trying to understand what kinds of behavior simple rules could pro-
duce.  Back  in  the  early  1980s  I’d  made  the  surprising  discovery  that
even  cellular  automata  with  some  of  the  simplest  possible  rules—like
my favorite rule 30—could generate behavior of great complexity.

And having spent the 1990s basically trying to figure  out just how
general  this  phenomenon  was,  I  eventually  wanted  to  see  how  it
might  apply  to  mathematics.  It’s  an  immediate  observation  that  in
mathematics  one’s  basically  starting  from  axioms  (say  for  arithmetic,
or geometry, or logic), and then trying to prove a whole collection of
sophisticated theorems from them.

But  just  how  simple  can  the  axioms  be?  Well,  that  was  what  I
wanted  to  discover  in  1999.  And  as  my  first  example,  I  decided  to
look  at  logic  (or,  equivalently,  Boolean  algebra).  Contrary  to  what  I
would  ever  have  expected  beforehand,  my  experience  with  cellular
automata,  Turing  machines,  and  many  other  kinds  of  systems—
including  even  partial  differential  equations—was  that  one  could  just
start  enumerating  the  simplest  possible  cases,  and  after  not  too  long
one would start seeing interesting things.

But could one “discover logic” this way? Well, there was only one
way  to  tell.  And  in  late  1999  I  set  things  up  to  start  exploring  what
amounts to the space of all possible axiom systems—starting with the
simplest ones.

In  a  sense  any  axiom  system  provides  a  set  of  constraints,  say  on
p · q.  It  doesn’t  say  what  p · q  “is”;  it  just  gives  properties  that  p · q
must satisfy (like, for example, it could say that p · q = p · q). Then the
question is whether from these properties one can derive all the theo-
rems of logic that hold when p · q is Nand[p, q]: no more and no less. 
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There’s  a  direct  way  to  test  some  of  this.  Just  take  the  axiom  sys-
tem, and see what explicit forms of p · q satisfy the axioms if p and q
can,  say,  be  True  or  False.  If  the  axiom  system  were  just  p · q = q · p
then, yes, p · q could be Nand[p, q]—but it doesn’t have to be. It could
also  be  And[p, q]  or  Equal[p, q]—or  lots  of  other  things  which  won’t
satisfy  the  same  theorems  as  the  NAND  function  in  logic.  But  by  the
time  one  gets  to  the  axiom  system  {((p · p) · q) · (q · p) = q}  one’s
reached  the  point  where  Nand[p, q]  (and  the  basically  equivalent
Nor[p, q]) are the only “models” of p · q that work—at least assuming
p and q have only two possible values. 

So  is  this  then  an  axiom  system  for  logic?  Well,  no.  Because  it
implies,  for  example,  that  there’s  a  possible  form  for  p · q  with  3  val-
ues for p and q, whereas there’s no such thing for logic. But, OK, the
fact  that  this  axiom  system  with  just  one  axiom  even  gets  close  sug-
gests  it  might  be  worth  looking  for  a  single  axiom  that  reproduces
logic.  And  that’s  what  I  did  back  in  January  2000  (it’s  gotten  a  bit
easier  these  days,  thanks  notably  to  the  handy,  fairly  new  Wolfram
Language function Groupings). 

It  was  easy  to  see  that  no  axioms  with  3  or  fewer  “NANDs”  (or,
really, 3 or fewer “dot operators”) could work. And by 5am on Satur-
day,  January  29  (yes,  I  was  a  night  owl  then),  I’d  found  that  none
with 4 NANDs could work either. By the time I stopped working on it a
little  after  6am,  I’d  gotten  14  possible  candidates  with  5  NANDs.  But
when  I  started  work  again  on  Saturday  evening  and  did  more  tests,
every one of these candidates failed. 

So,  needless  to  say,  the  next  step  was  to  try  cases  with  6  NANDs.
There  were  288,684  of  these  in  all.  But  my  code  was  efficient,  and  it
didn’t  take  long  before  out  popped  on  my  screen  (yes,  from  Mathe-
matica Version 4):

{f[f[b, f[b, f[a, a]]], f[a, f[b, c]]]⩵ a,
f[f[b, f[b, f[a, a]]], f[a, f[c, b]]]⩵ a, f[f[b, f[b, f[a, b]]], f[a, f[b, c]]]⩵ a,
f[f[b, f[b, f[a, b]]], f[a, f[c, b]]]⩵ a, f[f[b, f[b, f[a, c]]], f[a, f[c, b]]]⩵ a,
f[f[b, f[b, f[b, a]]], f[a, f[b, c]]]⩵ a, f[f[b, f[b, f[b, a]]], f[a, f[c, b]]]⩵ a,
f[f[b, f[b, f[c, a]]], f[a, f[b, c]]]⩵ a, f[f[b, f[f[a, b], b]], f[a, f[b, c]]]⩵ a,
f[f[b, f[f[a, b], b]], f[a, f[c, b]]]⩵ a, f[f[b, f[f[a, c], b]], f[a, f[c, b]]]⩵ a,
f[f[f[b, c], a], f[b, f[b, f[a, b]]]]⩵ a, f[f[f[b, c], a], f[b, f[b, f[a, c]]]]⩵ a,
f[f[f[b, c], a], f[b, f[f[a, a], b]]]⩵ a, f[f[f[b, c], a], f[b, f[f[a, b], b]]]⩵ a,
f[f[f[b, c], a], f[b, f[f[a, c], b]]]⩵ a, f[f[f[b, c], a], f[b, f[f[b, a], b]]]⩵ a,
f[f[f[b, c], a], f[b, f[f[c, a], b]]]⩵ a, f[f[f[b, c], a], f[c, f[c, f[a, b]]]]⩵ a,
f[f[f[b, c], a], f[c, f[c, f[a, c]]]]⩵ a, f[f[f[b, c], a], f[c, f[f[a, a], c]]]⩵ a,
f[f[f[b, c], a], f[c, f[f[a, b], c]]]⩵ a, f[f[f[b, c], a], f[c, f[f[a, c], c]]]⩵ a,
f[f[f[b, c], a], f[c, f[f[b, a], c]]]⩵ a, f[f[f[b, c], a], f[c, f[f[c, a], c]]]⩵ a}

At  first  I  didn’t  know  what  I  had.  All  I  knew  was  that  these  were
the 25 inequivalent 6-NAND axioms that got further than any of the 5-
NAND  ones.  But  were  any  of  them  really  an  axiom  system  for  logic?  I
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had a (rather computation-intensive) empirical method that could rule
axioms  out.  But  the  only  way  to  know  for  sure  whether  any  axiom
was actually correct was to prove that it could successfully reproduce,
say, the Sheffer axioms for logic. 

It took a little software wrangling, but before many days had gone
by, I’d discovered that most of the 25 couldn’t work. And in the end,
just two survived:

((p · q) · r) · (p · ((p · r) · p)) ⩵ r
(p · ((r · p) · p)) · (r · (q · p)) ⩵ r

And  to  my  great  excitement,  I  was  successfully  able  to  have  my
computer  prove  that  both  are  axioms  for  logic.  The  procedure  I’d
used  ensured  that  there  could  be  no  simpler  axioms  for  logic.  So  I
knew I’d come to the end of the road: after a century (or maybe even
a  couple  of  millennia),  we  could  finally  say  that  the  simplest  possible
axiom for logic was known.

Not long after, I found two 2-axiom systems, also with 6 NANDs in
total, that I proved could reproduce logic:

(p · q) · (p · (q · r)) ⩵ p

p · q ⩵ q · p

(p · r) · (p · (q · r)) ⩵ p

p · q ⩵ q · p

And  if  one  chooses  to  take  commutativity  p · q = q · p  for  granted,
then these show that all it takes to get logic is one tiny 4-NAND axiom.

Why It Matters

OK,  so  it’s  neat  to  be  able  to  say  that  one’s  “finished  what  Aristotle
started”  (or  at  least  what  Boole  started)  and  found  the  very  simplest
possible  axiom  system  for  logic.  But  is  it  just  a  curiosity,  or  is  there
real significance to it?

Before  the  whole  framework  I  developed  in  A  New  Kind  of  Sci-
ence,  I  think  one  would  have  been  hard-pressed  to  view  it  as  much
more than a curiosity. But now one can see that it’s actually tied into
all  sorts  of  foundational  questions,  like  whether  one  should  consider
mathematics to be invented or discovered. 

Mathematics as humans practice it is based on a handful of particu-
lar axiom systems—each in effect defining a certain field of mathemat-
ics (say logic, or group theory, or geometry, or set theory). But in the
abstract,  there  are  an  infinite  number  of  possible  axiom  systems  out
there—in effect each defining a field of mathematics that could in prin-
ciple be studied, even if we humans haven’t ever done it. 

Before  A  New  Kind  of  Science  I  think  I  implicitly  assumed  that
pretty much anything that’s just “out there” in the computational uni-
verse  must  somehow  be  “less  interesting”  than  things  we  humans
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have explicitly built and studied. But my discoveries about simple pro-
grams made it clear that at the very least there’s often lots of richness
in  systems  that  are  just  “out  there”  than  in  ones  that  we  carefully
select.

So  what  about  axiom  systems  for  mathematics?  Well,  to  compare
what’s  just  “out  there”  with  what  we  humans  have  studied,  we  have
to  know  where  the  axiom  systems  for  existing  areas  of  mathematics
that  we’ve  studied—like  logic—actually  lie.  And  based  on  traditional
human-constructed axiom systems we’d conclude that they have to be
far, far out there—in effect only findable  if one already knows where
they are.

But  my  axiom-system  discovery  basically  answered  the  question,
“How far out is logic?” For something like cellular automata, it’s par-
ticularly easy to assign a number (as I did in the early 1980s) to each
possible cellular automaton. It’s slightly harder to do this with axiom
systems,  though  not  much.  And  in  one  approach,  my  axiom  can  be
labeled as 411;3;7;118—constructed in the Wolfram Language as:

Groupings[{p, q, r}[[1+ IntegerDigits[411, 3, 7]]], CenterDot → 2][[118]] ⩵ r

((p ·q) · r) · (p · ((p · r) ·p)) ⩵ r

And at least in the space of possible functional forms (not account-
ing  for  variable  labeling),  here’s  a  visual  indication  of  where  the
axiom lies:
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Given  how  fundamental  logic  is  to  so  many  formal  systems  we
humans study, we might have thought that in any reasonable represen-
tation,  logic  corresponds  to  one  of  the  very  simplest  conceivable
axiom  systems.  But  at  least  with  the  (NAND-based)  representation
we’re using, that’s not true. There’s still by most measures a very sim-
ple axiom system for it, but it’s perhaps the hundred thousandth possi-
ble axiom system one would encounter if one just started enumerating
axiom systems starting from the simplest one.

So given this, the obvious next question is, what about all the other
axiom  systems?  What’s  the  story  with  those?  Well,  that’s  exactly  the
kind  of  investigation  that  A  New  Kind  of  Science  is  all  about.  And
indeed  in  the  book  I  argue  that  things  like  the  systems  we  see  in
nature  are  often  best  captured  precisely  by  those  “other  rules”  that
we can find by enumerating possibilities. 

In the case of axiom systems, I made a picture that represents what
happens  in  “fields  of  mathematics”  corresponding  to  different  possi-
ble  axiom  systems.  Each  row  shows  the  consequences  of  a  particular
axiom  system,  with  the  boxes  across  the  page  indicating  whether  a
particular  theorem  is  true  in  that  axiom  system.  (Yes,  at  some  point
Gödel’s  Theorem  bites  one,  and  it  becomes  irreducibly  difficult  to
prove  or  disprove  a  given  theorem  in  a  given  axiom  system;  in  prac-
tice,  with  my  methods  that  happened  just  a  little  further  to  the  right
than the picture shows…)

Is  there  something  fundamentally  special  about  “human-investi-
gated” fields  of mathematics? From this picture, and other things I’ve
studied,  there  doesn’t  seem  to  be  anything  obvious.  And  I  suspect
actually  that  the  only  thing  that’s  really  special  about  these  fields  of
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mathematics  is  the  historical  fact  that  they  are  what  have  been  stud-
ied.  (One  might  make  claims  like  that  they  arise  because  they
“describe  the  real  world”,  or  because  they’re  “related  to  how  our
brains work”, but the results in A New Kind of Science argue against
these.) 

Alright,  well  then  what’s  the  significance  of  my  axiom  system  for
logic?  The  size  of  it  gives  a  sense  of  the  ultimate  information  content
of logic as an axiomatic system. And it makes it look like—at least for
now—we should view logic as much more having been “invented as a
human  construct”  than  having  been  “discovered”  because  it  was
somehow “naturally exposed”. 

If  history  had  been  different,  and  we’d  routinely  looked  (in  the
manner  of  A  New  Kind  of  Science)  at  lots  of  possible  simple  axiom
systems, then perhaps we would have “discovered” the axiom system
for  logic  as  one  with  particular  properties  we  happened  to  find  inter-
esting.  But  given  that  we  have  explored  so  few  of  the  possible  simple
axiom  systems,  I  think  we  can  only  reasonably  view  logic  as  some-
thing  “invented”—by  being  constructed  in  an  essentially
“discretionary” way. 

In a sense this is how logic looked, say, back in the Middle Ages—
when the possible syllogisms (or valid forms of argument) were repre-
sented  by  (Latin)  mnemonics  like  bArbArA  and  cElErAnt.  And  to
mirror  this,  it’s  fun  to  find  mnemonics  for  what  we  now  know  is  the
simplest possible axiom system for logic. 

Starting  with  ((p · q) · r) · (p · ((p · r) · p)) = r,  we  can  represent  each
p · q in prefix  or Polish form (the reverse of the “reverse Polish” of an
HP  calculator)  as  Dpq—so  the  whole  axiom  can  be  written
=DDDpqrDpDDprpr.  Then  (as  Ed  Pegg  found  for  me)  there’s  an
English mnemonic for this: FIGure OuT Queue, where p, q, r are u, r,
e.  Or,  looking  at  first  letters  of  words  (with  operator  B,  and  p,  q,  r
being a, p, c): “Bit by bit, a program computed Boolean algebra’s best
binary axiom covering all cases”.

The Mechanics of Proof

OK, so how does one actually prove that my axiom system is correct?
Well, the most immediate thing to do is just to show that from it one
can  derive  a  known  axiom  system  for  logic—like  Sheffer’s  axiom
system:

(p · p) · (p · p) ⩵ p

p · (q · (q · q)) ⩵ p · p

(p · (q · r)) · (p · (q · r)) ⩵ ((q · q) · p) · ((r · r) · p)
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There are three axioms here, and we’ve got to derive each of them.
Well,  with  the  latest  version  of  the  Wolfram  Language,  here’s  what
we do to derive, say, the second axiom:

pf = FindEquationalProofp · (q · (q ·q)) ⩵ p ·p, ∀{p,q,r} ((p ·q) · r) · (p · ((p · r) ·p)) ⩵ r

ProofObject
������ ��������������� ������ ���
�������� � · (� · (� ·�))⩵ � ·� 

It’s  pretty  remarkable  that  it’s  now  possible  to  just  do  this.  The
“proof  object”  records  that  125  steps  were  used  in  the  proof.  And
from this proof object we can generate a notebook that describes each
of those steps:

pf["ProofNotebook"]
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In  outline,  what  happens  is  that  a  whole  sequence  of  intermediate
lemmas  are  proved,  which  eventually  allow  the  final  result  to  be
derived.  There’s  a  whole  network  of  interdependencies  between  lem-
mas, as this visualization shows:

pf["ProofGraphWeighted"]

p·((p·q)·p)⩵(q·(p·((p·q)·p)))·((q·((q·q)·q))·(q·(q·((q·q)·q))))

(p·(q·((q·p)·q)))·p⩵q·((q·p)·q)

p⩵((p·q)·p)·(p·p)

p·q⩵p·((p·q)·p)

Here  are  the  networks  involved  in  deriving  all  three  of  the  axioms
in the Sheffer axiom system—with the last one involving a somewhat
whopping 504 steps:
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And, yes, it’s clear these are pretty complicated. But before we dis-
cuss  what  that  complexity  means,  let’s  talk  about  what  actually  goes
on in the individual steps of these proofs. 

The  basic  idea  is  straightforward.  Let’s  imagine  we  had  an  axiom
that  just  said  p · q = q · p.  (Mathematically,  this  corresponds  to  the
statement that · is commutative.) More precisely, what the axiom says
is that for any expressions p and q, p · q is equivalent to q · p. 

OK,  so  let’s  say  we  wanted  to  derive  from  this  axiom  that
(a · b) · (c · d) = (d · c) · (b · a).  We  could  do  this  by  using  the  axiom  to
transform  d · c  to  c · d,  b · a  to  a · b,  and  then  finally  (c · d) · (a · b)  to
(a · b) · (c · d).
FindEquationalProof  does  essentially  the  same  thing,  though  it

chooses  to  do  the  steps  in  a  slightly  different  order,  and  modifies  the
left-hand side as well as the right-hand side:

pf = FindEquationalProof(a ·b) · (c ·d) ⩵ (d ·c) · (b ·a),

∀{p,q} p ·q⩵ q ·p["ProofNotebook"]
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Axiom 1

We are given that:

p·q⩵q·p

Hypothesis 1

We would like to show that:

a·b·c·d⩵d·c·b·a

Substitution Lemma 1

It can be shown that:

a·b·c·d⩵d·c·a·b

PROOF

We start by taking Hypothesis 1, and apply the substitution:

p_·q_→q·p

which follows from Axiom 1.

Substitution Lemma 2

It can be shown that:

a·b·d·c⩵d·c·a·b

PROOF

We start by taking Substitution Lemma 1, and apply the substitution:

p_·q_→q·p

which follows from Axiom 1.

Conclusion 1

We obtain the conclusion:

True

PROOF

Take Substitution Lemma 2, and apply the substitution:

p_·q_→q·p

which follows from Axiom 1.

Once  one’s  got  a  proof  like  this,  it’s  straightforward  to  just  run
through each of its steps, and check that they produce the result that’s
claimed. But how does one find  the proof? There are lots of different
possible  sequences  of  substitutions  and  transformations  that  one
could  do.  So  how  does  one  find  a  sequence  that  successfully  gets  to
the final result? 

One  might  think:  why  not  just  try  all  possible  sequences,  and  if
there is any sequence that works, one will eventually find  it? Well, the
problem  is  that  one  quickly  ends  up  with  an  astronomical  number  of
possible  sequences  to  check.  And  indeed  the  main  art  of  automated
theorem  proving  consists  of  finding  ways  to  prune  the  number  of
sequences one has to check. 

This  quickly  gets  pretty  technical,  but  the  most  important  idea  is
easy  to  talk  about  if  one  knows  basic  algebra.  Let’s  say  you’re  trying
to prove an algebraic result like:
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-1+x2 1-x+x2 1+x+x2 == -1+x 1+x+x2 1+x3

Well,  there’s  a  guaranteed  way  to  do  this:  just  apply  the  rules  of
algebra to expand out each side—and immediately one can see they’re
the same:

Expand-1+x2 1-x+x2 1+x+x2, Expand(-1+x) 1+x+x2 1+x3

-1+x6, -1+x6

Why does this work? Well, it’s because there’s a way of taking alge-
braic  expressions  like  this,  and  always  systematically  reducing  them
so that eventually they get to a standard form. OK, but so can one do
the same thing for proofs with arbitrary axiom systems?

The  answer  is:  not  immediately.  It  works  in  algebra  because  alge-
bra  has  a  special  property  that  guarantees  one  can  always  “make
progress”  in  reducing  expressions.  But  what  was  discovered  indepen-
dently several times in the 1970s (under names like the Knuth–Bendix
and  the  Gröbner  Basis  algorithm)  is  that  even  if  an  axiom  system
doesn’t  intrinsically  have  the  appropriate  property,  one  can  poten-
tially find “completions” of it that do.

And  that’s  what’s  going  on  in  typical  proofs  produced  by
FindEquationalProof  (which  is  based  on  the  Waldmeister  (“master  of
trees”)  system).  There  are  so-called  “critical  pair  lemmas”  that  don’t
directly  “make  progress”  themselves,  but  make  it  possible  to  set  up
paths  that  do.  And  the  reason  things  get  complicated  is  that  even  if
the final  expression one’s trying to get to is fairly short, one may have
to go through all sorts of much longer intermediate expressions to get
there.  And  so,  for  example,  for  the  proof  of  the  first  Sheffer  axiom
above, here are the intermediate steps:

p ⩵ ((q · r) ·p) · (q · ((q ·p) ·q))

(a ·a) · (a ·a) ⩵ a

p · ((p ·q) ·p) ⩵ q · ((p · r) · (((p · r) · (p · ((p ·q) ·p))) · (p · r)))

p ⩵ (q ·p) · (((r ·y1) ·q) · ((((r ·y1) ·q) ·p) · ((r ·y1) ·q)))

p ⩵ ((q · ((q · r) ·q)) ·p) · (r · (((((q ·y1) · r) · (q · ((q · r) ·q))) ·p) · (((q ·y1) · r) · (q · ((q · r) ·q)))))

p ⩵ ((q · ((q · r) ·q)) ·p) · (r · ((r ·p) · (((q ·y1) · r) · (q · ((q · r) ·q)))))

p ⩵ ((q · ((q · r) ·q)) ·p) · (r · ((r ·p) · r))

p ⩵ (q ·p) · ((r ·q) · ((((((y1 ·y2) · r) · (y1 · ((y1 · r) ·y1))) ·q) ·p) · ((((y1 ·y2) · r) · (y1 · ((y1 · r) ·y1))) ·q)))

p ⩵ (q ·p) · ((r ·q) · (((r ·q) ·p) · ((((y1 ·y2) · r) · (y1 · ((y1 · r) ·y1))) ·q)))

p ⩵ (q ·p) · ((r ·q) · (((r ·q) ·p) · (r ·q)))

p ⩵ (((q · ((q · r) ·q)) · r) ·p) · (r · ((r ·p) · r))

p · ((p ·q) ·p) ⩵ (q · (p · ((p ·q) ·p))) · (((p · r) ·q) · (q · ((p · r) ·q)))

p · ((p ·q) ·p) ⩵ (q · (p · ((p ·q) ·p))) · (((r · ((r ·p) · r)) ·q) · (q · ((r · ((r ·p) · r)) ·q)))
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(p ·q) · (((p ·q) · r) · (p ·q)) ⩵ r · (q · ((q · ((p ·q) · (((p ·q) · r) · (p ·q)))) ·q))

(p ·q) · (((p ·q) · r) · (p ·q)) ⩵ (((q · r) ·y1) · ((p ·q) · (((p ·q) · r) · (p ·q)))) · ((q · r) · (r · (q · r)))

(p ·q) · (((p ·q) · r) · (p ·q)) ⩵ (r · ((p ·q) · (((p ·q) · r) · (p ·q)))) · ((q · r) · (r · (q · r)))

p · ((p ·q) ·p) ⩵ q · (((r · ((r ·p) · r)) ·p) · ((((r · ((r ·p) · r)) ·p) · (p · ((p ·q) ·p))) · ((r · ((r ·p) · r)) ·p)))

p · ((p ·p) ·p) ⩵ (p · (p · ((p ·p) ·p))) ·p

((p ·q) · r) · (r · ((p ·q) · r)) ⩵ (p · ((p · r) ·p)) · (r · ((r · (((p ·q) · r) · (r · ((p ·q) · r)))) · r))

p ⩵ (p · ((p ·p) ·p)) · (p · ((p ·p) ·p))

p ⩵ ((q · (q · ((q ·q) ·q))) ·p) · ((q · ((q ·q) ·q)) · (((q · ((q ·q) ·q)) ·p) · (q · ((q ·q) ·q))))

p · ((p ·p) ·p) ⩵ (p · (p · ((p ·p) ·p))) · ((p · ((p ·p) ·p)) · (p · ((p · (p · ((p ·p) ·p))) ·p)))

p · ((p ·p) ·p) ⩵ (p · (p · ((p ·p) ·p))) · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))

p · ((p ·p) ·p) ⩵ (((p · ((p ·p) ·p)) ·q) · (p · ((p ·p) ·p))) · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))

p · ((p ·p) ·p) ⩵ (((p ·p) ·p) · (p · ((p ·p) ·p))) · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))

p · ((p ·p) ·p) ⩵ p · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))

(p ·q) · (((p ·q) · (p · ((p ·q) ·p))) · (p ·q)) ⩵ (p · ((p ·q) ·p)) · (q · ((p · ((p ·q) ·p)) ·q))

(p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))) ⩵
(p · ((p ·p) ·p)) · (p · ((p · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))) ·p))

(p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))) ⩵ (p · ((p ·p) ·p)) · (p · ((p · ((p ·p) ·p)) ·p))

(p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))) ⩵ (p ·p) · (((p ·p) · (p · ((p ·p) ·p))) · (p ·p))

p · ((p ·p) ·p) ⩵ ((p · (p · ((p ·p) ·p))) · (p · ((p ·p) ·p))) · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))

p · ((p ·p) ·p) ⩵ p · (((q · ((q ·p) ·q)) ·p) · (p · ((q · ((q ·p) ·q)) ·p)))

((p · ((p ·q) ·p)) ·q) · (q · ((p · ((p ·q) ·p)) ·q)) ⩵ (p · ((p ·q) ·p)) · (q · ((q · ((q ·q) ·q)) ·q))

p · ((p ·q) ·p) ⩵ (q · (p · ((p ·q) ·p))) · ((p · ((p ·q) ·p)) · (q · ((q · ((q ·q) ·q)) ·q)))

p · ((p ·p) ·p) ⩵ p · ((q · ((q ·p) ·q)) · (p · ((p · ((p ·p) ·p)) ·p)))

p · ((p ·p) ·p) ⩵ (p · (p · ((p ·p) ·p))) · ((q · ((q ·p) ·q)) · (p · ((p · ((p ·p) ·p)) ·p)))

(p · ((p ·q) ·p)) · (q · ((q · ((q ·q) ·q)) ·q)) ⩵
(q · ((q ·q) ·q)) · (q · ((q · ((p · ((p ·q) ·p)) · (q · ((q · ((q ·q) ·q)) ·q)))) ·q))

(p · ((p ·q) ·p)) · (q · ((q · ((q ·q) ·q)) ·q)) ⩵ (q · ((q ·q) ·q)) · (q · ((q · ((q ·q) ·q)) ·q))

(p · ((p ·q) ·p)) · (q · ((q · ((q ·q) ·q)) ·q)) ⩵ (q ·q) · (((q ·q) · (q · ((q ·q) ·q))) · (q ·q))

(p · ((p ·q) ·p)) · (q · ((q · ((q ·q) ·q)) ·q)) ⩵ (q · ((q ·q) ·q)) · (q · (q · ((q ·q) ·q)))

p · ((p ·q) ·p) ⩵ (q · (p · ((p ·q) ·p))) · ((q · ((q ·q) ·q)) · (q · (q · ((q ·q) ·q))))

(p ·q) · (((p ·q) · (q · ((q ·q) ·q))) · (p ·q)) ⩵
(((q · (q · ((q ·q) ·q))) · r) · ((p ·q) · (((p ·q) · (q · ((q ·q) ·q))) · (p ·q)))) · (q · ((q ·q) ·q))

(p ·q) · (((p ·q) · (q · ((q ·q) ·q))) · (p ·q)) ⩵
((q · ((q ·q) ·q)) · ((p ·q) · (((p ·q) · (q · ((q ·q) ·q))) · (p ·q)))) · (q · ((q ·q) ·q))

p · ((p ·p) ·p) ⩵ ((q ·p) · (((q ·p) · (p · ((p ·p) ·p))) · (q ·p))) · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))

p · ((p ·p) ·p) ⩵ ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p)))) · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))
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(p ·p) · (((p ·p) · (p · ((p ·p) ·p))) · (p ·p)) ⩵
(((p · (p · ((p ·p) ·p))) ·q) · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))) · (p · ((p ·p) ·p))

(p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))) ⩵
(((p · (p · ((p ·p) ·p))) ·q) · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))))) · (p · ((p ·p) ·p))

(p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))) ⩵ (p · ((p ·p) ·p)) · (p · ((p ·p) ·p))

(p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p))) ⩵ p

p · ((p · ((p ·p) ·p)) · (p · (p · ((p ·p) ·p)))) ⩵ p · ((p ·p) ·p)

p ·p ⩵ p · ((p ·p) ·p)

(p ·p) · (p · ((p ·p) ·p)) ⩵ p

(p ·p) · (p ·p) ⩵ p

True

In  this  case,  the  largest  intermediate  form  is  about  4  times  the  size
of the original axiom. Here it is:

(p · q) · (((p · q) · (q · ((q · q) · q))) · (p · q)) ⩵
(((q · (q · ((q · q) · q))) · r) ·

((p · q) · (((p · q) · (q · ((q · q) · q))) · (p · q)))) · (q · ((q · q) · q))

One  can  represent  expressions  like  this  as  a  tree.  Here’s  this  one,
compared to the original axiom:

==
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And  here’s  how  the  sizes  of  intermediate  steps  evolve  through  the
proofs found for each of the Sheffer axioms:
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Why Is It So Hard?

Is  it  surprising  that  these  proofs  are  so  complicated?  In  some  ways,
not really. Because, after all, we know perfectly well that math can be
hard. In principle it might have been that anything that’s true in math
would  be  easy  to  prove.  But  one  of  the  side  effects  of  Gödel’s  Theo-
rem  from  1931  was  to  establish  that  even  things  we  can  eventually
prove can have proofs that are arbitrarily long. 

And  actually  this  is  a  symptom  of  the  much  more  general  phe-
nomenon  I  call  computational  irreducibility.  Consider  a  system  gov-
erned, say, by the simple rule of a cellular automaton (and of course,
every  essay  of  mine  must  have  a  cellular  automaton  somewhere!).
Now just run the system:

ArrayPlot[
CellularAutomaton[{2007, {3, 1}}, RandomInteger[2, 3000], 1500], Frame -> False,
ColorRules -> {0 -> White, 1 -> Hue[0.09, 1., 1.], 2 -> Hue[0.03, 1., 0.76]},
ImageSize -> {260, Automatic} ]

One  might  have  thought  that  given  that  there’s  a  simple  rule  that
underlies  the  system,  there’d  always  be  a  quick  way  to  figure  out
what the system will do. But that’s not the case. Because according to
my  Principle  of  Computational  Equivalence  the  operation  of  the
system  will  often  correspond  to  a  computation  that’s  just  as  sophisti-
cated as any computation that we could set up to figure out the behav-
ior  of  the  system.  And  this  means  that  the  actual  behavior  of  the
system  in  effect  corresponds  to  an  irreducible  amount  of  computa-
tional work that we can’t in general shortcut in any way. 

In  the  picture  above,  let’s  say  we  want  to  know  whether  the  pat-
tern  eventually  dies  out.  Well,  we  could  just  keep  running  it,  and  if
we’re  lucky  it’ll  eventually  resolve  to  something  whose  outcome  is
obvious. But in general there’s no upper bound to how far we’ll have
to go to, in effect, prove what happens. 

When we do things like the logic proofs above, it’s a slightly differ-
ent  setup.  Instead  of  just  running  something  according  to  definite
rules,  we’re  asking  whether  there  exists  a  way  to  get  to  a  particular
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result by taking some series of steps that each follow a particular rule.
And,  yes,  as  a  practical  computational  problem,  this  is  immediately
more  difficult.  But  the  core  of  the  difficulty  is  still  the  same  phe-
nomenon  of  computational  irreducibility—and  that  this  phenomenon
implies  that  there  isn’t  any  general  way  to  shortcut  the  process  of
working out what a system will do. 

Needless to say, there are plenty of things in the world—especially
in  technology  and  scientific  modeling,  as  well  as  in  areas  where  there
are various forms of regulation—that have traditionally been set up to
implicitly  avoid  computational  irreducibility,  and  to  operate  in  ways
whose  outcome  can  readily  be  foreseen  without  an  irreducible
amount of computation. 

But  one  of  the  implications  of  my  Principle  of  Computational
Equivalence  is  that  this  is  a  rather  singular  and  contrived  situation—
because  it  says  that  computational  irreducibility  is  in  fact  ubiquitous
across systems in the computational universe. 

OK,  but  what  about  mathematics?  Maybe  somehow  the  rules  of
mathematics  are  specially  chosen  to  show  computational  reducibility.
And there are indeed some cases where that’s true (and in some sense
it  even  happens  in  logic).  But  for  the  most  part  it  appears  that  the
axiom  systems  of  mathematics  are  not  untypical  of  the  space  of  all
possible  axiom  systems—where  computational  irreducibility  is
inevitably rampant.

What’s the Point of a Proof?

At some level, the point of a proof is to know that something is true.
Of course, particularly in modern times, proof has very much taken a
back  seat  to  pure  computation.  Because  in  practice  it’s  much  more
common to want to generate things by explicit computation than it is
to want to “go back” and construct a proof that something is true. 

In  pure  mathematics,  though,  it’s  fairly  common  to  deal  with
things  that  at  least  nominally  involve  an  infinite  number  of  cases
(“true  for  all  primes”,  etc.),  for  which  at  least  direct  computation
can’t work. And when it comes to questions of verification  (“can this
program  ever  crash?”  or  “can  this  cryptocurrency  ever  get  spent
twice?”)  it’s  often  more  reasonable  to  attempt  a  proof  than  to  do
something like run all possible cases.

But  in  the  actual  practice  of  mathematics,  there’s  more  to  proof
than  just  establishing  if  things  are  true.  Back  when  Euclid  first  wrote
his  Elements,  he  just  gave  results,  and  proofs  were  “left  to  the
reader”.  But  for  better  or  worse,  particularly  over  the  past  century,
proof  has  become  something  that  doesn’t  just  happen  behind  the
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scenes,  but  is  instead  actually  the  primary  medium  through  which
things are supposed to be communicated. 

At some level I think it’s a quirk of history that proofs are typically
today  presented  for  humans  to  understand,  while  programs  are  usu-
ally  just  thought  of  as  things  for  computers  to  run.  Why  has  this
happened? Well, at least in the past, proofs could really only be repre-
sented in essentially textual form—so if they were going to be used, it
would  have  to  be  by  humans.  But  programs  have  essentially  always
been written in some form of computer language. And for the longest
time, that language tended to be set up to map fairly directly onto the
low-level  operations  of  the  computer—which  meant  that  it  was  read-
ily “understandable” by the computer, but not necessarily by humans. 

But as it happens, one of the main goals of my own efforts over the
past  several  decades  has  been  to  change  this—and  to  develop  in  the
Wolfram  Language  a  true  “computational  communication  language”
in  which  computational  ideas  can  be  communicated  in  a  way  that  is
readily understandable to both computers and humans.

There  are  many  consequences  of  having  such  a  language.  But  one
of them is that it changes the role of proof. Let’s say one’s looking at
some mathematical result. Well, in the past the only plausible way to
communicate  how  one  should  understand  it  was  to  give  a  proof  that
people  could  read.  But  now  something  different  is  possible:  one  can
give  a  Wolfram  Language  program  that  computes  the  result.  And  in
many  ways  this  is  a  much  more  powerful  way  to  communicate  why
the result is true. Because every piece of the program is something pre-
cise  and  unambiguous—that  if  one  wants  to,  one  can  actually  run.
There’s  no  issue  of  trying  to  divine  what  some  piece  of  text  means,
perhaps  filling  in  some  implicit  assumptions.  Instead,  everything  is
right there, in absolutely explicit form. 

OK, so what about proof? Are there in fact unambiguous and pre-
cise ways to write proofs? Well, potentially yes, though it’s not partic-
ularly  easy.  And  even  though  the  main  Wolfram  Language  has  now
existed  for  30  years,  it’s  taken  until  pretty  much  now  to  figure  out  a
reasonable way to represent in it even such structurally comparatively
straightforward proofs as the one for my axiom system above. 

One can imagine authoring proofs in the Wolfram Language much
like one authors programs—and indeed we’re working on seeing how
to  provide  high-level  versions  of  this  kind  of  “proof  assistant”  func-
tionality.  But  the  proof  of  my  axiom  system  that  I  showed  above  is
not something anyone authored; it’s something that was found by the
computer.  And  as  such,  it’s  more  like  the  output  of  running  a  pro-
gram  than  like  a  program  itself.  (Like  a  program,  though,  the  proof
can in some sense be “run” to verify the result.)
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Generating Understandability

Most  of  the  time  when  people  use  the  Wolfram  Language—or
Wolfram|Alpha—they just want to compute things. They’re interested
in  getting  results,  not  in  understanding  why  they  get  the  results  they
do.  But  in  Wolfram|Alpha,  particularly  in  areas  like  math  and  chem-
istry, a popular feature for students is “step-by-step solutions”:

When  Wolfram|Alpha  does  something  like  computing  an  integral,
it’s using all sorts of powerful systematic algorithmic techniques opti-
mized for getting answers. But when it’s asked to show steps it needs
to do something different: it needs instead to explain step by step why
it gets the result it does. 

It wouldn’t be useful for it to explain how it actually got the result;
it’s  a  very  non-human  process.  Instead,  it  basically  has  to  figure  out
how  the  kinds  of  operations  humans  learn  can  be  used  to  get  the
result.  Often  it’ll  figure  out  some  trick  that  can  be  used.  Yes,  there’ll
be  a  systematic  way  to  do  it  that’ll  always  work.  But  it  involves  too
many  “mechanical”  steps.  The  “trick”  (“trig  substitution”,
“integration  by  parts”,  whatever)  won’t  work  in  general,  but  in  this
particular case it’ll provide a faster way to get to the answer.

OK,  but  what  about  getting  understandable  versions  of  other
things?  Like  the  operation  of  programs  in  general.  Or  like  the  proof
of my axiom system.

Let’s start by talking about programs. Let’s say one’s written a pro-
gram,  and  one  wants  to  explain  how  it  works.  One  traditional
approach  is  just  to  “include  comments”  in  the  code.  Well,  if  one’s
writing  in  a  traditional  low-level  language,  that  may  be  the  best  one
can do. But the whole point of the Wolfram Language being a compu-
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tational  communication  language  is  that  the  language  itself  is  sup-
posed  to  allow  you  to  communicate  ideas,  without  needing  extra
pieces of English text. 

It  takes  effort  to  make  a  Wolfram  Language  program  be  a  good
piece  of  exposition,  just  like  it  takes  effort  to  make  English  text  a
good piece of exposition. But one can end up with a piece of Wolfram
Language  code  that  really  explains  very  clearly  how  it  works  just
through the code itself. 

Of course, it’s very common for the actual execution of the code to
do things that can’t readily be foreseen just from the program. I’ll talk
about  extreme  cases  like  cellular  automata  soon.  But  for  now  let’s
imagine  that  one’s  constructed  a  program  where  there’s  some  ability
to foresee the broad outlines of what it does. 

And in such a case, I’ve found that computational essays (presented
as  Wolfram  Notebooks)  are  a  great  tool  in  explaining  what’s  going
on. It’s crucial that the Wolfram Language is symbolic, so it’s possible
to  run  even  the  tiniest  fragments  of  any  program  on  their  own  (with
appropriate  symbolic  expressions  as  input  or  output).  And  when  one
does  this,  one  can  present  a  succession  of  steps  in  the  program  as  a
succession of elements in the dialog that forms the core of a computa-
tional notebook. 

In  practice,  it’s  often  critical  to  create  visualizations  of  inputs  or
outputs.  Yes,  everything  can  be  represented  as  an  explicit  symbolic
expression. But we humans often have a much easier time understand-
ing  things  when  they’re  presented  visually,  rather  than  as  some  kind
of one-dimensional language-like string. 

Of  course,  there’s  something  of  an  art  to  creating  good  visualiza-
tions. But in the Wolfram Language we’ve managed to go a long way
towards  automating  this  art—often  using  pretty  sophisticated
machine  learning  and  other  algorithms  to  do  things  like  lay  out  net-
works or graphics elements. 

What  about  just  starting  from  the  raw  execution  trace  for  a  pro-
gram?  Well,  it’s  hard.  I’ve  done  experiments  on  this  for  decades,  and
never been very satisfied  with the results. Yes, you can zoom in to see
lots  of  details  of  what’s  going  on.  But  when  it  comes  to  knowing  the
“big  picture”  I’ve  never  found  any  particularly  good  techniques  for
automatically producing things that are terribly useful. 

At some level it’s similar to the general problem of reverse engineer-
ing.  You  are  shown  some  final  machine  code,  chip  design,  or
whatever.  But  now  you  want  to  go  backwards  to  reconstruct  the
higher-level description that some human started from, that was some-
how “compiled” to what you see. 

In the traditional approach to engineering, where one builds things
up  incrementally,  always  somehow  being  able  to  foresee  the  conse-
quences  of  what  one’s  building,  this  approach  can  in  principle  work.
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But  if  one  does  engineering  by  just  searching  the  computational  uni-
verse  to  find  an  optimal  program  (much  like  I  searched  possible
axiom  systems  to  find  one  for  logic),  then  there’s  no  guarantee  that
there’s any “human story” or explanation behind this program. 

It’s  a  similar  problem  in  natural  science.  You  see  some  elaborate
set  of  things  happening  in  some  biological  system.  Can  one  “reverse
engineer”  these  to  find  an  “explanation”  for  them?  Sometimes  one
might be able to say, for example, that evolution by natural selection
would be likely to lead to something. Or that it’s just common in the
computational universe and so is likely to occur. But there’s no guar-
antee  that  the  natural  world  is  set  up  in  any  way  that  necessarily
allows human explanation. 

Needless to say, when one makes models for things, one inevitably
considers  only  the  particular  aspects  that  one’s  interested  in,  and
idealizes everything else away. And particularly in areas like medicine,
it’s  not  uncommon  to  end  up  with  some  approximate  model  that’s
a fairly  shallow  decision  tree  that’s  easy  to  explain,  at  least  as  far  as
it�goes.

The Nature of Explainability

What does it mean to say that something is explainable? Basically it’s
that humans can understand it.

So  what  does  it  take  for  humans  to  understand  something?  Well,
somehow  we  have  to  be  able  to  “wrap  our  brains  around  it”.  Let’s
take a typical cellular automaton with complex behavior. A computer
has  no  problem  following  each  step  in  the  evolution.  And  with
immense  effort  a  human  could  laboriously  reproduce  what  a  com-
puter does.

But  one  wouldn’t  say  that  means  the  human  “understands”  what
the  cellular  automaton  is  doing.  To  get  to  that  point,  the  human
would  have  to  be  readily  able  to  reason  about  how  the  cellular
automaton  behaves,  at  some  high  level.  Or  put  another  way,  the
human  would  have  to  be  able  to  “tell  a  story”  that  other  humans
could readily understand, about how the cellular automaton behaves. 

Is  there  a  general  way  to  do  this?  Well,  no,  because  of  computa-
tional  irreducibility.  But  it  can  still  be  the  case  that  certain  features
that  humans  choose  to  care  about  can  be  explained  in  some  reduced,
higher-level way. 

How does this work? Well, in a sense it requires that some higher-
level language be constructed that can describe the features one’s inter-
ested  in.  Looking  at  a  typical  cellular  automaton  pattern,  one  might
try to talk not in terms of colors of huge numbers of individual cells,
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but  instead  in  terms  of  the  higher-level  structures  one  can  pick  out.
And  the  key  point  is  that  it’s  possible  to  make  at  least  a  partial  cata-
log of these structures: even though there are lots of details that don’t
quite fit, there are still particular structures that occur often.

And if we were going to start “explaining” the behavior of the cel-
lular  automaton,  we’d  typically  begin  by  giving  the  structures  names,
and  then  we’d  start  talking  about  what’s  going  on  in  terms  of  these
named things.

Periodic structure Glider

Death module

Terminated structure

The case of a cellular automaton has an interesting simplifying fea-
ture: because it operates according to simple deterministic rules, there
are  structures  that  just  repeat  identically.  If  we’re  dealing  with  things
in the natural world, for example, we typically won’t see this kind of
identical  repetition.  Instead,  it’ll  just  be  that  this  tiger,  say,  is
extremely similar to this other one, so we can call them both “tigers”,
even though their atoms are not identical in their arrangement. 

What’s  the  bigger  picture  of  what’s  going  on?  Well,  it’s  basically
that  we’re  using  the  idea  of  symbolic  representation.  We’re  saying
that we can assign something—often a word—that we can use to sym-
bolically  describe  a  whole  class  of  things,  without  always  having  to
talk about all the detailed parts of each thing. 

In  effect  it’s  a  kind  of  information  compression:  we’re  using  sym-
bolic  constructs  to  find  a  shorter  way  to  describe  what  we’re  inter-
ested in. 

Let’s imagine we’ve generated a giant structure, say a mathematical
one:
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Solve[a x^4 + b x^3 + c x^2 + d x + e == 0, x]
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Well, a first  step is to generate a kind of internal higher-level repre-
sentation.  For  example,  we  might  find  substructures  that  appear
repeatedly.  And  we  might  then  assign  names  to  them.  And  then  dis-
play a “skeleton” of the whole structure in terms of these names:
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And, yes, this kind of “dictionary compression”-like scheme is use-
ful in bringing a first level of explainability. 

But  let’s  go  back  to  the  proof  of  my  axiom  system.  The  lemmas
that  were  generated  in  this  proof  are  precisely  set  up  to  be  elements
that  are  used  repeatedly  (a  bit  like  shared  common  subexpressions).
But  even  having  in  effect  factored  them  out,  we’re  still  left  with  a
proof that is not something that we humans can readily understand. 

So  how  can  we  go  further?  Well,  basically  we  have  to  come  up
with some yet-higher-level description. But what might this be?

The Concept of Concepts

If  you’re  trying  to  explain  something  to  somebody,  it’s  a  lot  easier
when there’s something similar that they’ve already understood. Imag-
ine trying to explain a modern drone to someone from the Stone Age.
It’d probably be pretty difficult.  But explaining it to someone from 50
years  ago,  who’d  already  seen  helicopters  and  model  airplanes  etc.,
would be a lot easier.

And ultimately the point is that when we explain something, we do
it  in  some  language  that  both  we  and  whoever  we’re  explaining  it  to
know.  And  the  richer  this  language  is,  the  fewer  new  elements  we
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have  to  introduce  in  order  to  communicate  whatever  it  is  that  we’re
trying to explain. 

There’s  a  pattern  that’s  been  repeated  throughout  intellectual  his-
tory.  Some  particular  collection  of  things  gets  seen  a  bunch  of  times.
And  gradually  it’s  understood  that  these  things  are  all  somehow
abstractly similar. And they can all be described in terms of some par-
ticular new concept, often referred to by some new word or phrase. 

Let’s say one had seen things like water and blood and oil. Well, at
some point one realizes that there’s a general concept of “liquid”, and
all  of  these  can  be  described  as  liquids.  And  once  one  has  this  con-
cept, one can start reasoning in terms of it, and identifying more con-
cepts—like, say, viscosity—that build on it. 

When  does  it  makes  sense  to  group  things  into  a  concept?  Well,
that’s a difficult  question, which can’t ultimately be answered without
foreseeing  everything  that  might  be  done  with  that  concept.  And  in
practice, in the evolution of human language and human ideas there’s
some kind of process of progressive approximation that goes on.

There’s  a  much  more  rapid  recapitulation  that  happens  in  a  mod-
ern  machine  learning  system.  Imagine  taking  all  sorts  of  objects  that
one’s  seen  in  the  world,  and  just  feeding  them  to  FeatureSpacePlot
and  seeing  what  comes  out.  Well,  if  one  gets  definite  clusters  in  fea-
ture space, then one might reasonably think that each of these clusters
should  be  identified  as  corresponding  to  a  “concept”,  that  we  could
for example label with a word. 

Now,  to  be  fair,  what’s  happening  with  FeatureSpacePlot—like  in
human  intellectual  development—is  in  some  ways  incremental.
Because  to  lay  the  objects  out  in  feature  space,  FeatureSpacePlot  is
using  features  that  it’s  learned  how  to  extract  from  previous  catego-
rizations it knows about. 

But,  OK,  given  the  world  as  it  is,  what  are  the  best  categories—or
best  concepts—one  can  use  to  describe  things?  Well,  it’s  an  evolving
story.  And  in  fact  breakthroughs—whether  in  science,  technology  or
elsewhere—are  very  often  precisely  associated  with  the  realization
that some new category or concept can usefully be identified. 

But in the actual evolution of our civilization, there’s a kind of spi-
ral  at  work.  First  some  particular  concept  is  identified—say  the  idea
of  a  program.  And  once  some  concept  has  been  identified,  people
start using it, and thinking in terms of it. And pretty soon all sorts of
new  things  have  been  constructed  on  the  basis  of  that  concept.  But
then  another  level  of  abstraction  is  identified,  and  new  concepts  get
constructed, building on top of the previous one. 

It’s pretty much the same story for the technology stack of modern
civilization,  and  its  “intellectual  stack”.  Both  involve  towers  of  con-
cepts, and successive levels of abstraction.
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The Problem of Education

In  order  for  people  to  be  able  to  communicate  using  some  concept,
they have to have learned about it. And, yes, there are some concepts
(like  object  permanence)  that  humans  automatically  learn  by  them-
selves just by observing the natural world. But looking for example at
a list of common words in modern English, it’s pretty clear that most
of  the  concepts  that  we  now  use  in  modern  civilization  aren’t  ones
that people can just learn for themselves from the natural world. 

Instead—much like a modern machine learning system—at the very
least  they  need  some  “specially  curated”  experience  of  the  world,
organized  to  highlight  particular  concepts.  And  for  more  abstract
areas  (like  mathematics)  they  probably  need  explicit  exposure  to  the
concepts themselves in their raw abstract forms.

But,  OK,  as  the  “intellectual  stack”  of  civilization  advances,  will
we  always  have  to  learn  progressively  more?  We  might  worry  that  at
some point our brains just won’t be able to keep up, and we’d have to
add  some  kind  of  augmentation.  But  perhaps  fortunately,  I  think  it’s
one  of  those  cases  where  the  problem  can  instead  most  likely  be
“solved in software”. 

The issue is this: At any given point in history, there’s a certain set
of concepts that are important in being able to operate in the world as
it  is  at  that  time.  And,  yes,  as  civilization  progresses  new  things  are
discovered, and new concepts are introduced. But there’s another pro-
cess  at  work  as  well:  new  concepts  bring  new  levels  of  abstraction,
which typically subsume large numbers of earlier concepts. 

We often see this in technology. There was a time when to operate
a computer you needed to know all sorts of low-level details. But over
time those got abstracted away, so all you need to know is some gen-
eral  concept.  You  click  an  icon  and  things  start  to  happen—and  you
don’t  have  to  understand  operating  systems,  or  interrupt  handlers  or
schedulers, or any of those details. 

Needless  to  say,  the  Wolfram  Language  provides  a  great  example
of  all  this.  Because  it  goes  to  tremendous  trouble  to  “automate  out”
lots of low-level details (for example about what specific  algorithm to
use)  and  let  human  users  just  think  about  things  in  terms  of  higher-
level concepts. 

Yes,  there  still  need  to  be  some  people  who  understand  the  details
“underneath”  the  abstraction  (though  I’m  not  sure  how  many  flint
knappers  modern  society  needs).  But  mostly  education  can  concen-
trate on teaching at a higher level. 

There’s  often  an  implicit  assumption  in  education  that  to  reach
higher-level  concepts  one  has  to  somehow  recapitulate  the  history  of
how those concepts were historically arrived at. But usually—and per-
haps  always—this  doesn’t  seem  to  be  true.  In  an  extreme  case,  one
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might imagine that to teach about computers, one would have to reca-
pitulate  the  history  of  mathematical  logic.  But  actually  we  know  that
people  can  go  straight  to  modern  concepts  of  computing,  without
recapitulating any of the history. 

But  what  is  ultimately  the  understandability  network  of  concepts?
Are  there  concepts  that  can  only  be  understood  if  one  already  under-
stands  other  concepts?  Given  a  particular  ambient  experience  for  a
human (or particular background training for a neural network) there
is presumably some ordering. 

But I suspect that something analogous to computational universal-
ity probably implies that if one’s just dealing with a “raw brain” then
one  could  start  anywhere.  So  if  some  alien  were  exposed  to  category
theory and little else from the very beginning, they’d no doubt build a
network of concepts where this is at the root, and maybe what for us
is basic arithmetic would be something only reached in their analog of
math graduate school. 

Of  course,  such  an  alien  might  form  their  technology  stack  and
their built environment in a quite different way from us—much as the
recent history of our own civilization might have been very different if
computers  had  successfully  been  developed  in  the  1800s  rather  than
in the mid-1900s.

The Progress of Mathematics

I’ve often wondered to what extent the historical trajectory of human
mathematics is an “accident”, and to what extent it’s somehow inex-
orable. As I mentioned earlier, at the level of formal systems there are
many  possible  axiom  systems  from  which  one  could  construct  some-
thing that is formally like mathematics. 

But  the  actual  history  of  mathematics  did  not  start  with  arbitrary
axiom  systems.  It  started—in  Babylonian  times—with  efforts  to  use
arithmetic  for  commerce  and  geometry  for  land  surveying.  And  from
these very practical origins, successive layers of abstraction have been
added  that  have  led  eventually  to  modern  mathematics—with  for
example  numbers  being  generalized  from  positive  integers,  to  ratio-
nals,  to  roots,  to  all  integers,  to  decimals,  to  complex  numbers,  to
algebraic numbers, to quaternions and so on. 

Is  there  an  inexorability  to  this  progression  of  abstraction?  I  sus-
pect to some extent there is. And probably it’s a similar story as with
other  kinds  of  concept  formation.  Given  some  stage  that’s  been
reached,  there  are  various  things  that  can  readily  get  studied,  and
after a while groups of them are seen to be examples of more general
and  abstract  constructs—which  then  in  turn  define  another  stage
from which new things can be studied. 
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Are there ways to break out of this cycle? One possibility would be
through  doing  experiments  in  mathematics.  Yes,  one  can  systemati-
cally prove things about particular mathematical systems. But one can
also  just  empirically  notice  mathematical  facts—like  Ramanujan’s

observation that exp π 163  is numerically close to an integer. And

the  question  is:  are  things  like  this  just  “random  facts  of  mathemat-
ics” or do they somehow fit into the whole “fabric of mathematics”? 

One  can  ask  the  same  kind  of  thing  about  questions  in  mathemat-
ics.  Is  the  question  of  whether  odd  perfect  numbers  exist  (which  has
been  unanswered  since  Pythagoras)  a  core  question  in  mathematics,
or  is  it,  in  a  sense,  a  random  question  that  doesn’t  connect  into  the
fabric of mathematics? 

Just like one can enumerate things like axiom systems, so also one
can  imagine  enumerating  possible  questions  in  mathematics.  But  if
one does this, I suspect there’s immediately an issue. Gödel’s Theorem
establishes that in axiom systems like the one for arithmetic there are
“formally  undecidable”  propositions,  that  can’t  be  proved  or  dis-
proved from within the axiom system.

But  the  particular  examples  that  Gödel  constructed  seemed  far
from  anything  that  would  arise  naturally  in  doing  mathematics.  And
for  a  long  time  it  was  assumed  that  somehow  the  phenomenon  of
undecidability  was  something  that,  while  in  principle  present,  wasn’t
going to be relevant in “real mathematics”.

However, with my Principle of Computational Equivalence and my
experience in the computational universe, I’ve come to the strong con-
clusion that this isn’t correct—and that instead undecidability is actu-
ally  close  at  hand  even  in  typical  mathematics  as  it’s  been  practiced.
Indeed,  I  won’t  be  surprised  if  a  fair  fraction  of  the  current  famous
unsolved  problems  of  mathematics  (Riemann  Hypothesis,  P = NP,
etc.) actually turn out to be in effect undecidable. 

But if there’s undecidability all around, how come there’s so much
mathematics  that’s  successfully  been  done?  Well,  I  think  it’s  because
the  things  that  have  been  done  have  implicitly  been  chosen  to  avoid
undecidability,  basically  just  by  virtue  of  the  way  mathematics  has
been built up. Because if what one’s doing is basically to form progres-
sive  levels  of  abstraction  based  on  things  one  has  shown  are  true,
one’s  basically  setting  up  a  path  that’s  going  to  be  able  to  move  for-
ward without being forced into undecidability. 

Of  course,  doing  experimental  mathematics  or  asking  “random
questions” may immediately land one in some area that’s full of unde-
cidability.  But  at  least  so  far  in  its  history,  this  hasn’t  been  the  way
the mainstream discipline of mathematics has evolved. 

So  what  about  those  “random  facts  of  mathematics”?  Well,  it’s
pretty  much  like  in  other  areas  of  intellectual  endeavor.  “Random
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facts”  don’t  really  get  integrated  into  a  line  of  intellectual  develop-
ment until some structure—and typically some abstract concepts—are
built around them. 

My  own  favorite  discoveries  about  the  origins  of  complexity  in
systems  like  the  rule  30  cellular  automaton  are  a  good  example.  Yes,
similar phenomena had been seen—even millennia earlier (think: ran-
domness  in  the  sequence  of  primes).  But  without  a  broader  concep-
tual framework nobody really paid attention to them. 

Nested  patterns  are  another  example.  There  are  isolated  examples
of  these  in  mosaics  from  the  1200s,  but  nobody  really  paid  attention
to  them  until  the  whole  framework  around  nesting  and  fractals
emerged in the 1980s.

It’s  the  same  story  over  and  over  again:  until  abstract  concepts
around them have been identified,  it’s hard to really think about new
things, even when one encounters phenomena that exhibit them. 

And  so,  I  suspect,  it  is  with  mathematics:  there’s  a  certain
inevitable layering of abstract concept on top of abstract concept that
defines  the  trajectory  of  mathematics.  Is  it  a  unique  path?  Undoubt-
edly  not.  In  the  vast  space  of  possible  mathematical  facts,  there  are
particular directions that get picked, and built along. But others could
have been picked instead.

So  does  this  mean  that  the  subject  matter  of  mathematics  is
inevitably  dominated  by  historical  accidents?  Not  as  much  as  one
might  think.  Because—as  mathematics  has  discovered  over  and  over
again,  starting  with  things  like  algebra  and  geometry—there’s  a
remarkable  tendency  for  different  directions  and  different  approaches
to wind up having equivalences or correspondences in the end. 

And probably at some level this is a consequence of the Principle of
Computational  Equivalence,  and  the  phenomenon  of  computational
universality:  even  though  the  underlying  rules  (or  underlying
“language”) used in different areas of mathematics are different, there
ends  up  being  some  way  to  translate  between  them—so  that  at  the
next  level  of  abstraction  the  path  that  was  taken  no  longer  critically
matters.

The Logic Proof and the Automation of Abstraction

OK, so let’s go back to the logic proof. How does it connect to typical
mathematics? Well, right now, it basically doesn’t. Yes, the proof has
the same nominal form as a standard mathematical proof. But it isn’t
“human-mathematician  friendly”.  It’s  all  just  mechanical  details.  It
doesn’t connect to higher-level abstract concepts that a human mathe-
matician can readily understand.
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It  would  help  a  lot  if  we  discovered  that  nontrivial  lemmas  in  the
proof  already  appeared  in  the  mathematics  literature.  (I  don’t  think
any of them do, but our theorem-searching capabilities haven’t gotten
to the point where one can be sure.) But if they did appear, then this
would likely give us a way to connect these lemmas to other things in
mathematics,  and  in  effect  to  identify  a  circle  of  abstract  concepts
around them.

But without that, how can the proof become explainable?

Well, maybe there’s just a different way to do the proof that’s fun-
damentally  more  connected  to  existing  mathematics.  But  even  given
the  proof  as  we  have  it  now,  one  could  imagine  “building  out”  new
concepts  that  would  define  a  higher  level  of  abstraction  and  put  the
proof in a more general context.

I’m not sure how to do either of these things. I’ve considered spon-
soring  a  prize  (analogous  to  my  2007  Turing  machine  prize)  for
“making  the  proof  explainable”.  But  it’s  not  at  all  clear  how  one
could  objectively  judge  “explainability”.  (Maybe  one  could  ask  for  a
1-hour  video  that  would  successfully  explain  the  proof  to  a  typical
mathematician—but this is definitely rather subjective.)

But  just  like  we  can  automate  things  like  finding  aesthetic  layouts
for networks, perhaps we can automate the process of making a proof
explainable.  The  proof  as  it  is  right  now  basically  just  says  (without
explanation), “Consider these few hundred lemmas”. But let’s say we
could  identify  a  modest  number  of  “interesting”  lemmas.  Maybe  we
could  somehow  add  these  to  our  canon  of  known  mathematics  and
then be able to use them to understand the proof.

There’s  an  analogy  here  with  language  design.  In  building  up  the
Wolfram  Language  what  I’ve  basically  done  is  to  try  to  identify
“lumps of computational work” that people will often want. Then we
make  these  into  built-in  functions  in  the  language,  with  particular
names that people can use to refer to them.

A similar process goes on—though in a much less organized way—
in  the  evolution  of  human  natural  languages.  “Lumps  of  meaning”
that  turn  out  to  be  useful  eventually  get  represented  by  words  in  the
language.  Sometimes  they  start  as  phrases  constructed  out  of  a  few
existing  words.  But  the  most  impactful  ones  are  typically  sufficiently
far  away  from  anything  that  has  come  before  that  they  just  arrive  as
new words with potentially quite-hard-to-give definitions.

In  the  design  of  the  Wolfram  Language—with  functions  named
with  English  words—I  leverage  the  “ambient  understanding”  that
comes from the English words (and sometimes from their meanings in
common applications of computation).

One  would  want  to  do  something  similar  in  identifying  lemmas  to
add to our canon of mathematics. Not only would one want to make
sure  that  each  lemma  was  somehow  “intrinsically  interesting”,  but
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one would also want when possible to select lemmas that are “easy to
reach” from existing known mathematical results and concepts.

But  what  does  it  mean  for  a  lemma  to  be  “intrinsically  interest-
ing”? I have to say that before I worked on A New Kind of Science, I
assumed  that  there  was  great  arbitrariness  and  historical  accident  in
the  choice  of  lemmas  (or  theorems)  in  any  particular  areas  of  mathe-
matics that get called out and given names in typical textbooks.

But  when  I  looked  in  detail  at  theorems  in  basic  logic,  I  was  sur-
prised  to  find  something  different.  Let’s  say  one  arranges  all  the  true
theorems  of  basic  logic  in  order  of  their  sizes  (e.g.  p = p  might  come
first;  p AND p = p  a  bit  later,  and  so  on).  When  one  goes  through  this
list  there’s  lots  of  redundancy.  Indeed,  most  of  the  theorems  end  up
being trivial extensions of theorems that have already appeared in the
list. 

But just sometimes one gets to a theorem that essentially gives new
information—and  that  can’t  be  proved  from  the  theorems  that  have
already  appeared  in  the  list.  And  here’s  the  remarkable  fact:  there
are  14  such  theorems,  and  they  essentially  correspond  exactly  with
the  theorems  that  are  typically  given  names  in  textbooks  of  logic.
(Here AND is ∧, OR is ∨, and NOT is ¬.) 
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In  other  words,  at  least  in  this  case,  the  named  or  “interesting”
theorems  are  the  ones  that  give  minimal  statements  of  new  informa-
tion. (Yes, after a while, by this definition  there will be no new infor-
mation,  because  one  will  have  encountered  all  the  axioms  needed  to
prove  anything  that  can  be  proved—though  one  can  go  a  bit  further
with  this  approach  by  starting  to  discuss  limiting  the  complexity  of
proofs that are allowed.) 

What  about  with  NAND  theorems,  like  the  ones  in  the  proof?  Once
again,  one  can  arrange  all  true  NAND  theorems  in  order—and  then
find which of them can’t be proved from any earlier in the list:

NAND  doesn’t  have  the  same  kind  of  historical  tradition  as  AND,  OR

and NOT. (And there doesn’t seem to be any human language that, for
example, has a single ordinary word for NAND.) But in the list of NAND

theorems, the first  highlighted one is easy to recognize as commutativ-
ity  of  NAND.  After  that,  one  really  has  to  do  a  bit  of  translation  to
name  the  theorems:  a = (a · a) · (a · a)  is  like  the  law  of  double  nega-
tion, a = (a · a) · (a · b) is like the absorption law, (a · a) · b = (a · b) · b is
like “weakening”, and so on.
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But,  OK,  so  if  one’s  going  to  learn  just  a  few  “key  theorems”  of
NAND  logic,  which  should  they  be?  Perhaps  they  should  be  theorems
that appear as “popular lemmas” in proofs. 

Of  course,  there  are  many  possible  proofs  of  any  given
theorem.  But  let’s  say  we  just  use  the  particular  proofs  that
FindEquationalProof  generates.  Then  it  turns  out  that  in  the  proofs
of  the  first  thousand  NAND  theorems  the  single  most  popular
lemma  is  a · a = a · ((a · a) · a),  followed  by  such  lemmas  as
(a · ((a · a) · a)) · (a · (a · ((a · a) · a))) = a. 

What  are  these?  Well,  for  the  particular  methods  that  Find
EquationalProof  uses,  they’re  useful.  But  for  us  humans  they  don’t
seem terribly helpful. 

But  what  about  popular  lemmas  that  happen  to  be  short?
a · b = b · a  is  definitely  not  the  most  popular  lemma,  but  it  is  the
shortest. (a · a) · (a · a) = a is more popular, but longer. And then there
are lemmas like (a · a) · (b · a) = a. 

But how useful are these lemmas? Here’s a way to test. Look at the
first  thousand  NAND  theorems,  and  see  how  much  adding  the  lemmas
shortens  the  proofs  of  these  theorems  (at  least  as  found  by  Find
EquationalProof):
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a · b = b · a  is  very  successful,  often  cutting  down  the  proof  by
nearly  100  steps.  (a · a) · (a · a) = a  is  much  less  successful;  in  fact,  it
actually  sometimes  seems  to  “confuse”  FindEquationalProof,  causing
it  to  take  more  rather  than  fewer  steps  (visible  as  negative  values  in
the  plot).  (a · a) · (b · a) = a  is  OK  at  shortening,  but  not  as  good  as
a · b = b · a.  Though  if  one  combines  it  with  a · b = b · a,  the  result  is
more consistent shortening. 

One  could  go  on  with  this  analysis,  say  including  a  comparison  of
how  much  shortening  is  produced  by  a  given  lemma,  relative  to  how
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long  its  own  proof  was.  But  the  problem  is  that  if  one  adds  several
“useful  lemmas”,  like  a · b = b · a  and  (a · a) · (b · a) = a,  there  are  still
plenty of long proofs—and thus a lot left to “understand”:

50 100 150 200 250 0 50 100 150

(original axiom) (witha ·b = b ·a added)

What Can One Understand?

There  are  different  ways  to  create  models  of  things.  For  a  few  hun-
dred years, exact science was dominated by the idea of finding  mathe-
matical  equations  that  could  be  solved  to  say  how  things  should
behave.  But  in  pretty  much  the  time  since  A  New  Kind  of  Science
appeared,  there’s  been  a  strong  shift  to  instead  set  up  programs  that
can be run to say how things should behave. 

Sometimes  those  programs  are  explicitly  constructed  for  a  particu-
lar purpose; sometimes they’re exhaustively searched for. And in mod-
ern  times,  at  least  one  class  of  such  programs  is  deduced  using
machine  learning,  essentially  by  going  backwards  from  examples  of
how the system is known to behave. 

OK,  so  with  these  different  forms  of  modeling,  how  easy  is  it  to
“understand  what’s  going  on”?  With  mathematical  equations,  it’s  a
big  plus  when  it’s  possible  to  find  an  “exact  solution”—in  which  the
behavior  of  the  system  can  be  represented  by  something  like  an
explicit  mathematical  formula.  And  even  when  this  doesn’t  happen,
it’s  fairly  common  to  be  able  to  make  at  least  some  mathematical
statements  that  are  abstract  enough  to  connect  to  other  systems  and
other behaviors. 

As I discussed above, with a program—like a cellular automaton—
it  can  be  a  different  story.  Because  it’s  common  to  be  thrust  immedi-
ately  into  computational  irreducibility,  which  ultimately  limits  how
much one can ever hope to shortcut or “explain” what’s going on.

 But what about with machine learning, and, say, with neural nets?
At some level, the training of a neural net is like recapitulating induc-
tive  discovery  in  natural  science.  One’s  trying  to  start  from  examples
and  deduce  a  model  for  how  a  system  behaves.  But  then  can  one
understand the model? 
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Again there are issues of computational irreducibility. But let’s talk
about a case where we can at least imagine what it would look like to
understand what’s going on. 

Instead  of  using  a  neural  net  to  model  how  some  system  behaves,
let’s  consider  making  a  neural  net  that  classifies  some  aspect  of  the
world: say, takes images and classifies  them according to what they’re
images  of  (“boat”,  “giraffe”,  etc.).  When  we  train  the  neural  net,  it’s
learning to give correct final  outputs. But potentially one can think of
the way it does this as being to internally make a sequence of distinc-
tions  (a  bit  like  playing  a  game  of  Twenty  Questions)  that  eventually
determines the correct output. 

But what are those distinctions? Sometimes we can recognize some
of them. “Is there a lot of blue in the image?”, for example. But most
of  the  time  they’re  essentially  features  of  the  world  that  we  humans
don’t  notice.  Maybe  there’s  an  alternative  history  of  natural  science
where  some  of  them  would  have  shown  up.  But  they’re  not  things
that are part of our current canon of perception or analysis. 

If  we  wanted  to  add  them,  we’d  probably  end  up  inventing  words
for  them.  But  the  situation  is  very  similar  to  the  one  with  the  logic
proof.  An  automated  system  has  created  things  that  it’s  effectively
using  as  “waypoints”  in  generating  a  result.  But  they’re  not  way-
points we recognize or relate to. 

Once again, if we found that particular distinctions were very com-
mon  for  neural  nets,  we  might  decide  that  those  are  distinctions  that
are  worth  us  humans  learning,  and  adding  to  our  standard  canon  of
ways to describe the world. 

Can we expect that a modest number of such distinctions would go
a  long  way?  It’s  analogous  to  asking  whether  a  modest  number  of
theorems  would  go  a  long  way  in  understanding  something  like  the
logic proof. 

My guess is that the answer is fuzzy. If one looks, for example, at a
large corpus of math papers, one can ask how common different theo-
rems  are.  It  turns  out  that  the  frequency  of  theorems  follows  an
almost perfect Zipf law (with the Central Limit Theorem, the Implicit
Function  Theorem  and  Fubini’s  Theorem  as  the  top  three).  And  it’s
probably  the  same  with  distinctions  that  are  “worth  knowing”,  or
new theorems that are “worth knowing”. 

Knowing  a  few  will  get  one  a  certain  distance,  but  there’ll  be  an
infinite power-law tail, and one will never get to the end.

The Future of Knowledge

Whether  one  looks  at  mathematics,  science  or  technology,  one  sees
the  same  basic  qualitative  progression  of  building  a  stack  of  increas-
ing  abstraction.  It  would  be  nice  to  be  able  to  quantify  this  process.
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Perhaps  one  could  look  at  how  certain  terms  or  descriptions  that  are
common at one time later get subsumed into higher levels of abstrac-
tion,  which  then  in  turn  have  new  terms  or  descriptions  associated
with them. 

Maybe  one  could  create  an  idealized  model  of  this  process  using
some  formal  model  of  computation,  like  Turing  machines.  Imagine
that  at  the  lowest  level  one  has  a  basic  Turing  machine,  with  no
abstraction. Now imagine selecting programs for this Turing machine
according  to  some  defined  random  process.  Then  run  these  programs
and  analyze  them  to  see  what  “higher-level”  model  of  computation
can  successfully  reproduce  the  aggregate  behavior  of  these  programs
without having to run each step in each program. 

One  might  have  thought  that  computational  irreducibility  would
imply that this higher-level model of computation would inevitably be
more  complicated  in  its  construction.  But  the  key  point  is  that  we’re
only  trying  to  reproduce  the  aggregate  behavior  of  the  programs,  not
their individual behavior. 

OK,  but  so  then  what  happens  if  you  iterate  this  process—
essentially  recapitulating  idealized  human  intellectual  history  and
building a progressive tower of abstraction? 

Conceivably there’s some analogy to critical phenomena in physics,
and to the renormalization group. And if so, one might imagine being
able  to  identify  a  definite  trajectory  in  the  space  of  what  amount  to
concept representation frameworks. What will the trajectory do? 

Maybe  it’ll  have  some  kind  of  fixed-point  behavior,  representing
the guess that at any point in history there are about the same number
of  abstract  concepts  that  are  worth  learning—with  new  ones  slowly
being invented, and old ones being subsumed. 

What might any of this mean for mathematics? One guess might be
that  any  “random  fact  of  mathematics”,  say  discovered  empirically,
would  eventually  be  covered  when  some  level  of  abstraction  is
reached.  It’s  not  obvious  how  this  process  would  work.  After  all,  at
any given level of abstraction, there are always new empirical facts to
be  “jumped  to”.  And  it  might  very  well  be  that  the  “rising  tide  of
abstraction”  would  move  only  slowly  compared  to  the  rate  at  which
such jumps could be made.

The Future of Understanding

OK, so what does all this mean for the future of understanding? 

In  the  past,  when  humans  looked,  say,  at  the  natural  world,  they
had  few  pretensions  to  understand  it.  Sometimes  they  would  person-
ify certain aspects of it in terms of spirits or deities. But they saw it as
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just acting as it did, without any possibility for humans to understand
in detail why. 

But with the rise of modern science—and especially as more of our
everyday  existence  came  to  be  in  built  environments  dominated  by
technology  (or  regulatory  structures)  that  we  had  designed—these
expectations changed. And as we look at computation or AI today, it
seems unsettling that we might not be able to understand it.

But  ultimately  there’s  always  going  to  be  a  competition  between
what the systems in our world do, and what our brains are capable of
computing  about  them.  If  we  choose  to  interact  only  with  systems
that are computationally much simpler than our brains, then, yes, we
can expect to use our brains to systematically understand what the sys-
tems are doing. 

But if we actually want to make full use of the computational capa-
bilities  that  our  universe  makes  possible,  then  it’s  inevitable  that  the
systems  we’re  dealing  with  will  be  equivalent  in  their  computational
capabilities  to  our  brains.  And  this  means  that—as  computational
irreducibility  implies—we’ll  never  be  able  to  systematically
“outthink” or “understand” those systems. 

But then how can we use them? Well, pretty much like people have
always  used  systems  from  the  natural  world.  Yes,  we  don’t  know
everything about how they work or what they might do. But at some
level of abstraction we know enough to be able to see how to get pur-
poses we care about achieved with them. 

What  about  in  an  area  like  mathematics?  In  mathematics  we’re
used  to  building  our  stack  of  knowledge  so  that  each  step  is  some-
thing  we  can  understand.  But  experimental  mathematics—as  well  as
things  like  automated  theorem  proving—make  it  clear  that  there  are
places to go that won’t have this feature. 

Will we call this “mathematics”? I think we should. But it’s a differ-
ent  tradition  from  what  we’ve  mostly  used  for  the  past  millennium.
It’s  one  where  we  can  still  build  abstractions,  and  we  can  still  con-
struct new levels of understanding. 

But somewhere underneath there will be all sorts of computational
irreducibility that we’ll never really be able to bring into the realm of
human  understanding.  And  that’s  basically  what’s  going  on  in  the
proof  of  my  little  axiom  for  logic.  It’s  an  early  example  of  what  I
think  will  be  the  dominant  experience  in  mathematics—and  a  lot
else—in the future.
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