
A Measure for the Complexity of
Elementary Cellular Automata

Thorsten Ewert

Lübeck, Germany
tewert@web.de

A new measure for the complexity of elementary cellular automata
(ECAs) is presented. This measure is based on the minimization of
Boolean functions with three variables that represent the elementary cel-
lular automaton (ECA) rules. The minimized Boolean functions reduce
the number of input bits of the truth table, which is equivalent to the
rule table of an ECA. This results in a fractalized number of Boolean
variables that are equal to the state variables of a dynamic system. Fur-
thermore, the dynamic nature of complexity in ECAs is considered.
Therefore, a new method of defining and deriving the complexity of all
256 ECA rules given in bits is proposed. The results then can be
described, classified and grouped. As for other continuous or discrete
dynamic systems, the complexity grows with the number and the usage
of the state variables. In ECAs, the numbers of the effective state vari-
ables range from 0 to 3, resulting in four classes of behavior.

Keywords: complexity; measure; elementary cellular automaton

Introduction1.

Cellular automata (CAs) were first introduced as a mathematical
model for biological self-replication phenomena by von Neumann in
the early 1950s and published after his death by Burks [1]. Nowa-
days, CAs are also mathematical models used to simulate complex
systems or processes. Using extensive computer simulation, Wolfram
classified CAs in his book A New Kind of Science [2] into four classes
according to the qualitative behavior of their evolution (see [2, Chap-
ter 6, pp. 231–235]). Later on he resorted them into class I (uniform
state, low complexity), class II (repetitive or stable state, low complex-
ity), class IV (local complexity, repetitive, intermediate complexity)
and class III (global complexity, chaotic, great complexity). He wrote:
“For while class 4 is above class 3 in terms of apparent complexity, it
is in a sense intermediate between class 2 and 3 in terms of what one
might think of as overall activity” (see [2, Chapter 6, p. 242]). So the
notation of complexity in dynamic systems is still vague, for continu-
ous dynamic systems as well as for discrete systems like CAs.

Since then, many alternative classification systems have been devel-
oped. They all attempt to classify the dynamic behavior and/or the

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

complexity of the 256 rules of the one-dimensional elementary
(binary) cellular automaton (CA) rule set with a neighborhood of
three bits. Regarding complexity, there are two well-known frame-
works for algorithmic complexity. The first is the algorithmic infor-
mation theory with the Kolmogorov complexity. It uses the uniform
model of a Turing machine for computation. The second is the com-
putational complexity theory that quantifies the amount of resources
needed to solve an algorithmic problem, that is, time and storage
(space) or the amount of communication, the number of inputs and
gates used in circuit complexity or the number of processors. Compu-
tational complexity theory uses a nonuniform model of computation.

The framework based on algorithmic information theory led to
attempts to classify CAs with the quantification of entropies (e.g.,
Shannon’s block entropy) or data compression. But as the
Kolmogorov complexity is known to be incomputable and unstable,
only methods for approximations can be applied, making the algorith-
mic complexity K of the algorithmic information theory semi-com-
putable. To approximate the Kolmogorov complexity, a data string of
the output of an algorithm is analyzed to find the entropies included
or the possibility to compress the output data. The known methods
are, for example, the lossless compression method (see [3, 4]), the cod-
ing theorem method or the block decomposition method. These meth-
ods can be applied without knowing the underlying algorithm of the
elementary cellular automaton (ECA) rule itself. That is an advantage,
because the exact algorithms for a system of interest are not always
known, but there is almost always a possibility to get some output
data to analyze. The disadvantage of these methods is that the results
(e.g., a compression ratio) only indirectly show that the complexity of
the underlying algorithm has a high or a low complexity, whatever
the length or the structure of that algorithm may be. Another problem
is the instability that leads to slightly different results using different
methods of compression and/or definitions of entropy.

But if the underlying algorithm or function of a system of interest
is known, another way of analyzing its complexity is possible. For
those systems, the methods of the computational complexity theory
can be applied. The method described in this paper will give a mea-
sure that is based on the complexity of Boolean functions, which is
closely related to the definition of circuit size complexity. It will use
the equivalence of ECAs and Boolean functions to manipulate the
truth table of the rules with Boolean algebra to find their complexity
in bits.

An analytical complexity index based on the truth tables of the rule
set was first suggested by Chua [5]. There the complexity of a CA rule
N is equal to the minimum number of parallel planes that are neces-
sary to separate the colored vertices of his Boolean cube representa-

220 T. Ewert

Complex Systems, 28 © 2019

tion of the lookup table of the rule. This results in four classes (0 to 3)
ranging from zero complexity at 0 to the maximum index of 3 with
the highest complexity. Chua also managed to transform all rules of
the rule set into difference equations with a binary output. The four
complexity classes are then reflected in the complexity of the underly-
ing difference equation (e.g., the necessary number of brackets). There
are many examples, in which the Chua index matches with the
dynamic complexity of the spatiotemporal patterns of the CA. For
example, K  0 can be matched with a uniform state (rule 0), K  1
shows repetitive patterns of low complexity (rule 15), K  2 shows
universal computation (rule 110) and K  3 shows chaotic patterns
of high complexity (rule 150). However, this does not hold for all of
the 256 rules, so even rules with a Chua index of K  2 or K  3 can
also exhibit simple behavior.

To overcome the limitations of the Chua index, this paper presents
a new method to define the complexity of the underlying Boolean
functions of the ECA rules. In theoretical computer science, circuit
complexity is a branch of computational complexity theory in which
Boolean functions are classified according to the size or depth of
Boolean circuits that compute them. One speaks of the circuit com-
plexity of a Boolean circuit. Any Boolean circuit with x input nodes
realizes some Boolean function F. The circuit size complexity of a
function F is then the minimum number of gates in any realization of
F. The minimization of the gates is motivated by building a circuit as
effectively and cheaply as possible in hardware. In this paper, the
circuit complexity itself is not an appropriate measure, but the
techniques of Boolean algebra, which normally reduce the size of a cir-
cuit, will be used and modified to define a new complexity measure
for ECAs.

It is known that every Boolean function can be reduced by apply-
ing Boolean algebra or, for example, with the help of a Karnaugh
map. Boolean functions and their complexity have been investigated
for a long time, at least since Shannon’s 1949 paper [6]. But it seems
that the results have not yet been fully exploited to classify the com-
plexity of discrete (or continuous) dynamic systems. This paper tries
to fill that gap. The method that will be presented—in addition to the
work of Chua—not only uses minimization techniques but also takes
into account that in a dynamic system such as an ECA, the complex-
ity is not always constant in time.

Elementary Cellular Automata2.

The simplest ECA rule space with the capability of universal computa-
tion is one dimensional, binary and follows the nearest-neighbor rules
(r  1, k  3) with three coupled bits as variables. Cook and

A Measure for the Complexity of ECAs 221

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

Wolfram proved that rule 110 is Turing complete, that is, a universal
computer.

Despite the simplicity of this ECA rule space, an ECA is far from
being a trivial model for a dynamical system. A one-dimensional
string with a number of n cells (e.g., with periodic boundaries) makes
a transition at each time step according to a set of n locally coupled
groups of three cells, which act as variables. Therefore we have to
deal globally with an n-dimensional spatiotemporal complexity where
collective phenomena occur, like in coupled oscillators, lasers or net-
works. Locally the state space of the lookup table of each rule is three
dimensional (three bits as state variables A, B, C) with input intersec-
tions for each bit of output (see Section 2.2).

For example, in laser physics the complex dynamic behavior is
described by the model of “mode competition.” The modes of a laser
resonator all experience optical amplification in the same gain
medium, for example, a laser crystal, in which they spatially overlap
to a significant extent. This leads to the phenomenon of mode compe-
tition or gain competition. So different modes experience amplifica-
tion in the same gain medium, and this leads to cross-saturation
effects, where stimulated emission by one mode causes gain saturation
not only for itself, but also for the other modes. This also leads to the
phenomenon that the power distribution over several modes is
unstable. According to ECA rules, there is the one-dimensional binary
string as the global medium, which is populated by the locally cou-
pled k  3 bits neighborhoods. These k-blocks are then exposed to
competition.

Another related model is the coupled map lattice that has nontriv-
ial properties like space-time mixing. It is also important to distin-
guish between conservative and dissipative behavior in ECA rules.

The Wolfram Code 2.1

Since there are 2⨯2⨯2  23  8 possible binary states for the three
cells neighboring a given cell, there are a total of 28  256 ECA rules,
each of which can be indexed with an eight-bit binary number,
known as the Wolfram code (see Figure 1).

The elementary algorithm for the transition of a string from time
step t to t + 1 consists of a set of eight groups of three coupled cells
(A, B, C) that define the state of one next cell. The three cells can be
interpreted as three coupled variables in a dynamic system. Variables
that can only have two states are indeed the minimal version of a vari-
able, because with only one state it would be a constant. So these
three variables define a three-dimensional state space, which should
not be confused with the “physical” dimensionality of one-dimen-
sional ECAs, describing the number of dimensions of the space where

222 T. Ewert

Complex Systems, 28 © 2019

the automaton takes place. To analyze dynamic systems it is normal
to use the notation of the state space, or the phase space for continu-
ous systems.

In ECAs, this discrete three-dimensional state space is very com-
pact and therefore consists only of 3 bits * 8  24 bits for each rule.

The algorithm shown in Figure 1 that is determining the output of
the eight groups of cells is often called the “lookup table.”

Figure 1. The Wolfram code, indexing the lookup table (or rule table, or truth
table).

The Self-Replicating String2.2

The ECA can also be interpreted as a model of an abstract self-replica-
tion. Not as a universal constructor in the sense of von Neumann, but
as an automaton that is constituted by groups of three cells and per-
manently produces those groups of three cells at each time step.

The shortest possible string for the automaton would be a string
with three bits (with periodic boundary conditions) as an input string
leading to a three-bit output. But then not only one, but all three bits
would be completely self-referential. So the minimum string length
with the normal one output bit referencing to the first group of three
bits and then two bits with overlapping groups is five bits long. For
clarity, only one group of three bits is shown in Figure 2. The com-
plete string, of course, would consist of five bits, with five groups of
three bits that intersect each other. So each ECA of a string length of
n cells with periodic boundary conditions is an automaton that basi-
cally takes n groups of three bits and transforms them into new n
groups of three bits. After a transformation, the number of the eight
different possible groups of three bits can be changed or can stay the
same. This fact leads to the important concept of the input entropy or
k-block variance coming up next.

Figure 2. Self-replication of a three-bit group.

A Measure for the Complexity of ECAs 223

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

Finally, it should be said that ECAs are very sensitive to the length
of the number of cells used for the one-dimensional bit string. Testing
with random initial values showed that at least 137 bits are needed to
show the typical behavior for each rule.

From the Input Entropy to the k-Block Variance 2.3

If a string of 137 bit values is used to test the behavior of an ECA
rule, the evolution of 137 groups of three bits can be studied. With
random initial states for each cell at the beginning (t  0), the number

of lookups of the eight k-blocks will be statistically 137  8 ≈ 17 per

k-block for the first time step. But as the automaton evolves, the num-
ber of lookups per k-block can change and so the frequencies of each
k-block must be considered.

The concept of input entropy was introduced by Wuensche in [7]
to classify the behavior of ECAs. He traced the number of all eight
k-blocks for each time step in a histogram he called the “lookup fre-
quency.” Then he defined the Shannon entropy of this frequency dis-
tribution as the input entropy. In highly ordered dynamics, he found
that after a transient period some k-blocks are never looked at (so
their lookup frequency is 0). This means that some k-blocks will die
out for certain rules, just like the modes in laser physics.

For the calculation of the complexity in this paper, the information
about what k-blocks are actually used in a certain rule is vital. So it is
useful to number the k-blocks and to analyze which one dies out and
which one survives the “k-block competition.” Figure 3 shows the
example of rule 3, where one k-block dies out after the transient
regime of N time steps. This new use of Wuensche’s lookup frequency
is called the k-block variance of a rule.

(a)

224 T. Ewert

Complex Systems, 28 © 2019

(b)

Figure 3. (a) Frequency evolution of the k-blocks of rule 3. Length of bit
string is 513 bits; sum of k-blocks is 513 at each time step. (b) k-block vari-
ance of rule 3.

Regarding the definition of complexity used in this paper, the anal-
ysis of which k-blocks are actually looked up for a given time step can
shrink the content of information of the k-block group from the ini-
tial 24 bits at a level of three bits per k-block. In this case it would be
24 bits minus 3 bits, resulting in 21 bits.

The Information Loss of a Rule: Conservative and Dissipative

Behavior of Elementary Cellular Automata

2.4

The possibility of a rule losing information due to the k-blocks that
die out after N time steps (see Figure 3(b)) will be essential for the
next section. This important phenomenon will be called “information
loss” in this paper. Together with the minimization method based on
Boolean algebra and presented later on, the complexity of a rule as a
minimized Boolean function can be defined.

But regarding dynamical systems, another important analogy can
be spotted. In dynamic systems theory, there is a fundamental differ-
ence between conservative (Hamiltonian systems) and dissipative sys-
tems. Conservative systems do not lose energy, and so the volume of
the phase space is preserved. Conservative systems also do not have
attractors. In contrast to that, dissipative systems do lose energy, and
so the volume of the phase space shrinks. The dynamic of such a sys-
tem then evolves to an attractor state.

In ECAs, the eight k-blocks are defining the 24-bit state space.
Every loss of a k-block is an information loss, and so it shrinks the
available state space for a certain rule. With respect to dynamic sys-
tems, this could be called “information dissipation.” A rule that loses
no k-blocks during its evolution will therefore be called “information
conservative.”

A Measure for the Complexity of ECAs 225

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

Defining a Measure for the Complexity of Elementary Cellular
Automata as Minimized Boolean Functions

3.

In this section, the explicit method of defining and calculating the
complexity C(r) of an ECA rule as a Boolean function is presented.

To calculate this kind of complexity of an ECA rule, three steps are
necessary. These steps will be described in detail next. The central
idea is the observation that the 24-bit state space of the lookup table
can be minimized (or “fractalized”) for each rule and each time step.

Because of the evolution of each rule in time, the calculation of the
complexity has to be done at the first time step (t  1) and at a time
step when the resulting attractor regime is reached (t ≫ 100). If
the complexity does not change over time, it will be called an informa-
tion-conservative rule and if the value shrinks, it will be called an
information-dissipative rule.

A fractal state space (or phase space) is a well-known phenomenon
in complex dynamical systems. But the usage in ECAs for describing
their complexity is new.

The complexity C(r) of a rule r as a Boolean function is given by
the minimum number of input bits Ibit in each rule. The upper bound

for an ECA rule is therefore given by 24 bits and the lower bounds
have to be calculated for every rule:

C(r)  min(ibit(r)). (1)

To do this, the following three steps are carried out.

Minimization of the Truth Table at t  13.1

To find the minimum input bits of the truth table as a representation
form of a Boolean function, a rule as a function of three variables

FA, B, C  r is transformed into the canonical forms of the sum of

products (SoP, also known as minterm expansion) and the product of
sums (PoS, also known as the maxterm expansion). These two canoni-
cal forms can then be minimized by Boolean algebra.

Figure 4 shows the example of the truth table of rule 234 and its
canonical form of SoP and PoS on the left, and the minimized form
on the right. This minimization can be done with Boolean algebra or,
for example, with the help of a Karnough map. The superfluous bits
are then grayed out. The complexity of the input is therefore reduced
from 24 bits to seven bits without losing information about the cor-
rect output.

In circuit theory, this minimal form is called the circuit complexity,
because it leads to a circuit in hardware with the least numbers of
inputs and gates. Normally the minimal form of minterms or the mini-
mal form of maxterms is chosen to build a circuit. But in this paper,

226 T. Ewert

Complex Systems, 28 © 2019

the focus is not on building circuits but on the minimal version of the
truth table, so min- and maxterms are both used and transformed
back into the corresponding minimized truth table shown on the right
of Figure 4.

Figure 4. Detecting irrelevant data from the input variables of the truth table
(grayed out in right table).

And of course this form can then be transformed into a fractalized
ECA rule table as shown in Figure 5.

Figure 5. Minimization of rule 234, short term, in the form of a rule table (or
lookup table).

Information Loss: Detecting the Long-Term k-Block Variance for
Dynamic Minimization

3.2

In the second step, the long-term evolution of a rule and its informa-
tion loss is considered. This information loss is acting like a damping
factor in a dissipative dynamic system.

To do this, the initial conditions for all rules should be chosen as a
random bit string at the beginning (t  0) with a length of at least
137 bits and periodic boundary conditions. Then in rule 234, all k-
blocks except k-block eight die out in less than 100 time steps
(Figure�6). So their input and output bits can be crossed out. The

A Measure for the Complexity of ECAs 227

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

input and output patterns that do not occur anymore are called a
“don’t-care term” in digital logic. It is an input sequence for which
the function output does not matter. In logic design, the don’t-care
conditions are important to consider in minimizing logic circuit
design, using Karnaugh maps and the Quine–McCluskey algorithm.
Don’t-care optimizations can also be used for size-optimized assembly
or machine code. Especially in a Karnough map, these conditions can
then be exploited for further minimization.

Figure 6. Loss of seven k-blocks at t ≫ 100 in rule 234 that satisfy the don’t-
care condition.

Minimization of the Truth Table at t≫ 100 Including

Information Loss

3.3

The third step reflects the information loss and also uses the don’t-
care terms for minimization (Figure 7).

So finally, the long-term computational complexity is 0 bits. In this
case, the formula for the Boolean function does not even have any
input variables any more. The output is always the constant bit 1.

The fractalized long-term rule table of the ECA now looks as
shown in Figure 8.

Figure 7. Removing the bits from the don’t-care terms for final minimization.

228 T. Ewert

Complex Systems, 28 © 2019

Figure 8. Long-term minimization of rule 234 in the form of a rule table,
lookup table.

An Example of the Complexity of a Certain Rule in Short 3.4

As the main focus is on the complexity of the rule tables of ECAs, Fig-
ure 9 shows a short version of the complexity of rule 3 (see example
of Figure 3(b)) containing only the results in the form of the rule
tables.

Figure 9. Complexity C(r) of rule 3.

For the complete list of the determination of the complexity of all
88 rules, see Appendix A.

Proof3.5

To prove the fact that the compressed forms of the rules for the short-
term behavior (t  1) and for the long-term behavior (t ≫ 100) are
indeed a lossless representation of the original algorithm, simply
apply the reduced lookup tables to a string at t  1 and t ≫ 100 and

A Measure for the Complexity of ECAs 229

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

check if the output of the given rule 3 (or any other rule) is exactly
the same, using only the reduced amount of bits of information.

Clustering of the Rule Space and Its Selected 88 Independent
Rules and Their Properties

4.

The 34 Clusters and the Properties of the Rules 4.1

Because of symmetries in the rule space of the ECAs, only 88 funda-
mentally different rules (out of 256) do exist. These 88 rules are ana-
lyzed in detail, and are clustered in 34 groups of attractors. Figure 10
shows the four classes and the groups that can be derived from the
complexity of the rules. Figure 10 mainly shows the clusters. This
means that the rules in every column evolve to exactly the same mini-
mized truth table. Figure 11 then assigns the properties of each rule.

The Four Classes of Elementary Cellular Automata (First
Column)

4.1.1

The classification into four classes is analytically based on the dimen-
sionality of the minimized state space (input of the truth table) of
each rule. The calculation of the complexity of the rules shows that
the usage of the k-block bits can be separated into rules that trivially
use 0 bits of information of the input string (class 0). Then there are
rules that only use one variable of the k-blocks (class 1). The third
class uses a maximum of two variables (class 2). The fourth and most
complex class uses all three variables at least in one k-block (class 3).

The less complex rules of class 3 only use fractals of each k-block,
but in sum at least one bit of the variables A, B and C is used. The
two most complex rules of class 3, rules 105 and 150, use all 24 bits
of the three-dimensional state space and are therefore irreducible
regarding their truth table. On the other extreme, the class 0 rules are
the simplest. They show no complexity at all. Then class 1 only
exhibits trivial repetitive behavior of linear dynamic systems. Class 2
shows periodic behavior as well as low-dimensional chaos (fully devel-
oped two-dimensional chaos) in rules 195 and 165, and therefore can
be called the “threshold of complexity.” Finally, class 3 shows peri-
odic behavior but is also exclusively capable of periodic orbits > 2.
The chaos rules (orbit  ∞) develop from fractal chaos (with small
periodic windows) to the fully developed three-dimensional chaos of
rules 105 and 150. In comparison to the two-dimensional chaos,
three-dimensional chaos is the high-dimensional chaos of ECAs. The
alternation in class 3 between ordered, self-organized patterns and
chaos is a typical behavior in spatiotemporal extended high-dimen-
sional complex dynamic systems. See [8, 9].

230 T. Ewert

Complex Systems, 28 © 2019

Figure 10. The 34 attractor clusters of the 88 independent rules, long-term
behavior.

A Measure for the Complexity of ECAs 231

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

Figure 11. Short form of Figure 10, not showing the clusters but the proper-
ties of the rules.

232 T. Ewert

Complex Systems, 28 © 2019

The Fractal Dimension of the State Space (Second and Third

Columns)
4.1.2

Besides the classification in four classes, the fractal dimension D of
the algorithmic state space (“ASS”) is defined as:

DASS  C(r)  nKBC, (2)

with C(r) as the complexity of the minimized Boolean function in bits
divided by nKBC as the number of remaining k-blocks of the com-

pressed lookup table. k-blocks that die out are not counted:

DASS2  C(r)  (nKBC + nKBD). (3)

In addition to equation (2), nKBD is the number of k-blocks that die

out. So the dimensionality index is reduced and takes into account
that the die outs make the output simpler.

The Information Loss of a Rule (Fourth Column) 4.1.3

There are 26 information-conservative (cons.) and 62 information-
dissipative (diss.) rules, as shown in Figure 11. The number behind
the dissipative marker shows the number of k-blocks that die out.

The Complexity C(r) in Bits (Fifth and Sixth Columns) 4.1.4

This column of Figure 11 gives the complexity C(r) of the lookup
table in bits (as defined in equation (3)), first for the short-term behav-
ior (t  1) and then for the long-term behavior (t ≫ 100).

The Periodicity of the Rules (Seventh Column) 4.1.5

Regarding the periodicity of the stable and unstable orbits, Figure 11
shows:

Stable periodic orbit 0: 8 rules

Stable periodic orbit 1: 34 rules

Stable periodic orbit 2: 8 rules

Stable periodic orbits 1 and 2: 18 rules

Stable periodic orbits > 2 and < ∞: 8 rules

Unstable periodic orbits  ∞: 12 rules (10 rules high-dim.,
2 rules low-dim. chaos)

As in other complex dynamical systems, the unstable periodic orbits
(also known as UPOs) are forming the skeleton of the chaotic rules.

Nested Elementary Cellular Automata4.1.6

Note that the ECA as an example for a CA with the neighborhood
k  3 contains the simpler CAs with k  0, k  1 and k  2. In Fig-
ure 10, these 14 nested rules are colored red for k  0, green for
k  1 and blue for k  2. In detail, these 14 rules consist of nine blue
rules of exclusively k  2, plus the nested four green rules plus the

A Measure for the Complexity of ECAs 233

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

nested one red rule, which gives the sum of 14 rules of k  2. Analo-
gously, k  1 (green plus red) are five rules and k  0 is only one
rule. As 14 rules are an uncommon number for k  2, it should be
mentioned that the embedding consists of three rule sets of 16 rules
each (48 rules) and analogously to the reduction of the 256 rules of
k  3, the removing of symmetric and superfluous rules leads to only
14 embedded rules.

The remaining 74 black rules all belong exclusively to the k  3
neighborhood and cannot be found in simpler CAs. It is interesting to
see that most of them are forced back into class 2, class 1 or even
class 0 behaviors via attractors. Only the color-marked 18 out of the
88 rules of class 3 also exhibit complex class 3 behavior; that means
periodic orbits > 2, or high-dimensional chaos.

Comparisons of the Classes of Figure 10 with Other Indexes

and Methods

4.2

Comparison with the Chua Index4.2.1

In [5] Chua gives a complexity index k for each rule.

The original index classification of Chua only consists of three
classes because classes 0 and 1 were summarized. With respect to the
long-term behaviors, it seems to be better to define an additional
index of 0, because there are zero separation planes for the Boolean
cube for rules 0 and 255 according to the definition of Chua. So the
modification starts with four classes and reassigns the rules that can
be simplified in their long-term behavior. For example, rule 8 equals
rule 0 after a sufficient amount of time steps and therefore is migrated
from class 1 to class 0. Rule 24 equals rule 240 migrated to class 1
and rule 27 equals rule 25 from class 2.

The resulting structure of the classification shown in Figure 12
matches the suggested classification of this paper very well. As the
index classification is an integer, the fractal separation of the classes is
a little vague. So class 2 could also mean: greater than class 1 and
smaller than class 3, like in the classification of Figure 10.

Comparison with the Lossless Compression Method 4.2.2

In comparison with the results of the lossless compression (NC) of the
output strings in [3], there is a relatively good match in terms of
classification. For example, the compression rate of rule 105 is 1.0
(i.e., full incompressibility) and therefore an indicator for high com-
plexity. The rate of rule 128 is 0.14 and represents a group of eight
rules with the highest compression rate (lowest complexity). Rule 4
has a rate of 0.26 and is slightly more complex, and rule 25 with a
rate of 0.64 shows an intermediate complexity. For a complete com-
parison, see Figure 13.

234 T. Ewert

Complex Systems, 28 © 2019

Figure 12. Original and modified Chua index classification.

Figure 13. Comparison norm. C(r) with lossless compression method (NC),
BDM and block entropy; green background indicating a good match and red
background showing no match.

There are also differences between the complexities of certain rules.
But that could also be an artifact of the method or the compression

A Measure for the Complexity of ECAs 235

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

algorithm, because the compression of the output data makes no
direct reference to the underlying code.

Comparison with the Block Decomposition Method and the

Block Entropy

4.2.3

The block decomposition method (BDM) also shows a relatively good
match. For example, rule 110 exhibits an intermediate complexity,
rule 2 a low complexity and rule 128 a very low complexity. But in
comparison to the lossless compression method, the overall matching
is a little bit inferior. The block entropy has the least agreement, but
still has many matches, like rule 94 having intermediate complexity,
rule 51 having low complexity and rule 128 having one of the lowest
complexities. Figure 13 shows the complete comparison.

Conclusion5.

In this paper a new method is presented to calculate the complexity of
cellular automata rules. Its analytical defined complexity C(r) for each
rule can directly be given by the number of relevant bits of the under-
lying input algorithm.

As a result, the former assumption that chaotic rules are the most
complex rules can be confirmed for fully developed two- and three-
dimensional chaos.

In spite of their simplicity, the 88 independent elementary cellular
automata (ECAs) exhibit an amazing variety of complex behavior. It
incorporates high- and low-dimensional chaos as well as information-
dissipative and information-conservative behavior.

Another important result is the universal use for at least the class
of cellular automata (CAs). The model can easily be applied to larger
neighborhoods or/and more states, totalistic CAs or CAs in two or
three space dimensions. So in the future, the steps to almost infinite
complexity can be defined analytically.

Because of the fact that there are many tools to calculate the mini-
mized forms of Boolean functions, the analysis of the complexity of
Boolean functions with more than three variables can be computed
automatically. But as the number of variables grows, the number of
rules will become so big that this will soon be a challenging task for
any supercomputer. Another challenge will be the transformation of
the given definition of complexity from Boolean systems into discrete
systems with continuous variables (modeled by difference equations)
and continuous systems (modeled by differential equations or partial
differential equations).

The primary goal of this paper was to make the term of complexity
more precise for dynamic systems. The meaning of the word complex-

236 T. Ewert

Complex Systems, 28 © 2019

ity is often described as “interwoven” or “hard to describe.” In the
context of dynamic systems, the meaning of complexity was not (or
still is not) clear at all. The given method to calculate an analytical
form of complexity now can answer the questions concerning what
makes a complex dynamic system complex and why a complex sys-
tem is in fact harder to describe than a simple one. The big advantage
in comparison to the complexity given in algorithmic information the-
ory is a better understanding of where the complexity originally
comes from. It is the algorithmic use of the three input variables as
state variables in their possible combinations. The fewer bits used, the
lower the complexity.

So the author hopes that this work makes a valuable contribution
to the foundations of complexity science, namely the notation of com-
plexity for dynamic systems itself.

Acknowledgments

The author wants to thank Hector Zenil, Andrew Wuensche and
Leon Chua for many useful suggestions, corrections and inspirations.

References

[1] J. von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966.

[2] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[3] H. Zenil and E. Villarreal-Zapata, “Asymptotic Behavior and Ratios of
Complexity in Cellular Automata,” International Journal of Bifurcation
and Chaos, 23(9), 2013 1350159. doi:10.1142/S0218127413501599.

[4] H. Zenil, “Compression-Based Investigation of the Dynamical Proper-
ties of Cellular Automata and Other Systems,” Complex Systems, 19(1),
2010 pp. 1–28. complex-systems.com/pdf/19-1-1.pdf.

[5] L. O. Chua, S. Yoon and R. Dogaru, “A Nonlinear Dynamics Perspec-
tive of Wolfram’s New Kind of Science. Part I: Threshold of Complex-
ity,” International Journal of Bifurcation and Chaos, 12(12), 2002
pp.�2655–2766. doi:10.1142/S0218127402006333.

[6] C. E. Shannon, “The Synthesis of Two-Terminal Switching Circuits,”
The Bell System Technical Journal, 28(1), 1949 pp. 59–98.
doi:10.1002/j.1538-7305.1949.tb03624.x.

[7] A. Wuensche, “Classifying Cellular Automata Automatically: Finding
Gliders, Filtering, and Relating Space-Time Patterns, Attractor Basins,

A Measure for the Complexity of ECAs 237

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.1142/S0218127413501599
http://complex-systems.com/pdf/19-1-1.pdf
https://doi.org/10.1142/S0218127402006333
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.25088/ComplexSystems.28.2.219

and the Z Parameter,” Complexity, 4(3), 1999 pp. 47–66.
doi:10.1002/(SICI)1099-0526(199901/02)4:3%3C47::
AID-CPLX9%3E3.0.CO;2-V.

[8] R.-H. Du, S.-X. Qu and Y.-C. Lai, “Transition to High-Dimensional
Chaos in Nonsmooth Dynamical Systems,” Physical Review E, 98(5),
2018 052212. doi:10.1103/PhysRevE.98.052212.

[9] T. Huang, X. Cong, H. Zhang, S. Ma and G. Pan, “Pattern Self-Organi-
zation and Pattern Transition on the Route to Chaos in a Spatiotempo-
ral Discrete Predator-Prey System,” Advances in Difference Equations,
2018(1), 2018 175. doi:10.1186/s13662-018-1598-7.

Appendix

Computational Complexity C(r) of All 88 RulesA.

The following figures show the complete list of all 88 qualitatively dif-
ferent rules of ECA. The form of presenting the evolution of the com-
plexity from the original to the minimized rule (after many time steps)
is equal to the form shown in Figure 9 as an example, and the rules
are sorted by the 34 attractor clusters shown in Figure 10 in the main
article. Therefore, the list starts with cluster 1 and rule 43 and ends
with cluster 34 and rule 51.

The rules with similar or equal long-term behaviors are grouped
together. Furthermore, the first 39 rules visually show the asymmetry
of the chiral rules and the last 49 rules the symmetry of the amphichi-
ral ones, in their use of the fractal parts of the k-blocks.

In every attractor cluster the complexity rises monotonically, but
the clusters themselves are not sorted by complexity. They represent
the symmetric properties of a symmetry group of four sets of 88 rules
that intersect each other and build the 256 ECA rules. The most com-
plex rules therefore can be found at the end of clusters 22 and 30
(rule 105 and 150).

Appendix A is available at

wpmedia.wolfram.com/uploads/sites/13/2019/06/28-2-4-Appendix.pdf

and is included in full at

wpmedia.wolfram.com/uploads/sites/13/2019/06/28-2-4.pdf

238 T. Ewert

Complex Systems, 28 © 2019

https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3%3C47::AID-CPLX9%3E3.0.CO;2-V
https://doi.org/10.1103/PhysRevE.98.052212
https://doi.org/10.1186/s13662-018-1598-7
https://wpmedia.wolfram.com/uploads/sites/13/2019/06/28-2-4-Appendix.pdf
https://wpmedia.wolfram.com/uploads/sites/13/2019/06/28-2-4.pdf

Appendix: A Measure for the Complexity of ECAs 1

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

2 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 3

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

4 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 5

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

6 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 7

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

8 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 9

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

10 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 11

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

12 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 13

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

14 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 15

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

16 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 17

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

18 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 19

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

20 T. Ewert

Complex Systems, 28 © 2019

Appendix: A Measure for the Complexity of ECAs 21

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219

22 T. Ewert

Complex Systems, 28 © 2019

