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This paper is influenced by the research of Thomas Schelling on spatial
segregation;  in  his  seminal  work  on  the  subject  he  used  simple  simu-
lations  to  show  that  even  highly  tolerant  individuals  end  up  being  spa-
tially  aggregated  far  beyond  the  local  requirement  of  their  tolerance
level. In this paper we are not seeking to find the conditions, in terms of
density  of  population  and  tolerance  level,  that  lead  to  a  global  stable
state  where  all  the  individuals  are  satisfied  in  view  of  their  own  neigh-
borhoods. Here the context is: (i) a space full of agents where each indi-
vidual  is  in  continual  contact  with  a  maximum  number  of  neighbors;
and (ii) where both a principal and a secondary discrimination criterion
compel  people  to  leave  their  places.  As,  in  general,  the  first  hypothesis
does  not  allow  the  population  to  converge  within  the  meaning  of
Schelling,  only  incomplete  segregation  phenomena  are  observable.  So
the  problematic  will  be  to  determine,  according  to  the  respective
strength of the two discrimination criteria, the spatial repartition of the
agents  resulting  from  their  moves;  in  such  a  general  context,  we  will
refer to segregation as being strong or weak or even mixed. 
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Introduction1.

The general context of this paper is formulated by Schelling [1, 2], in
these  words:  “The  [..]  subject  that  occupied  me  in  the  seventies  was
the  ways  that  individual  behavioral  choices  could  aggregate  into
social  phenomena  that  were  unintended  or  unexpected.”  In  the
specific  context  of  spatial  segregation,  Schelling  used  simple  simula-
tions  to  show  that  even  highly  tolerant  individuals  end  up  being  spa-
tially  aggregated  far  beyond  the  local  requirement  of  their  tolerance
level.  These  simulations  performed  on  a  physical  chessboard  can  be
viewed  as  one  of  the  first  steps  in  what  is  now  known  as
“computational  sociology  and  agent-based  modeling”  [3,  4].  The
result is a funding gap between the emergent global behavior and the
local behaviors of each individual [5].

https://doi.org/10.25088/ComplexSystems.28.2.197

mailto:Philippe.Collard@unice.fr
https://doi.org/10.25088/ComplexSystems.28.2.197


The Schelling model of segregation has been extended to more than
two  types:  to  individual  tolerance  thresholds  and  to  proximity
networks  other  than  a  simple  grid  [5–11].  One  particularity  of
the  Schelling  model  is  that  it  uses  a  grid  network  where  some  nodes
are  occupied  by  one  agent  while  others  are  vacant;  it  is  precisely  the
vacant  places  that:  (i)  allow  movement  of  unsatisfied  agents;  (ii)  in
the long term, allow convergence toward configurations where all the
agents are satisfied; and (iii) form the frontier between the aggregates. 

In  this  paper  we  consider  a  tiny  artificial  world  in  the  form  of  a
grid  composed  of  individuals  where  each  one  has  their  own  behavior
and  can  establish  some  links  with  others  based  on  predetermined
criteria. As there are no vacant places, the dynamics will rarely lead to
a  fixed  point  in  the  configuration  space  where  all  the  agents  are
satisfied. 

In the first part, we use one criterion only; it is in this context that
we will make a first distinction between strong and weak segregation.
This  primary  work  will  allow  us  to  go  deeper  into  the  issue:  in  a
“crowded world” (i.e., without vacant places), in what sense can one
speak of convergence? 

In a second step, we use both a primary and a secondary discrimi-
nation criterion. To show this idea with one example, the primary cri-
terion  would  be  the  nationality  and  the  second  the  native  language;
we assume: (i) two nationalities and two languages only; (ii) the same
number of people in each country; and (iii) in each country, the same
number  of  people  practice  each  language.  Saying  that  nationality  is
the  primary  criterion  means  that  a  person  does  not  tolerate  a  person
of  the  other  nationality  despite  language.  Saying  that  language  is  the
secondary criterion means that a person does not tolerate people that
practice  the  other  language  even  if  they  have  the  same  nationality.
This  second  part  will  allow  us  to  answer  the  questions:  (i)  to  what
extent  does  the  existence  of  a  secondary  criterion  change  segregation
due  to  the  primary  criterion?;  and  (ii)  is  the  strong-weak  dichotomy
for segregation still fully relevant in the two-criteria context? 

Micro-Motive versus Macro-Behavior2.

We assume that: (i) the world is a two-dimensional grid composed of
cells  (in  all  the  simulations,  the  grid  will  be  a  square  of  2500  cells);
(ii)�the  world  is  populated  by  agents  (let  A  be  the  population  with
#A  N);  and  (iii)  there  is  at  most  one  agent  per  cell.  To  avoid  edge
effects, we impose that the world wraps horizontally and vertically, so
the  neighborhood  of  one  agent  is  composed  of  the  eight  nearest  cells
surrounding it.
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Agent Motive2.1

For each agent ai ∈ A, let Ni(t) be the set of the neighboring agents at

time  t;  the  cardinal  #Ni(t)  is  a  measure  of  the  “in/out”  influence  of

the agent; obviously, #Ni ≤ 8. 

Type of Agents2.1.1

Apart from its location, an agent ai  is described by a type attribute ti
that  remains  constant  over  time.  Let  type  t0, … , tn  be  the  set  of

type  values;  for  instance,  in  the  classical  Schelling  model  there  are

only two type values: type  t0, t1. ∀ i ∈ 0, … , n, let Ti  be the set

of  agents  with  type  value  ti;  these  subsets  form  a  partition  of  A  and

#Ti  N  n + 1. 

Dislike Function2.1.2

For  each  type  value  t ∈ type,  the  opposite  types  are  defined  by  a  dis-
like function δ from the set of types to its power set:

type → P(type)

t ↦ δ(t).

For  instance,  in  the  classical  Schelling  model  δt0  t1  and

δt1  t0.  A  dislike  function  defines  one  discrimination  criterion

and we assume than there may be several criteria.

Agent Satisfaction2.1.3

Regarding  a  discrimination  criterion,  the  satisfaction  of  an  agent  at
one time depends on its own type and on the type of its neighbors.

Let ai ∈ A with type ti; we define the set of neighbors with an oppo-

site  type  as  Δi  {ak ∈ N(ai) tk ∈ δ(ti)}.  The  dislike  ratio  (hereafter

dri) defined by equation (1) measures the ratio of the number of neigh-

bors of opposite types to the number of neighbors: 

dri 

#Δi

#Ni

if #Ni(t) ≠ 0

0 otherwise.

(1)

Then, for each agent ai  and for each dislike function δ, at one time

we define the Boolean indicator satisfied as: 

satisfiedi
δ  dri ≤ τ (2)

where  τ  is  a  constant  number  in  the  range  0..1  that  denotes  the

threshold  under  which  an  agent  is  satisfied  regarding  the  dislike
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function  δ;  we  will  refer  to  τ  as  the  tolerance  of  the  agents  and  we
assume that its value is common to all agents.

As  there  may  be  several  dislike  functions  δk,  we  will  potentially

need many tolerance values τk, one for each function. In such a case,

one agent ai is globally satisfied at one time if and only if it is satisfied

for all the dislike functions; that is: 

satisfiedi  
0<k<n

satisfiedi
δk

(3)

where the product stands for the logical AND operator.

Agent Behavior2.2

Agent  behavior  is  oriented  on  achieving  and  maintaining  satisfaction
(equation  (2)):  an  unsatisfied  agent  is  motivated  to  move  toward
another location, whereas a satisfied agent has no incentive to move.

Agent Mobility2.2.1

Regarding  the  problem  of  finding  a  new  place,  two  cases  are  distin-
guished  depending  on  the  density  δ  of  agents  on  the  grid:  (i)  if  there
are some vacant places (i.e., δ > 1), an unsatisfied agent can choose a
location  randomly  and  moves  into  it  if  and  only  if  this  location  is
vacant;  and  (ii)  else,  if  the  grid  is  wholly  occupied  by  agents  (i.e.,
δ  1),  and  if  possible,  two  unsatisfied  agents  swap  places.  In  both
cases, as the moves do not equate to immediate benefits, it is challeng-
ing  to  predict  the  overall  emerging  effect.  The  gap  between  micro-
motives  and  macro-behaviors  underlined  by  Schelling  [2]  is  due  to
overlapping neighborhoods: an agent that moves according to its own
motivation  affects  not  only  the  neighborhood  it  leaves  and  the  one  it
arrives in, but also, in the long run, all the agents.

Agent Dislike Time2.2.2

First  of  all,  let  us  remember  that  in  the  model  the  time  is  discretized
into periods. For each unsatisfied agent ai, we define its dislike time at

time  t  (hereinafter  dti(t))  as  the  duration  of  the  current  period  during

which it is unsatisfied. So, for a satisfied agent the dislike time is null,
while it is greater than one for an unsatisfied agent.

Strong Segregation versus Weak Segregation2.3

In  this  paper  we  will  refer  to  segregation  as  being  strong  or  weak.  A
fixed point in the configuration space is a configuration where all the
agents are satisfied and then remain motionless forever. In such a case
the  satisfaction  rate,  that  is,  the  proportion  of  satisfied  agents,  is
equal  to  1.  We  will  say  that  there  is  strong  segregation  when  the
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dynamics  lead  to  a  fixed  point;  if  not,  the  dynamics  can  however,
under  certain  conditions,  lead  to  a  configuration  where  a  significant
number  of  agents  with  the  same  type  group  together;  in  such  cases,
we will say that there is weak segregation.

Knowing that the dislike time of an agent is null if and only if it is
satisfied,  one  can  conclude  that  if  for  all  the  agents  dti(t)  0,  then  a

global fixed point is reached and so there is strong segregation. But if
weak segregation occurs over time, the dislike time of one agent does
not  necessarily  converge  to  a  fixed  value,  so  we  have  to  look  at  the
dislike-time  distribution  to  highlight  the  global  phenomenon.
Whereas strong segregation is well-defined, the notion of weak segre-
gation  requires  expansion;  that  is  what  we  examine  in  the  remainder
of this paper. 

Segregation with One Discrimination Criterion3.

Here,  we  assume  that:  (i)  there  is  only  one  criterion  that  induces  two
types  of  agents  denoted  C  and  T  (C  stands  for  circle  and  T  for

triangle); (ii) the criterion is symmetrical, that is, dislikeC  T and

dislikeT  C;  and  (iii)  there  is  the  same  number  of  agents  in  each

type.
The  global  parameter  τ  is  the  tolerance  of  an  agent  vis-à-vis  its

neighbors with a different type. So, depending on equation (1), for tol-

erance  we  have  to  look  at  the  eight  threshold  values  τk  k  8  with

k ∈ 1; 8; each value in one of the intervals τk, τk+1 is equivalent to

the lower boundary. 
The  model  is  based  on  symmetry  because  the  population  size  as

well  as  the  rules  of  the  dynamics  is  identical  for  both  types;  so  one
question will be whether the dynamic process preserves symmetry. 

A Grid with Some Vacant Locations3.1

A  grid  with  some  vacant  nodes  corresponds  to  the  classical  Schelling
model  where  the  density  δ  of  agents  is  strictly  below  1,  so  for  each
agent  there  are  at  most  eight  neighbors.  In  the  following  we  will  set
δ  0.9.

Simulation and Results3.1.1

Experimental  simulations  are  performed  with  an  implementation  of
the  model  in  the  NetLogo  multi-agent  programmable  environment
[12].  To  ease  the  display:  (i)  according  to  its  type,  one  agent  will  be
represented either by a circle or a triangle; and (ii) a vacant place will
be represented by a square. 
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For  a  very  low  value  of τ  (e.g., τ  1  8),  no  aggregation  occurs;

by �contrast,  Figures  1  and  2  show  a  strong  segregation  configuration

reached  after  1000  time  steps  with  τ  set  to  2  8  and  5  8,  respec-

tively.  The  first  case  is  of  particular  interest,  as  all  the  agents  are
satisfied and the frontier between the two types is a narrow strip com-
posed of the vacant places [13]. 

Figure 3 shows the mean dislike ratio dr according to the tolerance

(results  are  averaged  over  100  runs).  As  soon  as  τ ≥ 2  8,  there  is

strong segregation and dr increases with τ; moreover, in any case, it is
less than what is required on the basis of the tolerance (black line). 

Figure 1. One  criterion  with  vacant  locations  with  τ  2  8.  Strong  segrega-

tion at t  1000: dr  0.02.

Discussion3.1.2

As the mean dislike ratio is far below the tolerance, the global system
is much more segregationist as it is locally required; as soon as the tol-

erance  is  greater  than  2  8,  strong  segregation  occurs.  All  this  corre-

sponds  well  to  the  description  and  the  results  presented  first  by
Schelling [1, 2]. These first results will serve as a baseline in the rest of
the paper. 
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Figure 2. One  criterion  with  vacant  locations  with  τ  5  8.  Strong  segrega-

tion at t  1000: dr ≈ 0.23.

Figure 3. One  criterion  with  vacant  locations  with  mean  dislike  ratio  versus
tolerance at t  1000.
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A Crowded Grid without Vacant Locations3.2

By the end of the paper, we assume that initially the density of agents
on  the  grid  is  at  its  maximum  (δ  1),  so  there  is  one  and  only  one
agent  per  cell.  Moreover,  as  during  the  dynamics  the  unsatisfied
agents swap places, the assumption is time invariant.

Simulation and Results3.2.1

For  very  low  values  of  the  tolerance  (i.e.,  τ = 1  8,  no  aggregation

occurs.  By  contrast,  Figures  4  and  5  show  a  certain  form  of  segre-

gation  reached  after  1000  time  steps  with  τ  set  to  2  8  and  5  8,

respectively.  The  configuration  obtained  with  τ  2  8  is  of  particu-

lar interest, as most agents are satisfied (dr  0.07) and the few unsat-
isfied agents build the frontier between the two types. Let us note that
the frontier is a narrow strip composed of both circles and triangles.

Figure 6 shows the mean dislike ratio according to the tolerance; in

any  case  it  is  far  below  the  tolerance  value  (black  line)  and  dr

increases with τ (with the exception of the case τ  2  8). 

Figure 4. One  criterion  on  a  crowded  grid  with  τ  2  8.  Weak  segregation

at t  1000: dr ≈ 0.07.
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Figure 5. One criterion on a crowded grid with τ  5  8. Quasi strong segre-

gation at t  1000: dr ≈ 0.23.

Figure 6. One criterion on a crowded grid with mean dislike ratio versus tol-
erance at t  1000.
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Discussion3.2.2

For  tolerance  above 4  8,  after  5000  runs  unsatisfied  agents  remain

very  rare,  and  thus  there  is  a  quasi  strong  segregation  (Figure  5).
Results are qualitatively comparable to what would be observed with
vacant  places,  because  such  places  are  not  essential  to  ensure  the
convergence. 

It  is  for  τ  2  8  that  a  new  phenomenon  can  be  observed.  First,

let  us  remember  that  for  δ  0.9  and  τ  2  8  the  system  converges

toward  a  fixed  point  due  to  the  vacant  places  located  on  the  frontier
between  the  two  subpopulations  (Figure  1).  Here,  for  δ  1  and

τ  2  8,  the  system  reaches  a  certain  form  of  segregation  but  with-

out  reaching  a  fixed  point.  The  major  part  of  the  population  is  cer-
tainly satisfied (≈ 90%), but a few unsatisfied agents remain located at
the frontier between the two types; it is in this sense that we are talk-
ing about weak segregation. 

Figures  7(a)  to  7(d)  show  the  configuration  space  at  time  1000,
5000, 15000 and 20 000, respectively, for a same significant run. We
can observe that the two big zones of satisfaction shift with time; such
a  global  move  is  due  to  the  local  relocations  of  unsatisfied  agents.
Even  though  at  the  global  level  segregation  occurs,  at  each  time,
agents close to the frontier can possibly swap their locations. You can
observe this on Figure 8(a), which shows the time evolution of the dis-
like time for one particular agent over 20 000 time steps; let us remem-
ber  that  dti  0  if  and  only  if  the  agent  ai  is  satisfied.  Figure  8(b)

shows  that  the  dislike-time  distribution  of  unsatisfied  agents  roughly
follows  a  decreasing  exponential  distribution;  that  means  the  waiting
process  for  becoming  satisfied  is  memoryless.  Whatever  the  tolerance
is, the long-term issue is qualitatively similar for the two types, so the
dynamics do not break symmetry. 

(a) t  1000 (b) t  5000
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(c) t  15 000 (d) t  20 000

Figure 7. One criterion on a crowded grid with τ  2  8 (one significant run).

Weak segregation: dr ≈ 0.07 and 87% of satisfied agents.  

(a) (b)

Figure 8. One differentiating criterion without vacant locations and τ  2  8.
(a) Time evolution of the dislike time of one single agent. (b) Dislike-time dis-
tribution of unsatisfied agents (t  20 000).

Segregation with Multilevel Discrimination Criteria4.

In this section we assume that there is not just one criterion but two:
a  primary  one  represented  by  the  shape  (circle  or  triangle)  and  a
secondary  one  represented  by  the  size  (small  or  large).  Let  us  note
that in the previous section the sole criterion corresponded to the pri-
mary one. So from now on there are: (i) four type values: large circle,
small circle, large triangle and small triangle; (ii) two dislike functions
δ1 and δ2; and (iii) two tolerance thresholds τ1 and τ2. 
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Where Are the Dislikes?4.1

For  convenience  we  will  denote C, T, c, t  the  set  of  types.  The  two

dislike functions are defined as follows (Table 1): (i) a circle, however
large or small it is, does not tolerate a triangle according to tolerance
τ1  and vice versa; (ii) a large circle C does not tolerate a small circle c

according  to  tolerance  τ2  and  vice  versa;  and  (iii)  a  large  triangle  T

does not tolerate a small triangle t according to tolerance τ2  and vice

versa.

Type δ1(type) δ2(type) 

C T, t {c} 

T C, c {t} 

c T, t C 

t C, c T 

Table 1. Dislike functions.

In  the  following  one  can  raise  the  questions  of  knowing  if  there  is
weak  or  strong  segregation  for  both  criteria  and  possibly  even  a
mixed  situation,  with  weak  segregation  for  one  criterion  and  strong
segregation for the other. 

Simulation and Results4.2

The tolerances τ1  and τ2  are two global parameters. For each value of

τ1, we will examine all the possible values for τ2; as there are eight sig-

nificant  values  for  tolerance  (τk  k  8  with  k ∈ 1; 8),  we  have  to

examine 64 cases, each one corresponding to a couple (τ1
k, τ2

k′ ). Let us

note that τ2  1 corresponds to the previous situation with one crite-

rion  only  (see  the  point  to  the  far  right  in  the  16  graphs  in  Figures  9
and 10). 

The  main  objective  here  is  to  distinguish  weak  segregation  from
strong segregation, so for each of the 64 cases we will run one execu-
tion  for  a  period  of  2000  time  steps  and  then  collect  the  satisfaction
rate  for  both  circles  (left  graphs  in  Figures  9  and  10)  and  triangles
(right graphs in Figures 9 and 10). All these results are summarized in
Table 2. 

Each  one  of  these  64  experiments  results  from  one  particular  run,
and so, due to the sensitivity of initial conditions and the randomness
of the dynamics, they produce qualitatively different issues. However,
the  satisfaction  rate  for  the  two  primary  subpopulations  computed
after  2000  time  steps  is  relevant  enough  to  be  able  to  draw  conclu-
sions about the dynamics. 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Two differentiating  criteria:  proportion of  satisfied circles  (left) and

triangles (right) at t = 2000 (τ1 ≤ 4  8).  
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Two  differentiating  criteria:  proportion  of  satisfied  circles  (left)

and triangles (right) at t = 2000 (τ1 > 4  8).
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τ1 1  8 2  8 3  8 4  8 5  8 6  8 7  8 1

1  8 - - - - - - - -

2  8 - - - W W W W W

3  8 - W W S S S S S

4  8 - S S S S S S S

τ2

5  8 M S S S S S S S

6  8 S S S S S S S S

7  8 S S S S S S S S

1 S S S S S S S S

Table 2. Weak, mixed and strong segregation.

Rather Intolerant Agents for the Main Criterion4.2.1

Figure  9  examines  the  cases  of  rather  intolerant  agents  regarding  the

primary criterion (i.e., τ1 ≤ 4  8). 

◼ If  τ1  1  8,  whatever  τ2  is,  no  segregation  occurs  (Figures  9(a)  and

9(b)). 

◼ If  τ1  2  8,  there  is  a  sudden  transition  from  no  segregation  to  weak

segregation at τ2  4  8 (Figures 9(c) and 9(d)). 

◼ If τ1  3  8, there is no segregation for τ2  1  8, weak segregation for

τ2  2  8 and 3  8 and quasi strong segregation (Figures 9(e) and 9(f)). 

◼ If  τ1  4  8,  there  is  quasi  strong  segregation  except  for  τ2  1  8

(Figures 9(g) and 9(h)). 

Rather Tolerant Agents for the Main Criterion4.2.2

Figure  10  examines  the  cases  of  rather  tolerant  agents  regarding  the

primary criterion (i.e., τ1 ≥ 5  8). 

◼ If τ1  5  8:

◼ For the circles, if τ2  1  8 there is weak segregation and above there is

strong segregation (Figure 10(a)). 

◼ For  the  triangles,  whatever  τ2  is,  there  is  strong  segregation

(Figure�10(b)). 

◼ If τ1 ≥ 6  8, whatever τ2  is, strong segregation occurs (Figures 10(c) to

10(h)). 

Discussion4.3

In  order  to  help  us  build  our  understanding  of  the  different  forms  of
segregation,  we  will  examine  in  detail  two  specific  cases  (bold  letters
in Table 2). 
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Weak Segregation4.3.1

At low tolerance for the main criterion (i.e., τ1 = 2  8), there is a sud-

den  transition  phenomenon  regarding  the  tolerance  τ2  for  the  value

4  8 [6, 14]; at that transition threshold the system abruptly switches

from  quasi  no  segregation  to  weak  segregation  (Figures  9(c)  and
9(d)). Let us note our approach differs from the paper [6] from Gau-
vin  et  al.  because,  in  this  work,  the  main  results  have  been  summa-
rized as a phase diagram in the (density, tolerance) plane. 

We  therefore  study  the  case  (τ1; τ2) = 2  8; 4  8.  Figures  11  and

12  show  the  configuration  space  for  one  significant  run  first  at
t = 2000  and  then  at  t = 20 000,  respectively.  The  dynamics  lead  to
the  emergence  of  a  shape  (hereinafter  satisfaction  shape)  where  satis-
fied  agents  constitute  an  overwhelming  majority  and  are  grouped
according to their type. Although segregation occurs for both criteria,
the system does not converge to a fixed point, as only around 85% of
the  agents  are  satisfied.  Let  us  note  that  the  satisfaction-rate  is  quasi
identical  for  circles  and  triangles.  Thus,  at  each  time  step,  around
15%  of  agents  continuously  swap  places,  which  results  in  revisiting
local  satisfaction:  some  satisfied  agents  become  unsatisfied  and  vice
versa.  Indeed,  as  can  be  observed  on  the  configuration  space,  this

Figure 11. Weak  segregation  at  t = 2000  (τ1; τ2) = 2  8; 4  8:  satisfaction

rate ≈ 0.85.
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Figure 12. Weak  segregation  at  t = 20 000  (τ1; τ2) = 2  8; 4  8:  satisfaction

rate ≈ 0.85.

leads to a dynamic move of the global satisfaction shape, with a large
strip  composed  of  unsatisfied  agents  as  a  frontier  between  satisfied
agents.

Figures  13(a)  and  13(b)  show  the  dislike-time  distribution  for  the
unsatisfied agents at two specific time steps; that is, the heights of the
bars  represent  the  numbers  of  agents  with  each  dislike-time  value:
after  a  first  transitional  period  (not  represented  here),  whatever  the
time is, the distribution follows an exponential decrease. 

Mixed Segregation4.3.2

In all the previous cases, the issue is similar for both types except for
one  particular  case.  The  notable  exception  is  for  (τ1; τ2) =

5  8; 1  8,  where  the  dynamics  lead  to  a  breaking  of  symmetry.

With  this  setting,  on  the  one  hand,  circles  and  triangles  are  tolerant
with  respect  to  each  other,  and  on  the  other  hand,  large  and  small
shapes are intolerant relative to each other.

In the long term, the state of the circle and the triangle populations
differs  (Figures  10(a)  and  10(b)).  For  this  very  specific  case,  there  is
strong segregation for one value of the main criterion and weak segre-
gation  for  the  other;  it  is  in  this  sense  that  we  use  the  term  mixed
segregation. Figures 14 and 15 show the configuration space for one
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(a) t = 2000 (b) t = 20 000

Figure 13. Weak segregation: (τ1; τ2) = 2  8; 4  8 (one significant run): satis-

faction rate ≈ 0.85.

Figure 14. Mixed  segregation  at  t = 2000:  (τ1; τ2) = 5  8; 1  8:  satisfaction

rate circle ≈ 0.33; satisfaction rate triangle =1.

significant  run  first  at  t = 2000  and  then  at  t = 20000,  respectively;
in  both  circumstances,  the  satisfaction  rate  is  1  for  triangles,  while  it
is  only  about  0.33  for  circles.  Let  us  note  the  situation  could  be  the
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reverse  because  the  issue  depends  both  on  the  initial  configuration
and on the random nature of the process; in any case there would be
strong  segregation  for  one  main  type  and  weak  segregation  for  the
other.  As  the  location  of  each  triangle  is  the  same  at  time  2000  and
20 000, all the triangles are permanently satisfied and so motionless. 

Figure 15. Mixed  segregation  at  t = 20 000:  (τ1; τ2) = 5  8; 1  8:  satisfac-

tion rate circle ≈ 0.33; satisfaction rate triangle =1.

Since  the  tolerance  is  low  on  the  second  criterion,  large  (resp.
small)  triangles  use  circles  (satisfied  as  well  as  unsatisfied)  as  a  fron-
tier to “protect” against small (resp. large) triangles; unlike the previ-
ous  cases,  the  frontier  is  made  up  of  large  compact  blocks  of  circles
scattered over the space. 

Figures  16(a)  and  16(b)  show  the  dislike-time  distribution  for  the
unsatisfied agents at the two specific time steps: whatever the time is,
the distribution follows an exponential decrease again. One important
point is that the dislike time is null for all the triangles, which means
they  always  remain  satisfied  and  so  motionless;  in  other  terms, satis-
faction has become a frozen state for the triangle population. 
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(a) t = 2000 (b) t = 20 000

Figure 16. Mixed segregation: (τ1; τ2) = 5  8; 1  8 (one significant run): sat-

isfaction rate circle ≈ 0.33; satisfaction rate triangle =1.

Conclusion5.

This paper extends the classical Schelling model of spatial segregation
to a “crowded world” without vacant locations. Whereas in the clas-
sical  model  the  dynamics  lead  to  strong  segregation—that  is,  the
formation of static aggregates of satisfied agents with the same charac-
teristic—in this paper we are able to observe the emergence of shifting
aggregates marginally separated by unsatisfied agents on the move.

In  the  first  part  we  have  used  only  one  discrimination  criterion
with  two  type  values.  We  have  highlighted  an  unknown  situation  in
the  classical  model  with  vacant  locations.  Indeed,  assuming  that
agents are rather intolerant, the system weakly converges in the sense
that after a transitional phase, a very large proportion of agents is sat-
isfied and the unsatisfied agents are located at the frontier, comparable
with a narrow strip of land between two communities; this is what we
have  called  weak  segregation.  Satisfied  agents  with  the  same  type  are
aggregated in big zones that shift with time; such a global move is due
to  the  local  relocations  of  unsatisfied  agents  who  swap  places.  Let  us
note  that,  whatever  the  tolerance  is,  the  long-term  issue  is  qualita-
tively similar for the two types, so the dynamics maintain symmetry. 

In  the  second  part  we  have  used  two  discrimination  criteria  with
two primary types and two secondary types. Considering all the cases
for the two tolerance values, we have highlighted two special cases: 

◼ In  the  first  case,  agents  are  rather  intolerant  for  the  primary  criterion
and, by varying the tolerance for the secondary criterion, we observed a
sudden  transitional  phase;  before  the  threshold  there  is  no  segregation,
while after it there is weak segregation. 
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◼ The  second  case  corresponds  to  a  particular  setting  where  agents  are
tolerant for the primary criterion and intolerant for the secondary crite-
rion. As in the long term the future of the two primary populations dif-
fers, we observed a symmetry break: there is strong segregation for one
main  type  and  weak  segregation  for  the  other;  this  is  what  we  have
called mixed segregation.

In  the  future  we  project  to  further  the  present  work  in  the  follow-
ing  ways:  (i)  study  more  than  two  criteria;  (ii)  refine  the  concept  of
frontier  in  relation  with  the  notion  of  multilevel  discrimination  crite-
ria; (iii) study the possibility for two opposite groups to communicate
across  their  common  frontier;  (iv)  deepen  the  relation  between  weak
segregation and phase transition; and (v) deepen the relation between
mixed segregation and symmetry breaking. 
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