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In  this  paper,  we  explore  how  the  behavior  of  cellular  automata  (CAs)
is  affected  by  different  boundary  conditions  and  what  types  of  systems
it is affected by. Six experiments are presented. The first determines the
most  effective  boundary  condition  for  optimizing  rule-output
(in)equality  related  to  Shannon  entropy.  The  second  experiment
determines  the  effect  of  the  boundary  conditions  compared  to  the  size
of  the  initial  conditions.  The  third  experiment  determines  the  variation
of  systems  for  a  specific  Li–Packard  and  Wolfram  class.  The  fourth
experiment generalizes the principles of the third experiment into a rule
space involving four binary cells rather than three. The fifth experiment
determines  the  change  in  complexity  of  systems  with  different  bound-
ary conditions. Finally, the sixth experiment generalizes the concepts of
the  fifth  experiment  into  the  same  rule  space  used  in  experiment  four.
Most of the time, boundary conditions do not change the classification,
thus  do  not  change  the  behavior.  But  some  boundary  conditions  have
been  found  to  change  the  qualitative  behavior.  However,  it  is  only
constant boundary conditions that have been found to change the com-
plexity  of  a  system,  and  the  constant  boundary  conditions  only
decrease  the  complexity.  The  largest  change  in  the  compression  ratio
was  found  to  be  for  rule  110  when  the  boundary  conditions  change
from  cyclical  to  constant.  The  degree  of  this  change  is  approximately
25%.  Distributed  and  cyclical  boundary  conditions  can  be  relied  upon
to  maximize  the  rule-output  equality  of  systems  in  general,  while  null
boundary conditions can be relied upon to increase the overall complex-
ity of a system.

Keywords: boundary conditions; Wolfram classes; Li–Packard class; 
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Introduction1.

Boundary  conditions  are  a  medium  that  an  automaton  utilizes  as  a
substitute for a lack of infinite length of the lattice of conditions. Five
types  of  boundary  conditions  are  tested  to  see  which  type  of  bound-
ary condition has the highest impact on rule-output (in)equality. 
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The inputs of a rule represent the values of both a cell and its neigh-
bors required for the rule to transform the active cell so that its value
is the same as a corresponding output. 

Constants  are  the  values  an  arbitrary  cell  possesses.  The  values  of
the  constants  are  limited  to  the  scope  of  the  rules;  therefore,  in  an
elementary cellular automaton (ECA), the constants are either 1 or 0.
If  the  initial  conditions  are  to  be  excluded  from  the  automaton,  only
the scope of the outputs of the rules can be constants.

The  proportions  of  constants  in  the  outputs  of  the  rules  will  be
equal to the proportion of constants in a single evaluation of the rules
on  initial  conditions,  with  a  proportion  of  constants  of  1:1.  This  fact
has  many  applications,  including  being  the  reason  that  an  automaton
of  the  second  Li–Packard  class  [1]  has  near-perfect  rule-output
equality.

Rule-output  equality  is  when  the  density  of  nonzeros  of  the  rule
output  matches  the  proportion  of  nonzeros  in  the  output  rows  or
after  k  steps.  The  rule-output  equality  of  a  particular  system  can  be
measured by taking the density of nonzeros in the outputs of the rule
evolution  divided  by  the  density  of  nonzeros  in  the  rule  output  of  a
system such as a cellular automaton (CA). 

Although  rule-output  equality  displays  high  variation,  it  does  have
the  ability  to  be  predicted  with  100%  accuracy.  Generally  for  a  sys-
tem to maximize its rule-output equality over time, the proportions of
the initial conditions must be 1:1.

The first type of these boundary conditions examined in this paper
is  constant  boundary  conditions.  Constant  boundary  conditions  uti-
lize  a  single  constant  and  remain  static  through  the  length  of  the
evaluation.  The  next  type  is  random  boundary  conditions,  which
select a constant in the scope of the rules at random. The third type is
pseudorandom or distributed boundary conditions—they generate the
boundary conditions based on the proportions of the constants in one
evaluation  of  the  rules,  with  the  proportions  of  the  constants  in  the
initial  conditions  being  1:1.  Next,  cyclical  or  periodic  [2]  boundary
conditions are used. The final boundary condition tested as a medium
for  changing  the  rule-output  equality  is  null  boundary  conditions  or
boundary  conditions  that  are  outside  the  scope  of  the  rules,  so  infor-
mation  becomes  lost  over  time.  All  the  boundary  conditions  are
shown in Figures 1 through 6 for ECAs. 

a b c d e f g h i j k

Figure 1. The lattice (values a through k) on which an automaton will be evalu-
ated. The boundary conditions are shown in red.
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k a b c d e f g h i j k a

Figure 2. Periodic  boundary  conditions  in  which  the  values  of  the  cells  corre-
spond with the name.

1 or 0 a b c d e f g h i j k 1 or 0

Figure 3.Random boundary conditions are displayed.

1*RP or 0*(RP-1) a b c d e f g h i j k 1*RP or 0*(RP-1

Figure 4.Distributed  boundary  conditions  where  the  weights  on  the  genera-
tion  of  a  particular  constant  are  equal  to  the  weights  of  randomly  selecting
that constant from the list of the outputs of the rules.

0 a b c d e f g h i j k 0

1 a b c d e f g h i j k 1

Figure 5. The  top  graphic  depicts  constant  boundary  conditions  (red)  where
the  boundary  condition  has  a  value  of  0  (the  constant).  Constant  boundary
conditions could also have a constant value of 1, as in the bottom graphic.

{} a b c d e f g h i j k {}

{} b c d e f g h i j {}

Figure 6.Null  boundary  conditions.  Two  evolutions  are  shown  to  display  the
loss of information.

Methods2.

The Wolfram classes [3] are a series of classes used to classify cellular
automata  (CAs)  (Figure  7).  The  first  Wolfram  class  is  described  as
reaching  stability  and  remaining  in  that  state.  An  example  of  this
Wolfram  class  would  be  ECA  rule  4.  The  next  Wolfram  class,  or
Wolfram  class  2  systems,  are  systems  that  have  simple  repeated
change  and  no  rapid  growth  and  decay.  An  example  rule  would  be
rule  33.  Class  3  systems  are  changing  constantly  and  have  no
permanent structures, contrary to class 4 systems, which include both
rapid  change  and  permanent  structures.  An  example  of  a  class  3
Wolfram  system  can  be  seen  in  rule  30,  and  an  example  of  a  class  4
Wolfram system can be seen in rule 110. 
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(a) (b)

(c) (d)

Figure 7. Examples  of  the  Wolfram  classes:  (a)  rule  4,  (b)  rule  33,  (c)  rule  30
and (d) rule 110.

The  Li–Packard  classes  [1]  (Figure  8)  are  similar  to  the  Wolfram
classes [3], though the Li–Packard classes offer more specification for
nonchaotic  or  noncomplex  systems  than  the  Wolfram  classes.  The
first  Li–Packard  class  describes  uniform  or  null  systems  that  have  a
homogenous  configuration  of  their  cells.  This  can  describe  the  first
type  of  class  1  systems,  although  only  two  ECA  systems  can  be
classified  in  this  way.  The  second  Li–Packard  class  describes  nonho-
mogenous  but  stable  systems  as  well  as  the  second  type  of  class  1,
under  which  many  ECA  systems  are  classified.  The  third  Li–Packard
class can be thought of as encompassing both class 1 systems such as
rule 254 and class 2 systems such as rule 16. This class of Li–Packard
systems  can  be  thought  of  as  two-cycle  systems.  These  systems,  after
two  evolutions,  become  invariant—this  includes  spatial-shift  rules
such as 16. 

The  next  Li–Packard  classes  are  known  as  periodic,  in  which  the
configuration  becomes  invariant  after  a  certain  cycle  length,
dependent  on  the  number  of  cells.  These  can  be  thought  of  as  rules
such  as  rule  3.  The  fifth  Li–Packard  class  of  system  is  complex,  in
which  the  time  required  to  reach  the  limiting  condition  is  often
extremely  long  (rule  30).  The  final  Li–Packard  classes  are  known  as
chaotic and are exponentially divergent in cycle length with respect to
the number of cells.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Examples  of  the  Li–Packard  classes:  (a)  rule  255,  (b)  rule  4,
(c) rule 16, (d) rule 3, (e) rule 75 and (f) rule 110.

The  entropy  of  the  space-time  evolution  is  calculated  using  the
Shannon  entropy  equation  as  performed  in  [4]  and  is  equivalent  to
rule-output equality. An estimation of the Kolmogorov complexity of
a  CA  evolution  with  different  boundary  conditions  is  estimated  by
measuring the length of the lossless compression of that series. To cal-
culate  this  length,  the  Wolfram  Language  function  [5]  Compress  is
used,  which  is  based  on  Lempev–Ziv–Welch  algorithm.  The  ratio  of
the size of the compressed version of the string to the standard size of
the  string  is  taken  as  first  used  in  [6]  on  ECAs  and  CAs.  This  is  the
ratio of lossless compression and is used to measure the lossless com-
pression of an object [4]. 

Rule-output equality can be quantitatively described as the propor-
tion  of  ones  compared  to  the  proportion  of  ones  in  its  global  rule
description.  For  example,  the  rule  output  of  ECA  rule  110  is

0, 1, 1, 0, 1, 1, 1, 0  and  its  nonzero  proportion  is  5/8.  The  rule-

output equality of a system measures how close the proportion of the
output of the program would be to the proportion of the rule density.
Using  this  measure,  we  can  represent  the  general  distribution  of
inputs  throughout  the  system.  For  similar  rule-output  equality  values
for different initial conditions, we can determine that the programma-
bility of that system is very low, as it seems to yield the same distribu-
tion of inputs of the rule. 

Binary  rule-output  equality  can  be  predicted  using  the  outputs  of
the  rules  as  well  as  their  positions  and  the  length  of  the  evaluation.
First,  to  predict  rule-output  equality,  the  probabilities  of  the  specific
combinations  of  the  inputs  of  the  rules  are  examined.  Next,  the

The Effects of Boundary Conditions on Cellular Automata 101

https://doi.org/10.25088/ComplexSystems.28.1.97

https://doi.org/10.25088/ComplexSystems.28.1.97


probabilities are added and the predicted proportions are determined.
The predicted proportions are then applied as initial proportions, and
this process is repeated for the length of the evaluation.

However, the rule-output equality of a system can change based
upon the initial condition of a system. The rule-output equality of a
specific proportion of a specific initial condition is called specific rule-
output equality.

Rule-output equality can be generalized to more symbols/states.

Results3.

The First Experiment: Rule-Output Equality per Boundary
Condition

3.1

The first experiment measures rule-output equality through the pro-
portions of the constant value 1 to the length of the entire system.
This is done for all of the ECA rules. The experiment is constructed
by creating a list of each rule and a corresponding automaton func-
tion. Each of these rules is run with random initial conditions for 200
steps. This is performed for each possible boundary condition. The
results are compared in Figure 9.

boundary condition of 0

boundary condition of 1

random boundary conditions

distributed boundary conditions

cyclical boundary conditions

no boundary conditions
0.0

0.2

0.4

0.6

0.8

1.0

rule-output equality

Figure 9.All of the ECAs aggregated together, showing the distribution of rule-
output equality with respect to each boundary condition.

Random boundary conditions maximize the rule-output equality,
but it exceeds the rule-output equality by 10%. Because of this, it will
be the equivalent of 90% and will not work as well for optimizing the
predictability of rules using random dot propagation as, for instance,
the distributed boundary conditions. Distributed boundary conditions
are more effective at maximizing the rule-output equality than initial
conditions of the same size. This is, however, only due to field of influ-
ence, as boundary conditions have two directions for fields of influ-
ence rather than one.

Distributed boundary conditions have the closest to perfect rule-
output equality. Cyclical boundary conditions are very close—to the
point of the difference being statistically insignificant given the

102 B. J. LuValle

Complex Systems, 28 © 2019



randomization  of  the  boundary  conditions  as  well  as  the  initial
conditions.  Because  of  this,  we  can  hypothesize  that  the  distributed
boundary  conditions  and  the  cyclical  boundary  conditions  will  be
equivalent, and both have near-perfect rule-output equality.

In  Figure  10,  an  example  of  this  is  demonstrated  on  rule  150,  by
default  (to  refer  to  random  initial  conditions).  Rule  150  is  chaotic.
Because  of  the  chaotic  nature  of  this  rule,  permanent  structures  will
have trouble existing. For this reason, many chaotic systems approach
rule-output equality.

(a)

(b)

Figure 10. (a) A rule plot of rule 150 and (b) an array plot of the CA for that
rule using random initial conditions and cyclical boundary conditions.

The distribution of the rule-output equality of this system is in Fig-
ure  11.  Rule  150,  from  the  lack  of  diversity  of  rule-output  equality,
seems to indicate that rules possessing high complexity are more rigid
in  their  rule-output  equality  and  often  will  nullify  the  effects  of  the
environment. 

Next,  an  example  of  the  fourth  Wolfram  class  is  shown  in  Fig-
ure�12.  Using  the  definition  of  complexity  as  defined  in  this  paper,
this is less complex than rule 150. Because of that, we can expect the
system to possess less rigidity in its rule-output equality. 

As  predicted,  there  is  less  rigidity  of  the  rule-output  equality
present  (Figure  13).  It  can  now  be  hypothesized  that  the  variation  of
the  rule-output  equality  of  a  system  will  be  inversely  proportional  to
the  amount  of  variation  in  the  rule-output  equality  with  different
boundary conditions. 
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boundary condition of 0

boundary condition of 1

random boundary conditions

distributed boundary conditions

cyclical boundary conditions

no boundary conditions
0.0

0.2

0.4

0.6

0.8

1.0

rule-output equality

Figure 11. The distribution of the rule-output equality with respect to each
boundary condition for ECA rule 150.

(a)

(b)
Figure 12. (a) A rule plot of rule 110 and (b) an array plot of the CA for that
rule using random initial conditions and cyclical boundary conditions.

boundary condition of 0

boundary condition of 1

random boundary conditions

distributed boundary conditions

cyclical boundary conditions

no boundary conditions
0.0

0.2

0.4

0.6

0.8

1.0

1.2
rule-output equality

Figure 13. The distribution of the rule-output equality with respect to each
boundary condition for ECA rule 110. More variation can be seen in this sys-
tem than the previous.

To test this, rule 2 will be used (Figure 14). According to this
recently formed theory, rule 2 should have more variation of rule-
output equality because of its low complexity.
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(a)

(b)
Figure 14. (a) A rule plot of rule 2 and (b) an array plot of the CA for that rule
using random initial conditions and cyclical boundary conditions (left).

This theory has so far been correct in describing the inverse propor-
tion of the variance of the set of rule-output equality with boundary
conditions and the complexity of a system. Figure 15 shows a test of
the variance of rule-output equality for rule 4.

boundary condition of 0

boundary condition of 1

random boundary conditions

distributed boundary conditions

cyclical boundary conditions

no boundary conditions
0.0

0.5

1.0

1.5

rule-output equality

Figure 15. The distribution of the rule-output equality with respect to each
boundary condition for a spatial-shift system (ECA rule 4).

Systems of lower complexity often have more rigidity of rule-
output equality than more complex systems such as rule 110. This dis-
proves the theory that complexity is inversely related to the variation
of the rule-output equality with boundary conditions, and this rela-
tionship goes both ways. Figure 16 shows a test of the variance for
rule 255.
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boundary condition of 0

boundary condition of 1

random boundary conditions

distributed boundary conditions

cyclical boundary conditions

no boundary conditions
0.0

0.5

1.0

1.5

2.0

rule-output equality

Figure 16. The distribution of the rule-output equality with respect to each
boundary condition for ECA rule 255. This system is far less complex than
rule 4, but it has less variation.

From this data it would seem to make more sense that the higher
variation of the rule-output equality would represent a more spatial-
shift-based system. Evidence of this can be seen in the high variation
of the spatial-shift system rule 2, and the slightly lower variation in
rule 110 with fewer spatial shifts occurring.

The Second Experiment: Variance of Rule-Output Equality per
Size of Input

3.2

When using field of influence, the idea becomes apparent that the
impact of the boundary conditions is related to the size of the initial
conditions. This holds true, as the two are inversely proportional.
With larger initial conditions, the boundary conditions affect the sys-
tem much less. In Figure 17, a graph is plotted of the size of the input
and the variance for all boundary conditions. This is done for rule 2
and performed using 200 evaluations.

100 200 300 400 500

600 700 800 900 1000

0.000

0.005

0.010

0.015

0.020

variance in
rule-output equality

Figure 17.A bar graph depicting the relationship between variance in the rule-
output equality and the effect of the boundary conditions, that is, the length
of the evaluation.

The question is posed, How impactful are initial conditions com-
pared to boundary conditions? An experiment similar to the previous
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is composed (Figure 18), though instead of changing the length of the
initial conditions, the length of the evaluation is changed. We might
expect the relationship between boundary conditions and initial condi-
tions to also be inversely proportional, but from the current graph it
seems to be more of a direct relationship. As the length of the evalua-
tion (the color) changes, the statistical variance increases.

The increase in variance is due to the higher number of critical
points that will affect a system. Unlike the initial conditions, the
boundary conditions will continue to affect the system as the influ-
ence of the initial conditions becomes lower, due to the farther dis-
tance from the first evaluation.

100 200 300 400 500

600 700 800 900 1000

0.000

0.005

0.010

0.015

0.020

variance in
rule-output equality

Figure 18. The relationship between the variance in rule-output equality and
the number of evolutions a system undergoes.

The Third Experiment: Relation of the Li–Packard and Wolfram
Classes to Rule-Output Equality

3.3

As found from the disproof of the theory presented in the first experi-
ment, there is no dual correlation between complexity and variation
of rule-output equality. The third experiment examines the potential
of a one-way relationship between the two.

In the third experiment, Li–Packard classes [1] and specific
Wolfram classes [3] are tested for the effects of boundary conditions.
For the first Li–Packard class as well as for a representation of the
first Wolfram class, ECA rule 255 is used. The next Li–Packard class
is shown by rule 4 (which is also in Wolfram class 1). To demonstrate
the third Li–Packard class and also to provide an example of the sec-
ond Wolfram class, rule 2 is used. Rule 3 is used to provide an exam-
ple of the fourth Li–Packard class and another example of the second
Wolfram class. Representing both the fifth Li–Packard class and the
third Wolfram class is rule 30, while rule 110 represents the sixth Li–
Packard class and also the fourth Wolfram class.

Each of the Li–Packard class examples uses 200 cells for the initial
conditions with random constants and is evaluated for a length of
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200 steps. The rule-output equality is measured using the methods
previously defined. A table of this is shown in Figure 19.

Rule 1 0 Distributed Null Cyclical Random
255 1 1 1 1 1 1
4 1.0088 1.0244 1.0224 1.0192 9.08896 1.0164
2 1.82907 0.491644 0.77312 0.9852 7.79144 1.14696
3 1.80747 1.81467 1.81297 1.7537 7.24617 1.81137
30 0.997996 1.0029 1.00033 0.999961 2.00249 1.00058
110 0.90875 0.91338 0.911688 0.903282 1.44742 0.909183

Figure 19. The rule-output equality for each boundary condition and a system
of each Li–Packard class.

If we omit rules 30 and 110, the Wolfram rules, then we will find
that a graph of this shows definite increasing complexity (Figure 20).
The boundary conditions of 1 and the boundary conditions of 0 are
found to be complementary, with random evenly distributed bound-
ary conditions being between both on the graph.

255 4 2 3

boundary condition
1 0 random distributed cyclical null

0.0

0.5

1.0

1.5

rule-output equality

Figure 20. The rule-output equality for the rule and conditions it corresponds
with. In this graph, the x axis represents the boundary conditions in order of
increasing estimated Kolmogorov complexity (lossless uncompressibility).

When examining the graph in Figure 20, it becomes clear that there
are only a few select types of systems that have boundary-condition-
dependent rule-output equality (rule 2). All of the systems with the
exception of the reasonably close null conditions display low variance
in position, except for rule 2.

The reason for the high variance in rule-output equality is the mat-
ter of spatial shift. These spatial-shift systems will move off screen,
assuming a boundary value does not interrupt. A spatial-shift system
is shown in Figure 21.
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Figure 21.An example of a spatial-shift system.

However, in the graph of the rule-output equality of the Li–
Packard classes in Figure 22, it becomes apparent that the spatial-shift
system is the only Li–Packard class system that experiences high varia-
tion in rule-output equality.

255 4 2 3 30 110

boundary condition
1 0 random distributed cyclical null

0.0

0.5

1.0

1.5

rule-output equality

Figure 22. The distribution of rule-output equality for each boundary condi-
tion and the first four Li–Packard class examples.

It has been seen that the system possessing the greatest variation in
rule-output equality is a spatial-shift system. Most other systems have
a constant rule-output equality, which will deviate slightly given
changes in the estimations of Kolmogorov complexity by uncompress-
ibility of the series of boundary conditions.

As has been seen, it is possible to increase the rule-output equality
of an object using its boundary conditions. As the distributed bound-
ary conditions are the closest to perfect rule-output equality (of 1),
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the  distributed  boundary  conditions  have  been  seen  to  maximize  the
rule-output equality of a system across all levels. 

The Fourth Experiment: Relation of the Li–Packard and Wolfram 

Classes to Rule-Output Equality for Higher Rule Spaces
3.4

The  fourth  experiment  generalizes  the  principal  measures  of  rule-
output equality to a CA or CAs with larger rule spaces. In this experi-
ment, the rules with a larger rule space than four use random number
generation to determine the value of the output constants of the rules. 

Similarly  to  the  previous  experiments,  the  system  of  each  Li–
Packard  classification  is  used  (Figure  23).  The  rules  are  generated
using  an  output  constant-based  structure.  As  a  representation  of  the

first Li–Packard class, the 16th  rule is used. To represent the next Li–
Packard  class  is  rule  13108.  Representing  the  spatial-shift  systems  is
843,  followed  by  the  more  complex  3213.  To  represent  the  chaotic
classification  of  the  Li–Packard  systems  is  rule  32421.  Finally,
rule�5832 stands as a representation of the chaotic rule classes.

(a) (b) (c)

(d) (e) (f)

Figure 23.An example of each system using random initial and boundary con-
ditions: rules (a) 16, (b) 13108, (c) 843, (d) 3213, (e) 32421 and (f) 5832, in
order of increasing complexity according to the Li–Packard classifications.

Rule  32421  appears  to  be  a  spatial-shift  system,  but  it  falls  short
on  the  matter  of  its  variation  of  shifting.  Contrary  to  conventional
spatial-shift systems, rule 32421 sometimes shifts by 0 to 2 cells each
evolution. These variable spatial-shift systems behave much more like
the chaotic systems than spatial-shift systems.

Due  to  the  configuration  of  the  preceding  systems,  the  impact
of  the  boundary  conditions  is  visible,  and  because  of  this,  no  system
can  truly  be  a  completely  stable  system  using  random  boundary
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conditions. Therefore, even for the system of the first Li–Packard
class, there will be variation in the rule-output equality.

Figure 24 shows a table of the rule-output equality for each system
and boundary condition.

Rule 1 0 Distributed Null Cyclical Random
16 2.081 0.008600 0.06320 0.02880 0.01260 0.06367
13108 0.9200 0.8200 1.055 0.9408 0.9600 0.9273
843 0.7405 0.2401 0.5160 0.4077 0.2828 0.7536
3213 1.297 0.4165 1.208 1.152 1.164 1.189
32421 0.8558 0.8289 0.8400 0.8385 0.8426 0.8432
5832 1.485 0.5521 1.202 1.246 1.167 1.178

Figure 24. Each CA rule and boundary condition and the corresponding rule-
output equality.

In this experiment, the rule-output equality is distributed drasti-
cally differently than the previous three cell input systems (Figure 25).
This is most likely due to the chaotic effect of the boundary condi-
tions and their greater extent over the system.

16 13108 843 3213 32421 5832

boundary condition
1 0 random distributed cyclical null

0.0

0.5

1.0

1.5

2.0

rule-output equality

Figure 25. The distribution of the rule-output equality for each system using
Li–Packard example systems of the fourth rule space.

Unlike the previous ECAs, the variation of these CAs is extraordi-
narily high. This is because of the extent of the boundary conditions
and their influence. Unlike the ECAs with the single influence of the
boundary conditions, systems using the fourth rule space develop two
layers of cells that are impacted by the boundary conditions, rather
than one.

Although many more systems possess high variation, the spatial-
shift system possesses the most variation once again (Figure 26). The
relative levels of rule-output equality are similar, with the exception
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of rule 16 with singular boundary conditions, given that it exceeds the
expected  proportions,  because  rather  than  the  completely  homoge-
nous configuration, a boundary of 1-valued cells is found.

(a) (b)

Figure 26. (a) The spatial-shift and (b) the dual-spatial-shift systems are shown
using constant boundary conditions.

Similarly  to  how  chaotic  systems  such  as  rule  32421  form  simple
structures when exposed to constant boundary conditions, the class 2
systems that have higher complexity in their spatial-shift patterns also
form simple permanent structures (Figure 27). 

(a) (b)

Figure 27. (a)  The  spatial-shift  and  (b)  the  dual-spatial-shift  systems  are  again
shown, this time using random boundary conditions.

The  complex  or  sixth  example  Li–Packard  class  rule  seems  to  not
be affected by the change in boundary conditions, with the exception
of the constant of 1 being the boundary condition. 

The Fifth Experiment: Examination of the Change in Entropy 

per Boundary Condition
3.5

The  fifth  experiment  determines  the  change  in  complexity  for  the
change  in  boundary  conditions.  The  measure  of  complexity  is  deter-
mined  by  the  use  of  Shannon  or  information  entropy.  The  boundary
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conditions  are  arranged  in  order  of  increasing  estimated  uncompress-
ibility  for  their  series;  that  is,  constant,  random,  distributed,  cyclical
and null. 

When  the  entropy  of  a  system  is  increased,  that  system  comes
closer  to  being  a  Wolfram  class  3  system,  and  therefore  the pre-
dictability of that system using random dot propagation is increased. 

Given  that  initial  conditions  can  change  a  system  from  homoge-
nous  to  complex,  it  is  assumed  that  boundary  conditions  can  do  the
same  thing  (Figure  28).  However,  as  experiment  2  has  proven,  the
length  of  the  evaluation  is  directly  proportional  to  the  rule-output
equality,  while  the  size  of  the  boundary  conditions  is  inversely
proportional.

(a) (b)

Figure 28.An  array  plot  of  rule  30  showing  (a)  constant  initial  conditions  as
opposed to (b) random initial conditions.

Similarly  to  the  previous  experiment,  a  system  of  each  Li–Packard
class is used. Each of these systems is tested for increase in complexity
as the uncompressibility of the boundary conditions is increased. 

For systems that possess class 1 Li–Packard behavior, it is seen that
the  boundary  conditions  or  lack  thereof  has  no  effect  on  the  overall
structures  present  in  the  system.  This  would  seem  to  indicate  that
class  1  Li–Packard  systems  would  all  have  to  be  induced  by  the  out-
puts of the rules rather than the conditions, and therefore their behav-
ior is unchangeable. 

Constant boundary conditions seem to create permanent structures
(Figure  29).  Rather  than  disappearing,  these  structures  seem  to  over-
take  the  existing  conditions  in  place.  Therefore  these  systems  will
eventually become class 2 systems and become stable after the perma-
nent  structures  have  overtaken  the  chaotic  ones.  Although  the  struc-
tures  presented  by  the  system  would  appear  to  be  class  1,  at  the  very
end  a  slight  oscillation  appears,  making  it  so  that  the  system  is  not
Wolfram  class  1  but  Wolfram  class  2.  Therefore,  constant  boundary
conditions cause a decrease in the overall complexity of a system.
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(a) (b)

Figure 29. Two  array  plots  of  ECA  rule  30:  (a)  constant  boundary  conditions
are used, while (b) uses random boundary conditions.

However,  constant  boundary  conditions  do  not  always  create
expanding permanent structures. In Figure 30, rule 110 is shown with
permanent  boundary  conditions;  the  size  of  the  experiment  structure
on  the  end,  however,  remains  constant.  With  rule  110,  the  impact  of
constant  boundary  conditions  often  varies  significantly,  as  in
Figure�30.

(a) (b)

Figure 30. ECA rule 110 with (a) constant boundary conditions as opposed to
(b) random boundary conditions.

This  can  be  one  of  two  things—either  the  result  of  random  condi-
tions  in  the  initial  conditions  or  the  boundary  conditions.  To  deter-
mine  this,  we  can  examine  the  presence  of  this  structure  under
constant  initial  conditions  and  random  boundary  conditions  or  vice
versa  to  determine  the  change.  An  example  of  this  is  shown  in  Fig-
ure�31  for  two  systems  of  the  same  initial  conditions  but  separate
boundary  conditions.  It  can  be  noted  that  the  nonpermanent  struc-
tures on the side are similar if not the same. Therefore, it is the initial
conditions that the boundary conditions depend on for the creation of
permanent structures in this rule. 
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(a) (b)
Figure 31. Two copies of rule 110 with the same initial conditions but random
separate boundary conditions. This figure illustrates that the structures of
rule 110 depend more upon the initial conditions than the boundary
conditions.

Figure 32 shows the Shannon entropy of each system for each
boundary condition and rule—corresponding to a Li–Packard class.
In the graph shown, the noncomplex systems seem to be impacted by
the change in uncompressibility of the boundary conditions series,
while systems possessing entropies of 0.6 or greater are not affected
by such changes.

255 4 2 3 30 110
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0.7

entropy

Figure 32. Shannon entropy behavior. The boundary conditions change in
order of increasing uncompressibility across the x axis.

The variation of rule-output equality for a system with changing
boundary conditions is similar to the variation of the entropy of that
same system with boundary conditions. However, the constants
involved in both systems differ quite drastically.
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The connection of entropy to the rule-output equality of a system
seems to only be in the variation of the system rather than the con-
stants of the system. However, systems do seem to have similar
changes for both rule-output equality and entropy when the boundary
conditions are changed (Figure 33).

255 4 2 3 30 110

boundary condition
1 0 random distributed cyclical null

0.0

0.5

1.0

1.5

rule-output equality

Figure 33. The rule-output equality and its variation for each boundary
condition.

The Sixth Experiment: Examination of the Change in Entropy of
Systems per Boundary Conditions Generalized for Higher Rule
Spaces

3.6

Experiment six generalizes the principles of the previous experiment
into a general CA. The rule spaces used for this CA will be using four
binary cells rather than the three used in ECAs. Similarly to the fourth
experiment, the sixth experiment utilizes the same systems of the
fourth rule space to represent each of the Li–Packard classes.

To create the rules for these CAs, a general constant-based rule
function is used. After the tables are created, they are flattened into a
list containing 16 elements or the number of combinations for four
binary cells. The number represents at which position in the list the
rule was created.

Similarly to previous systems using the fourth rule space, the
boundary conditions also increase the variation due to the larger size.
Figure 34 shows a table of the entropy of each of the rules for each
boundary condition.

From this it is shown that systems of larger rule spaces that require
larger boundary conditions will have more variable complexity than
systems that have smaller sets of boundary conditions.

Previously for the ECAs, the variation of the rule-output equality
was shown to be similar to the variation of the entropy of that sys-
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tem. That principle still holds true for the CAs, though there is more
variation of the rule-output equality (Figure 35).

16 13108 843 3213 32421 5832
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Figure 34. The rule-output equality and its variation for each boundary
condition.
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Figure 35. The rule-output equality and its variation for each boundary
condition.

The general predictability of ECAs seems to be very similar to the
predictability of CAs. This can be deduced by the similarity between
either the entropy or the rule-output equality of a system. The rule-
output equality increases the chance of generating a value of a cell
randomly and having it match the results of an actual CA, while
increasing the entropy decreases structuring and therefore makes it
more likely that a particular cell is to be found in a certain region
(Figure 36).
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In this experiment it has been seen that the two factors that impact
predictability by random dot propagation, rule-output equality and
the entropy of a system are both changed in a way that allows them
to reach the optimized levels for predictability.

The only difference between Figure 36 and Figure 37 of the
entropy per Li–Packard class is the entropy of the first Li–Packard
class and the second Li-Packard class. These systems would possess
class 1 entropy similar to Wolfram class 1 systems if the boundary
conditions did not create structures near the boundaries due to the
increased rule space.
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Figure 36. The distributions of the ECAs with respect to the boundary condi-
tions and example Li–Packard systems.
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Figure 37. The distributions of the CAs with respect to the boundary condi-
tions and example Li–Packard systems.
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An example of boundary conditions impacting the complexity of a
system can be seen in Figure 38 for rule 110. For all systems, the same
initial  conditions  are  utilized.  The  area  can  be  divided  into  zones  of
function  based  on  the  common  perseverance  of  certain  structures  in
that  area  as  well  as  the  structuring  in  the  initial  conditions.  The  first
zone in the boundary conditions is the beginning, where the constants
of  0  dominate  the  constant  of  1.  Next  a  transition  to  zone  2  occurs,
where the majority of the constants are 1 rather than 0. Then there is
zone  3,  which  persists  until  the  end  of  the  initial  conditions,  where
very large structures are present.

Figure 38. The initial conditions of the CA.

Figure  39  shows  an  array  plot  utilizing  the  constant  of  1  as  the
boundary conditions; a part of the first zone is populated with a sim-
ple  permanent  structure.  Zone  3  behaves  in  a  rather  chaotic  and
erratic way, which also exhibits minor spatial shifting. 

Figure 39.Rule  110  with  constant  boundary  conditions  where  the  constant
is�1.

Figure 40 shows an array plot where the first zone lacks the perma-
nent  structure  seen  previously.  The  second  zone  is  also  more  erratic
than  previously;  however,  certain  elements  are  preserved.  The  third
zone seems quite stable and possibly behaving like a Wolfram class 2
system in that region. 

The  second  system  of  boundary  conditions  and  the  first  system  of
boundary conditions seem to be complementary even when impacting
the automaton. In the first set of boundary conditions, zone 1 is non-
complex, while zone 3 is complex. This is reversed for the second set
of  boundary  conditions,  in  which  zone  1  is  complex,  while  zone  3  is
not.

Random  boundary  conditions  display  zones  1  and  3  becoming
quite  complex  and  even  impacting  zone  2  a  bit.  Random  boundary
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conditions,  as  we  see  in  Figure  41,  act  as  a  middle  ground  between
the two, and at the same time also increase the complexity. 

Figure 40.Rule  110  with  constant  boundary  conditions  where  the  constant
is�0.

Figure 41.Rule 110 with random boundary conditions.

Distributed  boundary  conditions  display  the  structuring  from  both
the  boundary  condition  of  1  and  the  boundary  condition  of  0
(Figure�42).  Then  this  structuring  disappears  and  evolves  into  the
boundaries seen in the random boundary conditions. 

Figure 42.Rule 110 with distributed boundary conditions.
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Cyclical boundary conditions display a similar lack of complexity
as the start of the distributed boundary conditions; however, this con-
tinues thoughout the length of the evaluation (Figure 43).

Aside from the obvious lack of information, the null boundary con-
ditions seem to have high complexity on both ends, similar to the ran-
dom boundary conditions (Figure 44). However, this change does not
last for the length of the system and eventually is lost.

Figure 43.Rule 110 with cyclical boundary conditions.

Figure 44.Rule 110 with null boundary conditions.

Conclusion4.

It has been seen from this paper that distributed or cyclical boundary
conditions are most effective at maximizing the rule-output equality
for cellular automata (CAs). This only affects a very specific type of
system (although this type of system is quite common). The systems
that possess variations in their rule-output equality dependent on
boundary conditions have been found to be class 3 when using the Li–
Packard definition, and specifically systems that use spatial shifts.
This would actually make quite logical sense, as the spatial-shift sys-
tems will have their shift based on the limited-space automaton in
which information is lost.
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Two-cycle Li–Packard systems are affected the most by the bound-
ary condition, though other rules are as well. Systems such as rule�110
are  unaffected  by  these  boundary  conditions,  even  though  rule  110
spatially shifts the pattern as well. All other systems that are not two-
cycle Li–Packard systems seem to have relatively the same rule-output
equality.  For  the  second  rule  used  in  the  specific  rule-output  equali-
ties,  there  is  one  exception,  but  this  can  be  dismissed  due  to  the  fact
that  it  is  a  fixed-point  system  according  to  the  Li–Packard  classifica-
tion,  in  which  it  is  stable  after  applying  an  updating  rule  once.  With
decreasing size, the proportions will also decrease and certain regions
will be cropped.

The  data  from  the  null  boundary  conditions  must  be  more  care-
fully considered given the nonuniform compression ratio with the first
Li–Packard class. Because of the homogenous configuration, the com-
pression  of  such  an  object  is  exactly  the  same  size.  However,  the  ini-
tial  size  of  the  system  is  much  smaller,  and  when  the  ratio  between
the  two  sizes  is  taken,  the  effect  of  the  much  smaller  piece  of  data
divided by something shows and therefore it is larger.

From the fourth experiment it has been determined that an increase
in  the  size  of  a  rule  space  and  therefore  a  boundary  condition  space
will  create  higher  amounts  of  variation  in  the  rule-output  equality.
The  constant  boundary  condition  of  1  seems  to  always  increase
the  rule-output  equality  more  than  the  constant  boundary  of  0
decreases�it. 

From the fifth experiment it has been found that the boundary con-
ditions  of  a  cellular  automaton  (CA)  can  increase  or  decrease  the
complexity  of  system  similarly  to  the  initial  conditions.  The  null
boundary conditions have been found to increase the complexity of a
system  the  most,  while  the  constant  boundary  conditions  (1  and  0)
have been found to decrease the complexity of a system the most. Ran-
dom boundary conditions seem to increase the complexity, yet not as
much  as  null  boundary  conditions.  Finally,  distributed  and  cyclical
boundary  conditions  display  rather  uniform  properties  in  which
change  in  complexity  is  between  constant  and  null.  This  is  displayed
in Figure�30. 

The  sixth  experiment  shows  that  systems  of  the  same  Li–Packard
classes  will  have  similar  behavior  under  different  boundary  condi-
tions.  This  allows  us  to  generalize  which  systems  would  be  the  most
predictable.  The  systems  that  currently  display  this  pattern  are  the
class 4 and 5 Li–Packard systems. 

Boundary conditions have been found to change the Wolfram clas-
sification  of  behavior.  However,  it  is  only  constant  boundary  condi-
tions that have been found to change the complexity of a system, and
the  constant  boundary  conditions  only  decrease  the  complexity.  One
such  example  would  be  rule  30,  which  can  transform  from  class  3
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Wolfram  behavior  conditions  to  class  4.  As  previously  discussed,  this
is not an increase but a decrease in complexity. 

Most of the time, boundary conditions do not change the classifica-
tion, thus do not change the behavior. The largest change in the com-
pression  ratio  is  found  for  rule  110  when  the  boundary  conditions
change from cyclical to constant boundary conditions, specifically the
boundary  condition  of  0  or  vice  versa.  The  degree  of  this  change  is
approximately 25%. 

When  the  success  of  changing  the  boundary  conditions  on  each
classification of system is analyzed, it is found that this is not an effec-
tive method of increasing rule-output equality and it only works for a
select type of system. When analyzing this form, the perspective of the
general classification system is quite insignificant.

In  conclusion,  the  general  predictability  of  CAs  is  increased  by
using distributed or cyclical boundary conditions, that is, the most sta-
ble  boundary  condition.  This  can  address  the  variability  of  the  pre-
dictability  of  class  2  systems  seen  in  prediction  of  CA  random  or
partial  random  prediction.  This  will  not  be  able  to  address  such
prediction  variability  as  is  seen  in  the  machine  learning-based  meth-
ods seen in the works of Toole and Page in prediction of CAs [7]. The
variance  in  their  predictive  methods  is  due  to  the  variance  in  the  dis-
tance  of  the  spatial-shift  system  and  the  fact  that  there  will  be  no  set
distance, depending on size-based values.

Distributed and cyclical boundary conditions can be relied upon to
maximize  the  rule-output  equality  of  systems  in  general,  while  null
boundary  conditions  can  be  relied  upon  to  increase  the  overall  com-
plexity of a system.
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