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In this paper, we investigate the halting problem for deterministic cellu-
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Introduction1.

The  paper  belongs  to  the  important  field  of  cellular  automata.  The
reader  can  find  much  information  on  the  topic  in  [1].  However,  the
paper deals with very particular kinds of cellular automata: those that
live  in  a  hyperbolic  space.  For  the  sake  of  self-containment,  let  us
recall generalities about cellular automata.

A  cellular  automaton  is  defined  by  two  basic  objects:  the  space  of
its  cells  and  the  finite  automaton,  a  copy  of  which  lies  in  each  cell.
The  space  of  cells  is  assumed  to  be  homogeneous  enough  in  order  to
ensure  that  each  cell  has  the  same  number  of  neighbors.  This  condi-
tion  is  naturally  satisfied  if  the  space  of  cells  is  associated  to  a  tiling
that  is  a  tessellation  based  on  a  single  regular  tile.  Then,  each  cell  is
associated to a tile that is called the support of the cell. Each cell has a
state  belonging  to  some  finite  set  ℒ,  called  the  set  of  states.  As  ℒ  is
finite, it can be seen as the alphabet used by the finite automaton that
equips  the  cells.  The  cellular  automaton  evolves  in  a  discrete  time
provided by a clock. At time t, each cell updates its state according to
the current value of its state at time t and the values at the same time
of the states of its neighbors. These current states constitute the neigh-
borhood  to  which  the  finite  automaton  associates  a  new  state,
which  will  be  the  current  state  of  the  cell  at  time  t + 1.  The  codifica-
tion  of  this  association  is  called  a  rule  of  the  cellular  automaton.
There  are  finitely  many  rules  constituting  the  program  of  the  cellular
automaton.
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A quiescent state is a state ξ such that the cell remains in state ξ if
all  its  neighbors  are  also  in  state  ξ.  The  corresponding  rule  is  called
the  quiescent  rule.  Usually,  that  state  is  called  white  or  blank.  In  this
paper, we will use the term white with another meaning. We keep the
word quiescent for that state, which will also be denoted by W. A con-
figuration at time t is the set of cells that are in a non-quiescent state
together  with  the  position  of  their  supports  in  the  tiling.  Tradition-
ally,  the  initial  configuration  of  a  cellular  automaton  is  finite.  This
means that at time 0, the time that marks the beginning of the compu-
tation,  the  set  of  cells  that  are  in  the  non-quiescent  state  is  finite.
Define  the  distance  of  a  cell  c  to  a  cell  d  by  the  smallest  number  of
cells  needed  to  link  c  to  d  in  a  sequence  where  two  consecutive  cells
are  neighbors.  Then,  define  the  disk  D(c, n)  of  center  c  and  radius  n
as the set of cells d whose distance from c is at most n. If we fix a cell
c  as  the  origin  of  the  space,  there  is  a  smallest  number  N0  such  that

the  initial  configuration  is  contained  in  D(c, N0).  This  means  that  all

cells  outside  D(c, N0)  are  in  the  quiescent  state.  Call  such  an N0  the

initial  border  number.  The  reason  for  the  index  0  will  be  clear  later.
Let C(c, n) be the set of cells whose distance from c is exactly n. The
definition of N0 also entails that C(c, N0) contain at least one non-qui-

escent  state.  In  this  setting,  the  halting  of  a  cellular  automaton  is
reached  by  two  identical  consecutive  configurations.  Accordingly,
there is a number k and a time t such that the configurations at time t

and t + 1 are both contained in Dc, k and they are equal. 

From now on, when we say cellular automaton, we need to under-
stand  “deterministic  cellular  automaton  with  a  quiescent  state.”  The
term  deterministic  means  that  a  unique  new  state  is  associated  to  the
current state of a cell and the current states of its neighbors. 

From various papers of the author, we know the following on cellu-

lar  automata  in  hyperbolic  spaces:  in  the  tessellations  5, 4,  7, 3

and 5, 3, 4, namely the pentagrid, the heptagrid and the dodecagrid,

respectively,  it  is  possible  to  construct  weakly  universal  cellular
automata with two states only. In the case of the dodecagrid, the con-
structed  automaton  is  rotation  invariant;  we  restate  the  definition  in
Section  3.  In  the  cases  of  the  pentagrid  and  the  heptagrid,  the  rules
are not rotation invariant. Moreover, in the case of the pentagrid, we
assume  the  Moore  neighborhood;  that  is,  we  assume  that  the  neigh-
bors  of  the  cell  are  the  cells  that  share  at  least  a  vertex  with  it.  It  is
known  that  with  rotation-invariant  rules  and  a  von  Neumann  neigh-
borhood,  which  means  that  the  neighbors  of  a  cell  share  a  side  with
it,  there  is  a  strongly  universal  cellular  automaton  on  the  pentagrid
with 10 states; see [2]. This means that the cellular automaton that is
universal  starts  its  computation  from  a  finite  configuration.  If  we
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relax  the  rotation  invariance,  there  is  a  weakly  universal  cellular
automaton on the pentagrid with five states. And so, results concern-
ing rotation invariance are also interesting. 

Very  little  is  known  if  we  change  something  in  the  preceding
assumptions. 

The present paper is devoted to the proof of the following result: 

Theorem 1.  For  deterministic  cellular  automata  on  the  pentagrid
whose  initial  configuration  is  finite  and  that  have  at  most  two  states
with one of them being quiescent, the halting problem is decidable.

The  proof  is  split  into  two  propositions  dealing  first  with  rotation
invariance  in  Section  3,  then  when  that  condition  is  relaxed;  see  Sec-
tion  4.  In  Section  5,  we  study  what  happens  in  an  infinite  motion  of
the  cellular  automaton  when  such  a  motion  occurs.  In  Section  2,  we
present  to  the  reader  a  minimal  introduction  of  the  pentagrid  and  of
the  implementation  of  cellular  automata  in  that  context.  Section  6
brings in a few reflections on the topic. 

We now turn to hyperbolic geometry and the tiling we consider in
which the cellular automata later considered evolve. 

The Pentagrid2.

This paper makes use of the model of the hyperbolic plane known as
Poincaré’s  disk.  Call  unit  disk  a  disk  of  the  Euclidean  plane  fixed
once  and  for  all.  Let  D  be  the  open  unit  disk.  The  model  ℳ  of  the
hyperbolic  plane  we  consider  is  defined  in  D,  which  we  call  the  sup-
port of ℳ. The points in ℳ are the points of the open disk. The lines
in ℳ are the traces in D of circles that are orthogonal to ∂D, the bor-
der  of  D  and  the  traces  in  D  of  straight  lines  that  pass  through  the
center of D.

Figure 1 represents a line ℓ and a point A out of ℓ. The figure also
shows us four lines that pass through A. The line s cuts ℓ and is there-
fore  called  a  secant  with  ℓ.  The  lines  p  and  q  touch  ℓ  on  ∂D.  The
points P and Q where, respectively, p and q touch ℓ are called points
at  infinity  of  the  hyperbolic  plane  but  do  not  belong  to  that  plane.
The  lines  p  and  q  are  called  parallel  to  ℓ.  Last,  but  not  least,  the  line
m  does  not  cut  ℓ  and  it  also  does  not  touch  it—not  in  D,  nor  on  its
border,  nor  outside  D.  The  line  m  is  called  non-secant  with  ℓ.  It  is
proved  that  two  lines  of  the  hyperbolic  plane  are  non-secant  if  and
only if they have a unique common perpendicular. 

A theorem by Poincaré tells us that there are infinitely many tessel-
lations  in  the  hyperbolic  plane  whose  basic  tile  is  a  triangle  with
angles  π / p,  π / q  and  π / r,  provided  that  the  positive  numbers  p,  q
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Figure 1. Poincaré’s disk model of the hyperbolic plane. Here, the various rela-
tions  between  a  line  and  a  point  out  of  the  line,  with  other  lines  passing
through the point, are shown.

 and r satisfy 

1

p
+

1

q
+

1

r
< 1,

which  simply  means  that  the  triangle  with  these  angles  lives  in  the
hyperbolic plane. As a consequence, if we consider P the regular con-

vex  polygon  with  p  sides  and  with  interior  angle  2π  q,  P  tiles  the

plane by recursive reflections in its sides and in the sides of its images
if and only if

1

p
+

1

q
<

1

2
.

When  this  is  the  case,  the  corresponding  tessellation  is  denoted  by

{p, q}.  Illustrated  by  Figure  2,  the  tessellation  5, 4  is  called  a

pentagrid.
In  [3,  4],  it  is  proved  that  the  pentagrid  is  spanned  by  a  tree.  The

left-hand side of Figure 3 shows us a quarter of the pentagrid spanned
by  the  tree  illustrated  on  the  right-hand  side  of  the  same  figure.  That
tree is called the Fibonacci tree. The reason for this name comes from
the  properties  of  the  tree.  The  tree  is  a  finitely  branched  tree  gener-
ated by two rules: 

B⟶BW andW⟶BWW.

Indeed,  we  split  the  nodes  into  two  kinds:  black  nodes  and  white
nodes.  Black  nodes  have  two  children,  as  suggested  by  the  preceding
rules:  a  black  child,  the  left-hand-side  child;  and  a  white  child,  the
right-hand-side  one.  White  nodes  have  three  children:  a  black  child,
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the  leftmost  one;  and  two  white  children,  the  others.  The  root  of  the
tree may be a white node or a black one. From the preceding rules, it
is not difficult to prove that there are exactly f2n+1  nodes lying on the

nth  level  of  the  tree,  where  fk  is  the  Fibonacci  sequence  where

f0  f1  1  when  the  root  is  a  white  node  [3,  4].  When  it  is  a  black

node, the number of nodes on the nth level of the tree is f2n. When the

root  of  a  Fibonacci  tree  is  white/black,  respectively,  we  say  a
white/black, respectively, Fibonacci tree.

Figure 2. The  pentagrid  as  it  can  be  represented  in  Poincaré’s  disk  model  of
the hyperbolic plane. 

(a) (b)

Figure 3. (a)  A  sector  of  the  pentagrid  generated  by  the  Fibonacci  tree  illus-
trated in (b). (b) Under each node, vertically, we show the Fibonacci represen-
tation  of  the  number  attached  to  the  node.  We  can  check  the  preferred  child
property. 

There  is  another,  more  striking  property  when  the  root  is  a  white
node.  Number  the  nodes  of  the  tree,  starting  from  the  root,  which
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receives  1,  level  after  level  and  on  each  level  from  left  to  right.  Then,
represent these numbers in the Fibonacci sequence, choosing the repre-
sentation whose number of digits is the largest. If [n] is that Fibonacci

representation of n, n00 is the Fibonacci representation of a child of

n,  which  we  call  the  preferred  child.  The  preferred  child  of  a  black
node  is  its  black  child.  That  of  a  white  node  is  its  middle  child.  The
preferred child property can be checked in Figure 3(b). 

Note  that  in  Figure  2,  one  tile  seems  to  play  a  different  role  than
the  others.  It  is  the  tile  that  contains  the  center  of  the  support  of  D.
As can be seen in Figure 2, not much can be seen from the tiling. We
can  see  the  central  tile  very  well,  as  well  as  its  neighbors,  but  going
further from the central tile, we can see the tiles less and less. In fact,
as  the  hyperbolic  plane  has  no  center,  the  pentagrid  too  has  no  tile
playing  a  central  role.  We  can  view  the  support  of  our  model  as  a
window  over  the  hyperbolic  plane.  We  can  imagine  that  we  fly  over
that  plane  and  that  the  window  is  a  screen  on  the  control  board  of
our  spacecraft.  The  center  of  that  window  is  simply  the  point  of  the
hyperbolic  plane  over  which  our  spacecraft  is  flying.  Indeed,  we  fly
with  instruments  only,  which  we  just  defined.  This  window  property
of  Poincaré’s  disk  stresses  that  so  little  can  be  represented  of  this
space in its Euclidean models. It is the reason why we choose the disk
model. 

We  fix  a  tile  τ0  that  we  call  from  now  on  the  central  tile,  and  we

will  consider  that  the  central  tile  is  the  tile  in  which  the  center  of  D
lies in the figures. As illustrated by Figure 4(a), around the central tile,
we  can  assemble  five  quarters  like  those  defined  in  Figure  3(a)  in
order to construct the whole pentagrid. We call these quarters sectors.
In  each  sector,  the  tiling  is  spanned  by  the  white  Fibonacci  tree.  It  is
not  difficult  to  prove  that  the  tiles  that  lie  on  the  level  k  of  a
Fibonacci  tree  of  a  sector  are  at  distance  k  from  the  central  tile.  We
call  Fibonacci  circle  of  level  n  the  set  of  tiles  C(τ0, n)  denoted  by  ℱn.

Similarly,  we  call  Fibonacci  disks  the  sets  D(τ0, n),  which  we  denote

by  n.  Note  that  n  is  the  union  of  the  Fibonacci  circles  ℱk  with

0 ≤ k ≤ n.  In  Figure  4,  we  illustrate  the  notion  of  Fibonacci  circles
and  disks  by  marking  in  blue,  green  and  gray  the  tiles  that  belong  to
ℱ3 and by marking in pink those that belong to 2. 

We  call  the  Fibonacci  representation  we  attached  to  the  number
given  to  a  node  ν  of  a  white  Fibonacci  tree  the  coordinate  of  ν,
denoted by [ν]. We identify the node with its number ν. We locate the
tiles of the pentagrid with 0 for the central tile and for the other tiles
with two numbers: the number of the sector in which the tile lies and
then the number of the node in the white Fibonacci tree that spans the
sector, as is clear from Figure 4. We extend the coordinate of a tile: it
is  the  number  of  its  sector  followed  by  its  coordinate  in  the  tree.  We
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will  also  say  that  the  central  tile  is  the  support  of  the  central  cell.
Again,  the  central  cell  is  the  cell  on  which  we  focus  our  attention  at
the given moment of our argumentation. 

(a) (b)

Figure 4. (a) How sectors are assembled around the central cell in order to get
the  pentagrid.  (b)  The  Fibonacci  circle  of  level  3.  Together  with  the  tiles  of
the  Fibonacci  circle,  the  tiles  in  pink,  that  is,  the  central  cell  and  the  tiles  of
levels 0 and 1, constitute the Fibonacci disk of level 2.

In  our  proof  of  Theorem  1,  we  need  to  consider  a  node  ν  on  ℱn
together  with  its  closest  nodes,  also  on ℱn:  one  on  the  left-hand  side

of ν—denote it by ν ⊖ 1—and one on the right-hand side of ν—denote
it  by  ν ⊕ 1.  Most  often,  ν ⊖ 1  ν - 1  and  ν ⊕ 1  ν + 1.  Now,  if  ν  is
on  the  rightmost  branch  of  the  white  Fibonacci  tree,  we  have  then
that  ν  f2n+2 - 1  and  ν ⊕ 1  f2n,  but  on  the  white  tree  of  the  next

sector.  Similarly,  if  ν  f2n,  we  have  that  ν ⊖ 1  f2n+2 - 1  on  the

white  tree  of  the  previous  sector.  Of  course,  ν ⊕ k + 1  ν ⊕ k + 1

and similarly, ν ⊖ k -  ν ⊖ k - 1 for small values of k. 

These  considerations  allow  us  to  implement  cellular  automata  in
the  pentagrid  as  performed  in  [3,  5].  As  mentioned  in  the  introduc-
tion, to each tile we associate a cell of the cellular automaton. We will
also  identify  the  cell  by  the  number  of  its  support.  If  η  is  the  state  of
the  cell  attached  to  the  tile  ν,  we  say  that  ν  is  also  an  η-cell.  As  we
have  black  nodes  and  white  nodes  for  the  status  of  the  nodes  in  the
Fibonacci  tree,  we  will  say  W-cell  or  quiescent  cell  for  a  white  cell  in
order to avoid any confusion with the status of its support. 

In  order  to  note  the  rules  of  a  deterministic  cellular  automaton  in
the pentagrid, we introduce a numbering of the sides of each tile. The
numbering  starts  from  1  and  it  is  increased  by  1  for  each  side  while
turning counterclockwise around the tile. For the central cell, side 1 is
fixed once and for all, and for the other tiles, side 1 is the side of the
tile shared with its parent, the central cell being the parent of the root
of the tree. Neighbor i of a cell ν shares with ν the side i of ν. The pre-
cision is required because the side shared by two tiles does not receive
the same number in both tiles.
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If η0  is the current state of the cell, if η0
1
 is its new state and if ηi  is

the  state  of  its  neighbor  i  at  the  current  time,  then  the  rule  giving  η0
1

from η0  and the ηi  is written as a word in {ℒ}*, where ℒ is the set of

states  of  the  cellular  automaton:  η0η1…η5η0
1.  The  underscore  is  put

under  η0  and  η0
1

 in  order  to  facilitate  the  reading.  In  a  rule

η0η1…η5η0
1, we say that η0η1…η5 is the context of the rule and we say

that the word η1…η5  is the state neighborhood of the cell. In our situ-

ation,  where  our  cellular  automata  have  only  two  states,  we  denote
the quiescent state by W and the non-quiescent one by B. Accordingly,

the  state  neighborhood  is  a  word  of  {W, B}5.  A  finite  sequence  of

nodes ν, ν + 1, … , ν + k on ℱn gives rise to a word in {B, W}k+1, where

its  ith  letter  is  the  state  of  ν + i - 1.  We  call  that  word  a  state  pattern
on ℱn. 

Rotation-Invariant Cellular Automata on the Pentagrid with Two 

States 

3.

By definition, the rules of a cellular automaton A on the pentagrid are
said  to  be  invariant  by  rotation,  in  short,  rotation  invariant  and A
is  said  to  be  a  rotation-invariant  cellular  automaton,  if  for  each  rule

present  in  the  program  of  A,  namely,  η0η1…η5η0
1,  the  rules

η0ηπ(1)…ηπ(5)η0
1
 are also present, where π runs over the circular permu-

tations  on  1..5.  When  the  cellular  automaton  is  rotation  invariant,

we usually indicate the rule where, after the current state, we have the
state of neighbor 1.

The goal of this section is to prove:

Proposition 1.  For  any  deterministic  cellular  automaton  on  the  penta-
grid, if its initial configuration is finite, if it has two states with one of
them  being  quiescent,  and  if  its  rules  are  rotation  invariant,  then  its
halting problem is decidable.

Our  proof  is  based  on  the  following  considerations.  If  the  halting
of  the  computation  of  a  cellular  automaton  halts,  it  means  that  the
computation remains in some N  forever. Note that the computation

may remain within some N and not halt. But in that case, after a cer-

tain  time,  the  computation  becomes  periodic.  And  this  can  be
detected:  it  is  enough  to  find  two  identical  configurations  during  the
computation; this generalizes the situation of the halting. What is not
that easy to detect is the case when the configuration extends to infin-
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ity in the sense that for each circle ℱk, there is a time when that circle

contains a non-quiescent cell. 
Let us take a closer look at such a case. Let N0 be the initial border

number.  We  know  that  there  is  at  least  one  tile  ν  of  ℱN0
 that  is  a  B-

cell, at time 0. Call ℱN0
 the front at time 0. The front at time t is ℱNt

,

where Nt  is the smallest k such that ℱk  contains all configurations at

time  τ,  with  τ ≤ t,  and  such  that  all  cells  outside  k  are  quiescent.

This  is  the  reason  why  the  initial  border  number  is  denoted  by  N0:

ℱN0
 is the front at time 0. 

Our  proof  of  Proposition  1  lies  on  the  analysis  of  how  a  B-cell  on
the front at time t can propagate to the front at time t+1. Note that a
similar  remark  is  at  the  basis  of  Codd’s  proof  that  cellular  automata
in the Euclidean plane with two states and a von Neumann neighbor-
hood  have  a  decidable  halting  problem  when  the  computation  starts
from a finite configuration; see [6]. If we can prove that Nt is a nonde-

creasing  function  of  t  that  tends  to  infinity,  we  then  prove  that  the
computation of the cellular automaton does not halt. The main prop-
erty that will allow us to detect such a situation is that a cell on ℱn+1
has at most two neighbors on ℱn  and the others on ℱn+2. So that if ν

is a node of the front that is a B-cell, the state neighborhood of its chil-

dren  is  either  BW4
 or  B2W3.  That  situation  occurs  if  and  only  if  the

node ν ⊖ 1 of the front is also a B-cell. We say that a B-cell is isolated
on  ℱn  if  ν  being  its  support,  ν ⊖ 1  and  ν ⊕ 1  are  both  W-cells.  These

considerations  significantly  reduce  the  number  of  rules  to  consider
and,  consequently,  the  number  of  cases  to  scrutinize.  More  precisely,
we have the following lemma. 

Lemma 1.  Let  A  be  a  deterministic  cellular  automaton  on  the  penta-
grid  with  two  states,  one  being  quiescent,  and  whose  rules  are  rota-

tion  invariant.  If  the  rule  WBW4W  occurs  in  the  program  of  A,  the

front at time t + k is the same as the front at time t + 1 for k ≥ 2; that
is, Nt+k  Nt+1  for the same values of k. If it is not the case, that is, if

the rule WBW4B occurs in the program of A, then if the front at time t

contains a B-cell, the front at time t + 1 also contains a B-cell; that is,
we have Nt+1  Nt + 1.

Proof.  Let  ν  be  the  tile  of  ℱNt
 which  is  a  B-cell.  Assume  that  ν  is  an

isolated B-cell of the front at time t. Let σ be a child of ν. Whether σ
is  a  black  node  or  a  white  one,  σ  is  a  W-cell  as  well  as  its  children.

Accordingly,  its  state  neighborhood  is  BW4,  so  that  the  rule  WBW4W

applies. Consequently, σ remains a W-cell at time t. 
If  ν ⊕ 1  is  also  a  B-cell  at  time  t,  let  σ  be  the  black  child  of  ν ⊕ 1.

Then,  the  state  neighborhood  of  ν  is  B2W3.  If  the  program  of A
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contains  the  rule  WB2W3W,  then  σ  remains  a  W-cell  at  time  t + 1,  as

well  as  the  other  children  of  ν.  If  the  program  contains  the  rule

WB2W3B, then σ becomes a B-cell at time t + 1 but the cells σ⊖ 1 and

σ⊕ 1 are white nodes, so that whatever the state of their parent, they
remain  W-cells  at  time  t + 1,  as  either  the  quiescent  rule  or  the  rule

WBW4W applies to them. Accordingly, in that case, the cell σ is an iso-

lated B-cell of the front at time t + 1. Now, what we proved in the pre-
vious paragraph shows us that the children of σ remain W-cells at the
time  t + 1,  so  that  the  front  at  time  t + 2  is  the  same  as  at  time  t + 1
and it remains the same afterward. This proves the part of the lemma

concerning the rule WBW4W. 

Assume that the rule WBW4B occurs in the program of A. From our

previous  study  on  the  children  of  ν,  at  least  one  of  them  is  a  white

node,  which  means  that  its  neighborhood  is  BW4.  Accordingly,  if  ν  is
a  B-cell,  that  white  child  becomes  a  B-cell  at  the  next  time,  so  that

ℱNt+1
 ℱNt+1

. □ 

We are now in position to prove Proposition 1. If the initial config-
uration is empty, that is, if all tiles are W-cells at time 0, there is noth-
ing to prove: the configuration remains empty forever. Accordingly, if
the  initial  configuration  is  not  empty,  N  is  definite,  so  that  ℱN  con-

tains  at  least  one  B-cell.  From  Lemma  1,  if  the  rule  WBW4B  occurs  in

the program of A, the front moves forward by one step at each time,
so  that  the  computation  of  the  cellular  automaton  does  not  halt.  If

that  rule  does  not  occur,  then  necessarily,  the  rule  WBW4W  is  present

in the program of A. From Lemma 1, we know that at most, we have

ℱt1
 ℱ1, but that necessarily, ℱtk

 ℱ1 for k ≥ 1. □ 

When the Rules Are Not Rotation Invariant 4.

Here  again,  we  deal  with  a  deterministic  cellular  automaton  with  a
quiescent state that starts its computation from a finite configuration.
But  in  this  section,  we  relax  the  assumption  of  rotation  invariance.
The  convention  we  fixed  in  Section  2  for  the  numbering  of  the  sides
of  a  tile  have  their  full  meaning  in  this  section.  And  so,  a  rule

η0η1… η5η0
1
 may be different from a rule η0ηπ(1)… ηπ(5)η0

1
 where π is a

permutation over 1..5. Note that this time, the order of the letters in

the state neighborhood associated to the rule is meaningful.
Consider  a  cell  ν ∈ ℱn+1.  In  all  cases,  its  neighbor  1  is  its  parent,

which, by construction, belongs to ℱn. If ν is a black node, as already
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noticed  in  previous  sections,  ν  has  exactly  two  neighbors  that  belong
to  ℱn:  neighbor  1,  as  it  is  the  parent,  and  also  neighbor  2.  Consider

N0  the  initial  border  number.  From  what  we  just  noticed,  a  rule  can

make  a  state  B  move  from  ℱN0
 to  ℱN0+1

 if  its  state  neighborhood

starts with BW, WB or B2: the last two cases may happen if the consid-
ered cell of ℱN0+1

 is a black node. As an example, the state neighbor-

hood  of  the  tile  ν  of  ℱN0+1
 cannot  be  WWBWW:  if  a  rule  whose  state

neighborhood is WWBWW is applied to a cell of ℱn, its neighbor that is

a B-cell belongs to ℱn+1. 

Lemma 2.  Let  A  be  a  deterministic  cellular  automaton  on  the  penta-
grid with two states, where one of them is a quiescent state (Table 1).

If the program of A contains the rule WBW4W and the rule WWBW3W,

then ℱN1+k
 ℱN1

 for all positive integers k with k ≥ 2.

Proof.  The  proof  comes  from  the  fact  that  the  state  neighborhood  of

a child of a node ν that is an isolated B-cell of the front is BW4. If ν is
a B-cell and if ν ⊖ 1 is a W-cell, then the state neighborhood of the left-

most child of ν is WBW3. Now, the children of an isolated B-cell of the
front at time t remain quiescent at time t+1. If the program of A con-

tains  the  rule  WB2W3B,  then  if  the  state  pattern  BB  is  present  on  the

front  at  time  t,  say  at  the  nodes  ν ⊖ 1  and  ν,  then  the  just-mentioned
rule  applies  to  the  leftmost  child  σ  of  ν,  but  the  white  children  of
ν ⊖ 1  and  those  of  ν  remain  W-cells  at  time  Nt + 2.  Accordingly,  σ  is

an  isolated  B-node  of  the  level  Nt + 1  so  that,  from  the  previous

study,  all  cells  on  ℱNt+2
 remain  quiescent,  so  that  ℱNt+k

 ℱNt+2
 for

all  positive  integers  k.  Clearly,  the  same  conclusion  holds  if  the  pro-

gram of A contains the rule WB2W3W. □ 

BW WBW4B BW WBW4W

WB WWBW3B WB WWBW3W

BB WB2W3B BB WB2W3W 

Table 1. Rules  of  a  deterministic  cellular  automaton  on  the  pentagrid  with
two states that apply to the children of a node of the front, W being the quies-
cent state.

Let  ν ⊕ 1, … , ν ⊕ k  be  a  sequence  of  consecutive  nodes  on  the  cir-

cle  ℱn.  Then,  the  word  η1..ηk  with  ηi ∈ {B, W},  i ∈ 1..k  is  called  a

state pattern. 
Let  us  now  prove  Theorem  1.  From  Lemma  2,  the  computation

remains within N1+2
 if the program of A contains both rules BW and
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WB.  Accordingly,  we  may  assume  that  it  contains  either  the  rule BW
or the rule WB. 

Consider the case when the rule BW belongs to the program of A. If
a node ν of the front at time t is a B-cell, from the proof of Lemma 2
we know that there is also a B-cell on the front at time t + 1 and that
we have Nt+1  Nt + 1, as any white child of ν is a B-cell on ℱNt+1

 at

time Nt + 1. 

Consider  the  case  when  the  rules  BW  and  WB  belong  to  the  pro-
gram  of  A.  If  a  node  ν  of  the  front  at  time  t  is  a  B-cell,  we  have  to
look  at  the  case  when  the  state  pattern  BW  is  present  on  the  front  or
not. As by definition the front contains at least one B-cell, if the state
pattern  BW  is  not  present,  this  means  that  all  tiles  of  the  front  are  B-
cells.  In  that  case,  all  black  nodes  of  ℱNt+1

 have  the  state  neighbor

B2W3.  Accordingly,  as  the  white  nodes  of  ℱNt+1
 remain  quiescent  at

time t + 1, the evolution depends on the rule whose context is WB2W3. 

If the rule is BB, then the black nodes of ℱNt+1
 remain quiescent at

time  t + 1,  which  entails  that  all  nodes  of  ℱNt+1
 remain  quiescent  at

time  t + 1.  Now,  if  at  time  t + 1  at  least  one  node  of  ℱNt
 at  time  t

becomes  a  W-cell  at  time  t + 1  and  at  least  one  remains  a  B-cell,  then
the pattern BW occurs, say on the nodes ν ⊖ 1 and ν. Then, if σ is the

black node of ν, its state neighborhood at time t + 1 is WBW3, so that
the  rule  WB  applies  and  σ  becomes  a  B-cell  at  time  t + 2.  From  the

rule BW, we know that the white children of the B-cells on ℱNt
 remain

W-cells,  and  so  the  black  nodes  on  ℱNt+1
 are  isolated  B-cells  on  the

level Nt+1. Accordingly, the rule WB applies to their black children on

ℱNt+2
 at  time  t + 2.  The  argument  applies  again  to  those  nodes  that

are  also  isolated  B-cells  on  the  new  front.  So  that  ℱNt+k
 ℱNt+k

 for

all positive integers k. 
We  remain  with  the  situation  when  all  the  nodes  of  the  front  at

time t are B-cells and all of them become W-cells at time t + 1. We can
repeat the preceding analysis to time t + 2. If at that time all nodes are
again  B-cells,  say  that  this  situation  is  an  alternation  of  B  and  W.  If
such  a  situation  is  repeated  long  enough,  as  in  the  case  where  the
front  does  not  go  beyond  Nt+1

,  the  computation  remains  forever

within  that  disk  and  so  the  computation  is  periodic.  We  know  that
such an evolution can be detected: it is enough to observe two identi-
cal configurations. If this is not the case, we find a situation where the
front  contains  the  state  pattern  BW,  so  that  the  rule  WB  applies  end-
lessly, as already seen. 
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If  the  program  of  A  contains  the  rule  BB,  as  it  also  contains  the

rule BW, the state pattern BW occurs on ℱNt+1
 at time t + 1 as soon as

the  pattern  BB  occurs  on  ℱNt
 at  time  t.  If  the  pattern  BB  does  not

occur, clearly, the pattern BW occurs on ℱNt
 at time t, so that we have

the same conclusion as we had with the rule BB when the pattern BW
occurs on the front: a non-halting computation that is detected by the
occurrence of that pattern.

We can summarize the discussion as shown in Table 2. 

Rules Front Evolution

BW a B-cell Nt+1  Nt + 1 from some t0

BW, WB any within Nt0
 from some t0

BW, WB a BW Nt+1  Nt + 1 from some t0

BW, WB never BW within Nt0
 from some t0 

Table 2. Table  of  the  evolutions  of  the  computation  of  A  depending  on  its
rules of Table 1 and on the patterns that can be seen on the front. 

Accordingly,  as  we  have  analyzed  all  possible  cases  and  as  each
one  can  be  detected,  we  conclude  that  the  proof  of  Theorem  1  is

completed. □ 

Propagation of the Front5.

Although  we  solved  the  question  about  the  halting  problem  for  such
cellular  automata,  it  can  be  interesting  to  examine  their  behavior  in
the  case  when  the  computation  does  not  halt  with  an  unbounded
occurrence  of  non-quiescent  cells.  We  will  focus  on  the  front.  Up  to
now,  we  have  seen  that  a  motion  to  infinity  exactly  means  that  the
front is increasing starting from some time t0. This happens in differ-

ent settings, as shown by Table 2. It could be interesting to have more
information  about  such  a  motion.  However,  as  the  situation  may  be
intricate  in  some  cases,  as  can  be  seen  in  the  proof  of  Theorem  1

when  the  rules  are  BW,  WB  and  BB,  we  will  restrict  our  attention  to
what happens on the front. We will see that with only two states, the
study of this restricted aspect is not that trivial.

From  Table  2,  we  know  that  we  basically  have  to  consider  two
cases:  the  case  when  the  program  of  A  contains  the  rule  BW  and  the
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case  when  it  contains  the  rule BW  together  with  the  rule WB  in  the
case that the pattern BW appears at some time on the front. 

Consider  that  latter  case.  From  the  proof  of  Theorem  1,  we  know
that  if  the  pattern  BW  appears  on  the  front  at  time  t,  it  will  also
appear  on  the  front  at  time  t + 1.  But  the  proof  has  given  us  more
exact information. If ν is the node of the B-cell of some BW pattern of
the front at time t, the application of the rule WB to the black child σ

of  ν ⊕ 1  produces  a  BW  pattern  on  the  nodes  σ  and  σ⊕ 1,  as  σ⊕ 1
remains a quiescent cell due to the fact that ν ⊕ 1 is a W-cell and that
σ⊕ 1  is  a  white  node.  And  so,  σ  and  σ⊕ 1  define  a  BW  pattern  on
the front at time t+1. Notice that the B-cell of the pattern BW on ℱNt+1

is isolated. The same arguments can be repeated concerning the black
child of σ⊕ 1. Consequently, a pattern BW where the B-cell is isolated
on  the  front  at  time  t  generates  a  sequence  of  such  patterns  on  each
front at time t + k, with k being a positive integer, the B-cell of such a
pattern  being  isolated  and  being  the  black  child  of  the  W-cell  of  the
same  pattern  on  the  previous  front.  We  can  call  this  sequence  a  line
of�patterns BW. Accordingly, if there are k patterns BW on the front at
time t, each of them generates a line of patterns BW on the successive
fronts after time t. 

From  now  on,  consider  the  case  when  the  program  of  A  contains
the rule BW. 

If a B-cell occurs on the front at time t on the node ν, the white chil-
dren  of  ν  become  B-cells  at  time  t + 1,  as  seen  in  the  proof  of  Theo-
rem�1.  Accordingly,  not  only  does  the  front  at  time  t + 1  contain  a
B-cell,  it  also  contains  the  pattern  BB.  If  ν ⊕ 1  is  a  W-cell,  its  black
child is a B-cell if and only if the program of A contains the rule WB.
In that case, the front at time t + 1 contains the pattern BBB. The occur
rence of the pattern BB on the front raises the question of which rule,

BB or BB, belongs to the program of A. 
The  easiest  case  to  analyze  is  the  case  when  together  with  the  rule

BW, we also have the rules WB and BB. 
In Figure 5, the result of applying the rules BW, WB and BB, respec-

tively,  yields  the  cells  in  blue,  purple  and  green,  respectively.  Clearly,
the white neighbor of the purple neighbor of the central cell is its par-
ent;  see  times  1,  2,  3  and  4.  It  is  assumed  that  the  state  B  is  perma-
nent:  once  a  cell  gets  to  that  state,  it  remains  unchanged.  The  figure
also assumes that we start from a single B-cell on the front at time 0.
That  cell  is  placed  as  the  central  cell  of  Figures  5  through  7  in  order
to focus attention on the evolution of the computation from that cell. 

In  Figure  6,  as  opposed  to  Figure  5,  it  is  assumed  that  a  B-cell  at
time t becomes quiescent and remains in that state later on. Note that
this representation allows us to better see the propagation of the front
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in  the  case  of  the  motions  ruled  by  the  occurrence  of  the  rule  BW  in
the program of A. As we assume that the rules WB and BB also belong
to the program of A, we can easily see that the children of a B-cell in
node ν at time t are B-cells at time t + 1, whatever the states at time t
of  the  nodes  ν ⊖ 1  and  ν ⊕ 1.  Accordingly,  on  the  front  at  time  t + k,
the  B-cells  occupy  at  least  the  whole  level  k  of  the  Fibonacci  tree
rooted at ν, whether ν is a black node or a white one. 

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 5. The  program  contains  the  rules  BW,  WB  and  BB.  From  left  to  right,
times 0, 1, 2, 3 and 4. It is assumed that once a node is a B-cell, it remains in
this  situation.  The  light  pink  cells  represent  the  circles  that  are  behind  the
front at time t. 

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 6. The  program  contains  the  rules  BW,  WB  and  BB.  From  left  to  right,
times 0, 1, 2, 3 and 4. It is assumed that when a node is a B-cell, it becomes a
quiescent cell at the next time. 

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 7. The  program  contains  the  rules  BW,  WB  and  BB.  From  left  to  right,
times 0, 1, 2, 3 and 4. It is assumed that when a node is a B-cell, it becomes a
quiescent cell at the next time. 

Still  assume  that  we  have  the  rules  BW  and  WB,  but  that  we  have

the  rule  BB.  Figure  7  illustrates  the  propagation  of  the  front  in  that
case,  starting  with  a  single  B-cell  on  the  front  at  the  initial  time.  The
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graphic at time 3 in that figure indicates that the pattern BBB appears
on  the  front  of  that  time  and  the  graphic  at  time  4  seems  to  indicate
the same property and that no new pattern appears. Let us prove this
property. 

Lemma 3.  Let  A  be  a  deterministic  cellular  automaton  on  the  penta-
grid  with  two  states,  one  of  them  being  quiescent.  Assume  that  the
program of A contains the rule BW. The states of the cells attached to
the  white  children  of  a  white  node  ν  at  time  t + 1  are  the  state  of  the
cell of ν at time t.

Proof.  Indeed,  let  ν  be  a  cell  of  the  front  at  time  t  supported  by  a
white  node.  Its  white  children  belong  to  ℱNt+1

 and,  as  white  nodes,

they have one neighbor on ℱNt
 and four of them on ℱNt+2

. At time t,

those four neighbors are W-cells by definition of the front at time t, so
that the quiescent rule applies if ν is a W-cell and the rule BW applies if

ν is a B-cell. In both cases, we get the conclusion of the lemma. □ 

Lemma  3  shows  that  among  the  children  of  a  white  node  on  the
front,  two  of  them  always  have  the  same  state  at  the  next  time.  We
can now state: 

Lemma 4.  Let  A  be  a  deterministic  cellular  automaton  on  the  penta-
grid  with  two  states,  one  of  them  being  quiescent.  Assume  that  the

program  of  A  contains  the  rules  BW,  WB  and  BB.  Then,  the  front  at
time t with t ≥ 3 does not contain either the pattern WBW or the pat-
tern BBBB.

Proof. Assume that the pattern WBW occurs at time t + 2. Let ν, ν ⊕ 1
and  ν ⊕ 2  be  the  nodes  supporting  that  pattern.  From  the  rules  and
from Lemma 3, the nodes ν, ν ⊕ 1 and ν ⊕ 2 cannot have the same par-
ent,  which  should  be  a  white  node.  Accordingly,  the  parents  of  ν,
ν ⊕ 1  and  ν ⊕ 2  are  different,  say  φ  and  φ⊕ 1.  Assume  that  φ⊕ 1  is
the parent of ν ⊕ 1 and ν ⊕ 2, so that ν ⊕ 1 is a black node and ν ⊕ 2
is a white one. Also, ν must be a white child of φ. By Lemma 3, both
φ  and  φ⊕ 1  should  be  W-cells,  so  that  by  the  quiescent  rule,  ν ⊕ 1
should be a W-cell, a contradiction with our assumption. 

And so, we have that φ is the parent of ν and ν ⊕ 1 and that φ⊕ 1
is the parent of ν ⊕ 2. 

Then, φ, which we consider on the front at time t + 1, cannot be a
white  node,  as  its  white  children  would  bear  different  states  at  time
t + 2.  So  φ  is  a  black  node  and  ν  is  its  black  child  and  ν  is  its  white
one.  Accordingly,  φ  is  a  B-cell  at  time  t + 1.  As  ν ⊕ 2  is  a  W-cell  at
time  t + 2,  φ⊕ 1  must  also  be  a  B-cell  at  time  t + 1.  Let  us  look  at
what  happens  at  time  t + 3.  Let  σ  be  the  white  child  of  ν,  which  is  a
black  node.  Then,  the  rule  BW  applies  to  σ,  σ⊕ 1,  σ⊕ 2  and  σ⊕ 3,
producing  the  pattern  WBBB.  Now,  the  rule  WB  applies  to  σ⊕ 4  as
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that node is a black one, and by Lemma 3, σ⊕ 5 is quiescent, so that
starting  from  σ,  the  children  of  ν, ν ⊕ 1  and  ν ⊕ 2  produce  the  state
pattern WBBBBW at time t + 3. Applying the rules in a similar way, at
time  t + 4,  starting  from  the  rightmost  child  of  σ,  we  obtain  the  pat-
tern  WBBWBBWBBWBBW,  where  the  rightmost  W  is  the  first  white
child of σ⊕ 5. 

Now,  consider  the  case  of  a  pattern  WBBBBW  on  the  front  at  time
t + 1,  and  let  ν  be  the  node  that  gives  the  leftmost  W  at  that  time.  By
Lemma 3, ν, ν ⊕ 1 and ν ⊕ 2 cannot be the children of a white node φ.
A similar contradiction would occur if we assume that ν and ν ⊕ 1 are
children of a black node. We conclude that ν is the rightmost child of
a node φ. If we assume that ν ⊕ 2 and ν ⊕ 3 are the children of φ⊕ 1,
which  should  accordingly  be  a  black  node  supporting  a  B-cell,  we
have  a  contradiction  between  the  state  of  φ⊕ 2  at  time  t,  which
would  be  a  white  node,  and  that  of  ν ⊕3  and  ν ⊕ 4  at  time  t + 1.
Accordingly, φ⊕ 1 must be a white node and ν ⊕ 4 and ν ⊕ 5 are chil-
dren of φ⊕ 2, so that we find the situation associated with the pattern
WBW. 

We  have  seen  that  the  pattern  produced  by  the  children  of  the
nodes  supporting  WBBBBW  does  not  contain  either  WBW  or  BBBB.
It  contains  four  occurrences  of  BB,  two  of  them  being  separated  by  a
single W. 

Now,  let  us  look  at  the  pattern  WBBW,  which  we  assume  to  be  on
the  front  at  time  t + 1.  Let  ν  be  the  node  that  supports  the  left-hand-
side W of the pattern. The nodes ν, ν ⊕ 1 and ν ⊕ 2 can be the children
of a white node φ, which is necessarily a B-cell at time t. As ν is a W-
cell  at  time  t + 1,  φ  must  be  a  B-cell  at  time  t.  This  indicates  which
kinds  of  nodes  ν,  ν ⊕ 1  and  ν ⊕ 2  are,  and  clearly,  ν ⊕ 3  is  a  black
node.  Applying  the  rules  to  the  children  of  these  nodes,  we  get  that,
from  σ  is  the  rightmost  child  of  ν  until  the  leftmost  white  child  of
ν ⊕ 3, the nodes ν ⊕ i produce the pattern WBBBWBBBW at time t + 2. 

However,  ν ⊕ 1,  ν ⊕ 2  and  ν ⊕ 3  cannot  be  the  children  of  a  white
node, as ν ⊕ 2 and ν ⊕ 3 have different states. Another disposition for
the parents of the node we have seen is that the parent of ν, say φ, is a
black  node,  so  that  φ⊕ 1  is  a  white  one.  Necessarily,  φ  is  a  B-cell  at
time t and φ⊕ 1 is a white one. Looking at the children of the nodes
ν, ν ⊕ 1, ν ⊕ 2 and ν ⊕ 3, starting from the rightmost child σ of ν until
the  leftmost  white  child  of  ν ⊕ 3,  we  find  this  time  the  pattern
WBBBWBBW. 

Let us now consider the pattern WBBBW on the front at time t + 2.
Again,  let  ν  be  the  node  that  supports  the  leftmost  W-cell  of  this  pat-
tern. We can see that the nodes ν, ν ⊕ 1 and ν ⊕ 2 can be the children
of  a  node  φ,  which  must  be  a  B-cell  at  time  t,  while  the  node  φ⊕ 1
must be a W-cell at the same time. It is not difficult to see that under
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that assumption on φ and φ⊕ 1 with respect to the nodes ν ⊕ i, if σ is
the  rightmost  child  of  ν,  we  get  the  pattern  WBBBWBBWBBW  on  the
front at time t + 2 until the leftmost white child of ν ⊕ 4. 

If  ν  and  ν ⊕ 1  would  be  the  children  of  a  black  node  φ,  the  other
nodes ν ⊕ i would be the children of the necessarily white node φ⊕ 1.
The nodes ν ⊕ 3 and ν ⊕ 4 have different colors at time t + 1, a contra-
diction with Lemma 3. And so, another configuration that is possible
this  time,  is  that  the  nodes  ν ⊕ i  we  consider  have  three  parents:  φ  is
the  parent  of  ν  only,  φ⊕ 1  is  a  white  node  or  a  black  one,  respec-
tively, it does not matter; and φ⊕ 2 is the parent of ν ⊕ 4 or of ν ⊕ 3
and  ν ⊕ 4,  respectively.  In  both  cases,  ν ⊕ 1  is  a  black  node;
that  is  the  important  point.  It  can  be  checked  that  in  both  cases,  if  σ
is  the  rightmost  child  of  ν,  the  pattern  on  the  front  at  time  t + 2
starting  from  σ  and  ending  on  the  first  white  child  of  ν ⊕ 4  is
WBBWBBWBBBW. 

With this analysis, the proof of Lemma 4 is completed. □ 

We  have  analyzed  the  situation  when  the  program  of  A  contains
the rules BW and WB. With programs containing the rule BW, the case

of the rule WB remains to be considered. Figure 8 illustrates the propa-

gation of the front whatever the rule, BB or BB. 

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 8. The program contains the rules BW and WB. In green and dark blue
are the B-cells produced when using the rule BB too. When the program con-

tains the rule BB, the B-cells are restricted to the dark blue cells. From left to
right,  times  0,  1,  2,  3  and  4.  It  is  assumed  that  when  a  node  is  a  B-cell,  it
becomes a quiescent cell at the next time. 

In fact, the figure illustrates both cases: as mentioned in the caption
of  the  figure,  a  different  coloration  is  applied  to  the  cells  produced
directly by the application of the rule BB or to further applications of
all rules in the tree rooted at the node where a first application of the

rule  BB  was  performed.  When  the  rules  BW,  WB  and  BB  are  applied
starting from an isolated B-cell supported by a node ν on the front at
time  t,  the  evolution  of  the  computation  concerns  the  Fibonacci  tree
rooted  at  ν  and  on  the  front  at  time  t + k;  the  trace  of  that  computa-
tion  is  the  whole  level  k  of  that  tree.  Say  that  a  node  ν  is  hereditary

192 M. Margenstern

Complex Systems, 28 © 2019



white  if  there  is  a  sequence  of k  white  nodes νi,  with i ∈ 1 ..k  such

that νi+1  is  a  white  child  of νi  with i ∈ 1 ..k - 1  and ν  νk.  When

the  rule BB  is  used  in  place  of  the  rule BB,  the  trace  is  restricted  to
hereditary white nodes only. 

We  can  summarize  our  analysis  by  appending  Table  3  to  Table  2.
The  table  assumes  that  we  start  from  a  B-cell  supported  by  a  white
node of the front at time t. In order to better analyze the patterns, we
remind the reader that the number of nodes on the level k of a white,
black Fibonacci tree, respectively, is f2k+1, f2k, respectively. 

Rules Patterns at t+k

BW, WB, BB WB f2k+1+f2k-2W

BW, WB, BB WBBW, WBBBW in a range wider than f2k+1 + f2k-2 nodes

BW, WB, BB WB f2k+1W

BW, WB, BB B on hereditary white nodes in a range wider than 

f2k+1 nodes 

Table 3. Patterns  on  the  front  at  time  t + k  when  the  program  of  A  contains
the rule BW starting from a B-cell in a white node of the front at time t. 

We  still  need  to  append  information  regarding  the  case  when  the
program  of  A  is  rotation  invariant.  The  first  remark  is  that  in  such  a
situation,  there  is  no  difference  between  the  rules  BW  and  WB  as  well

as  between  the  rules  BW  and  WB.  As  we  assume  the  rule  BW,  there  is

no  consideration  of  a  rule  WB.  This  also  means  that  in  a  situation
where  we  applied  the  rule  WB  when  rotation  invariance  is  relaxed,  in
the  case  of  rotation  invariance,  we  apply  the  rule  BW.  However,  note

that the rules BW and WB are contradictory under rotation invariance,

as  in  that  case,  WB  is  the  same  rule  as  BW,  which,  by  definition,  is
opposite  to  BW.  And  so,  we  are  concerned  with  the  first  two  rows  of
Table  3.  However,  there  is  a  special  phenomenon  that  occurs  here
and may not occur in the situation where the rotation invariance does
not take place. It is illustrated by Figures 9 and 10. 

In  Figure  9,  we  assume  that  besides  the  rule  BW,  the  rule  BB  also
belongs to the program of A. In this case too, the rules BW and WB are
the same up to a circular permutation on the neighbors. 

Comparing Figure 6 with Figure 9  on one hand and Figure 7 with
Figure 10 on the other hand, we can see in both cases that the B-cells
are at the same places during the propagation. 
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t = 0 t = 1 t = 2 t = 3 t = 4

Figure 9. The  program  contains  the  rotation-invariant  rules  BW  and  BB.  In
green are the B-cells produced when using the rule BB too. From left to right,
times 0, 1, 2, 3 and 4. It is assumed that when a node is a B-cell, it becomes a
quiescent cell at the next time. 

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 10. The  program  contains  the  rotation-invariant  rules  BW  and  BB.
From left to right, times 0, 1, 2, 3 and 4. It is assumed that when a node is a
B-cell, it becomes a quiescent cell at the next time. 

Conclusion6.

Of course, the first question is what can be said for three states? That
issue  is  more  difficult.  We  already  have  seen  a  rather  difficult  situa-
tion  in  the  proof  of  Theorem  1  when  it  could  happen  that  the  front
enters  a  situation  when  all  cells  are  in  the  state  B  at  some  time  t  and
then all of them are in the state W at time t + 1, repeated starting from
time  t + 2.  As  then  the  front  remains  at  the  same  place  during  a  cer-
tain  time,  the  discussion  was  how  long  such  a  situation  might  last.  A
worse  situation  occurs  with  three  states  for  something  that  we  could
ignore with two states: the point is what happens behind the front? In
fact, in case a node changes its state from W to B behind the front, the
worst  thing  that  might  happen  is  that  another  line  of  B-cells  might
propagate but, in that case, another line already occurred, so that we
are in the situation of a constant advance of the front. Accordingly, it
does not change the issue for the halting of the computation.

Things  are  different  with  three  states.  Let  the  three  states  be  W,  B
and  R,  where  W  is  the  quiescent  state  that  is  associated  to  the  quies-
cent  rule  possessed  by  the  program  of  our  cellular  automaton.  As  a
third state enters play, we may have the following rules: 
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BWB: WBW4B, BWR: WBW4R, RWB: WRW4B. 

RWR: WRW4R. 

RWW: WRW4W. 

Clearly,  if  we  have  the  rule  BWB  or  the  rule  RWR,  we  have  a  con-
stant progression of the front once a non-quiescent cell occurs on the
front.  A  similar  conclusion  occurs  if  we  have  both  rules  BWR  and
RWB:  they  call  each  other  in  some  sense,  again,  once  a  non-quiescent
cell  occurs  on  the  front.  What  happens  if,  instead  of  both  rules  BWR
and  RWB  we  have,  for  instance,  both  rules  BWR  and  RWW?  In  that
case,  assume  that  the  rule  BWR  applies  to  the  node  φ  of  the  front  at
time  t.  Let  ν  be  the  first  white  child  of  φ  and  let  σ  be  the  first  white
child  of  ν.  Then,  at  time  t + 1,  ν  becomes  an  R-cell  and,  due  to  RWW,
at time t + 2, σ becomes (remains) a quiescent cell. Now, it may hap-
pen that at  time t + 2, ν  becomes a B-cell. In  that case, σ  becomes an
R-cell at time t + 3. However, even if the transformation of ν from an
R-cell to a B-cell happens at time t + 2, we are not guaranteed that the
same  transformation  will  happen  for  σ  at  time  t + 4.  The  reason  is
that  in  those  cases,  the  transformation  depends  on  what  happened
behind the front. Note that in our discussions with a single non-quies-
cent state, it was enough to look at the rules that apply to a quiescent
cell  and  not  to  look  at  those  that  apply  to  a  cell  in  a  non-quiescent
state, although in the figures, in order to obtain nice images, we made
implicit assumptions on rules applied to a B-cell or to a W-cell behind

the  front  whose  neighborhood  may  be  different  from  BW4,  WBW3
 or

B2W3.  If  we  ignore  the  complex  discussion  involving  a  huge  number
of  rules,  we  might  expect  an  argument  on  how  long  we  have  to  wait
for  a  new  transformation  of  ν  from  R  to  B.  Even  if  we  have  an  argu-
ment  on  the  number  of  possible  configurations  within  Nt

,  to  repeat

the  same  argument  to  σ  requires  us  to  consider  the  number  of  possi-
ble  configurations  within  Nt+1

,  which  is  much  bigger.  Accordingly,

this leads to no conclusion, so that the case with three states is open,
even with rotation invariance. 

Other questions may be considered. We know that strong universal-
ity  is  possible  for  deterministic  cellular  automata  on  the  pentagrid
with a quiescent state with 10 states; see [2]. That cellular automaton
is  rotation  invariant.  What  can  be  performed  if  we  relax  rotation
invariance? The answer is not straightforward, as the cellular automa-
ton of [2] is based on a cellular automaton on the line that is strongly
universal  with  11  states,  and  six  states  of  that  automaton  could  be
absorbed  by  the  cellular  automaton  of  the  pentagrid  that  implements
the  cellular  automaton  on  the  line.  And  so,  for  that  direction  too,  a
new approach is needed. 

A Decidability Result for the Halting of Cellular Automata on the Pentagrid 195

https://doi.org/10.25088/ComplexSystems.28.2.175

https://doi.org/10.25088/ComplexSystems.28.2.175


Accordingly,  as  the  gap  between  two  states  and  10  states  seems  to
be not a small one, there is still a huge amount of work ahead. 
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