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It  is  known  that  Shannon’s  information  entropy,  compressibility  and
algorithmic  complexity  quantify  different  local  and  global  aspects  of
synthetic  and  biological  data.  Applicability  of  these  concepts  to  objects
closer to the “clinical end” is less studied. A possible approach consists
of encoding the state of a human body system represented by its system
dynamics model using matrices and monitoring the behavior of the sys-
tem  through  analysis  of  these  matrices,  with  a  potential  extrapolation
of  the  results  to  the  clinical  setting.  This  paper  presents  an  attempt  at
using  some  concepts  and  tools,  specifically  the  block  decomposition
method  (BDM),  coming  from  the  new  emerging  field  of  algorithmic
information  dynamics,  for  the  management  of  a  patient,  especially  in
the intensive care unit (ICU). It describes some aspects pertaining to the
“pre-clinical” incipient stage and tries to outline eventual future clinical
application. 
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Introduction1.

The  human  body  can  be  approached  as  a  system  of  high  complexity.
From the organ systems the body is composed of down to a cell, this
complexity  persists,  at  least  when  assessed  by  conventional  methods
and tools. 

A  medical  practitioner  has  to  deal  with  this  complexity  and  make
the correct decisions concerning diagnosis, monitoring and treatment.
Pretty  often  this  should  be  done  in  a  time-constrained  environment
with  an  abundance  of  data  coming  from  monitors  and  directly  from
the  patient.  All  this  is  especially  valid  for  a  critically  ill  patient,  for
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whom, despite the vast array of intensive care unit (ICU) data, the rele-
vant information that would integrally characterize the patient’s state
is missing.

It  would  be  more  than  welcome  to  have  a  tool  or  tools  that  can
provide  this  kind  of  information,  helping  the  clinician  to  make  more
effective decisions.

There  have  been  many  different  attempts  to  address  this  problem,
the  more  recent  ones  being  connected  with  the  advances  in  computa-
tional science and practice. 

One  promising  possibility  consists  of  building  computer  models
able  to  simulate  human  physiological  processes  and  “personalizing”
them to a particular patient. Once achieved, this can help with a num-
ber  of  aspects  pertaining  to  management  of  a  real  patient.  An  exam-
ple  would  be  simulating  different  treatment  regimens  before  applying
them to a patient.

An additional potential benefit of this “modeling approach” would
serve  as  a  step  toward  the  elaboration  of  a  toolkit  able  to  integrally
characterize  the  model  state  and  behavior,  with  the  possibility  to
extrapolate this information to a real patient.

The  work  presented  in  this  paper  is  an  endeavor  to  apply  knowl-
edge  from  the  field  of  algorithmic  information  dynamics  (AID)  [1,  2]
to  a  model  of  the  cardiovascular  system.  The  ultimate  goal  is  to
deliver  more  qualified  care  to  the  human  patient  by  identifying
aspects  that  can  help  better  characterize  the  model  state  and  its
dynamics.

Cardiovascular System Model2.

A  critically  ill  patient  can  be  seen  as  a  dynamic  system  whose  state
can change rapidly and dramatically. Conventionally, it will be consid-
ered that the direction of these changes moves away from “order” (or
homeostasis) toward “disorder” (or chaos/randomness). 

Since it is difficult to approach the human body integrally in all its
complexity,  for  the  purpose  of  this  work  two  “objects  of  interest”
were established:

◼ An  object  of  limited  scale  “to  think  about”:  namely  the  circulatory
system  present  in  the  human  body  as  one  of  the  vital  ones,  depicted
hereafter through a simple system dynamics model.

◼ A  toolkit  “to  think  with,”  represented  by  some  concepts  and  tools
found  in  the  field  of  AID,  especially  the  block  decomposition  method
(BDM).

The  model  described  here  (and  with  more  details  in  Appendix  A)
was recently created by the author of this work and has a number of
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analogous  models  [3–5].  This  is  a  minimal  lumped-parameter  system
dynamics (SD) model of the cardiovascular system [6], with the focus
on cardiac output (CO) and factors influencing CO.

The  focus  on  CO  as  the  main  output  of  this  model  is  conditioned
by  the  importance  of  CO  in  functionally  defining  hypoxia  as  one  of
the landmarks as well as cornerstones of the so-called critical state. It
is well known that many living organisms can survive without oxygen
for a very limited time. This is why the amount of O2  delivered to the

tissues is so important for an intensivist while managing a critical case
in the ICU, and it can be calculated with a simple formula, using data
available in a modern ICU:

DO2 = CO * 1.34 *Hb *  SaO2

where  DO2  (L/min)  is  the  amount  of  oxygen  delivered  to  the  tissues

during one minute, CO (L/min) is the cardiac output or the volume of
blood pumped by heart in one minute, 1.34 (ml of O2) is the amount

of  oxygen  one  gram  of  hemoglobin  can  bind,  Hb  (g/L)  is  the
hemoglobin level, and SaO2 is the arterial blood O2 saturation. 

As can be deduced from the formula, CO is of crucial importance,
and in its turn is determined by a number of factors (i.e., preload, after
load,  myocardial  contractility  and  compliance,  heart  rate  and
rhythm), many of them being routinely monitored in the ICU.

Behind the approach to the heart as “a pump,” from which the CO
determinants  are  derived,  there  are  simple  hydraulic  models  backed
up  by  the  analogous  metrics  between  the  electrical  domain  and  fluid
dynamics,  based  on  Ohm’s  law  (I = U /R),  where  I  (current  A)  is

equivalent  to  flow  rate  ml * s-1,  U  (voltage  V)  is  equivalent  to  fluid

pressure  (mmHg),  and  R  (resistance  Ohm)  is  equivalent  to  resistance

of  different  segments  of  the  circulation  mmHg * s *ml-1:  Q  (charge

C)—volume,  V  (ml)  and  C  (capacitance  F)—compliance, C

ml *mmHg-1. Elastance is the reciprocal of compliance 1 C.

The model hereafter referred to as the CVS model consists of three
compartments:  two  passive  ones  for  arterial  and  venous  parts  of  the
circulation and an active compartment for the left ventricle.

Figure 1 presents the electrical domain approach to the model.

Figure  2  depicts  the  system  dynamics  approach  (by  NetLogo  Sys-
tem  Dynamics  Modeler  [7],  where  several  stocks  and  flows  between
them are presented) close to the hydraulic domain.

The  model  dynamics  are  governed  by  ordinary  differential  equa-
tions (ODE), which describe the dynamics and relation between three
stocks (left ventricle volume, arterial segment and venous segment vol-
umes) and their respective flows.

Detection of Movement toward Randomness 61

https://doi.org/10.25088/ComplexSystems.28.1.59

https://doi.org/10.25088/ComplexSystems.28.1.59


Figure 1. R1, 2, 3 denote the resistance for the three compartments: venous, left
ventricle and arterial; V1, 2, 3 stand for volume; Ca, v, (t) denotes compliance;
D represents the valves that ensure the unidirectional nature of the blood flow.

Figure 2. V_LV, V_AO and V_V are stocks representing the left ventricle,
arterial segment and venous segment, respectively.

The pulsatile nature of the flow is conditioned by a driver function
that mimics the myocardial contractions and a Heaviside step func-
tion that simulates valvular mechanism, based on the “open on
pressure, close on flow” principle. The types of the main equations
used in the model are as follows:

Qt = P1 - P2
R

(1)
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dV

dx
= Qin - Qout (2)

P = E *V (3)
Pes(V) = Ees (V -Vd) (4)
Ped (V) = P0e

λ(V-V0) - 1 (5)
P(t) = E(t)(V(t) -Vd) (6)
e(t) = 

i=1
N

Aie
-B1(t-Ci)2 (7)

Equations (1) through (3) are used for representation of the blood
flow, variations in the volume and pressure. Equations (4) through (7)
refer to the left ventricle as the active compartment, describing the
same parameters as for the passive ones, as well as the time-varying
elastance (e), which drives the model by mimicking myocardial con-
tractility and contributing to the pulsatile nature of the blood flow. In
Appendix A, there is a detailed description of these aspects.

The outputs of the model include stroke volume, CO and ejection
fraction. Additionally, the model generates a pressure-volume loop
(PVL), unique for a particular scenario/pathological state. Figure 3
depicts two examples of a “normal” PVL (green color) and in hyper-
tension (red color). The PVL can provide valuable information for
diagnosis, monitoring and treatment of a particular patient. The area
inside PVL is considered to be indicative of myocardial oxygen

Figure 3. PVL (green—normal, red—hypertensive state).
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demand [8], a parameter that cannot be directly assessed but can dras-
tically influence the disease course, outcome and treatment.

For the current research, PVL provides the pressure parameter that
is used along with the volume and CO in setting the arrays represent-
ing/encoding a particular behavior of the system/model.

As  stated  previously,  the  model  can  visualize  the  influence  of  a
number  of  factors  (i.e.,  preload,  afterload,  myocardial  contractility,
heart rate, etc.) on CO (see [6]).

The  effect  of  varying  different  model  parameters  can  be  observed
in the resulting pressures and volumes (shown on the plot area of the
model GUI [6]) and PVL, and last, in the left ventricle CO in normal
and pathological conditions.

By  setting  model  parameters  to  different  values,  it  is  possible  to
simulate  a  number  of  pathological  states.  For  the  purpose  of  this
research,  four  such  states  are  simulated  and  later  analyzed  using
AID tools.

The  development  of  the  minimal  model  used  in  this  research  is
based on a minimalist approach, where the model is kept as simple as
possible  unless  the  addition  of  complexity  will  result  in  a  significant
improvement  in  physiological  accuracy.  The  basic  building  blocks  of
the model are the passive and active elastic chambers and the govern-
ing  equations  for  flow  between  these  chambers.  The  functions  of  the
basic model building blocks are investigated individually before assem-
bling  these  components  to  create  a  full  closed-loop  model.  This
approach ensures that the individual contributions of each component
are known when analyzing the performance of the complete model. 

Figure  4  shows  the  kinetics  of  the  model  in  a  virtual  model  phase
space  for  the  four  states,  which  correspond  to  distinct  clinical  condi-
tions and which are further analyzed. 

Figure 4.  The  three-dimensional  phase  space  for  the  CVS  model:  position  of
some  states  presented  as  spheres  of  different  colors:  normal  (dark  blue),  pre-
hypertension  (green),  hypertension  (red),  congestive  heart  failure  with
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hypertension  (dark  red).  SV  is  the  stroke  volume,  CO  is  the  cardiac  output.
The blue ellipsoid shows the range that is considered normal. Its flat appear-
ance  is  due  to  the  difference  in  the  metrics  of  axes  (x,  y—volume  (mL)  and
pressure (mmHg)—hundreds, versus units for z—CO (L/min)).

Algorithmic Information Dynamics3.

AID  [9–11]  is  an  emerging  field  of  complexity  science  based  on  algo-
rithmic  information  theory  (AIT),  which  comprises  the  literature
based  on  the  concept  of  Kolmogorov–Chaitin  complexity  and  related
concepts  such  as  algorithmic  probability,  compression,  optimal  infer-
ence, the universal distribution, Levin’s semi-measure and others.

Central  to  AIT  is  the  definition  of  algorithmic  (Kolmogorov–
Chaitin  or  program-size)  complexity  (Kolmogorov,  1965;  Chaitin,
1969) [10]: 

KT(s) = minp,  T(p) = s,

that  is,  the  length  of  the  shortest  program  p  that  outputs  the  string  s
running on a universal Turing machine T.

AID strives to search for solutions to fundamental questions about
causality:  why  a  particular  set  of  circumstances  leads  to  a  particular
outcome. In this aspect it essentially differs from traditional statistics. 

As an applied science, AID is a new type of discrete calculus based
on computer programming and aimed at studying causation by gener-
ating  mechanistic  models  to  help  find  first  principles  of  physical  phe-
nomena, building up the next generation of machine learning [2, 9].

In the AID toolkit, there is a special tool for providing reliable esti-
mations  to  uncomputable  functions,  namely  the  online  algorithmic
complexity  calculator  (OACC)  [2,  13],  which  provides  estimations
of algorithmic  complexity  and algorithmic  probability for  short  and
long strings and for two-dimensional arrays better than any other tra-
ditional  tool,  none  of  which  can  capture  any  algorithmic  content
beyond simple statistical patterns.

The  OACC  uses  the  BDM  method  [12,  13],  which  is  based  upon
algorithmic probability defined by the coding theorem method (CTM)
[14, 15]:

BDM =  
i=1

n

CTM blocki + log2blocki.

The  OACC  is  available  as  an  online  version  [2]  as  well  as
standalone  packages  in  R  [12]  and  a  number  of  other  languages,
including the Wolfram Language [16], and it is used for respective cal-
culations for the scope of the current work.
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Applying the Online Algorithmic Complexity Calculator to the 

CVS Model
4.

In  order  to  make  datasets  generated  by  the  model  when  run  under  a
certain scenario appropriate for OACC, the following mapping proce-
dure was applied:

For  each  of  the  three  model  outputs  mentioned  previously  (i.e.,
pressure,  stroke  volume  and  CO)  a  binary  array  with  three  cells  was
used,  with  a  resulting  3⨯3  matrix  with  rows  for  the  outputs  and
columns for the respective output expression (deviation):

Pressure 0  1 0  1 0  1

Volume 0  1 0  1 0  1

Cardiac output 0  1 0  1 0  1

The  deviation  is  denoted  by  “0”  if  it  is  in  the  physiological  range
and with “1” if it deviates from normal range. The first cell from left
to  right  corresponds  to  “minimal”  deviation,  left  and  middle  cell  to
“medium,” and all three cells filled with ones depict the maximal devi-
ation  of  the  respective  output  of  the  model.  Thus  the  outputs  within
the physiological range will generate an all-zero matrix. Such matrices
were generated for the four pathological states/scenarios in question. 

The  threshold  values  for  establishing  the  degree  of  deviation  are
based on the accepted normal range [17, 18] of the respective parame-
ter  and  the  magnitude  of  the  deviation  from  this  range  as  shown  in
Table 1. The resulting outputs for selected scenarios/clinical states are
presented in Table 2.

Model Output Normal
Range

Minimal
Deviation

Medium
Deviation

Maximal
Deviation

Pressure mmHg 90–119 120–129
or 81–90

130–139
or 70–80

≥ 140
or < 70

Stroke volume ml ≥ 70 61 - 70 50 - 60 < 50

CO L min 4.5–8.0 3.5–4.49 3.0–3.49 < 3.0

Table 1.CVS  model  outputs  and  the  criteria  for  defining  the  magnitude  of
their deviation.

Model Output Normal pre-HT s1-HT s2-HT CHF &HT

Pressure (mmHg) 119 125 135 145 100

Stroke volume (ml) 72.6 71.4 70.4 65.0 45.2

CO (L / min) 5.08 5.0 4.86 4.55 3.16

Table 2.CVS  model  output  for  certain  scenarios/clinical  states:  normal,  pre-
hypertension  (pre-HT),  stage  1  hypertension  (s1-HT),  stage  2  hypertension
(s2-HT) and congestive heart failure with hypertension (CHF&HT).
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In this way, the matrix for the scenario corresponding to a clinical
case with stage 1 hypertension will be:

1 1 0

0 0 0

0 0 0

Using data provided by the CVS model under the following scenar-
ios:  (1)  normal,  (2)  pre-hypertension,  (3)  stage  1  hypertension,
(4)  stage  2  hypertension  and  (5)  congestive  heart  failure  with  hyper-
tension,  the  resulting  matrices  were  generated  and  used  for  further
analysis (see Figure 5).

Using  the  OACC,  these  arrays  were  analyzed  with  the  results
shown in Table 3. 
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Figure 5.  Matrices  for  the  simulated  scenarios:  (1)  normal,  (2)  pre-hyperten-
sion,  (3)  stage  1  hypertension,  (4)  stage  2  hypertension,  (5)  congestive  heart
failure with hypertension.

Model Scenario /
Clinical Situation

BDMAlgorithmic
Complexity

Shannon
Entropy

Compression Length
(using gzip)

Normal 13.7134 1.5827 104

Pre-hypertension 14.9145 1.7639 104

Stage 1 hypertension 15.9416 1.8578 136

Stage 2 hypertension 17.7910 1.9395 144

Congestive heart
failure and HT

17.4911 1.9395 136

Table 3.Results of applying three tools (BDM, Shannon entropy and compres-
sion length) to certain scenarios simulated by the CVS model.

The  BDM  seems  to  provide  the  most  finely  grained  results  among
the three tools. Results for the BDM value for the simulated scenarios/
clinical situations are presented in Figure 6 as a plot.
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Figure 6. BDM value for CVS model scenarios: (1) normal, (2) pre-hyperten-
sion (pre-HT), (3) stage 1 hypertension (s1-HT), (4) stage 2 hypertension
(s2-HT), (5) congestive heart failure with hypertension (CHF&HT).

Applying the approach for setting up the arrays described previ-
ously (i.e., sequentially replacing zeros in the original array that
denote a normal physiological state with ones, depending on the
magnitude of the deviation of a certain parameter) essentially dimin-
ishes the number of 3⨯3 arrays that can be obtained by simple permu-
tation. The final set will exclude the arrays where there is a 0 to the
left of a 1.

Calculating the BDM for this limited number of arrays (which can
potentially describe distinct clinical situations) and plotting the values
gives a general view of the “BDM value plane” for the particular CVS
model, as shown in Figure 7. This is in line with Figure 4, where the
clinical states simulated by the CVS model for the scope of this
research are presented.

As denoted by Figure 6, the BDM value increases with the advance-
ment of the hypertension state according to clinical criteria [18], and
higher BDM values can be seen, depending on how far away from the
normal range the system is.

Conclusions, Limitations and Future Work5.

Summarizing the given findings, it can be concluded that the block
decomposition method (BDM) accurately highlights the dynamics of a
particular model that simulates the progress of a clinical state, namely
hypertension (HT), from the “normal range” to advanced distur-
bances (or from “order” to “disorder”). A similar but reversed path
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can  be  seen  in  case  of  HT  correction/treatment  by  manipulation  of
vascular  resistance  (e.g.,  decreasing  it  in  a  clinical  setting  with
vasodilators).

Figure 7. BDM space of the CVS model.

It can be noticed that the BDM value goes slightly down in case of
CHF associated with HT. This scenario is different from the “natural
course” of HT and represents a combination of two underlying physi-
ological  mechanisms:  increased  vascular  resistance  (as  in  HT)  and
decreased myocardial contractility (as in CHF caused, for instance, by
a myocardial infarction). It seems that in this more complex case, the
way  of  encoding  the  behavior  of  the  model  applied  in  this  research
(i.e.,  by  a  3⨯3  array)  is  not  able  to  address  these  “subtleties”  and
higher-dimension arrays may be required.

This paper presents a very general view of the problem and is lim-
ited  mostly  to  the  diagnostic/monitoring  segment,  where  the  BDM
may be of value. Even a higher-value BDM might help in guiding the
treatment when there is a need to manipulate a number of parameters
(e.g.,  vascular  resistance  and  myocardial  contractility  by  vasodilators
and  inotropes,  respectively),  which  would  be  the  case  when  dealing
with  CHF  and  associated  HT.  These  aspects  need  further
investigation.

Detection of Movement toward Randomness 69

https://doi.org/10.25088/ComplexSystems.28.1.59

https://doi.org/10.25088/ComplexSystems.28.1.59


The main limitations of this study detected so far include:

◼ Coarse granularity of the CVS model. Although the model captures the
main hemodynamic features of human circulation, there might be some
details  that  will  give  slightly  different  results  in  case  of  more  complex
models. This can change details of the “path toward or away from ran-
domness”  in  a  particular  case,  with  probably  less  influence  on  the
“trend toward or away from randomness” itself.

◼ In  this  research,  the  model  runs  for  every  scenario  with  a  fixed  heart
rate  (HR)  of  70  beats/min.  Varying  the  HR  will  make  the  situation
more  complex,  moreover  with  different  values  for  volume  status  and
vascular  elastance.  For  the  purpose  of  this  research,  in  order  to  keep  it
simple,  the  HR  was  intentionally  not  altered.  Including  the  HR,  which

directly  influences  the  cardiac  output  (CO)  HR * SV = CO  and/or

other  CO  determinants,  will  require  at  least  a  higher-dimension  array
(i.e., at least four dimensions).

◼ A  major  limitation  of  the  current  paper  is  that  the  matrices  are  too
small to believe they are capturing much content. Papers [11, 13] show
that  any  matrix  representation  does  approach  the  complexity  of  the
automorphism  group  of  that  matrix.  An  increase  in  dimensionality  of
the matrix (e.g., by adding new parameters) may be expected to address
this limitation and could serve as a potential path for further research.

◼ Results  described  in  this  paper  are  valid  for  this  particular  model,  for
the  scenarios  simulated  by  the  model,  and  the  way  of  setting  up  the
arrays. Results for other models, scenarios or approaches may differ.

This research is a ramification of a larger project aiming at elabora-
tion of a set of tools to facilitate decision-making in the intensive care
unit  (ICU),  particularly  in  case  of  cardiovascular  problems.  For  this,
more sophisticated models that are to be “personalized” for a specific
patient (this is done mainly by using traditional machine learning tech-
niques) are being created and potentially used for simulations of a par-
ticular  treatment  regimen  before  being  applied  to  a  real  patient.  In
this context, the BDM could serve as a valuable guiding tool by moni-
toring the cardiovascular system dynamics at an “integral” level. This
is to be done with future work. 

At  this  point,  the  focus  will  be  on  exploring  the  BDM  “behavior”
for  a  larger  set  of  parameters  and  scenarios  and  selecting  the  most
appropriate model parameters to be used for BDM estimation.

An even “more profound” analysis would be through more sophis-
ticated  approaches  like  causal  deconvolution  [2]  and  the  algorithms
based  on  minimal  algorithmic  information  loss  [19],  which  may  be
one of the avenues for future research.
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Appendix

Cardiovascular System ModelA.

The  following  is  a  description  of  a  NetLogo  System  Dynamics  (SD)
model  close  to  NetLogo  standards.  The  model  is  available  for
download [6].

How It Works

This  is  an  SD  model  consisting  of  three  compartments:  two  passive
ones  for  arterial  and  venous  parts  of  the  circulation  and  an  active
compartment for the left ventricle.

The  model  dynamics  are  governed  by  ordinary  differential  equa-
tions  (ODE)  that  describe  the  dynamics  and  relation  between  three
stocks (left ventricle volume, arterial segment and venous segment vol-
umes) and respective flows.

The pulsatile nature of the flow is conditioned by a driver function
that  mimics  the  myocardial  contractions  and  a  Heaviside  step  func-
tion  that  simulates  valvular  mechanism,  based  on  the  “open  on  pres-
sure, close on flow” principle.

By changing different parameters (i.e., volume status, vascular resis-
tance, myocardial contractility, vascular elastance, etc.), effects can be
observed  on  stroke  volume  (SV),  ejection  fraction  (EF)  and  cardiac
output  (CO).  With  every  set  of  parameters,  respective  pressures  and
volumes are plotted and a pressure-volume diagram is generated. This
can  help  in  understanding  principles  of  CO  physiology,  particularly
the influence of separate factors or their combination.

The ODE are as follows:

For left ventricle:

dVlv

dt
=  

(Pv -  Plv) k

Rmt

-  

(Plv -  Pao) k

Rao

. (A.1)

For arterial segment (aorta):

dVao

dt
=  

(Plv -  Pao) k

Rao

-  

(Pao -  Pv) k

Rsys

. (A.2)

For venous segment:

dVv

dt
=  

(Pao -  Pv) 

Rsys

-  

(Pv -  Plv) k

Rmt

. (A.3)

Where:

Vlv (ml) is the left ventricle volume,

Vao (ml) is the arterial segment (aorta) volume,
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Vv (ml) is the venous segment volume,

Pv (mmHg) is the pressure in the venous segment,

Plv (mmHg) is the pressure in the left ventricle,

Pao (mmHg) is the pressure in the aorta,

Rmt (mmHg*s*ml-1) is the mitral valve resistance,

Rao (mmHg*s*ml-1) is the aortic valve resistance,

Rsys (mmHg*s*ml-1) is the systemic vascular resistance,

k is a scalar used to account for some extracardiac regulatory influence.

The general concept of this model uses the analogous metrics between
the  electrical  domain  and  fluid  dynamics,  based  on  Ohm’s  law

(I = U /R),  where  I  (current  A)  is  equivalent  to  flow  rate  (ml * s-1),
U  (voltage  V)  is  equivalent  to  fluid  pressure  (mmHg),  and R
(resistance  Ohm)  is  equivalent  to  resistance  of  different  segments  of

the circulation (mmHg * s *ml-1): Q (charge C)—volume, V (ml) and

C  (capacitance  F)—compliance,  C  (ml *mmHg-1).  Elastance  is  the

reciprocal of compliance (1 C). 

Blood flow =
P1 

-  P2

R
, (A.4)

where  P1, 2  are  pressures  in  vicinity  segments  and  R  represents  resis-

tance to the flow at the respective segment’s junction.

Pressure  is  calculated  as  the  product  of  elastance  (EmmHg *ml-1)
and volume (V ml):

Arterial aortic pressure = Eao *Vao, (A.5)

where  Eao is aortic elastance.

Venous pressure = Ev *Vv, (A.6)

where Ev is venous elastance.

Left ventricle pressure is calculated as follows:

Plv = tve *Eeslv
* Vlv -Vdlv

 +

1 - tve * P0lv
* eλlv*Vlv-V0lv


- 1,

(A.7)

where

tve (dimensionless) is the left ventricle time varying elastance,

Eeslv
 mmHg *ml-1 is the left ventricle end-systolic elastance,

Vlv (ml) is the left ventricle volume,
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Vdlv
 (ml) is the unstressed left ventricle volume,

P0lv  (mmHg) is the zero-volume left ventricle pressure,

λlv  (ml-1)  is  the  left  ventricle  lambda  (the  curvature  of  end-diastolic

pressure-volume relationship (EDPVR) function/line),

V0lv
 (ml) is the zero-pressure left ventricle volume.

The driver function concerning time-varying elastance (tve):

tve = e-80*(time-0, 27)2, (A.8)

where time is the period of time of a cardiac cycle.

Stroke volume (ml/beat):

SV = Ved -Ves, (A.9)

where Ved is the end-diastolic volume and Ves is the volume at the end

of systole.
Ejection fraction (%):

EF =
Ved -Ves

 Ves

* 100 * 1.1, (A.10)

where 1.1 is a scalar used for consistency of physiological values for E.

Cardiac output (L/min):

CO = SV * heart rate  1000, (A.11)

where division by 1000 is for conversion of milliliters to liters.

With  every  tick,  calculations  of  variables  concerning  stocks  and
flows are performed and values for volumes and pressures are shown
on the plot. SV, CO and EF are reported by respective monitors. Gen-
erated pressures and volumes for the left ventricle are used for setting
coordinates  for  turtles,  which  are  accordingly  placed  on  the  world
window, creating the pressure-volume diagram.

The initial parameters for a “normal” scenario are as follows:

Vlv—130 ml

Vao—50 ml

Vv—1000 ml

Ev—0.0059 mmHg*ml-1

Eao—0.6913 mmHg*ml-1

V0lv
— 0 ml

Vdlv
—0 ml

P0lv—0.1203 mmHg
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Rmt—0.0158 mmHg*s*ml-1

Rao—0.018 mmHg*s*ml-1

Rsys—1.0889 mmHg*s*ml-1

Eeslv
—2.8798 mmHg*ml-1

λlv—0.033 ml-1

heart rate—70 bpm
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