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The  concept  of  emergence  is  a  powerful  way  to  explain  very  complex
behavior  by  simple  underlying  rules.  Existing  approaches  to  producing
emergent  collective  behavior  have  many  limitations,  making  them
unable  to  account  for  the  complexity  we  see  in  the  real  world.  In  this
paper,  we  propose  a  new  dynamic,  nonlocal  and  time-independent
approach  that  uses  a  network-like  structure  to  implement  the  laws  or
the  rules,  where  the  mathematical  equations  representing  the  rules  are
converted  to  a  series  of  switching  decisions  carried  out  by  the  network
on the particles moving in the network. The proposed approach is used
to generate patterns with different types of symmetry. 
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Introduction1.

The  concept  of  emergence  is  a  powerful  way  to  explain  complex
behavior  by  simple  underlying  rules.  Emergence  is  now  an  active
research  area  in  fields  as  diverse  as  biology,  physics  and  computer
science.

Some  birds  fly  in  coordinated  flocks  that  display  strong  synchro-
nization  in  movements.  No  experimental  evidence  of  leaders  in  such
flocks has been found. Heppner [1] proposed that the synchronization
in the movements could be the result of simple rules of movement fol-
lowed by each bird individually. He showed through computer simula-
tions how organized flight developed from chaotic milling. 

Ants  are  capable  of  finding  the  shortest  path  from  the  nest  to  a
food  source  [2,  3]  by  using  chemical  substances  called  pheromones.
While  walking,  ants  deposit  pheromones  along  the  way;  at  the  same
time,  they  follow  pheromones  previously  deposited  by  other  ants.  At
the  beginning,  when  the  ants  arrive  at  a  point  where  they  have  to
decide which path to take, they choose the path randomly. By suppos-
ing  that  all  ants  have  the  same  speed,  and  since  one  path  is  shorter,
more  ants  will  visit  the  shorter  path  on  average,  and  therefore
pheromones  will  accumulate  faster  on  that  path.  After  a  short  time,
the difference in the amount of pheromones on the two paths is large,
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and  it  will  be  enough  to  influence  the  decision  process  of  new  ants.
Many algorithms have been inspired from this behavior to solve vari-
ous problems, such as the traveling salesman problem [4, 5]. 

The emergence of consciousness, where the actions of an individual
neuron  or  dense  networks  of  neurons  give  rise  to  the  large-scale
behavior  of  the  brain,  is  also  investigated  in  [6]  along  with  many
other examples. 

Cellular  automata  (CAs)  are  well-known  computational  tools  to
study emergent collective behavior. CAs have been used for the simu-
lation  of  such  complex  phenomena  as  growth  and  evolution.  CAs
were  proposed  by  von  Neumann  [7]  to  deal  with  the  issue  of  repro-
duction  of  natural  processes.  CAs  have  allowed  us  to  understand  the
behavior of complex systems in a better way. 

Conway  [8]  created  the  Game  of  Life,  where  he  designed  a  two-
dimensional  cellular  automaton  (CA)  with  rules  to  avoid  the  forma-
tion  of  structures  that  quickly  disappear  or  grow  freely.  Interesting
complex behaviors have been observed, such as the gliders, which are
small  groups  of  cells  that  appear  to  move  like  independent  emergent
entities. The simple rules Conway used can be summarized as follows: 

◼ Living cells die if they have fewer than two neighbors (loneliness).

◼ Living  cells  die  if  they  have  more  than  three  neighbors
(overpopulation). 

◼ Dead cells become alive if they have three neighbors (reproduction). 

◼ Otherwise there is no change. 

Wolfram  [9]  used  a  CA  with  simple  rules  and  simple  initial  condi-
tions  to  produce  behaviors  that  are  highly  complex.  Then  by  observ-
ing the behavior of different rules in many simulations, he was able to
classify  the  behavior  of  the  rules  as  stable  structures  or  simple  peri-
odic patterns, chaotic nonperiodic behavior and complex patterns. 

In  physics,  two-dimensional  CAs  were  created  to  study  statistical
properties of gases [10]. CAs have also been used for simulation of flu-
ids or granular substances. This was a clear indication of the ability of
CAs to model real physical problems. 

Zuse suggested that the universe is the output of a computation on
a  giant  CA  [11].  A  growing  number  of  physicists  are  now  taking  the
view that information is the most fundamental thing [12, 13], an idea
that  can  be  traced  back  to  Wheeler,  who  famously  said  “it  from  bit”
[14]. In this view, all interactions between physical systems are infor-
mation  processing,  and  the  entire  universe  is  a  giant  computation.
Markopoulou  et  al.  [15,  16]  proposed  a  study  of  quantum  gravity
based on spin systems as toy models for emergent geometry and grav-
ity.  These  models  are  based  on  quantum  networks  with  no  a  priori
geometric notions. A similar line of work includes [17–24]. 
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Existing  approaches  to  producing  complex  behavior  from  simple
rules have many limitations [25, 26], making them unable to account
for  the  complexity  we  see  in  the  real  world.  Some  examples  of  com-
plex phenomena we see in the real world include: 

◼ Current  events  depending  on  nonlocal  events,  such  as  quantum entan-
glement  [27,  28].  Quantum  entanglement  is  a  phenomenon  that  occurs
when  two  particles  are  generated  in  a  way  such  that  the  states  of  the
particles cannot be described independently of each other. One particle
of an entangled pair knows instantly the result of the measurement that
has  been  performed  on  the  other  particle,  even  though  there  is  no
known  means  for  this  information  to  be  communicated  between  the
two particles, which may be separated by a very large distance. 

◼ Current  events  depending  on  events  from  the  future,  such  as  the
delayed  choice  quantum  eraser  experiment  [29].  In  the  classic  double-
slit  experiment,  no  interference  is  observed  when  a  measurement  is
performed to know which slit the photon went through, while an inter-
ference  pattern  is  observed  when  no  measurement  is  performed.
However,  what  makes  the  delayed  choice  quantum  eraser  experiment
different  is  that  the  choice  of  whether  to  measure  or  not  to  measure
photon  2  (which  is  entangled  with  photon  1)  was  not  made  until  8  ns
after the position of photon 1 had been already recorded. This may sug-
gest that the knowledge of the future fate of photon 2 would determine
the activity of photon 1 in its present. 

These  complex  quantum  phenomena  might  result  from  simple
underlying rules. Many physicists [17–20] have argued that there is a
more  fundamental  theory  underlying  quantum  mechanics  and  that
quantum  mechanics  might  emerge  from  the  laws  of  this  theory.
Unlike  existing  approaches,  the  proposed  framework  will  allow  us  to
model  these  phenomena  where  nonlocal  and  time-independent  events
could  take  place.  The  general  aim  of  the  framework  is  to  show  how
simple  rules  that  govern  the  interactions  of  particles  could  produce
emergent complex behaviors. 

The main contribution of this paper is to propose a new computa-
tional  tool  that  may  help  in  modeling  more  complex  phenomena  by
allowing nonlocal and time-independent events to take place. The pro-
posed  approach  may  be  more  suitable  for  modeling  physical  systems;
however,  it  may  also  help  in  modeling  complex  systems  where  a  cen-
tralized  approach  is  required.  The  proposed  approach  can  be  seen  as
a dynamic, nonlocal and time-independent extension to CAs; it uses a
network-like  structure  to  implement  the  laws  or  the  rules,  where  the
mathematical  equations  representing  the  rules  are  converted  to  a
series  of  switching  decisions  carried  out  by  the  network  on  the  parti-
cles moving in the network. Using moving particles is more realistic in
modeling physical systems where the collective behavior emerges from
the movements and the interactions of these particles. 
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One example is fluid dynamics, where the macroscopic behavior of
the  fluid  is  governed  by  rules  governing  the  interactions  of  the
molecules.  Another  example  is  temperature,  where  the  rules  govern-
ing  the  interactions  of  gas  molecules  give  rise  to  emergent  properties
such  as  the  temperature.  Other  examples  include  the  quantum  phe-
nomena  described  earlier;  however,  modeling  these  phenomena  is
beyond the scope of this paper. In order to have a macro view on all
the interactions that are taking place and to allow nonlocal and time-
independent  events,  a  network-like  entity  should  be  in  place  to  cover
the  whole  space  and  to  direct  the  movement  of  particles,  because  the
particles  do  not  have  access  to  the  state  of  other  particles  far  away
from  them  or  to  the  state  of  other  particles  in  the  future.  The  pro-
posed  approach  is  used  to  generate  patterns  with  different  types  of
symmetry. 

Transfer entropy [30] has been recently used to quantify the direc-
tional flow of information in complex systems. It is shown to be par-
ticularly  useful  in  describing  distributed  information  processing.
Transfer  entropy  was  introduced  to  address  limitations  in  other  mea-
sures,  such  as  mutual  information,  which  is  a  symmetric  measure  of
shared  information.  Transfer  entropy  has  been  recently  used  to
describe waves of motion in swarms and flocks [31]. It has been used
to  evolve  a  modular  robot  to  maximize  information  transfer  between
the  components  [32].  It  has  also  been  used  to  show  that  regular  net-
works  are  usually  linked  with  information  storage,  random  networks
are  associated  with  information  transfer  and  small-world  networks
have  a  balance  between  the  two  [33].  Transfer  entropy  is  an  interest-
ing  measure  that  could  be  used  to  study  or  optimize  the  information
flow in the proposed framework. 

Liu et al. [34] proposed an analytical tool to study the controllabil-
ity  of  complex  systems  and  to  identify  the  driver  nodes  that  can  con-
trol  the  dynamics  of  the  entire  system.  The  number  of  driver  nodes
can  be  determined  by  the  degree  distribution  of  the  network.  Sparse
inhomogeneous  networks,  which  appear  in  many  real  complex  sys-
tems, are found to be the most difficult to control. On the other hand,
dense  homogeneous  networks  could  be  controlled  using  a  few  driver
nodes.  However,  since  the  particles  could  move  anywhere  in  the  pro-
posed framework and since the rules should be applied everywhere in
the  network,  all  the  nodes  of  the  network  should  have  control  and
switching ability. 

Method2.

In  this  paper,  we  propose  a  new  approach  in  which  the  rules  or  the
laws are applied. The rules are applied on a set of particles moving in
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the network, instead of applying the rules on static cells. The network
has  two  functionalities:  the  first  is  to  provide  the  space  in  which  the
particles  move,  and  the  second  is  an  active  role,  where  the  network
changes  the  movement  of  the  particles  to  satisfy  the  rules  by  sending
the  particle  through  one  of  eight  directions.  The  proposed  approach
goes beyond existing approaches in the following main points:

◼ A dynamic approach: unlike other approaches where the basic building
blocks  are  static  cells,  the  basic  building  blocks  of  the  proposed
approach  are  particles  moving  in  a  network-like  structure,  which  will
allow  us  to  represent  natural  phenomena  in  a  more  realistic  way.  The
laws or the rules will be implemented by changing the movement of the
particles to satisfy the rules. 

◼ A  nonlocal  approach:  unlike  other  approaches  where  the  cell  is  only
affected by its adjacent cells, the proposed approach will allow the parti-
cles to be affected by particles far from their current positions. 

◼ A  time-independent  approach:  unlike  other  approaches  where  current
events  are  only  dependent  on  past  events,  the  proposed  approach  will
allow current events to depend on events from the future. 

◼ An  external  entity  approach:  unlike  other  approaches  where  each  cell
applies the rules on its own when it interacts with other cells, in the pro-
posed approach the rules are applied by the network, which is an exter-
nal entity that has access to nonlocal and future events. 

◼ A  combined  micro  and  macro  approach:  unlike  other  approaches
where the cells are not aware of what is going on at the macro level, the
network is fully aware of both the micro and the macro levels. 

A  number  of  particles  are  assumed  to  be  moving  in  straight  lines
inside  a  regular  network  structure;  the  initial  positions  and  directions
of  the  particles  are  generated  using  a  pseudorandom  number  genera-
tor equation. At each node, the particle should take one direction out
of eight possible directions, as shown in Figure 1. 

When the particles reach the boundary, they will bounce off to the
interior.  Unlike  other  approaches,  events  happening  in  the  future  are
assumed  to  be  known  by  knowing  the  initial  positions  and  the  equa-
tions  governing  the  movement  of  the  particles.  The  network  will  be
responsible for implementing the laws by converting the mathematical
equations representing the laws to a series of switching decisions. The
network will be also responsible for controlling the speed of the parti-
cles. As illustrated in Figure 2, the moving particles are assumed to be
moving  in  a  network-like  structure;  each  particle  will  be  switched  to
one  of  eight  directions,  depending  on  the  rules.  For  example,  if  the
rule dictates that two particles should repel each other when they are
in  adjacent  nodes,  the  network  will  switch  the  two  particles  in  oppo-
site directions. 
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Figure 1. The structure of the network.

Figure 2. The  rules  will  be  applied  by  a  simple  switching  decision  to  one  of
eight directions.

The rules could vary from local rules governing the particles’ inter-
actions,  such  as  repulsion  or  attraction  of  close  particles,  to  global
rules,  such  as  correlation  between  distant  particles.  If  no  rules  are
found to be applied on the particle, the particle will continue to move
according  to  its  own  movement  equation.  Each  node  of  the  network
has  the  entire  code  that  governs  the  movement  of  all  particles  and
their  initial  positions,  which  means  that  the  switching  decision  will
not  be  dependent  only  on  local  events  such  as  particle  interactions,
but  on  the  entire  dynamics.  This  will  enable  the  network  to  make
global  decisions  based  on  the  global  picture  instead  of  making  deci-
sions  based  only  on  local  interactions.  This  will  also  enable  the
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network  to  make  decisions  based  on  future  events  instead  of  making
decisions  based  on  past  and  current  events.  Each  node  is  assumed  to
have basic information processing capability, where the node needs to
retrieve  the  information  of  the  particle  from  information  storage  and
then  uses  this  information  to  calculate  to  which  direction  the  particle
should  be  switched.  To  prevent  any  loops  or  mutual  dependence
between  current  and  future  events,  the  network  will  prevent  any  cur-
rent  event  from  depending  on  future  events  if  this  dependence  will
create a loop. 

The  best  analogy  to  the  proposed  approach  would  be  a  data  net-
work,  where  the  router  at  each  node  will  route  the  packet  through
specific  links  to  achieve  some  global  criteria—for  instance,  minimiz-
ing the congestion or minimizing the length of the total path. 

To make the approach clearer, we will provide a basic mathemati-
cal formulation. We will assume that the mathematical equation repre-
senting the law can be described by the function f(t), where f(t) can be
defined  as  a  series  of  positions  post  at  different  time  instances  t  as

described by 

f1  pos1, f2  pos2, … , f(t)  post. (1)

Similarly,  the  network  will  produce  a  series  of  switching  decisions
that can be expressed as a series of positions S(t); S(t) is described by 

S1  pos1, S2  pos2, … , S(t)  post. (2)

The  goal  of  the  network  is  to  produce  a  series  of  switching  decisions
that  minimizes  the  distance  between  f  and  S  at  each  time  instance  as
described  by  equation  (3).  The  lattice  shown  in  Figure  1  was  chosen
because it is more accurate in approximating the laws than the typical
four  directions  lattice.  The  optimal  lattice  would  be  the  lattice  that
minimizes the equation given by 

min
t

DistanceS(t), f(t),
(3)

where  Distance  is  the  Euclidian  distance.  To  make  the  mathematical
formulation clearer, let us suppose that the law dictates that the parti-
cle should follow a mathematical equation that can be represented by
a  series  of  positions  f;  these  positions  do  not  necessarily  match  with
the positions of the nodes of the network. f  is shown as an orange line
in  Figure  3.  Then  the  network  should  produce  a  series  of  switching
decisions represented by a series of positions S that best approximates
f.  The  yellow  points  in  Figure  3  show  the  series  of  positions  S  that
minimize the sum of the Euclidian distances between f and S. 
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Figure 3. The  series  of  positions  resulting  from  the  rule  (shown  in  orange)
versus the series of positions resulting from the switching decisions (shown in
yellow). 

The  role  of  the  network  could  be  extended  to  other  information
processing functionalities, such as: different types of particles may get
different rules, or may use probabilistic rules, where the rules are only
applied for a specific percentage of the time. 

To illustrate the proposed idea further, we will take a simple exam-
ple: we will assume that the goal of the network is to form symmetri-
cal patterns from the moving particles. This example requires that the
network have global knowledge of the movement of all particles. The
network  will  fix  the  positions  of  two  particles  if  they  have  symmetry
at the current time instance or at any time instance in the future. For
example, the network will fix the particle p1  in its position if there is

any  particle  symmetrical  to  it  at  the  current  time  instance  or  at  any
time instance in the future, and an identical copy of the fixed particle
will continue to move using the same movement equation. 

Two  types  of  symmetry  will  be  tested;  the  first  is  the  symmetry
around the y axis, that is, 

xp2  -xp1

yp2  yp1

where p1  is the first particle and p2  is the second particle. The second

type  is  the  symmetry  around  the  y  axis,  the  x  axis  and  the  diagonal,
that is,
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xp2  -xp1

yp2  yp1

xp3  xp1

yp3  -yp1

xp4  -xp1

yp4  -yp1

where  p1  is  the  first  particle,  p2  is  the  second  particle,  p3  is  the  third

particle and p4  is the fourth particle. Using the mathematical formula-

tion  described  earlier,  we  will  get  f  S   current  position,  because
we  make  the  particle  stop  if  the  symmetry  rules  are  satisfied.  In  Sec-
tion 3 we describe the configuration and the parameters of the simula-
tions and show the resulting patterns.

Simulation Results3.

To test the proposed approach, a number of moving particles inside a
closed  circle  are  considered.  The  particles  will  bounce  off  to  the  inte-
rior when they reach the boundary of the circle. Four parameters will
be varied. The first is the time of the movement of the particles T: the
longer the time, the more likely that symmetrical patterns will emerge.
The  second  parameter  is  the  size  of  the  particle  S,  which  is  related  to
the number of particles: the larger the number of particles, the smaller
the  particles’  size.  The  third  parameter  is  the  number  of  the  particles
N:  the  higher  the  number,  the  more  likely  that  symmetrical  patterns
will  emerge.  And  the  fourth  parameter  is  the  scale  of  the  network  D,
that is, the number of network nodes per distance unit: the higher the
number of nodes per distance unit, the less likely that symmetrical pat-
terns will emerge. The values of these parameters are chosen such that
the  density  of  the  particles  in  the  resulting  pattern  is  not  too  high  or
too low, so a meaningful pattern (nonrandom pattern) can emerge.

Multiple  simulations  with  different  parameters  and  different  initial
positions of the particles are performed. Figures 4 to 8 show some of
the  resulting  patterns  when  the  first  type  of  symmetry  is  considered,
and  Figures  9  and  10  show  some  of  the  resulting  patterns  when  the
second type of symmetry is considered. The values of the four parame-
ters  are  listed  below  each  figure.  For  example,  Figures  4(a),  4(b)  and
10(b)  show  how  much  a  particle  is  symmetrical  with  its  future  posi-
tions. Figures 7 and 8 show how simple symmetry rules may give rise
to a face-like structure. 
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(a) (b)

Figure 4. The resulting pattern when: (a) T  300, N  1, S  3, D  50; (b)
T  300, N  1, S  3, D  100.

(a) (b)

Figure 5. The  resulting  pattern  when:  (a)  T  30,  N  20,  S  20,  D  600;
(b)  T  30, N  20, S  20, D  400.

(a) (b)

Figure 6. The  resulting  pattern  when:  (a)  T  30,  N  20,  S  15,  D  350;
(b) T  45, N  20, S  20, D  1000.
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(a) (b)

Figure 7. The  resulting  pattern  when:  (a)  T  30,  N  20,  S  20,  D  400;
(b) T  60, N  20, S  20, D  1500.

(a) (b)

Figure 8. The  resulting  pattern  when:  (a)  T  120,  N  20,  S  15,
D  1500; (b) T  120, N  20, S  15, D  1500.

(a) (b)

Figure 9. The  resulting  pattern  when:  (a)  T  15,  N  20,  S  10,  D  50;
(b) T  15, N  20, S  20, D  50.
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(a) (b)

Figure 10. The resulting pattern when: (a) T  30, N  20, S  15, D  100;
(b) T  120, N  1, S  1, D  100.

To provide a quantitative evaluation of the outcome of the simula-
tions, we will investigate the distribution of the distances of the parti-
cles  from  the  origin.  The  distribution  will  give  deeper  information
about  the  spatial  distribution  of  the  particles.  Figures  11  to  13  show
the  distribution  of  the  distances  of  the  particles  from  the  origin  for
patterns  that  have  complex  geometrical  structure.  Figures  14  to  16
show  the  distribution  of  the  distances  of  the  particles  from  the  origin
for patterns that have face-like structure. Common features of the dis-
tributions within the same category can be seen. The number of sym-
metrical  particles  NS  in  the  resulting  patterns  is  also  introduced  to
give  a  quantitative  measure.  As  can  be  seen  from  the  given  examples
(Figures  11  to  16),  complex  geometrical  structure  patterns  have  a  far
higher  number  of  symmetrical  particles  than  the  face-like  structure
patterns. The value of NS is listed below each figure. 

Entropy  has  limitations  in  representing  the  spatial  arrangement  of
the  pattern.  To  provide  a  better  quantitative  measure  of  the  resulting
patterns, compressibility (C) is considered. The compressibility metric
is  simply  the  ratio  between  the  original  and  the  compressed  image
using the JPEG method. Figures 11 to 16 show how this measure devi-
ates  from  random  permutations  of  the  same  pattern,  where  Cr  repre-

sents  the  compressibility  when  the  positions  of  the  particles  were
randomly moved. The results show a significant distance between the
random and the original pattern. 

To  investigate  how  the  initial  conditions  affect  the  resulting  pat-
terns,  one  particle  will  be  used,  the  direction  of  the  particle  will  be

fixed to π  2, the y coordinate will be fixed to zero, and the x coordi-

nate will vary from 0.2r to 0.9r, where r is the radius of the circle. Fig-
ures  17  to  21  show  how  the  pattern  changes  by  changing  the  initial
position  of  the  particle.  The  initial  position  of  the  particle  limits  the
positions that the particle can visit, and that affects the complexity of
the resulting pattern. 
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Figure 11. The  resulting  pattern  and  distribution  when T  120,  N  20,
S  1, D  75, NS  109 702, C  2.0009, Cr  1.5948.

Figure 12. The  resulting  pattern  and  distribution  when T  120,  N  20,
S  1, D  75, NS  104 364, C  2.0046, Cr  1.5948.

Figure 13. The  resulting  pattern  and  distribution  when T  120,  N  20,
S  1, D  75, NS  105 596, C  1.9972, Cr  1.5963.
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Figure 14. The  resulting  pattern  and  distribution  when T  120,  N  20,
S  20, D  400, NS  1678, C  2.7277, Cr  2.2373.

Figure 15. The  resulting  pattern  and  distribution  when T  120,  N  20,
S  20, D  400, NS  1778, C  2.5748, Cr  2.2657.

Figure 16. The  resulting  pattern  and  distribution  when T  120,  N  20,
S  20, D  400, NS  1912, C  2.5644, Cr  2.2681.
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Figure 17. The  resulting  pattern  and  distribution  when  T  300,  N  1,
S  1, D  25, X  0.2r.

Figure 18. The  resulting  pattern  and  distribution  when  T  300,  N  1,
S  1, D  25, X  0.3r.

Figure 19. The  resulting  pattern  and  distribution  when  T  300,  N  1,
S  1, D  25, X  0.4r.
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Figure 20. The  resulting  pattern  and  distribution  when  T  300,  N  1,
S  1, D  25, X  0.5r.

Figure 21. The  resulting  pattern  and  distribution  when  T  300,  N  1,
S  1, D  25, X  0.8r.

Discussion4.

Section 3 showed how simple rules, namely symmetry rules, could pro-
duce very complex patterns. Two types of patterns were observed: the
first is a complex geometrical structure such as Figure 13, and the sec-
ond  is  a  face-like  structure  such  as  Figure  8(b).  We  also  showed  how
the  initial  conditions  affect  the  resulting  patterns.  The  distribution  of
the  distances  of  the  particles  from  the  origin  could  help  in
determining  the  presence  of  a  structure  in  the  resulting  pattern;  it
could also help in distinguishing between different patterns. For exam-
ple, in the complex geometrical structure case, the number of particles
at  different  distances  has  a  periodic  nature;  that  is,  it  increases  then
decreases and then increases again and so on. Other patterns, such as
the  circle,  have  a  very  narrow  distribution.  The  main  difference
between  these  two  categories  is  the  number  of  symmetrical  particles,
where  complex  geometrical  structure  patterns  have  a  far  higher  num-
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ber of symmetrical particles than the other category. The main differ-
ence  between  the  complex  geometrical  structure  and  the  face-like
structure in terms of input parameters is parameter D (the number of
network  nodes  per  distance  unit,  where  the  higher  the  number  of
nodes,  the  lower  the  number  of  symmetrical  particles  in  the  resulting
pattern). A lower number of nodes will produce complex geometrical
structures, while even fewer nodes will produce patterns in the second
category. This shows that different levels of granularity produce differ-
ent  emergent  behaviors.  However,  the  use  of  low-level  measures  such
as the distribution, the density of the particles or the number of sym-
metrical particles in describing the resulting patterns is rather limited,
and higher-level approaches such as shape recognition and face recog-
nition should be used.

The  observed  patterns  showed  how  the  proposed  framework  was
able to model nonlocal and time-independent phenomena. In particu-
lar,  we  showed  how  simple  nonlocal  and  time-independent  rules  give
rise  to  complex  symmetrical  patterns.  This  particular  example  was
presented  to  show  the  effectiveness  of  the  proposed  framework.  The
broader  aim  of  the  proposed  framework  is  to  model  more  complex
real-world  phenomena,  such  as  fluid  dynamics,  where  the  macro-
scopic behavior of the fluid is governed by rules governing the interac-
tions of the molecules. Another example is the temperature, where the
rules governing the interactions of gas molecules give rise to emergent
properties,  such  as  the  temperature.  The  proposed  framework  could
also  find  applications  in  neural  networks;  for  instance,  the  proposed
framework could help in modeling nonlocal interactions between neu-
rons  that  do  not  have  direct  connections.  It  could  help  in  modeling
how  a  hypothetical  event  in  the  future  will  affect  the  current  state  of
the  network.  Finally,  it  could  help  in  optimizing  a  global  criterion
over  the  entire  neural  network.  Other  examples  include  the  quantum
phenomena  described  earlier;  however,  modeling  these  phenomena  is
beyond the scope of this paper. Future work will investigate the use of
other  quantitative  measures  to  describe  the  resulting  patterns;  it  will
also  investigate  how  the  resulting  patterns  will  be  affected  when  we
put  some  constraints  on  the  distribution  of  the  distances  of  the  parti-
cles from the origin. Future work will also investigate the use of other
rules, particularly rules that may give rise to the complex behavior we
see in natural phenomena. 

Conclusion5.

This  paper  has  presented  a  novel  approach  to  producing  emergent
behavior  from  simple  underlying  rules.  The  proposed  approach  goes
beyond  existing  approaches  by  using  a  dynamic,  nonlocal  and
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time-independent  approach  that  uses  a  network-like  structure  to
implement  the  laws  or  the  rules,  where  the  mathematical  equations
representing  the  rules  are  converted  to  a  series  of  switching  decisions
carried  out  by  the  network  on  the  particles  moving  in  the  network.
The  results  showed  that  the  proposed  approach  was  able  to  produce
interesting symmetrical patterns.
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