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A  new  measure  for  the  complexity  of  elementary  cellular  automata
(ECAs)  is  presented.  This  measure  is  based  on  the  minimization  of
Boolean functions with three variables that represent the elementary cel-
lular  automaton  (ECA)  rules.  The  minimized  Boolean  functions  reduce
the  number  of  input  bits  of  the  truth  table,  which  is  equivalent  to  the
rule  table  of  an  ECA.  This  results  in  a  fractalized  number  of  Boolean
variables that are equal to the state variables of a dynamic system. Fur-
thermore,  the  dynamic  nature  of  complexity  in  ECAs  is  considered.
Therefore, a new method of defining and deriving the complexity of all
256  ECA  rules  given  in  bits  is  proposed.  The  results  then  can  be
described,  classified  and  grouped.  As  for  other  continuous  or  discrete
dynamic systems, the complexity grows with the number and the usage
of  the  state  variables.  In  ECAs,  the  numbers  of  the  effective  state  vari-
ables range from 0 to 3, resulting in four classes of behavior. 
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Introduction1.

Cellular  automata  (CAs)  were  first  introduced  as  a  mathematical
model  for  biological  self-replication  phenomena  by  von  Neumann  in
the  early  1950s  and  published  after  his  death  by  Burks  [1].  Nowa-
days,  CAs  are  also  mathematical  models  used  to  simulate  complex
systems  or  processes.  Using  extensive  computer  simulation,  Wolfram
classified CAs in his book A New Kind of Science [2] into four classes
according to the qualitative behavior of their evolution (see [2, Chap-
ter  6,  pp.  231–235]).  Later  on  he  resorted  them  into  class  I  (uniform
state, low complexity), class II (repetitive or stable state, low complex-
ity),  class  IV  (local  complexity,  repetitive,  intermediate  complexity)
and class III (global complexity, chaotic, great complexity). He wrote:
“For while class 4 is above class 3 in terms of apparent complexity, it
is in a sense intermediate between class 2 and 3 in terms of what one
might think of as overall activity” (see [2, Chapter 6, p. 242]). So the
notation of complexity in dynamic systems is still vague, for continu-
ous dynamic systems as well as for discrete systems like CAs. 

Since then, many alternative classification systems have been devel-
oped.  They  all  attempt  to  classify  the  dynamic  behavior  and/or  the
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complexity  of  the  256  rules  of  the  one-dimensional  elementary
(binary)  cellular  automaton  (CA)  rule  set  with  a  neighborhood  of
three  bits.  Regarding  complexity,  there  are  two  well-known  frame-
works  for  algorithmic  complexity.  The  first  is  the  algorithmic  infor-
mation  theory  with  the  Kolmogorov  complexity.  It  uses  the  uniform
model  of  a  Turing  machine  for  computation.  The  second  is  the  com-
putational  complexity  theory  that  quantifies  the  amount  of  resources
needed  to  solve  an  algorithmic  problem,  that  is,  time  and  storage
(space)  or  the  amount  of  communication,  the  number  of  inputs  and
gates used in circuit complexity or the number of processors. Compu-
tational complexity theory uses a nonuniform model of computation. 

The  framework  based  on  algorithmic  information  theory  led  to
attempts  to  classify  CAs  with  the  quantification  of  entropies  (e.g.,
Shannon’s  block  entropy)  or  data  compression.  But  as  the
Kolmogorov  complexity  is  known  to  be  incomputable  and  unstable,
only methods for approximations can be applied, making the algorith-
mic  complexity  K  of  the  algorithmic  information  theory  semi-com-
putable. To approximate the Kolmogorov complexity, a data string of
the  output  of  an  algorithm  is  analyzed  to  find  the  entropies  included
or  the  possibility  to  compress  the  output  data.  The  known  methods
are, for example, the lossless compression method (see [3, 4]), the cod-
ing theorem method or the block decomposition method. These meth-
ods  can  be  applied  without  knowing  the  underlying  algorithm  of  the
elementary cellular automaton (ECA) rule itself. That is an advantage,
because  the  exact  algorithms  for  a  system  of  interest  are  not  always
known,  but  there  is  almost  always  a  possibility  to  get  some  output
data to analyze. The disadvantage of these methods is that the results
(e.g., a compression ratio) only indirectly show that the complexity of
the  underlying  algorithm  has  a  high  or  a  low  complexity,  whatever
the length or the structure of that algorithm may be. Another problem
is  the  instability  that  leads  to  slightly  different  results  using  different
methods of compression and/or definitions of entropy. 

But  if  the  underlying  algorithm  or  function  of  a  system  of  interest
is  known,  another  way  of  analyzing  its  complexity  is  possible.  For
those  systems,  the  methods  of  the  computational  complexity  theory
can  be  applied.  The  method  described  in  this  paper  will  give  a  mea-
sure  that  is  based  on  the  complexity  of  Boolean  functions,  which  is
closely  related  to  the  definition  of  circuit  size  complexity.  It  will  use
the  equivalence  of  ECAs  and  Boolean  functions  to  manipulate  the
truth  table  of  the  rules  with  Boolean  algebra  to  find  their  complexity
in bits. 

An analytical complexity index based on the truth tables of the rule
set was first suggested by Chua [5]. There the complexity of a CA rule
N  is  equal  to  the  minimum  number  of  parallel  planes  that  are  neces-
sary  to  separate  the  colored  vertices  of  his  Boolean  cube  representa-
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tion of the lookup table of the rule. This results in four classes (0 to 3)
ranging  from  zero  complexity  at  0  to  the  maximum  index  of  3  with
the  highest  complexity.  Chua  also  managed  to  transform  all  rules  of
the  rule  set  into  difference  equations  with  a  binary  output.  The  four
complexity classes are then reflected in the complexity of the underly-
ing difference equation (e.g., the necessary number of brackets). There
are  many  examples,  in  which  the  Chua  index  matches  with  the
dynamic  complexity  of  the  spatiotemporal  patterns  of  the  CA.  For
example,  K  0  can  be  matched  with  a  uniform  state  (rule  0),  K  1
shows  repetitive  patterns  of  low  complexity  (rule  15),  K  2  shows
universal  computation  (rule  110)  and  K  3  shows  chaotic  patterns
of  high  complexity  (rule  150).  However,  this  does  not  hold  for  all  of
the 256 rules, so even rules with a Chua index of K  2 or K  3 can
also exhibit simple behavior. 

To overcome the limitations of the Chua index, this paper presents
a  new  method  to  define  the  complexity  of  the  underlying  Boolean
functions  of  the  ECA  rules.  In  theoretical  computer  science,  circuit
complexity  is  a  branch  of  computational  complexity  theory  in  which
Boolean  functions  are  classified  according  to  the  size  or  depth  of
Boolean  circuits  that  compute  them.  One  speaks  of  the  circuit  com-
plexity  of  a  Boolean  circuit.  Any  Boolean  circuit  with  x  input  nodes
realizes  some  Boolean  function  F.  The  circuit  size  complexity  of  a
function F is then the minimum number of gates in any realization of
F. The minimization of the gates is motivated by building a circuit as
effectively  and  cheaply  as  possible  in  hardware.  In  this  paper,  the
circuit  complexity  itself  is  not  an  appropriate  measure,  but  the
techniques of Boolean algebra, which normally reduce the size of a cir-
cuit,  will  be  used  and  modified  to  define  a  new  complexity  measure
for ECAs. 

It  is  known  that  every  Boolean  function  can  be  reduced  by  apply-
ing  Boolean  algebra  or,  for  example,  with  the  help  of  a  Karnaugh
map.  Boolean  functions  and  their  complexity  have  been  investigated
for a long time, at least since Shannon’s 1949 paper [6]. But it seems
that  the  results  have  not  yet  been  fully  exploited  to  classify  the  com-
plexity  of  discrete  (or  continuous)  dynamic  systems.  This  paper  tries
to fill that gap. The method that will be presented—in addition to the
work  of  Chua—not  only  uses  minimization  techniques  but  also  takes
into account that in a dynamic system such as an ECA, the complex-
ity is not always constant in time. 

Elementary Cellular Automata2.

The simplest ECA rule space with the capability of universal computa-
tion is one dimensional, binary and follows the nearest-neighbor rules
(r  1,  k  3)  with  three  coupled  bits  as  variables.  Cook  and
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Wolfram proved that rule 110 is Turing complete, that is, a universal
computer. 

Despite  the  simplicity  of  this  ECA  rule  space,  an  ECA  is  far  from
being  a  trivial  model  for  a  dynamical  system.  A  one-dimensional
string with a number of n cells (e.g., with periodic boundaries) makes
a  transition  at  each  time  step  according  to  a  set  of  n  locally  coupled
groups  of  three  cells,  which  act  as  variables.  Therefore  we  have  to
deal globally with an n-dimensional spatiotemporal complexity where
collective  phenomena  occur,  like  in  coupled  oscillators,  lasers  or  net-
works. Locally the state space of the lookup table of each rule is three
dimensional (three bits as state variables A, B, C) with input intersec-
tions for each bit of output (see Section 2.2). 

For  example,  in  laser  physics  the  complex  dynamic  behavior  is
described by the model of “mode competition.” The modes of a laser
resonator  all  experience  optical  amplification  in  the  same  gain
medium,  for  example,  a  laser  crystal,  in  which  they  spatially  overlap
to a significant extent. This leads to the phenomenon of mode compe-
tition  or  gain  competition.  So  different  modes  experience  amplifica-
tion  in  the  same  gain  medium,  and  this  leads  to  cross-saturation
effects, where stimulated emission by one mode causes gain saturation
not only for itself, but also for the other modes. This also leads to the
phenomenon  that  the  power  distribution  over  several  modes  is
unstable. According to ECA rules, there is the one-dimensional binary
string  as  the  global  medium,  which  is  populated  by  the  locally  cou-
pled  k  3  bits  neighborhoods.  These  k-blocks  are  then  exposed  to
competition. 

Another  related  model  is  the  coupled  map  lattice  that  has  nontriv-
ial  properties  like  space-time  mixing.  It  is  also  important  to  distin-
guish between conservative and dissipative behavior in ECA rules. 

The Wolfram Code 2.1

Since  there  are  2⨯2⨯2  23  8  possible  binary  states  for  the  three
cells neighboring a given cell, there are a total of 28  256 ECA rules,
each  of  which  can  be  indexed  with  an  eight-bit  binary  number,
known as the Wolfram code (see Figure 1). 

The  elementary  algorithm  for  the  transition  of  a  string  from  time
step  t  to  t + 1  consists  of  a  set  of  eight  groups  of  three  coupled  cells
(A,  B,  C)  that  define  the  state  of  one  next  cell.  The  three  cells  can  be
interpreted  as  three  coupled  variables  in  a  dynamic  system.  Variables
that can only have two states are indeed the minimal version of a vari-
able,  because  with  only  one  state  it  would  be  a  constant.  So  these
three  variables  define  a  three-dimensional  state  space,  which  should
not  be  confused  with  the  “physical”  dimensionality  of  one-dimen-
sional ECAs, describing the number of dimensions of the space where
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the  automaton  takes  place.  To  analyze  dynamic  systems  it  is  normal
to use the notation of the state space, or the phase space for continu-
ous systems. 

In  ECAs,  this  discrete  three-dimensional  state  space  is  very  com-
pact and therefore consists only of 3 bits * 8  24 bits for each rule. 

The algorithm shown in Figure 1 that is determining the output of
the eight groups of cells is often called the “lookup table.” 

Figure 1. The Wolfram code, indexing the lookup table (or rule table, or truth
table). 

The Self-Replicating String2.2

The ECA can also be interpreted as a model of an abstract self-replica-
tion. Not as a universal constructor in the sense of von Neumann, but
as  an  automaton  that  is  constituted  by  groups  of  three  cells  and per-
manently produces those groups of three cells at each time step. 

The  shortest  possible  string  for  the  automaton  would  be  a  string
with three bits (with periodic boundary conditions) as an input string
leading to a three-bit output. But then not only one, but all three bits
would  be  completely  self-referential.  So  the  minimum  string  length
with the normal one output bit referencing to the first group of three
bits  and  then  two  bits  with  overlapping  groups  is  five  bits  long.  For
clarity,  only  one  group  of  three  bits  is  shown  in  Figure  2.  The  com-
plete  string,  of  course,  would  consist  of  five  bits,  with  five  groups  of
three bits that intersect each other. So each ECA of a string length of
n  cells  with  periodic  boundary  conditions  is  an  automaton  that  basi-
cally  takes  n  groups  of  three  bits  and  transforms  them  into  new  n
groups  of  three  bits.  After  a  transformation,  the  number  of  the  eight
different  possible  groups  of  three  bits  can  be  changed  or  can  stay  the
same. This fact leads to the important concept of the input entropy or
k-block variance coming up next. 

Figure 2. Self-replication of a three-bit group. 
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Finally, it should be said that ECAs are very sensitive to the length
of the number of cells used for the one-dimensional bit string. Testing
with random initial values showed that at least 137 bits are needed to
show the typical behavior for each rule. 

From the Input Entropy to the k-Block Variance 2.3

If  a  string  of  137  bit  values  is  used  to  test  the  behavior  of  an  ECA
rule,  the  evolution  of  137  groups  of  three  bits  can  be  studied.  With
random initial states for each cell at the beginning (t  0), the number

of  lookups  of  the  eight  k-blocks  will  be  statistically  137  8 ≈ 17  per

k-block for the first time step. But as the automaton evolves, the num-
ber of lookups per k-block can change and so the frequencies of each
k-block must be considered. 

The  concept  of  input  entropy  was  introduced  by  Wuensche  in  [7]
to  classify  the  behavior  of  ECAs.  He  traced  the  number  of  all  eight
k-blocks  for  each  time  step  in  a  histogram  he  called  the  “lookup  fre-
quency.”  Then  he  defined  the  Shannon  entropy  of  this  frequency  dis-
tribution  as  the  input  entropy.  In  highly  ordered  dynamics,  he  found
that  after  a  transient  period  some  k-blocks  are  never  looked  at  (so
their  lookup  frequency  is  0).  This  means  that  some  k-blocks  will  die
out for certain rules, just like the modes in laser physics. 

For the calculation of the complexity in this paper, the information
about what k-blocks are actually used in a certain rule is vital. So it is
useful to number the k-blocks and to analyze which one dies out and
which  one  survives  the  “k-block  competition.”  Figure  3  shows  the
example  of  rule  3,  where  one  k-block  dies  out  after  the  transient
regime of N time steps. This new use of Wuensche’s lookup frequency
is called the k-block variance of a rule. 

(a)
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(b)

Figure 3. (a)  Frequency  evolution  of  the  k-blocks  of  rule  3.  Length  of  bit
string  is  513  bits;  sum  of  k-blocks  is  513  at  each  time  step.  (b)  k-block  vari-
ance of rule 3. 

Regarding the definition of complexity used in this paper, the anal-
ysis of which k-blocks are actually looked up for a given time step can
shrink  the  content  of  information  of  the  k-block  group  from  the  ini-
tial 24 bits at a level of three bits per k-block. In this case it would be
24 bits minus 3 bits, resulting in 21 bits. 

The Information Loss of a Rule: Conservative and Dissipative 

Behavior of Elementary Cellular Automata 

2.4

The  possibility  of  a  rule  losing  information  due  to  the  k-blocks  that
die  out  after  N  time  steps  (see  Figure  3(b))  will  be  essential  for  the
next section. This important phenomenon will be called “information
loss” in this paper. Together with the minimization method based on
Boolean algebra and presented later on, the complexity of a rule as a
minimized Boolean function can be defined. 

But  regarding  dynamical  systems,  another  important  analogy  can
be  spotted.  In  dynamic  systems  theory,  there  is  a  fundamental  differ-
ence  between  conservative  (Hamiltonian  systems)  and  dissipative  sys-
tems.  Conservative  systems  do  not  lose  energy,  and  so  the  volume  of
the  phase  space  is  preserved.  Conservative  systems  also  do  not  have
attractors. In contrast to that, dissipative systems do lose energy, and
so the volume of the phase space shrinks. The dynamic of such a sys-
tem then evolves to an attractor state. 

In  ECAs,  the  eight  k-blocks  are  defining  the  24-bit  state  space.
Every  loss  of  a  k-block  is  an  information  loss,  and  so  it  shrinks  the
available  state  space  for  a  certain  rule.  With  respect  to  dynamic  sys-
tems, this could be called “information dissipation.” A rule that loses
no k-blocks during its evolution will therefore be called “information
conservative.” 
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Defining a Measure for the Complexity of Elementary Cellular 
Automata as Minimized Boolean Functions 

3.

In  this  section,  the  explicit  method  of  defining  and  calculating  the
complexity C(r) of an ECA rule as a Boolean function is presented. 

To calculate this kind of complexity of an ECA rule, three steps are
necessary.  These  steps  will  be  described  in  detail  next.  The  central
idea  is  the  observation  that  the  24-bit  state  space  of  the  lookup  table
can be minimized (or “fractalized”) for each rule and each time step. 

Because of the evolution of each rule in time, the calculation of the
complexity  has  to  be  done  at  the  first  time  step  (t  1)  and  at  a  time
step  when  the  resulting  attractor  regime  is  reached  (t ≫ 100).  If
the complexity does not change over time, it will be called an informa-
tion-conservative  rule  and  if  the  value  shrinks,  it  will  be  called  an
information-dissipative rule. 

A fractal state space (or phase space) is a well-known phenomenon
in  complex  dynamical  systems.  But  the  usage  in  ECAs  for  describing
their complexity is new. 

The  complexity  C(r)  of  a  rule  r  as  a  Boolean  function  is  given  by
the minimum number of input bits Ibit  in each rule. The upper bound

for  an  ECA  rule  is  therefore  given  by  24  bits  and  the  lower  bounds
have to be calculated for every rule: 

C(r)  min(ibit(r)). (1)

To do this, the following three steps are carried out. 

Minimization of the Truth Table at t  13.1

To find the minimum input bits of the truth table as a representation
form  of  a  Boolean  function,  a  rule  as  a  function  of  three  variables

FA, B, C  r  is  transformed  into  the  canonical  forms  of  the  sum  of

products (SoP, also known as minterm expansion) and the product of
sums (PoS, also known as the maxterm expansion). These two canoni-
cal forms can then be minimized by Boolean algebra. 

Figure  4  shows  the  example  of  the  truth  table  of  rule  234  and  its
canonical  form  of  SoP  and  PoS  on  the  left,  and  the  minimized  form
on the right. This minimization can be done with Boolean algebra or,
for  example,  with  the  help  of  a  Karnough  map.  The  superfluous  bits
are then grayed out. The complexity of the input is therefore reduced
from  24  bits  to  seven  bits  without  losing  information  about  the  cor-
rect output. 

In circuit theory, this minimal form is called the circuit complexity,
because  it  leads  to  a  circuit  in  hardware  with  the  least  numbers  of
inputs and gates. Normally the minimal form of minterms or the mini-
mal  form  of  maxterms  is  chosen  to  build  a  circuit.  But  in  this  paper,
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the focus is not on building circuits but on the minimal version of the
truth  table,  so  min-  and  maxterms  are  both  used  and  transformed
back into the corresponding minimized truth table shown on the right
of Figure 4. 

Figure 4. Detecting  irrelevant  data  from  the  input  variables  of  the  truth  table
(grayed out in right table). 

And of course this form can then be transformed into a fractalized
ECA rule table as shown in Figure 5. 

Figure 5. Minimization of rule 234, short term, in the form of a rule table (or
lookup table). 

Information Loss: Detecting the Long-Term k-Block Variance for 
Dynamic Minimization 

3.2

In  the  second  step,  the  long-term  evolution  of  a  rule  and  its  informa-
tion loss is considered. This information loss is acting like a damping
factor in a dissipative dynamic system. 

To do this, the initial conditions for all rules should be chosen as a
random  bit  string  at  the  beginning  (t  0)  with  a  length  of  at  least
137  bits  and  periodic  boundary  conditions.  Then  in  rule  234,  all  k-
blocks  except  k-block  eight  die  out  in  less  than  100  time  steps
(Figure�6).  So  their  input  and  output  bits  can  be  crossed  out.  The
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input  and  output  patterns  that  do  not  occur  anymore  are  called  a
“don’t-care  term”  in  digital  logic.  It  is  an  input  sequence  for  which
the  function  output  does  not  matter.  In  logic  design,  the  don’t-care
conditions  are  important  to  consider  in  minimizing  logic  circuit
design,  using  Karnaugh  maps  and  the  Quine–McCluskey  algorithm.
Don’t-care optimizations can also be used for size-optimized assembly
or machine code. Especially in a Karnough map, these conditions can
then be exploited for further minimization. 

Figure 6. Loss of seven k-blocks at t ≫ 100 in rule 234 that satisfy the don’t-
care condition. 

Minimization of the Truth Table at t≫ 100 Including 

Information Loss 

3.3

The  third  step  reflects  the  information  loss  and  also  uses  the  don’t-
care terms for minimization (Figure 7). 

So finally, the long-term computational complexity is 0 bits. In this
case,  the  formula  for  the  Boolean  function  does  not  even  have  any
input variables any more. The output is always the constant bit 1. 

The  fractalized  long-term  rule  table  of  the  ECA  now  looks  as
shown in Figure 8. 

Figure 7. Removing the bits from the don’t-care terms for final minimization. 
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Figure 8. Long-term  minimization  of  rule  234  in  the  form  of  a  rule  table,
lookup table. 

An Example of the Complexity of a Certain Rule in Short 3.4

As the main focus is on the complexity of the rule tables of ECAs, Fig-
ure  9  shows  a  short  version  of  the  complexity  of  rule  3  (see  example
of  Figure  3(b))  containing  only  the  results  in  the  form  of  the  rule
tables. 

Figure 9. Complexity C(r) of rule 3. 

For  the  complete  list  of  the  determination  of  the  complexity  of  all
88 rules, see Appendix A. 

Proof3.5

To prove the fact that the compressed forms of the rules for the short-
term  behavior  (t  1)  and  for  the  long-term  behavior  (t ≫ 100)  are
indeed  a  lossless  representation  of  the  original  algorithm,  simply
apply the reduced lookup tables to a string at t  1 and t ≫ 100 and
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check  if  the  output  of  the  given  rule  3  (or  any  other  rule)  is  exactly
the same, using only the reduced amount of bits of information. 

Clustering of the Rule Space and Its Selected 88 Independent 
Rules and Their Properties 

4.

The 34 Clusters and the Properties of the Rules 4.1

Because  of  symmetries  in  the  rule  space  of  the  ECAs,  only  88  funda-
mentally different rules (out of 256) do exist. These 88 rules are ana-
lyzed in detail, and are clustered in 34 groups of attractors. Figure 10
shows  the  four  classes  and  the  groups  that  can  be  derived  from  the
complexity  of  the  rules.  Figure  10  mainly  shows  the  clusters.  This
means that the rules in every column evolve to exactly the same mini-
mized truth table. Figure 11 then assigns the properties of each rule. 

The Four Classes of Elementary Cellular Automata (First 
Column) 

4.1.1

The classification into four classes is analytically based on the dimen-
sionality  of  the  minimized  state  space  (input  of  the  truth  table)  of
each  rule.  The  calculation  of  the  complexity  of  the  rules  shows  that
the  usage  of  the  k-block  bits  can  be  separated  into  rules  that  trivially
use  0  bits  of  information  of  the  input  string  (class  0).  Then  there  are
rules  that  only  use  one  variable  of  the  k-blocks  (class  1).  The  third
class uses a maximum of two variables (class 2). The fourth and most
complex class uses all three variables at least in one k-block (class 3). 

The less complex rules of class 3 only use fractals of each k-block,
but  in  sum  at  least  one  bit  of  the  variables  A,  B  and  C  is  used.  The
two most complex rules of class 3, rules 105 and 150, use all 24 bits
of  the  three-dimensional  state  space  and  are  therefore  irreducible
regarding their truth table. On the other extreme, the class 0 rules are
the  simplest.  They  show  no  complexity  at  all.  Then  class  1  only
exhibits  trivial  repetitive  behavior  of  linear  dynamic  systems.  Class  2
shows periodic behavior as well as low-dimensional chaos (fully devel-
oped two-dimensional chaos) in rules 195 and 165, and therefore can
be  called  the  “threshold  of  complexity.”  Finally,  class  3  shows  peri-
odic  behavior  but  is  also  exclusively  capable  of  periodic  orbits  > 2.
The  chaos  rules  (orbit  ∞)  develop  from  fractal  chaos  (with  small
periodic  windows)  to  the  fully  developed  three-dimensional  chaos  of
rules  105  and  150.  In  comparison  to  the  two-dimensional  chaos,
three-dimensional  chaos  is  the  high-dimensional  chaos  of  ECAs.  The
alternation  in  class  3  between  ordered,  self-organized  patterns  and
chaos  is  a  typical  behavior  in  spatiotemporal  extended  high-dimen-
sional complex dynamic systems. See [8, 9]. 
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Figure 10. The  34  attractor  clusters  of  the  88  independent  rules,  long-term
behavior. 

A Measure for the Complexity of ECAs 231

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219


Figure 11. Short  form  of  Figure  10,  not  showing  the  clusters  but  the  proper-
ties of the rules. 
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The Fractal Dimension of the State Space (Second and Third 

Columns) 
4.1.2

Besides  the  classification  in  four  classes,  the  fractal  dimension  D  of
the algorithmic state space (“ASS”) is defined as: 

DASS  C(r)  nKBC, (2)

with C(r) as the complexity of the minimized Boolean function in bits
divided  by  nKBC  as  the  number  of  remaining  k-blocks  of  the  com-

pressed lookup table. k-blocks that die out are not counted: 

DASS2  C(r)  (nKBC + nKBD). (3)

In addition to equation (2), nKBD is the number of k-blocks that die

out.  So  the  dimensionality  index  is  reduced  and  takes  into  account
that the die outs make the output simpler. 

The Information Loss of a Rule (Fourth Column) 4.1.3

There  are  26  information-conservative  (cons.)  and  62  information-
dissipative  (diss.)  rules,  as  shown  in  Figure  11.  The  number  behind
the dissipative marker shows the number of k-blocks that die out. 

The Complexity C(r) in Bits (Fifth and Sixth Columns) 4.1.4

This  column  of  Figure  11  gives  the  complexity  C(r)  of  the  lookup
table in bits (as defined in equation (3)), first for the short-term behav-
ior (t  1) and then for the long-term behavior (t ≫ 100). 

The Periodicity of the Rules (Seventh Column) 4.1.5

Regarding  the  periodicity  of  the  stable  and  unstable  orbits,  Figure  11
shows: 

Stable periodic orbit 0: 8 rules

Stable periodic orbit 1: 34 rules

Stable periodic orbit 2: 8 rules

Stable periodic orbits 1 and 2: 18 rules

Stable periodic orbits > 2 and < ∞: 8 rules

Unstable periodic orbits  ∞: 12 rules (10 rules high-dim., 
2 rules low-dim. chaos) 

As  in  other  complex  dynamical  systems,  the  unstable  periodic  orbits
(also known as UPOs) are forming the skeleton of the chaotic rules. 

Nested Elementary Cellular Automata4.1.6

Note  that  the  ECA  as  an  example  for  a  CA  with  the  neighborhood
k  3  contains  the  simpler  CAs  with  k  0,  k  1  and  k  2.  In  Fig-
ure  10,  these  14  nested  rules  are  colored  red  for  k  0,  green  for
k  1 and blue for k  2. In detail, these 14 rules consist of nine blue
rules  of  exclusively  k  2,  plus  the  nested  four  green  rules  plus  the

A Measure for the Complexity of ECAs 233

https://doi.org/10.25088/ComplexSystems.28.2.219

https://doi.org/10.25088/ComplexSystems.28.2.219


nested one red rule, which gives the sum of 14 rules of k  2. Analo-
gously,  k  1  (green  plus  red)  are  five  rules  and  k  0  is  only  one
rule.  As  14  rules  are  an  uncommon  number  for  k  2,  it  should  be
mentioned  that  the  embedding  consists  of  three  rule  sets  of  16  rules
each  (48  rules)  and  analogously  to  the  reduction  of  the  256  rules  of
k  3, the removing of symmetric and superfluous rules leads to only
14 embedded rules. 

The  remaining  74  black  rules  all  belong  exclusively  to  the  k  3
neighborhood and cannot be found in simpler CAs. It is interesting to
see  that  most  of  them  are  forced  back  into  class  2,  class  1  or  even
class  0  behaviors  via  attractors.  Only  the  color-marked  18  out  of  the
88  rules  of  class  3  also  exhibit  complex  class  3  behavior;  that  means
periodic orbits > 2, or high-dimensional chaos. 

Comparisons of the Classes of Figure 10 with Other Indexes 

and Methods 

4.2

Comparison with the Chua Index4.2.1

In [5] Chua gives a complexity index k for each rule. 

The  original  index  classification  of  Chua  only  consists  of  three
classes because classes 0 and 1 were summarized. With respect to the
long-term  behaviors,  it  seems  to  be  better  to  define  an  additional
index  of  0,  because  there  are  zero  separation  planes  for  the  Boolean
cube  for  rules  0  and  255  according  to  the  definition  of  Chua.  So  the
modification  starts  with  four  classes  and  reassigns  the  rules  that  can
be  simplified  in  their  long-term  behavior.  For  example,  rule  8  equals
rule 0 after a sufficient amount of time steps and therefore is migrated
from  class  1  to  class  0.  Rule  24  equals  rule  240  migrated  to  class  1
and rule 27 equals rule 25 from class 2. 

The  resulting  structure  of  the  classification  shown  in  Figure  12
matches  the  suggested  classification  of  this  paper  very  well.  As  the
index classification is an integer, the fractal separation of the classes is
a  little  vague.  So  class  2  could  also  mean:  greater  than  class  1  and
smaller than class 3, like in the classification of Figure 10. 

Comparison with the Lossless Compression Method 4.2.2

In comparison with the results of the lossless compression (NC) of the
output  strings  in  [3],  there  is  a  relatively  good  match  in  terms  of
classification.  For  example,  the  compression  rate  of  rule  105  is  1.0
(i.e.,  full  incompressibility)  and  therefore  an  indicator  for  high  com-
plexity.  The  rate  of  rule  128  is  0.14  and  represents  a  group  of  eight
rules  with  the  highest  compression  rate  (lowest  complexity).  Rule  4
has  a  rate  of  0.26  and  is  slightly  more  complex,  and  rule  25  with  a
rate  of  0.64  shows  an  intermediate  complexity.  For  a  complete  com-
parison, see Figure 13. 
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Figure 12. Original and modified Chua index classification. 

Figure 13. Comparison  norm.  C(r)  with  lossless  compression  method  (NC),
BDM and block entropy; green background indicating a good match and red
background showing no match. 

There are also differences between the complexities of certain rules.
But  that  could  also  be  an  artifact  of  the  method  or  the  compression
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algorithm,  because  the  compression  of  the  output  data  makes  no
direct reference to the underlying code. 

Comparison with the Block Decomposition Method and the 

Block Entropy 

4.2.3

The block decomposition method (BDM) also shows a relatively good
match.  For  example,  rule  110  exhibits  an  intermediate  complexity,
rule  2  a  low  complexity  and  rule  128  a  very  low  complexity.  But  in
comparison  to  the  lossless  compression  method,  the  overall  matching
is  a  little  bit  inferior.  The  block  entropy  has  the  least  agreement,  but
still  has  many  matches,  like  rule  94  having  intermediate  complexity,
rule 51 having low complexity and rule 128 having one of the lowest
complexities. Figure 13 shows the complete comparison. 

Conclusion5.

In this paper a new method is presented to calculate the complexity of
cellular automata rules. Its analytical defined complexity C(r) for each
rule can directly be given by the number of relevant bits of the under-
lying input algorithm. 

As  a  result,  the  former  assumption  that  chaotic  rules  are  the  most
complex  rules  can  be  confirmed  for  fully  developed  two-  and  three-
dimensional chaos. 

In  spite  of  their  simplicity,  the  88  independent  elementary  cellular
automata  (ECAs)  exhibit  an  amazing  variety  of  complex  behavior.  It
incorporates high- and low-dimensional chaos as well as information-
dissipative and information-conservative behavior. 

Another  important  result  is  the  universal  use  for  at  least  the  class
of cellular automata (CAs). The model can easily be applied to larger
neighborhoods  or/and  more  states,  totalistic  CAs  or  CAs  in  two  or
three  space  dimensions.  So  in  the  future,  the  steps  to  almost  infinite
complexity can be defined analytically. 

Because of the fact that there are many tools to calculate the mini-
mized  forms  of  Boolean  functions,  the  analysis  of  the  complexity  of
Boolean  functions  with  more  than  three  variables  can  be  computed
automatically.  But  as  the  number  of  variables  grows,  the  number  of
rules  will  become  so  big  that  this  will  soon  be  a  challenging  task  for
any  supercomputer.  Another  challenge  will  be  the  transformation  of
the  given  definition  of  complexity  from  Boolean  systems  into  discrete
systems  with  continuous  variables  (modeled  by  difference  equations)
and  continuous  systems  (modeled  by  differential  equations  or  partial
differential equations). 

The primary goal of this paper was to make the term of complexity
more precise for dynamic systems. The meaning of the word complex-
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ity  is  often  described  as  “interwoven”  or  “hard  to  describe.”  In  the
context  of  dynamic  systems,  the  meaning  of  complexity  was  not  (or
still  is  not)  clear  at  all.  The  given  method  to  calculate  an  analytical
form  of  complexity  now  can  answer  the  questions  concerning  what
makes  a  complex  dynamic  system  complex  and  why  a  complex  sys-
tem is in fact harder to describe than a simple one. The big advantage
in comparison to the complexity given in algorithmic information the-
ory  is  a  better  understanding  of  where  the  complexity  originally
comes  from.  It  is  the  algorithmic  use  of  the  three  input  variables  as
state variables in their possible combinations. The fewer bits used, the
lower the complexity.

So  the  author  hopes  that  this  work  makes  a  valuable  contribution
to the foundations of complexity science, namely the notation of com-
plexity for dynamic systems itself. 
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Appendix

Computational Complexity C(r) of All 88 RulesA.

The following figures show the complete list of all 88 qualitatively dif-
ferent rules of ECA. The form of presenting the evolution of the com-
plexity from the original to the minimized rule (after many time steps)
is  equal  to  the  form  shown  in  Figure  9  as  an  example,  and  the  rules
are sorted by the 34 attractor clusters shown in Figure 10 in the main
article.  Therefore,  the  list  starts  with  cluster  1  and  rule  43  and  ends
with cluster 34 and rule 51. 

The  rules  with  similar  or  equal  long-term  behaviors  are  grouped
together. Furthermore, the first 39 rules visually show the asymmetry
of the chiral rules and the last 49 rules the symmetry of the amphichi-
ral ones, in their use of the fractal parts of the k-blocks.

In  every  attractor  cluster  the  complexity  rises  monotonically,  but
the  clusters  themselves  are  not  sorted  by  complexity.  They  represent
the symmetric properties of a symmetry group of four sets of 88 rules
that intersect each other and build the 256 ECA rules. The most com-
plex  rules  therefore  can  be  found  at  the  end  of  clusters  22  and  30
(rule 105 and 150).

Appendix A is available at

wpmedia.wolfram.com/uploads/sites/13/2019/06/28-2-4-Appendix.pdf

and is included in full at

wpmedia.wolfram.com/uploads/sites/13/2019/06/28-2-4.pdf
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