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A new system of artificial life called Lenia (from Latin lenis “smooth”),
a  two-dimensional  cellular  automaton  with  continuous  spacetime  state
and generalized local rule, is reported. Computer simulations show that
Lenia  supports  a  great  diversity  of  complex  autonomous  patterns  or
“life  forms”  bearing  resemblance  to  real-world  microscopic  organisms.
More than 400 species in 18 families have been identified, many discov-
ered  via  interactive  evolutionary  computation.  They  differ  from  other
cellular  automata  patterns  in  being  geometric,  metameric,  fuzzy,
resilient, adaptive and rule generic. 

Basic observations of the system are presented regarding the proper-
ties  of  spacetime  and  basic  settings.  A  broad  survey  of  the  life  forms  is
provided and categorized into a hierarchical taxonomy, and their distri-
bution  is  mapped  in  the  parameter  hyperspace.  Their  morphological
structures  and  behavioral  dynamics  are  described,  and  possible  mecha-
nisms  of  their  self-organization,  self-direction  and  plasticity  are  pro-
posed.  Finally,  the  study  of  Lenia  and  how  it  would  be  related  to
biology, artificial life and artificial intelligence is discussed. 
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Introduction1.

Among  the  long-term  goals  of  artificial  life  are  to  simulate  existing
biological  life  and  to  create  new  life  forms  using  artificial  systems.
These  are  expressed  in  the  14  open  problems  in  artificial  life  [1],  in
which number three is of particular interest here:

Determine  whether  fundamentally  novel  living  organizations
can exist. 

There have been numerous efforts to create and study novel mathe-
matical systems that are capable of simulating complex lifelike dynam-
ics.  Examples  include  particle  systems  like  swarm  chemistry  [2],
primordial  particle  systems  (PPS)  [3],  reaction-diffusion  systems  like
the U-Skate World [4], cellular automata like the Game of Life (GoL)
[5],  elementary  cellular  automata  (ECAs)  [6],  evolutionary  systems
like  virtual  creatures  [7]  and  soft  robots  [8,  9].  These  systems  have  a
common  theme—let  there  be  countless  modules  or  particles  and
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(often localized) interactions among them, and a complex system with
interesting  autonomous  patterns  will  emerge,  just  like  how  life
emerged on Earth 4.28 billion years ago [10]. 

Life  can  be  defined  as  the  capabilities  of  self-organizing  (morpho-
genesis),  self-regulating  (homeostasis),  self-directing  (motility),  self-
replicating  (reproduction),  entropy  reduction  (metabolism),  growth
(development),  response  to  stimuli  (sensitivity),  response  to  environ-
ment  (adaptability)  and  evolving  through  mutation  and  selection
(evolvability)  (e.g.,  [11–14]).  Artificial  life  systems  are  able  to  repro-
duce  some  of  these  capabilities  with  various  levels  of  fidelity.  Lenia,
the subject of this paper, is able to achieve many of them, except self-
replication, which is yet to be discovered. 

Lenia  also  captures  a  few  subjective  characteristics  of  life,  like
vividness, fuzziness, aesthetic appeal and the great diversity and subtle
variety in patterns that a biologist would have the urge to collect and
catalog.  If  there  is  some  truth  in  the  biophilia  hypothesis  [15]  that
humans are innately attracted to nature, it may not be too far-fetched
to suggest that these subjective experiences are not merely feelings but
among the essences of life as we know it. 

Due to similarities between life on Earth and Lenia, we borrow ter-
minologies and concepts from biology, like taxonomy (corresponds to
categorization),  binomial  nomenclature  (naming),  ecology  (parameter
space),  morphology  (structures),  behavior  (dynamics),  physiology
(mechanisms)  and  allometry  (statistics).  We  also  borrow  spacetime
(grid  and  time  step)  and  fundamental  laws  (local  rule)  from  physics.
With  a  few  caveats,  these  borrowings  are  useful  in  providing  a  more
intuitive  characterization  of  the  system  and  may  facilitate  discussions
on  how  Lenia  or  similar  systems  could  give  answers  to  life  [16],  the
universe [17] and everything. 

Background  1.1

A cellular automaton (CA, plural: cellular automata, CAs) is a mathe-
matical system where a grid of sites, each having a particular state at
a  moment,  is  being  updated  repeatedly  according  to  a  local  rule  and
each  site’s  neighboring  sites.  Since  its  conception  by  von  Neumann
and  Ulam  [18,  19],  various  CAs  have  been  investigated,  the  most
famous  being  Wolfram’s  one-dimensional  elementary  cellular
automata (ECA) [6, 17] and Conway’s two-dimensional Game of Life
(GoL) [5, 20]. GoL is the starting point that Lenia came from. It pro-
duces  a  whole  universe  of  interesting  patterns  [21]  ranging  from  sim-
ple  “still  lifes,”  “oscillators”  and  “spaceships”  to  complex  constructs
like  pattern  emitters,  self-replicators  and  even  fully  operational  com-
puters, thanks to its Turing completeness [22]. 
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Several aspects of GoL can be generalized. A discrete singular prop-
erty  (e.g.,  dead-or-alive  state)  can  be  extended  into  a  range  (multi-
state),  normalized  to  a  fractional  property  in  the  unit  range,  and
becomes  continuous  by  further  splitting  the  range  into  infinitesimals
(real  number  state).  The  local  rule  can  be  generalized  from  the  basic
ECA/GoL  style  (e.g.,  totalistic  sum)  to  smooth  parameterized  opera-
tions (weighted sum). 

By  comparing  various  CAs  that  possess  autonomous  soliton  pat-
terns,  we  observe  the  evolution  of  generalization  with  increasing
genericity and continuity (Table 1, Figure 1). This suggests that Lenia
is  currently  at  the  latest  stage  of  generalizing  GoL,  although  there
may be room for further generalizations. 

# System Type* Space Neighborhood N. Sum 

1 ECA, GoL CA singular nearest cube totalistic 

2 continuous ECA CA singular nearest cube totalistic 

3 continuous GoL EA continuous continuous ball totalistic 

4 Primordia CA singular nearest cube totalistic 

5 Larger-than-Life CA / GCA fractional extended cube totalistic 

6 RealLife EA continuous continuous cube totalistic 

7 SmoothLife GCA fractional extended shell totalistic 

8 discrete Lenia GCA fractional extended ball weighted 

9 continuous Lenia EA continuous continuous ball weighted 

# References and notes Growth Update Time State 

1 [17, 5] intervals replace singular singular 

2 [17] mapping replace singular continuous 

3 [23] mapping replace singular continuous 

4 † intervals replace singular extended 

5 [24, 25] intervals replace singular singular 

6 [26] intervals replace singular singular 

7 [27]‡ intervals increment fractional fractional 

8 mapping increment fractional fractional 

9 mapping increment continuous continuous 

Table 1. Comparison  of  genericity  and  continuity  in  various  CAs.  (*  GCA  

geometrical  cellular  automata,  EA    Euclidean  automata,  see  Section  4.
†  Primordia  is  a  precursor  to  Lenia,  written  in  JavaScript/HTML  by  the
author  circa  2005.  It  had  multi-states  and  extended  survival/birth  intervals.
‡  SmoothLife  and  Lenia,  being  independent  developments,  exhibit  striking
resemblance  in  system  and  generated  patterns.  This  can  be  considered  an
instance of “convergent evolution.”)
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Figure 1. Patterns  in  artificial  life  systems:  (a–b,  e–g)  CAs,  (c)  reaction-diffu-
sion and (d) particle swarm. (↑  orthogonal; ↗   diagonal;  •↗  omnidirec-
tional;  scale  bar  is  unit  length    kernel  radius).  (a)  GoL:  “glider.”
(b)  Primordia:  “DX:8/762.”  (c)  U-Skate  World:  “jellyfish”  [28].  (d)  Swarm
chemistry:  “fast  walker  &  slow  follower”  [29].  (e)  Larger-than-life  (LtL):
“bug  with  stomach”  using  ball  neighborhood,  “bug  with  ribbed  stomach,”
“bug  with  wings”  [30].  (f)  SmoothLife:  “smooth  glider,”  “pulsating  glider,”
“wobbly glider” [27, 31, 32]. (g) Lenia: Scutium, Kronium, Pyroscutium.

Methods2.

We  describe  the  methods  of  constructing  and  studying  Lenia,  includ-
ing  its  mathematical  definition,  computer  simulation,  strategies  of
evolving new life forms and observational and statistical analysis. 

Definitions2.1

Mathematically,  a  CA  is  defined  by  a  5-tuple  (conventionally  a

4-tuple with the timeline   omitted)   ℒ,  , , , ϕ, where ℒ is

the  d-dimensional  lattice  or  grid,    is  the  timeline,    is  the  state  set,

 ⊂ ℒ  is  the  neighborhood  of  the  origin,  and  ϕ :  →   is  the  local
rule.

Define  At : ℒ →   as  a  configuration  or  pattern  (i.e.,  collection  of
states  over  the  whole  grid)  at  time  t ∈  .  At(x)  is  the  state  of  site

x ∈ ℒ,  and  At(x)  At(n) : n ∈ x  is  the  state  collection  over  the

site’s  neighborhood  x  {x + n : n ∈ }.  The  global  rule  is
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Φ : Sℒ → Sℒ such that ΦA(x)  ϕA(x). Starting from an initial con-

figuration  A0,  the  grid  is  updated  according  to  the  global  rule  Φ  for
each time step Δt, leading to the following time evolution: 

ΦA0  AΔt, ΦAΔt  A2Δt, … , ΦAt  At+Δt, …. (1)

After N repeated updates (or generations):

ΦNAt  At+NΔt. (2)

Definition of Game of Life2.1.1

Take  GoL  as  an  example,  GoL  ℒ,  , , , ϕ,  where  ℒ  ℤ2
 is

the  two-dimensional  discrete  grid,    ℤ  is  the  discrete  timeline,

  0, 1  is  the  singular  state  set,  and    -1, 0, 1
2

 is  the  Moore

neighborhood  (Chebyshev  L∞
 norm)  including  the  site  itself  and  its

eight neighbors (Figure 2(a)). 
The totalistic neighborhood sum of site x is: 

St(x)  
n∈

At(x + n).
(3)

Every site is updated synchronously according to the local rule:

At+1(x) 

 1  if At(x)  0 and St(x) ∈ 3 birth 

 1  if At(x)  1 and St(x) ∈ 3, 4 survival 

 0  otherwise death. 

(4)

Figure 2. Neighborhoods  in  various  CAs.  (a)  Eight-site  Moore  neighborhood
in GoL. (b–d) Neighborhoods in Lenia, including (b) range R extended neigh-
borhood, (c) its normalization in discrete Lenia and (d) the unit ball neighbor-
hood in continuous Lenia.

Definition of Lenia2.1.2

Discrete  Lenia  generalizes  GoL  by  extending  and  normalizing  the
spacetime-state dimensions. Discrete Lenia is used for computer simu-
lation  and  analysis,  and  with  normalization,  patterns  from  different
dimensions can be compared. 
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The  state  set  is  extended  to   0, 1, 2, …, P  with  maximum

P ∈ ℤ. The neighborhood is extended to a discrete ball (Euclidean L2

norm)   R0  {x ∈ ℒ : x2 ≤ R} of range R ∈ ℤ (Figure 2(b)). 

To normalize, define or redefine R, T, P ∈ ℤ as the space, time and

state  resolutions,  and  their  reciprocals  Δx  1 R,  Δt  1 T,

Δp  1  P  as  the  site  distance,  time  step  and  state  precision,  respec-

tively. The dimensions are scaled by the reciprocals (Figure 2(c)): 

ℒ  Δxℤ2,   Δtℤ,   Δp0…P,   10. (5)

Continuous  Lenia  is  hypothesized  to  exist  as  the  resolutions  of
discrete Lenia approach infinity R, T, P → ∞ and the steps Δx, Δt, Δp
become  infinitesimals  dx, dt, dp;  the  dimensions  will  approach  their
continuum  limits—that  is,  the  Euclidean  space,  the  real  timeline,  the
unit  interval  states  and  the  continuous  unit  ball  neighborhood
(Figure 2(d)): 

ℒ  2,   ,   0, 1,   10. (6)

However,  there  is  a  cardinality  leap  between  the  discrete  dimen-
sions  in  discrete  Lenia  and  the  continuous  dimensions  in  continuous
Lenia.  The  existence  of  the  continuum  limit  for  space  was  proved
mathematically in [26], and our computer simulations provide empiri-
cal evidence for space and time (see Section 3.1). 

Local Rule2.1.3

To apply Lenia’s local rule to every site x at time t, convolve the grid
with a kernel K :  →  to yield the potential distribution Ut:

Ut(x) 

K *At(x)

 
n∈

K(n)At(x + n)Δx2  in discrete Lenia 

 
n∈

K(n)At(x + n)dx2  in continuous Lenia.

(7)

Feed the potential into a growth mapping G : 0, 1 → -1, 1 to yield

the growth distribution Gt:

Gt(x)  GUt(x). (8)

Update  every  site  by  adding  a  small  fraction  Δt  (dt  in  continuous

Lenia)  of  the  growth  and  clipping  back  to  the  unit  range  0, 1;  the

time is now t + Δt:

At+Δt(x)  At(x) + ΔtGt(x)0
1 (9)

where [n]a
b  minmax(n, a), b is the clip function.
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Kernel2.1.4

The  kernel K  is  constructed  by kernel  core Kc : 0, 1 → 0, 1,  which

determines  its  detailed  “texture,”  and kernel  shell Ks : 0, 1 → 0, 1,

which determines its overall “skeleton” (Figure 3(a–e)).
The  kernel  core  Kc  is  any  unimodal  function  satisfying

Kc0  Kc1  0 and usually Kc1  2  1. By taking polar distance

as an argument, it creates a uniform ring around the site: 

Kc(r) 

 exp α -
α

4r1 - r
  exponential, α  4 

 4r1 - rα  polynomial, α  4 

 1 14 ,
3
4 
(r)  rectangular 

 …  or others 

(10)

where 1A(r)  1 if r ∈ A else 0 is the indicator function.

The  kernel  shell  Ks  takes  a  parameter  vector

β  (β1, β2, … , βB) ∈ 0, 1
B

 (kernel  peaks)  of  size  B  (the  rank)  and

copies  the  kernel  core  into  equidistant  concentric  rings  with  peak
heights βi: 

Ks(r; β)  β⌊Br⌋KcBr mod 1. (11)

Figure 3. Core  functions  in  Lenia.  (a–c)  Cross  section  of  the  kernel:  kernel
core  Kc(r)  using  (a)  exponential  function,  and  kernel  shell  Ks(r; β)  with  peaks

β  1, 2  3, 1  3  using  (b)  exponential  or  (c)  rectangular  core  function.

(d) Kernel  core  and  (e)  kernel  shell  as  displayed  in  the  grid,  showing  the
“influence”  (convolution  weight)  of  the  site  on  its  neighborhood  (darker  

larger  weight,  more  influence).  (f–g)  Growth  mapping  G(u; μ, σ)  with
μ  0.3, σ  0.03 using (f) exponential or (g) rectangular function.
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Finally, the kernel is normalized to make sure K *A ∈ 0, 1:

K(n) 
Ks(n2)

Ks
(12)

where  Ks  ∑ KsΔx
2

 in  discrete  Lenia,  or  ∫Ksdx
2

 in  continuous

Lenia.
Notes on parameter β: 

◼ Comparing  β  of  different  ranks,  a  vector  β  is  equivalent  to  one  with  n

trailing  zeros  while  space  resolution  R  is  scaled  by  B + n  B  at  the

same time, for example, β  1 ≡ 1, 0, 0 with R scaled by 3. 

◼ Comparing  β  of  the  same  rank,  a  vector β  where  ∀ iβi ≠ 1  is  equivalent

to  a  scaled  one  β /max(βi)  such  that  ∃ iβi  1  while  the  kernel  remains

unchanged  due  to  normalization,  for  example,  β  1  3, 0, 2  3 ≡

1  2, 0, 1. 

◼ Consequently,  all  possible  β  as  a  B-dimensional  hypercube  can  be  pro-

jected onto its B - 1-dimensional hypersurfaces (see Figure 9).

Growth Mapping2.1.5

The  growth  mapping  G : 0, 1 → -1, 1  is  any  unimodal,  nonmono-

tonic  function  with  parameters  μ, σ ∈   (growth  center  and  growth
width) satisfying G(μ)  1 (cf., ζ( · ) in [23]) (Figure 3(f–g)):

G(u; μ, σ) 

 2 exp -
(u - μ)2

2σ2
- 1  exponential 

 2 × 1[μ±3σ](u) 1 -
(u - μ)2

9σ2

α

- 1  polynomial, α  4 

 2 × 1[μ±σ](u) - 1  rectangular 

 …  or others. 

(13)

Game of Life inside Lenia2.1.6

GoL  can  be  considered  a  special  case  of  discrete  Lenia  with
R  T  P  1, using a variant of the rectangular kernel core:

Kc(r)  1 14 ,
3
4 
(r) +

1

2
× 10, 14 

(r) (14)

and the rectangular growth mapping with μ  0.35, σ  0.07.
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Summary2.1.7

In summary, discrete and continuous Lenia are defined as: 

DL  Δxℤ2, Δtℤ, Δp0…P,

10, At+Δt ↦ At + ΔtGμ, σKβ *A
t0

1


(15)

CL 

2, , 0, 1, 10, At+dt ↦ At + dt Gμ, σKβ *A
t0

1
.

(16)

The associated dimensions are: spacetime-state resolutions R, T, P;
steps  Δx, Δt, Δp  and  infinitesimals  dx, dt, dp.  The  associated  param-
eters are: growth center μ, growth width σ and kernel peaks β of rank
B.  The  mutable  core  functions  are:  kernel  core  Kc  and  growth

mapping G. 

Evolving New Species2.2

A  self-organizing,  autonomous  pattern  in  Lenia  is  called  a  life  form,
and  a  set  of  similar  life  forms  is  called  a  species.  Up  to  the  present,
more  than  400  species  have  been  discovered.  Interactive  evolutionary
computation  (IEC)  [33]  is  the  major  force  behind  the  generation,
mutation  and  selection  of  new  species.  In  evolutionary  computation
(EC), the fitness function is usually well known and can be readily cal-
culated.  However,  in  the  case  of  Lenia,  due  to  the  nontrivial  task  of
pattern  recognition,  as  well  as  aesthetic  factors,  evolution  of  new
species often requires human interaction.

Interactive computer programs provide a user interface and utilities
for human users to carry out mutation and selection operators manu-
ally.  Mutation  operators  include  parameter  tweaking  and  configu-
ration  manipulation.  Selection  operators  include  observation  via
different  views  for  fitness  estimation  (Figure  3(c–f))  and  storage  of
promising  patterns.  Selection  criteria  include  survival,  long-term  sta-
bility, aesthetic appeal and novelty. 

Following  are  a  few  evolutionary  strategies  learned  from  experi-
menting and practicing. 

Random Generation2.2.1

Initial configurations with random patches of nonzero sites were gen-
erated  and  put  into  simulation  using  an  interactive  program.  This  is
repeated  using  different  random  distributions  and  different  parame-
ters.  Given  enough  time,  naturally  occurring  life  forms  would  emerge
from  the  primordial  soup,  for  example  Orbium,  Scutium, Paraptera
and radial symmetric patterns (Figure 4(a)).
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Figure 4. Strategies  of  evolving  new  Lenia  life  forms  using  IEC.  (a)  Random
generation:  random  initial  configuration  is  generated  (top)  and  simulation  is
run  (middle),  where  new  life  forms  were  spotted  (arrow)  and  isolated
(bottom). (b) Parameter tweaking: with an existing life form (top), parameters
are adjusted so that new morphologies or behaviors are observed (middle, bot-
tom). (c) Automatic exploration: a starting life form (top) is put into an auto-
matic program to explore wide ranges of parameters (middle), where new life
forms  were  occasionally  discovered  (arrow)  and  isolated  (bottom).  (d)  Man-
ual  mutation:  an  existing  life  form  (top)  is  modified,  here  single-side  flipped
(middle), and parameter tweaked to stabilize into a new species (bottom). 

Parameter Tweaking2.2.2

Using an existing life form, parameters were changed progressively or
abruptly, forcing the life form to die out (explode or evaporate) or sur-
vive by changing slightly or morphing into another species. Any undis-
covered  species  with  novel  structure  or  behavior  were  recorded
(Figure 4(b)).

Transient  patterns  captured  during  random  generation  could  also
be stabilized into new species in this way. 

Long-chain  life  forms  (e.g.,  Pterifera)  could  first  be  elongated  by
temporarily  increasing  the  growth  rate  (decrease  μ  or  increase  σ),
then stabilized into new species by reversing growth. Shortening could
be done in the opposite manner. 

Automatic Exploration2.2.3

Starting from an existing life form, an automatic program was used to
traverse  the  parameter  space  (i.e.,  continuous  parameter  tweaking).
All  surviving  patterns  were  recorded;  among  them  new  species  were
occasionally  found.  Currently,  automated  exploration  is  ineffective
without the aid of artificial intelligence (e.g., pattern recognition) and
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has only been used for simple conditions (rank 1, mutation by param-
eter tweaking, selection by survival) (Figure 4(c)). 

Manual Mutation2.2.4

Patterns were edited or manipulated (e.g., enlarging, shrinking, mirror-
ing,  single-side  flipping,  recombining)  using  our  interactive  program
or other numeric software and then parameter tweaked in an attempt
to stabilize into new species (Figure 4(d)). 

Analysis of Life Forms2.3
Qualitative Analysis2.3.1

By using computer simulation and visualization and taking advantage
of  the  inate  human  ability  of  spatial  and  temporal  pattern  recog-
nition,  the  physical  appearances  and  movements  of  known  species
were being observed, documented and categorized, as reported in Sec-
tions�3.4  and  3.5.  Using  an  automatic  traverse  program,  the  distribu-
tions  of  selected  species  in  the  parameter  space  were  charted,  as
reported  in  Section  3.3.  A  set  of  criteria,  based  on  the  observed  simi-
larities and differences among the known species, was devised to cate-
gorize them into a hierarchical taxonomy, as reported in Section 3.2.

Quantitative Analysis2.3.2

Statistical methods were used to analyze life forms to compensate for
the  limitations  in  human  observation  regarding  subtle  variations  and
long-term  trends.  A  number  of  statistical  measures  were  calculated
over  the  configuration  (i.e.,  mass  distribution)  A  and  the  positive-
growth distribution G G>0:

◼ Mass is the sum of states, m  ∫A(x)dx; [mg] 

◼ Volume is the number of positive states, Vm  ∫A>0dx [mm2] 

◼ Density is the overall density of states, ρm  m  Vm [mg mm-2] 

◼ Growth is the sum of positive growth, g  ∫G>0G(x)dx [mg s-1] 

◼ Centroid is the center of states, xm  ∫ xA(x)dx m 

◼ Growth center is the center of positive growth, xg  ∫G>0xG(x)dx / g 

◼ Growth-centroid  distance  is  the  distance  between  the  two  centers,

dgm  xg - xm [mm] 

◼ Linear  speed  is  the  linear  moving  rate  of  the  centroid,  sm  dxm  dt

[mm s-1] 
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◼ Angular  speed  is  the  angular  moving  rate  of  the  centroid,

ωm  d  dt argdxm  dt [rad s-1]

◼ Mass  asymmetry  is  the  mass  difference  across  the  directional  vector,

mΔ  ∫c>0A(x)dx - ∫c<0A(x)dx [mg] where c  dxm ⨯ x - xm

◼ Angular  mass  is  the  second  moment  of  mass  from  the  centroid,

Im  ∫A(x)x - xm
2dx [mg mm2] 

◼ Gyradius  is  the  root-mean-square  of  site  distances  from  the  centroid,

rm  Im m  [mm] 

◼ Others, for example, Hu’s and Flusser’s moment invariants ϕi [34, 35] 

Note:  Brackets  indicate  the  units  of  measure  borrowed  from  SI
units  in  microscopic  scale,  for  example,  “mm”  for  length,  “rad”  for
angle, “s” for time and “mg” for states (cf., “lu” and “tu” in [4]). 

Based on the multivariate time series of statistical measures, the fol-
lowing “meta-measures” could be calculated: 

◼ Summary statistics (mean, median, standard deviation, minimum, maxi-
mum, quartiles) 

◼ Quasi period (estimated using, e.g., autocorrelation, periodogram) 

◼ Degree of chaos (e.g., Lyapunov exponent, attractor dimension) 

◼ Probability of survival 

The  following  charts  were  plotted  using  various  parameters,  mea-
sures and meta-measures: 

◼ Time series chart (measure vs. time) 

◼ Phase  space  trajectory  (measure  vs.  measure)  (e.g.,  Appendix,  Fig-
ure�C.3 insets) 

◼ Allometric  chart  (meta  vs.  meta)  (e.g.,  Figure  13  and  Appendix,  Fig-
ure�C.2) 

◼ Cross-sectional chart (meta vs. parameter) (e.g., Appendix, Figure C.3) 

◼ μ-σ  map  (parameter  μ  vs.  σ;  information  as  color)  (e.g.,  Figures  8  and
Appendix, Figure C.1) 

◼ β-cube  (parameter  β  components  as  axes;  information  as  color)  (e.g.,
Figure 9) 

Over  1.2  billion  measures  were  collected  using  an  automatic  tra-
verse  program  and  analyzed  using  numeric  software  like  Microsoft
Excel. Results are presented in Section 3.6. 
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Spatiotemporal Analysis2.3.3

Constant  motions  like  translation,  rotation  and  oscillation  render
visual  analysis  difficult.  It  is  desirable  to  separate  the  spatial  and
temporal aspects of a moving pattern so as to directly assess the static
form and estimate the motion frequencies (or quasi periods).

Linear motion can be removed by autocentering, to display the pat-
tern centered at its centroid xm. 

Using temporal sampling, the simulation is displayed one frame per
N  time  steps.  When  any  rotation  is  perceived  as  near  stationary  due
to the stroboscopic effect, the rotation frequency is approximately the

sampling frequency fr ≈ fs  1  (NΔt). Calculate the sampled angular

speed  ωs  θfr  2πfr  n,  where  n  is  the  number  of  radial  symmetric

axes. Angular motion can be removed by autorotation, to display the
pattern rotated by -ωst. 

With  the  nontranslating,  nonrotating  pattern,  any  global  or  local
oscillation frequency can be determined as fo ≈ fs, again using tempo-

ral sampling. 

Results3.

Results  of  the  study  of  Lenia  will  be  outlined  in  various  sections:
Physics,  Taxonomy,  Ecology,  Morphology,  Behavior,  Physiology  and
Case Study.

Physics 3.1

We  present  general  results  regarding  the  effects  of  basic  CA  settings,
akin  to  physics,  where  one  studies  how  the  spacetime  fabric  and  fun-
damental laws influence matter and energy.

Spatial Invariance3.1.1

For  sufficiently  fine  space  resolution  (R > 12),  patterns  in  Lenia  are
minimally  affected  by  spatial  similarity  transformations  including
shift,  rotation,  reflection  and  scaling  (Figure  5(d–g)).  Shift  invariance
is  shared  by  all  homogenous  CAs;  reflection  invariance  is  enabled  by
symmetries  in  neighborhood  and  local  rule;  scale  invariance  is
enabled  by  large  neighborhoods  (as  in  LtL  [25]);  rotation  invariance
is enabled by circular neighborhoods and totalistic or polar local rules
(as  in  SmoothLife  [27]  and  Lenia).  Our  empirical  data  of  near-
constant  metrics  of  Orbium  over  various  space  resolutions  R  further
supports scale invariance in Lenia (Figure 6(a–b)).
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Figure 5. Plasticity  of  Orbium  (μ  0.15, σ  0.016)  under  various  environ-
ment  settings  and  transformations.  (Scale  bar  is  unit  length    kernel  radius,
the  same  in  all  panels).  (a)  Original  settings:  R  185,  T  10,  P > 1015

(double  precision),  exponential  core  functions.  Core  functions  changed  (b)  to
polynomial with no visible effect, (c) to rectangular produces rougher pattern.
(d)  Pattern  flipped  horizontally  or  (e)  rotated  77◦

 counterclockwise  with  no
visible  effect.  (f)  Pattern  downsampled  with  space  compressed  to  R  15
(zoomed in, inset: actual size); (g) under recovery after upsampled using near-
est-neighbor and space resolution restored to R  185, eventually recovers to
(a).  (h)  Time  compressed  to  T  5  produces  rougher  pattern;  (i)  time  dilated
to T  320 produces smoother, lower density pattern. (j) Fewer states P  10
produces rougher pattern.

Figure 6. Effects  of  spacetime  resolutions  as  experimented  with  Orbium
(μ  0.15, σ  0.016).  Each  data  point  in  (a)  and  (c)  is  averaged  across  300

time steps. Spatial invariance: for a range of space resolution R ∈ 9…55 and

fixed time resolution T  10, all statistical measures (mass m, growth g, gyra-
dius  rm,  growth-centroid  distance  dgm,  linear  speed  sm)  (a)  remain  constant

and (b) the parameter range (“niche”) remains static (total 557 loci). Tempo-
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ral  asymptosy:  for  a  range  of  time  resolution T ∈ 4…2560  and  fixed  space

resolution  R  13,  (c)  structure-related  measures  (m,  rm)  go  down  and

dynamics-related measures (g, dgm, sm) go up, reaching each continuum limit

asymptotically; (d) the parameter range expands as time dilates (dark to light
enclosures, total 14 182 loci).

Figure 7 . Biodiversity in Lenia as exemplified by the 18 Lenia families (not to
scale).  Column  1:  (O)  Orbidae,  (S)  Scutidae,  (P)  Pterifera,  (H)  Helicidae,
(K)�Kronidae, (Ct) Ctenidae. Column 2: (C) Circidae, (D) Dentidae, (L) Lapill-
idae,  (Q)  Quadridae,  (V)  Volvidae.  Column  3:  (B)  Bullidae,  (R)  Radiidae,
(F)�Folidae,  (G)  Geminidae,  (U)  Uridae.  Column  4:  (K)  Kronidae,
(E)�Echinidae, (A) Amoebidae.
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Figure 8. The μ-σ parameter space as μ-σ map, with niches of rank-1 species.
Total 142 338 loci. (legend) Corresponding names and shapes for the species
codes in the map. (inset) Wider μ-σ map showing the niche of Circium (gray
region), demonstrates the four landscapes of rule space: class 1, homogenous
desert (upper left); class 2, cyclic savannah (central gray); class 3, chaotic for-
est (lower right); class 4, complex river (central colored).

Temporal Asymptosy3.1.2

The local rule ϕ of discrete Lenia can be considered the Euler method
An+1  An + hfAn for solving the local rule ϕ of continuous Lenia
rewritten as an ordinary differential equation (ODE):

At+dt  At + dtGK *At-Atdt
1-Atdt (17)

d

dt
At  GK *At-Atdt

1-Atdt (18)
The Euler method should better approximate the ODE as step size

h diminishes; similarly, discrete Lenia should approach its continuum
limit as Δt decreases. This is supported by empirical data of asymp-
totic metrics of Orbium over increasing time resolutions T
(Figure 6(c–d)) toward an imaginable “true Orbium” (Figure 5(i)).

Core Functions3.1.3

Choices of kernel core Kc and growth mapping G (the core functions
or “fundamental laws”) usually alter the “textures” of a pattern but
not its overall structure and dynamics (Figure 5(b–c)). Smoother core
functions (e.g., exponential) produce smoother patterns; rougher ones
(e.g., rectangular) produce rougher patterns. This plasticity suggests
that similar life forms should exist in SmoothLife, which resembles
Lenia with rectangular core functions, as supported by similar crea-
tures found in both CAs (Figure 1(f–g)).
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Taxonomy3.2

We present the classification of Lenia life forms into a hierarchical tax-
onomy, a process comparable to the biological classification of terres-
trial life [36].

Phylogeny of the Glider3.2.1

The  most  famous  moving  pattern  in  GoL  is  the  diagonally  moving
“glider”  (Figure  1(a)).  It  was  not  until  LtL  [30]  that  scalable  digital
creatures  were  discovered,  including  the  glider  analog  “bugs  with
stomach,” and SmoothLife [27] was the first to produce an omnidirec-
tional  bug  called  the  “smooth  glider,”  which  was  rediscovered  in
Lenia  as  Scutium  plus  variants  (Figure  1(e–g)  left).  We  propose  the
phylogeny of the glider:

Glider → bug with stomach → smooth glider → Scutium. 

Phylogenies  of  other  creatures  are  possible,  like  the  “wobbly  glider”
and Pyroscutium (Figure 1(f–g) right).

Classification3.2.2

Principally,  there  are  infinitely  many  types  of  life  forms  in  Lenia,  but
a  range  of  visually  and  statistically  similar  life  forms  were  grouped
into  a  species,  defined  such  that  one  instance  can  be  morphed
smoothly  into  another  by  continuously  adjusting  parameters  or  other
settings.  Species  were  further  grouped  into  higher  taxonomic  ranks—
genera,  families,  orders,  classes—with  decreasing  similarity  and
increasing  generality,  finally  subsumed  into  phylum  Lenia,  kingdom
Automata,  domain  Simulata  and  the  root  Artificialia.  Other  kinds  of
artificial life can potentially be incorporated into this Artificialia tree.

Following are the current definitions of the taxonomic ranks. 

◼ A species is a group of life forms with the same morphology and behav-
ior in global and local scales that form a cluster (niche) in the parame-
ter  space  and  follow  the  same  statistical  trends  in  the  phase  space
(Figures 8 and 13). Continuous morphing among members is possible. 

◼ A  genus  is  a  group  of  species  with  the  same  global  morphology  and
behavior that differ locally, occupy adjacent niches and have discontinu-
ity  in  statistical  trends.  Abrupt  but  reversible  transformation  among
member species is possible. 

◼ A  subfamily  is  a  series  of  genera  with  increasing  number  of  “units”  or
“vacuoles” that occupy parallel niches of similar shapes. 

◼ A  family  is  a  collection  of  subfamilies  with  the  same  architecture  or
body plan, composed of the same set of components arranged in similar
ways. 

◼ An order is a rough grouping of families with similar architectures and
statistical qualities, for example, speed. 
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◼ A class is a high-level grouping of life forms influenced by the arrange-
ment of the kernel. 

Ecology3.3

We describe the parameter space of Lenia (“geography”) and the dis-
tribution of life forms (“ecology”).

Landscapes3.3.1

The  four  classes  of  CA  rules  [17,  37]  correspond  to  the  four  land-
scapes in the Lenia parameter space (Figure 8):

◼ Class 1 (homogenous “desert”) produces no global or local pattern but
a homogeneous (empty) state. 

◼ Class  2  (cyclic  “savannah”)  produces  regional,  periodic  immobile  pat-
terns (e.g., Circium).

◼ Class  3  (chaotic  “forest”)  produces  chaotic,  aperiodic  global  filament
network (“vegetation”). 

◼ Class  4  (complex  “river”)  generates  localized  complex  structures  (life
forms). 

Niches3.3.2

In  the  B + 1-dimensional  μ-σ-β  parameter  hyperspace,  a  life  form

only  exists  for  a  continuous  parameter  range  called  its  niche.  Each
combination of parameters is called a locus (plural: loci).

For  a  given  β,  a  μ-σ  map  is  created  by  plotting  the  niches  of
selected life forms on a μ versus σ chart. Maps of rank-1 species have
been  extensively  charted  and  were  used  in  taxonomical  analysis
(Figure 8). 

A β-cube is created by marking the existence (or the size of the μ-σ
niche)  of  a  life  form  at  every  β  locus.  As  noted  in  Section  2.1,  a

B-dimensional  hypercube  can  be  reduced  to  its  B - 1-dimensional

hypersurfaces,  perfect  for  visualization  in  the  three-dimensional  case
(Figure 9). 

Morphology3.4

We  present  the  study  of  structural  characteristics,  or  “morphology,”
of Lenia life forms in Figure 10. See Figure 7 for the family codes (O,
S, P, etc.).

Behavior3.5

We  present  the  study  of  behavioral  dynamics  of  Lenia  life  forms,  or
“ethology,” in analogy to the study of animal behaviors in biology.
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Figure 9. The  β  parameter  space  as  β-cubes,  with  niches  of  selected  species
from the three Lenia classes. (a) β-cube of class Exokernel exemplified by Heli-

cium, including rank-1 (right inset) niche at corner 1, 0, 0, rank-2 (left inset)

niche  at  edge  near  1  2, 1, 0  and  rank-3  niche  on  surfaces  near

1  2, 1  2, 1.  (b)  β-cube  of  class  Mesokernel  exemplified  by  Gyrogeminium

gyrans  (inset),  niche  around  1, 1, 1.  (c)  β-cube  of  class  Endokernel  exempli-

fied by Decadentium rotans (inset), niche mostly on surface 1, β2, β3).

Locomotion3.5.1

In GoL, pattern behaviors include stationary (fixed, oscillation), direc-
tional  (orthogonal,  diagonal,  rarely  oblique),  and  infinite  growth
(linear,  sawtooth,  quadratic)  [21].  SmoothLife  added  omnidirectional
movement  to  the  list  [27].  Lenia  supports  a  qualitatively  different
repertoire  of  behaviors,  which  can  be  described  in  global  and  local
levels.

The  global  movements  of  life  forms  are  summarized  into  modes
of locomotion (Figure 11(a–c, e)): 

◼ Stationarity  (S)  means  the  pattern  stays  still  with  negligible  directional
movement or rotation. 

◼ Rotation (R) is angular movement around a stationary centroid. 

◼ Translocation (T) is directional movement in a certain direction. 

◼ Gyration  (G)  is  angular  movement  around  a  noncentroid  center,  basi-
cally a combination of translocation and rotation. 
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Figure 10. Anatomy and symmetries in Lenia life forms (not to scale). Simple
species  as  standalone  components:  (a)  Orbium  as  standalone  orb;  (b)  Gyror-
bium as standalone orboid wing; (c) Scutium as standalone scutum. Complex
species:  (d)  radial  Asterium  rotans;  (e)  roughly  bilateral  Hydrogeminium
natans;  (f)  long-chain  Pentapteryx  and  (g)  Pentakronium.  (h)  Symmetry  of
radial units: bilateral units in stationary Asterium inversus (left) and asymmet-
ric  units  in  rotational  A.  torquens  (right).  (i)  Convexity:  convex  Nonapteryx
arcus  (top)  and  concave  N.  cavus  (bottom).  Ornamentation:  (j)  serration  in
higher-rank  Scutium  and  Helicium;  (k)  liquefaction  in Heptageminium
natans; (l) caudation in Octacaudopteryx.

In formula, 

At+τ ≈ Ssτ ◦RωτAt

 Stationarity:  s  0, ω  0 

 Rotation:  s  0, ω > 0 

 Translocation:  s > 0, ω  0 

 Gyration:  s > 0, ω > 0 

(19)
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where  τ  is  the  quasi  period,  S  is  a  shift  by  distance  sτ  due  to  linear
speed s, and R is a rotation (around the centroid) by angle ωτ due to
angular speed ω.

Gaits3.5.2

The  local  details  of  movements  are  identified  as  different  gaits
(Figure�11(e–i)):

◼ Fixation (F) means negligible or no fluctuation during locomotion. 

◼ Oscillation (O) is periodic fluctuation during locomotion. 

◼ Alternation  (A)  is  global  oscillation  plus  out-of-phase  local  oscillations

(see Section 3.6.3). 

◼ Deviation  (D)  is  a  small  departure  from  the  regular  locomotion,  for

example,  slightly  curved  linear  movement,  slight  movements  in  the
rotating or gyrating center. 

◼ Chaoticity (C) is chaotic, aperiodic movements. 

Any  gait  or  gait  combination  can  be  coupled  with  any  locomotive
mode and is represented by the combined code (e.g., chaotic deviated
alternating translocation  TCDA). See Table 2 for all combinations. 

Metamorphosis3.5.3

Spontaneous  metamorphosis  is  a  highly  chaotic  behavior  in  Lenia,
where  a  “shapeshifting”  species  frequently  switches  among  different
morphological-behavioral  templates,  forming  a  continuous-time
Markov chain. Each template often resembles an existing species. The
set  of  possible  templates  and  the  transition  probabilities  matrix  are
determined by the species and parameter values (Figure 11(j)).

An  extreme  form  of  spontaneous  metamorphosis  is  exhibited  by
the  Amoebidae,  where  the  structure  and  locomotive  patterns  are  no
longer recognizable, while a bounded size is still maintained. 

These  stochastic  behaviors  denied  the  previous  assumption  that
morphologies  and  behaviors  are  fixed  qualities  in  a  species,  but  are
actually probabilistic (albeit usually a single template with probability
one). 

Infinite Growth3.5.4

Unlike  the  preceding  behaviors  where  the  total  mass  remains  finite,
there  are  behaviors  associated  with  infinite  growth  (positive  or
negative).

Explosion  or  evaporation  is  uncontrolled  infinite  growth,  where
the  mass  quickly  expands  or  shrinks  in  all  directions,  and  the  life
form fails to self-regulate and dies out. 
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Figure 11. Behavioral dynamics in Lenia life forms (not to scale; +  reference
point;  →    motion;  --→    time  flow,  left  to  right  if  unspecified).
(a)�Stationarity:  inverting  Trilapillium  inversus  (SO).  (b)  Rotation:  twinkling

Hexadentium  scintillans  (RA)  (*    same  unit).  Gyration:  (c)  gyrating  Gyror-

bium  gyrans  (GO);  (d)  zigzagging  Vagorbium  undulatus  (GA).  Translocation

with  various  gaits:  (e)  sliding  Paraptera  cavus  labens  (TF);  (f)  jumping  P.  c.

saliens  (TO);  (g)  walking  P.  c.  pedes  (TA);  (h)  deflected  P.  sinus  pedes  (TDA);

(i) chaotic P. s. p. rupturus (TCDA). (j) Spontaneous metamorphosis: Tetralapil-

lium  metamorpha  switching  among  oscillating  (SA),  rotating  (RO),  frozen

(SF), walking (TA) and wandering (TC) (left to right), occasionally die out (⨯).

(k) Particle reactions: two Orbium collide and fuse together into an intermedi-
ate, then stabilize into one Synorbium.

Elongation  or  contraction  is  controllable  infinite  growth,  where  a
long-chain life form keeps lengthening or shortening in directions tan-
gential  to  local  segments.  Microscopically,  vacuoles  are  being  con-
stantly created or absorbed via binary fission or fusion. 
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Gait Locomotive Mode (Type of Symmetry)

(type of Stationarity Rotation Translocation Gyration 

 asymmetry) (Radial) (Rotational) (Bilateral) (Deformed 

Bilateral) 

fixation SF frozen RF  rotating TF  sliding GF spinning

(static) Pentafolium Asterium Paraptera Gyropteron 

lithos rotans cavus labens [e] serratus velox 

oscillation SO ventilating  RO torquing TO  jumping GO  gyrating 

(dynamical) Hexalapillium Asterium Paraptera Gyrorbium 

ventilans torquens cavus saliens [f] gyrans [c] 

alternation SA inverting RA twinkling TA walking GA zigzagging 

(out-of-phase) Trilapillium Hexadentium Paraptera Vagorbium 

inversus [a] scintillans [b] cavus pedes [g] undulatus [d] 

deviation SD drifting RD precessing TD  deflected GD  revolving

(unbalanced) Octafolium Nivium Paraptera Gyrorbium 

tardus incarceratus sinus pedes [h] revolvens 

chaoticity SC  vibrating RC  tumbling TC  wandering GC  swirling

(stochastic) Asterium Decadentium Paraptera Gyrogeminium 

nausia volubilis s. p. rupturus [i] velox 

Table 2. Matrix  of  symmetries,  asymmetries,  locomotive  modes  and  gaits.
Each  combination  is  provided  with  a  code,  a  descriptive  term  and  a  sample
species. (Brackets indicate subfigures in Figure 11).

As  estimated  by  mass  time  series,  linear  and  circular  elongation
show  a  linear  growth  rate,  while  spiral  elongation  (in  Helicidae)  and
others shows a quadratic growth rate. 

Particle Reactions3.5.5

Using  the  interactive  program  as  a  “particle  collider”  (cf.  [38]),  we
investigated  the  reactions  among  Orbidae  (see  Appendix  B)  instances
acting  as  physical  or  chemical  particles.  They  often  exhibit  elasticity
and  resilience  during  collision,  engage  in  inelastic  (sticky)  collision,
and  seem  to  exert  a  kind  of  weak  “attractive  force”  when  two  parti-
cles are nearby or “repulsive force” when getting too close.

Reactions  of  two  or  more  Orbium  particles  with  different  starting
positions and incident angles would result in one of the following: 

◼ Deflection, two Orbium particles disperse in different angles. 

◼ Reflection, one Orbium particle is unchanged and one goes in the oppo-
site direction. 

◼ Absorption, only one Orbium particle survives. 

◼ Annihilation, both Orbium particles evaporate. 

◼ Detonation, the resultant mass explodes into infinite growth. 
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◼ Fusion, multiple Orbium particles fuse together into Synorbinae (Figure
11(k)). 

◼ Parallelism,  multiple  Orbium  particles  travel  in  parallel  with  “forces”
subtly balanced, forming Parorbinae (Figure 7(O:1)). 

Starting from a composite Orbidae may result in: 

◼ Fission,  one  Synorbinae  breaks  into  multiple  Synorbinae  or  Orbium
particles.

Physiology3.6

The  exact  mechanisms  of  morphogenesis  (self-organization)  and
homeostasis  (self-regulation),  or  “physiology,”  in  Lenia  are  not  well
understood. Here we present a few observations and speculations.

Symmetries and Behaviors3.6.1

A  striking  result  in  analyzing  Lenia  is  the  correlations  between  struc-
tural  symmetries/asymmetries  (Appendix  B.5)  and  behavioral  dynam-
ics (Section 3.5). 

At  a  global  scale,  the  locomotive  modes  (stationarity,  rotation,
translocation,  gyration)  correspond  to  the  types  of  overall  symmetry
(radial,  rotational,  bilateral,  deformed  bilateral).  At  a  local  scale,  the
locomotive  gaits  (fixation,  oscillation,  alternation,  deviation,  chaotic-
ity)  correspond  to  the  development  and  distribution  of  asymmetry
(static,  dynamic,  out-of-phase  among  units,  unevenly  distributed,
stochastic development) (Table 2). 

Stability-Motility Hypothesis3.6.2

A closer look at these symmetry-behavior (see Appendix B.5) correla-
tions suggests the mechanisms of how motions arise.

In  a  bilateral  species,  while  there  is  lateral  (left-right)  reflectional
symmetry,  the  heavy  asymmetry  along  the  longitudinal  (rostro-
caudal)  axis  may  be  the  origin  of  directional  movement.  In  a
deformed bilateral species, the lateral symmetry is broken, thus intro-
duces an angular component to its linear motion. 

In  a  radial  species,  bilateral  repeating  units  are  arranged  radially,
and  all  directional  vectors  cancel  out,  thus  overall  remain  stationary.
In  a  rotational  species,  asymmetric  repeating  units  mean  the  lateral
symmetry  is  broken,  thus  initiates  angular  rotation  around  the
centroid. 

On top of these global movements, the dynamical qualities of asym-
metry—static/dynamical,  in-phase/out-of-phase,  balanced/unbalanced,
regular/stochastic—lead to the dynamical qualities of locomotion (i.e.,
gaits). 
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Based on this reasoning, we propose the stability-motility hypothe-
sis  (potentially  applicable  to  real-world  physiology  or  evolutionary
biology): 

Symmetry provides stability; asymmetry provides motility. 

Distribution  of  asymmetry  determines  locomotive  mode;  its
development determines gait. 

Alternation and Internal Communication3.6.3

The  alternation  gait,  that  is,  global  oscillation  plus  out-of-phase  local
oscillations,  is  one  of  the  most  complicated  behaviors  in  Lenia.  It
demonstrates  phenomena  like  long-range  synchronization  and  rota-
tional clockwork.

Alternating  translocation  (TA)  in  a  simple  bilateral  species,  where

the  two  halves  are  in  opposite  phases,  is  the  spatiotemporal
reflectional  (i.e.,  glide)  symmetry  at  half-cycle,  in  addition  to  the  full
oscillation: 

At+
τ

2 ≈ S sτ
2

◦ FAt (20)

At+τ ≈ SsτAt (21)

where τ is the quasi period, S is a shift, and F is a flip (Figure 11(g)).

Alternating long-chain species, where two wings are oscillating out
of  phase  but  the  main  chain  remains  static,  demonstrate  long-range
synchronization  in  which  faraway  structures  are  able  to  synchronize.
We performed experiments to show that alternation is self-recovering,
meaning  that  it  is  not  coincidental  but  actively  maintained  by  the
species. 

Alternating gyration (GA) is a special case in Vagorbium (a variant

of Gyrorbium) where it gyrates to the opposite direction every second
cycle, resulting in a zigzag trajectory (Figure 11(d)). 

Alternating  stationarity  (SA)  occurs  in  stationary  radial  life  forms

(with  n  repeating  units)  and  leads  to  spatiotemporal  reflectional  (or
rotational) symmetry at half-cycle: 

At+
τ

2 ≈ FAt ≈ R π

n
At (22)

At+τ ≈ At
(23)

where  R  is  a  rotation.  This  gives  an  optical  illusion  of  “inverting”
motions (Figure 11(a)).

Alternating rotation (RA) is an intricate phenomenon found in rota-

tional species, especially family Dentidae. Consider a Dentidae species
with  n  repeating  units;  two  adjacent  units  are  separated  spatially  by

angle  2π / n  and  temporally  by  k  n  cycle,  k ∈ ℤ  (Figure  12).  After
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1  n  cycle,  the  pattern  recreates  itself  with  rotation  due  to  angular

speed ω, plus an extra spatiotemporal rotational symmetry of m units
due to pattern alternation, m ∈ ℤ: 

At+
τ

n ≈ R ωτ

n +
2πm
n

At (24)

At+τ ≈ RωτAt. (25)

This  gives  an  illusion  that  local  features  (e.g.,  a  hole)  are  transferring
from one unit to another (Figure 12 outer arrows). The values of k, m
seem to follow some particular trend (Table 3).

Figure 12. “Rotational  clockwork”  in  selected  alternating  Dentidae  species.

After 1  n  cycle,  all  phases  advance  by  1  n  while  phase  relations  remain

unchanged (not to scale; →  phase transfer; �  same phase;   rotation,

taken  as  the  positive  direction).  (a)  Even-sided  Hexadentium  scintillans,  with
opposite-phase  adjacent  units  and  same-phase  alternating  units.  (b)  Even-
sided  Dodecadentium  scintillans,  with  sequentially  out-of-phase  adjacent
units and same-phase opposite units. (c) Odd-sided Heptadentium scintillans,
with globalized phase distribution.

Genus Rank Units Phase Difference Rotational Symmetry 

(Species scintillans) (B) (n) (kn Cycle) of (m units  angle m ·2π /n)

Adjacent Units between 1 /n Cycle 

Hexadentium [a] 2 6 3 /6 1 ·2π /6 (adjacent) 

Heptadentium [c] 2 7 4 /7 2 ·2π /7 (skipping) 

Octadentium 2 8 4 /8 1 ·2π /8 (adjacent) 

Nonadentium 2 9 5 /9 2 ·2π /9 (skipping) 

Decadentium 4 10 2 /10 1 ·2π /10 (adjacent) 

Undecadentium 4 11 2 /11 6 ·2π /11 (skipping) 

Dodecadentium [b] 4 12 2 /12 1 ·2π /12 (adjacent) 

Tridecadentium 4 13 3 /13 9 ·2π /13 (skipping) 

Table 3. Alternation  characteristics  B, n, k, m  in  selected  alternating  Denti-

dae species. (Brackets indicate subfigures in Figure 12).

276 B. W.-C. Chan

Complex Systems, 28 © 2019



Allometry3.6.4

Besides direct observation, Lenia patterns were studied through statis-
tical measurement and analysis, akin to “allometry” in biology.

Various  behaviors  were  found  related  to  the  average  (mean  or
median),  variability  (standard  deviation  or  interquartile  length)  or
phase space trajectory of various statistical measures (Table 4). 

A  few  general  trends  were  deduced  from  allometric  charts;  for
example,  linear  speed  is  found  to  be  roughly  inverse  proportional  to
density.  From  the  linear  speed  sm  versus  mass  m  chart  (Figure  13),

genera  form  strata  according  to  linear  speed  (O>P>S>H>C),  and
species form clusters according to mass. 

Locomotion Modes Measure of Measure of Measure of 

and Gaits Linear Motion Angular Motion Oscillation

(sm) ( mΔ , ωm, ωs, …) (m, g, sm, …) 

stationarity average ≈ 0 average ≈ 0 

rotation average ≈ 0 average > 0 † 

translocation average > 0 average ≈ 0 

gyration average > 0 average > 0 * 

fixation variability ≈ 0 

oscillation variability > 0 

alternating translocation variability > 0 

deviated translocation average > 0 * 

chaoticity ⟵chaotic trajectory⟶

Table 4. Allometric  relationships  between  behavior  and  statistical  measures.
(* Deviated translocation is similar to gyration; † only works in some cases.)

Figure 13. Allometric  chart  of  linear  speed  sm  versus  mass  m  for  rank-1

species.  Total  142338  loci,  300  time  steps  (t  30s)  per  locus.  See  Figure  8
legend for species codes.
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Discussion4.

Geometric Cellular Automata4.1

Standard  CAs  like  GoL  and  ECA  consider  only  the  nearest  sites  as
neighborhood, yet more recent variants like LtL, SmoothLife and dis-
crete Lenia have extended neighborhoods that enable control over the
“granularity”  of  space.  The  latter  ones  are  still  technically  discrete,
but  are  approximating  another  class  of  continuous  systems  called
Euclidean  automata  (EA)  [26].  We  call  them  geometric  cellular
automata (GCAs). GCAs and standard CAs are fundamentally differ-
ent in a number of contrasting qualities (Table 5). LtL is somehow in-
between, having qualities from both sides (see Table 1).

Additionally,  in  standard  CAs,  most  of  the  interesting  patterns  are
concentrated  in  specific  rules  like  GoL,  but  GCAs’  patterns  are  scat-
tered  over  the  parameter  space.  Also,  the  “digital”  versus  “analog”
distinction  goes  beyond  a  metaphor,  in  that  many  of  the  standard
CAs  are  capable  of  “digital”  universal  computation,  while  whether  a
certain kind of “analog computing” is possible in GCAs remains to be
seen. 

As GCAs are approximants of EAs, these contrasting qualities may
well exist between the truly continuous EAs and discrete CAs. 

Standard CAPatterns Geometric CA Patterns 

(e.g., GoL, ECA) (e.g., SmoothLife, Lenia) 

Structure 

“digital” “analog” 

nonscalable scalable 

quantized smooth 

localized motifs geometric manifolds 

complex circuitry complex combinatorics 

Dynamics 

deterministic unpredictable

precise fuzzy 

strictly periodic quasi periodic 

machine-like lifelike 

Sensitivity 

fragile resilient 

mutation sensitive mutation tolerant 

rule-specific rule-generic 

rule-change sensitive rule-change adaptive 

Table 5. Contrasting qualities in standard and geometric CAs.

278 B. W.-C. Chan

Complex Systems, 28 © 2019



Nature of Lenia4.2

Here  we  deep  dive  into  the  very  nature  of  Lenia  patterns,  regarding
their  unpredictability,  fuzziness,  quasi  periodicity,  resilience  and  life-
likeness, at times using GoL for contrast.

Persistence4.2.1

GoL  patterns  are  either  persistent,  guaranteed  to  follow  the  same
dynamics  every  time,  or  temporary,  eventually  stabilize  as  persistent
patterns  or  vanish.  Lenia  patterns,  on  the  other  hand,  have  various
types of persistence:

Transient: only last for a short period. 1.

Quasi stable: able to sustain for a few to hundreds of cycles. 2.

Stable: survive as long as simulations went, possibly forever. 3.

Metastable: stable but transform into another pattern after slight pertur-
bations. 

4.

Chaotic: “walk a thin line” between chaos and self-destruction. 5.

Markovian: shapeshift among templates; each has its own type of persis-
tence. 

6.

Given a pattern, it is unpredictable which persistent type it belongs
to unless we put it into simulation for a considerable (potentially infi-
nite) amount of time, a situation akin to the halting problem and the
undecidability  in  class  4  CAs  [39].  This  uncertainty  results  in  the
vague boundaries of niches (see Appendix, Figure C.1). 

Even for a stable persistent pattern, in contrast to the GoL “glider”
that will forever move diagonally, we can never be 100% sure that an
Orbium will not eventually die out. 

Fuzziness4.2.2

No  two  patterns  in  Lenia  are  the  same;  there  are  various  kinds  of
fuzziness  and  subtle  varieties.  Within  a  species,  slightly  different
parameter  values,  rule  settings  or  initial  configurations  would  result
in slightly different patterns (see Figure 5). Even during a pattern’s life-
time, no two cycles are the same. 

Consider  the  phase  space  trajectories  of  recurrent  patterns
(Figure�14):  every  trajectory  corresponds  to  an  attractor  (or  a  strange
attractor  if  chaotic).  Yet,  behind  a  group  of  similar  patterns,  there
seems to be another kind of “attractor” that draws them into a com-
mon morphological-behavioral template. 
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Figure 14. Phase space trajectories of growth g versus mass m (same cross sec-
tion  as  Appendix,  Figure  C.3);  trajectories  separated  by  Δσ  0.0001,  each
over a period of t  20s. Each trajectory corresponds to an attractor; a group
of similar trajectories hints at a species-level “attractor.”

Essentialism  in  Western  philosophy  proposes  that  every  entity  in
the  world  can  be  identified  by  a  set  of  intrinsic  features  or  an
“essence,”  be  it  an  ideal  form  (Plato’s  idealism)  or  a  natural  kind
(Aristotle’s  hylomorphism).  In  Lenia,  is  there  a  certain  kind  of
“Orbium-ness”  inside  all  instances  and  occurrences  of  Orbium?
Could this be identified or utilized objectively and quantitatively? 

Connections with Biological Life  4.3

Besides  the  superficial  resemblance,  Lenia  life  may  have  deeper  con-
nections to biological life.

Symmetry and Locomotion4.3.1

Both Lenia and Earth life exhibit structural symmetry and similar sym-
metry-locomotion relationships (Figure 15(b–c)).

Radial symmetry is universal in Lenia order Radiiformes. In biolog-
ical life, radial symmetry is exhibited in microscopic protists (diatoms,
radiolarians)  and  primitive  animals  historically  grouped  as  Radiata
(jellyfish,  corals,  comb  jellies,  echinoderm  adults).  These  radiates  are
sessile,  floating  or  slow-moving;  similarly,  Lenia  radiates  are  usually
stationary or rotating with little linear movement. 

Bilateral symmetry is the most common in Lenia. In biological life,
the  group  Bilateria  (vertebrates,  arthropods,  mollusks,  various
“worm”  phyla)  with  the  same  symmetry  are  the  most  successful
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branch of animals since the rapid diversification and proliferation
near the Cambrian explosion 542 million years ago [40]. These bilate-
rians are optimized for efficient locomotion, and similarly, Lenia bila-
terians engage in fast linear movements.

Figure 15. Appearance similarities between Earth and Lenia life. (a) Bilateral
trilobite Bohemoharpes ungula [41, plate 47] and Lenian Orbium bicaudatus.
(b) Trimerous diatom Triceratium moronense [41, plate 4] and Lenian Tri-
lapillium inversus. (c) Pentamerous larva of sea star Asterias species [41, plate
40] and Lenian Asterium inversus. (d) Weakly bilateral mitochondrion [42]
and Lenian Hydrogeminium natans, with matrix-like internal structures.

Adaptation to Environment4.3.2

The parameter space of Lenia, earlier visualized as a geographical
landscape (Section 3.3), can also be thought of as an adaptive land-
scape. Species niches correspond to fitness peaks and indicate success-
ful adaptation to the ranges of parameters.

Any body plan (corresponds to Earth animal phylum or Lenia fam-
ily) would be considered highly adaptive if it has high biodiversity,
wide ecological distribution or great complexity. On Earth, the cham-
pions are the insects (in terms of biodiversity), the nematodes (in
terms of ecosystem breadth and individual count) and the mammals
(producing intelligent species like cetaceans and primates). In Lenia,
family Pterifera is the most successful in class Exokernel in terms of
diversity, niche area and complexity.

The parallels between the two systems regarding adaptability
may provide insights in evolutionary biology and evolutionary
computation.

Species Problem4.3.3

One common difficulty encountered in the studies of Earth and Lenia
life is the precise definition of a “species,” or the species problem. In
evolutionary biology, there exist several species concepts [43]:
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◼ Morphological species: based on phenotypic differentiation [44] 

◼ Phenetic species: based on numerical clustering (cf., phenetics) [45] 

◼ Genetic species: based on genotypic clustering [46] 

◼ Biological species: based on reproductive isolation [47] 

◼ Evolutionary species: based on phylogenetic lineage divergence [48, 49] 

◼ Ecological species: based on niche isolation [50] 

Similar  concepts  are  used  in  combination  for  species  identification
in Lenia, including morphological (similar morphology and behavior),
phenetic  (statistical  cluster)  and  ecological  (niche  cluster)  species.
However, species concepts face problems in some situations, for exam-
ple, in Earth’s case, species aggregates or convergent evolution, and in
Lenia’s  case,  niche  complex  or  shapeshifting  life  forms.  It  remains  an
open  question  whether  clustering  into  species  and  grouping  into
higher taxa can be carried out objectively and systematically. 

Online Resources5.

◼ Appendix
wpmedia.wolfram.com/uploads/sites/13/2019/10/28-3-1-Appendix.pdf
A: Computer Implementation
B: More Results
C: Case Study
D: More on the Nature of Lenia
E: Future Work

◼ Showcase video of Lenia at https://vimeo.com/277328815.

◼ Source code of Lenia at http://github.com/Chakazul/Lenia.

◼ Source code of Primordia at http://github.com/Chakazul/Primordia.
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