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This paper introduces a new formalism for quantum cellular automata
(QCAs), based on evolving tensor products of qubits using local unitary
operators. It subsequently uses this formalism to analyze and validate
several conjectures, stemming from a formal analogy among quantum
computational complexity theory and classical thermodynamics, that
have arisen recently in the context of black hole physics. In particular,
the apparent resonance and thermalization effects present within such
QCAs are investigated, and it is demonstrated that the expected expo-
nential relationships among the quantum circuit complexity of the evo-
lution operator, the classical entropy of the equilibrium QCA state and
the characteristic equilibration time of the QCA all hold within this
new model. Finally, a rigorous explanation for this empirical relation-
ship is provided, as well as for the relationship with black hole thermo-
dynamics, by drawing an explicit mathematical connection with the
mean ergodic theorem and the ergodicity of k-local quantum systems.

Keywords: cellular automata; quantum cellular automata; quantum
computing; quantum information theory; complexity theory; ergodic
theory; black hole thermodynamics

Introduction1.

When attempting to make a physical theory computable, a very natu-
ral first step is to discretize the underlying spacetime [1–3]. When one
performs such a discretization on an arbitrary quantum mechanical
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system obeying special relativity (i.e., one in which there exists a hard
upper bound on the rate of information propagation), one obtains
a quantum cellular automaton, or QCA. Though originally proposed
as an alternative to quantum Turing machines as a canonical model
for universal quantum computation [4, 5], QCAs have also been stud-
ied as models for computable quantum field theories, among other
things [6].

On the other hand, quantum computational complexity (as mea-
sured in terms of circuit complexity, that is, the minimal number of
quantum gates required to prepare a specified unitary operator) has
recently been studied extensively in the context of black hole comple-
mentarity and firewalls [7, 8], as well as the more general EREPR
conjecture of quantum gravity [9, 10]. Here, it is hypothesized that
both quantum circuit complexity and classical entropy should obey
identical growth conditions [11]. More specifically, it has been conjec-
tured that there should exist some kind of analog of the second law of
thermodynamics for quantum circuit complexity [12], as this would
ensure that any naturally formed black hole would have a monotoni-
cally increasing quantum complexity, and therefore would maintain a
transparent, firewall-free horizon for an exponentially long time [13].

The present paper introduces a new model for QCAs, based on
evolving tensor products of qubits using local unitary operators, and
uses it to analyze and validate a variety of these conjectures in quan-
tum complexity theory, at least in toy cases. We show, in particular,
that such QCAs exhibit definite “thermalization” effects; namely, we
show that all such QCAs will eventually reach a stable equilibrium
state, that the time taken to reach this state is independent of the ini-
tial conditions, and that this thermalization time is negatively expo-
nentially related to the quantum circuit complexity, as one would
expect by analogy to classical statistical mechanics. We also investi-
gate the resonance effects inherent to this class of QCAs and provide
some explicit mathematical connections with ergodic theory and with
k-local systems from black hole physics.

Mathematical Background2.

Quantum Cellular Automata2.1

In what follows, we will be employing the general mathematical for-
malism for QCAs developed and espoused by Arrighi et al. [14–16].
Intuitively, a QCA is any finite collection of n quantum systems, each
of the same dimensionality, d; that is, each of the n cells in the QCA
is a qudit in the Hilbert space ℋd. One might therefore assume that
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the overall space of QCA states has the form:ℋ ⊗ℤ
n

ℋd,

but this is not a Hilbert space in general (i.e., it may be a non-Hilbert
C*-algebra) [17]. Thus, one must be somewhat careful regarding pre-
cisely how the set of configurations is defined.

Definition 1. The alphabet of a QCA, denoted Σ, is any finite set with a
distinguished element, denoted 0, namely the empty state.

Definition 2. A configuration over Σ, denoted c, is any function:

c :ℤn → Σ,
such that the set:

A  (i1, … , in) ∈ ℤn such that ci
1
… i

n
≠ 0

is finite.

The set of all such configurations, denoted , is countable, thus
allowing us to define a Hilbert space of (superpositions of) configura-
tions.

Definition 3. The state space of configurations of the QCA, denoted ℋ,
is the Hilbert space with canonical orthonormal basis:{c〉}c∈.

Finally, we must enforce two constraints on the global evolution of
the QCA: translation invariance, meaning that the evolution operator
acts everywhere equally, and causality, meaning that there exists a def-
inite upper bound on the rate of propagation of information.

Definition 4. The translation operator along the kth dimension,
denoted τk, is the linear operator over ℋ mapping c〉 to c′〉, where

the c′〉 denotes the state such that:∀ (i1, … , in), ci
1
…i

k
…i

n

′  ci
1
…i

k+1…i
n
.

Definition 5. A translation-invariant operator, denoted G, is any linear
operator over ℋ such that:∀ k, Gτk  τkG.

To formalize the statement that the QCA satisfies the causality
requirement, we must first define a neighborhood structure: we want
to be able to say that the state of a cell at time t + 1 should depend
only upon the states of its neighbors at time t. However, in order to
be able to speak meaningfully about states of subsystems of the QCA,
we must introduce a density matrix formalism.
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Definition 6. A density matrix, denoted ρ, represents the set of probabil-
ity distributions over pure states:{pi, ψi〉},
as a convex sum of projectors:

ρ  
i

pi ψi〉 〈ψi .
Hence, if the pure states ψ〉 evolve according to the rule:ψ′〉  Gψ〉,

then the density matrices ρ will evolve according to:ρ′  GρG†.
For the purposes of the present paper, we will consider only idem-

potent density matrices, that is, cases in which the density matrix for-
malism reduces to the pure state vector formalism. Thus, the state of
cell x at time t + 1:

x  (i1, … , in),
can be obtained by tracing out all other cells:ρx′  Trx(ρ′),
where we have introduced the partial trace linear operator, denoted
TrS( · ), defined by:

TrS(c〉〈d   δc
S
, d

S
cS〉〈dS .

In much the same way, the states of the neighbors of x at time t
can be obtained by tracing out the remaining cells:ρx+  Trx+(ρ).
Definition 7. A causal operator, denoted G, with a neighborhood ⊂ ℤn, is any linear operator over ℋ such that:∃ f, such that ∀ ρ over ℋ, ρx′  f(ρx+),
where, as usual:ρ′  GρG†.
Definition 8. A quantum cellular automaton is any linear operator overℋ that is translation invariant, causal and unitary.

Quantum Complexity Theory2.2

So-called “k-local systems” provide a very natural and generic formal-
ism for studying the dynamics of black holes. A k-local Hamiltonian
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is constructed from a sum of Hermitian operators, each containing at
most k qubits, such that no operator has a weight higher than k. The
“weight” of an operator, in this context, refers to the number of
single-qubit factors that appear.

For instance, an ordinary QCA with a nearest-neighbor structure is
an instance of a 2-local system, although it is important to note that
k-locality does not imply spatial locality. An exactly k-local Hamilto-
nian, that is, one in which each operator acts on exactly k qubits, has
the general form:

H  
i
1
<i

2
<⋯<i

k


a
1
{x, y, z}… 

a
k
{x, y, z} Ji1, i2,… , i

k

a
1
, a

2
,… , a

kσi
1

a
1σi

2

a
2…σi

k

a
k ,

or, in a more schematic form:

H  
I

JIσI,

where I runs over the set of all 4K - 1 generalized Pauli operators

(i.e., the 3K Pauli operators σi
a, along with all possible products, with-

out locality restrictions). Here, we assume that only k-local couplings
between qubits are nonzero.

The work of Brown and Susskind concerns the question of how the
quantum circuit complexity of the time-evolution operator:

U(t)  e-iHt,

for a general k-local system, evolves over time. The general form of
the conjecture states that the complexity, denoted (t), grows linearly:(t)  kt,

for a period of time that is exponential in k. Thus, at time t ≈ ek, we
reach the period of complexity equilibrium, where complexity reaches
its maximum value, denoted max, and flattens out, fluctuating

around the maximum:max ≈ ek.

Over much longer timescales, on the order of ee
k

, the complexity is
assumed to return quasiperiodically to subexponential values, due to
quantum recurrences.

These conjectures may be summarized succinctly by making a for-
mal analogy with classical statistical mechanics:

Conjecture 1. The quantum circuit complexity for a system of k qubits

behaves analogously to the entropy of a classical system with 2k

degrees of freedom.
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The Quantum Tensor Automaton Model3.

Mathematical Formalism3.1

Within the new QCA formalism proposed in this paper, the overall
state of the QCA at time t, denoted ψt〉, is assumed to be given by a
tensor product of the individual qubits at time t, denoted ϕjt〉:

ψt〉  ⊗
j∈ℤ

n

ϕjt.
We also assume that the QCA begins with a pure initial state, ψ0〉.
To evolve ψ0〉, we first extract the first qubit by tracing out all other

cells, and we apply a unitary operator, denoted u1, both to it and its
immediate rightmost neighbor. This operation is performed for a

sequence of operators u1, …um, yielding the intermediate state ψ′1〉,
and is then repeated for all qubits from 1 to n, yielding a family of
intermediate states ψ1

′ 〉, … , ψN
′ 〉. The intermediate states are then

summed over to generate the next step, ψ1〉.
In other words, we can write the global evolution operator for the

QCA, denoted U, as a 2n⨯2n unitary matrix of the form:

U  
j∈ℤ

n


k∈ℤ

m

uj
kuj+1k .

We have implemented this formalism as a Wolfram Language func-
tion called QuantumTensorAutomaton, which is currently available in
the Wolfram Function Repository [18]. This function was used to pro-
duce all of the results presented within this paper.

Some Initial Results3.2

To visualize the evolution of QCAs (and, in particular, to visualize
individual quantum amplitudes), we introduce the RGB visualization
scheme for complex numbers shown in Figure 1.

For instance, consider a QCA consisting of three qubits, with ini-

tial state vector 1, 0, 0, 0, 0, 0, 0, 0, that is:ψ0〉  1000〉 + 0001〉 + 0010〉 + 0011〉 + 0100〉 + 0101〉 +
0110〉 + 0111〉,

Figure 1. Color scheme for visualization of complex numbers. The first
square denotes i, the second denotes - i, the third denotes 0, the fourth
denotes 1, and the fifth denotes -1. These colors are then blended to repre-
sent an arbitrary (normalized) complex number.
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and evolved using the (arity 2) CNOT quantum logic gate:

CNOT  1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

,

which we can plot in a similar manner to a classical CA (i.e., with the
state vector represented horizontally and the evolution occurring
down the page), as shown in Figure 2.

Figure 2. The first 10 steps in the evolution of the CNOT QCA, given the
canonical 3-qubit initial condition.

Rather than visualizing only the amplitudes, we can also plot how
the associated probabilities (i.e., the norms of the amplitudes,
squared) for each basis state change over time, in which case we imme-
diately observe an equilibration effect, wherein the probabilities
appear to stop changing after some finite time, as seen in Figure 3.

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(a) (b)
Figure 3. (a) The CNOT QCA evolved for 10 steps for the canonical 3-qubit
initial condition. (b) The associated probabilities for each basis state.
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In the case of the CNOT operator, this discovery is unsurprising,
as the state vector itself reaches equilibrium after just a couple of itera-
tions. However, the more interesting fact is that the same phe-
nomenon can be observed for any arbitrary unitary matrix operator
of arity 2, as shown in Figure 4.

0 5 10 15 20

0.2

0.4

0.6

0.8

1.0

(a) (b)
Figure 4. Equilibration effects observed (a) for a random unitary matrix oper-
ator of arity 2; (b) over the course of 20 iterations.

Neither the equilibrium state nor the characteristic time required to
reach equilibrium appears to be meaningfully affected by the choice
of initial condition. To see this, we can compute the characteristic
equilibration time for a given operator/initial condition pair, by deter-
mining the number of iterations required for the probabilities to stop
changing by more than some fixed absolute value, ϵ. As shown in Fig-
ure 5, the standard deviation of the characteristic equilibration time
for a given unitary matrix operator, when averaged over 100 random
initial conditions, is generally relatively low, whereas the standard
deviation for a given initial condition, when averaged over 50 random
unitary matrix operators, is generally relatively high. We can con-
clude that the equilibration times are indeed somewhat sensitive to
the choice of operator, but are generally indifferent to the choice of
initial condition.

The spike observed on the left-hand side of Figure 5 is indicative of
a unitary matrix operator with a much longer characteristic equilibra-
tion time than average. As shown in Figure 6, such operators may be
thought of as exhibiting resonance effects.

We can extract the resonant frequencies of such QCAs using tech-
niques of Fourier analysis (i.e., by taking the discrete Fourier trans-
form of the time evolution and then plotting the norms of the Fourier
coefficients squared, to determine the dominant frequencies), as
shown in Figure 7.
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(a) (b)
Figure 5. The means (in blue) and standard deviations (in yellow) of the char-
acteristic equilibration times. (a) The average is taken over 100 random initial
conditions and plotted for 50 random unitary matrix operators. (b) The aver-
age is taken over 50 random unitary matrix operators and plotted for 100 ran-
dom initial conditions.
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(a) (b)
Figure 6. Equilibration effects for two operators exhibiting resonance. (a) The
operator that created the spike in Figure 5, and (b) an example of an operator
exhibiting a much-enhanced version of the same phenomenon.
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(a) (b)
Figure 7. Fourier plots showing the dominant frequencies for the resonant
operator in Figure 5, first (a) over 300 steps and then (b) over 1000 steps.
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Since the resonant frequencies (i.e., those frequencies that are not
close to zero) tend to die away as one increases the number of steps,
we conclude that even the resonant operators will eventually reach an
equilibrium state, only with characteristic timescales that happen to
be much longer than average. This can be observed directly by per-

forming a formal convergence analysis, with respect to the L2-norm,
of 50 random unitary matrix operators evolved over time (averaged
over 100 random initial conditions), as shown in Figure 8.

500 1000 1500

10
-20

10
-15

10
-10

10
-5

1

Figure 8. A plot showing the convergence to equilibrium, with respect to the
L2-norm, of 50 random unitary matrix operators evolved over time (and aver-
aged over 100 random initial conditions).

Quantum Complexity Theory4.

Approximating Circuit Complexity4.1

Even though the global evolution operator of a QCA is always
unitary (and hence the evolution is always reversible), QCA evolution
can, in practice, be irreducibly difficult to reverse. By analogy to the
case of classical reversible CAs, one can think of this as being due to
the QCA progressively “encrypting” the details of its initial condition
as it evolves. Thus, one can recast the problem of determining the
computational complexity of the time evolution operator into the
problem of determining the quantum circuit complexity of the mini-
mal “reversal” operator (i.e., the minimal unitary operator that cor-
rectly reconstructs the initial condition, given the evolved state of the
QCA).

Thus, the reversal operator, R, at time t can be computed easily, by
finding the general matrix-valued solution of:

Rψt〉  ψ0〉,
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and then finding a particular instance for which R satisfies hermiticity
(in effect, we are treating the time-reversal process as being analogous
to the measurement of some observable). Then, one can compute a
coarse-grained approximation to the circuit complexity of R by sum-
ming over the squared moduli of its eigenvalues. We see, in Figures 9
and 10, that the statistical behavior of the coarse-grained circuit com-
plexity is extremely similar to that of the characteristic equilibration
times; the standard deviation of the complexity for a given unitary
matrix operator, averaged over 100 random initial conditions, is gen-
erally relatively low, whereas the standard deviation for a given initial
condition, when averaged over 50 random unitary matrix operators,
is generally relatively high. Thus, just as with equilibration times, cir-
cuit complexity appears to be fairly sensitive to the choice of opera-
tor, but is more or less unaffected by the choice of initial condition.

10 20 30 40 50

Operators

1×1040
2×1040
3×1040
4×1040
5×1040
Complexity

Figure 9. The means (in blue) and standard deviations (in yellow) of the
coarse-grained circuit complexity, averaged over 100 random initial condi-
tions and plotted for 50 random unitary matrix operators.

20 40 60 80 100

Initial

conditions

2×1039
4×1039
6×1039
8×1039
Complexity

Figure 10. The means (in blue) and standard deviations (in yellow) of the
coarse-grained circuit complexity, averaged over 50 random unitary matrix
operators and plotted for 100 random initial conditions.
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Indeed, performing a nonlinear model fit between the natural loga-
rithms of the mean equilibration time and the mean circuit complex-
ity (for all operators and averaged over initial conditions) yields a

coefficient of determination of R2  0.934, and an equivalent nonlin-
ear model fit between natural logarithms of the mean equilibration
time and mean classical entropy (i.e., the Shannon entropy of the equi-
librium state vector, which can be computed by evaluating the moduli
of the elements of the state vector and then applying the Wolfram
Language Entropy function to the resultant list) yields a coefficient of

determination of R2  0.815. Thus, we can conclude that there is
indeed a strong exponential relationship between the quantum circuit
complexity and the classical entropy, and a strong negative exponen-
tial relationship between both and the characteristic equilibration
time (as was to be expected, both from the data visualized above and
from the conjectured analogy with classical statistical mechanics).

Connections to Ergodic Theory and k-local Systems4.2

The observed equilibration phenomenon in QCAs can be explained as
a direct consequence of von Neumann’s mean ergodic theorem over
arbitrary Hilbert spaces [19–21]:

Definition 9. An orthogonal projection, denoted P, in a Hilbert spaceℋ is any projection, that is, a linear operator satisfying:

P2  P,

for which the range and the null space are mutually orthogonal sub-
spaces, that is:∀ x, y ∈ ℋ, 〈x Py〉  〈Px  Py〉  〈Px  y〉.
Theorem 1. If U is a unitary operator on a Hilbert space ℋ, and P is
an orthogonal projection onto kerI -U, then:

∀ x ∈ ℋ, lim
N→∞

1

N

n0

N-1
Unx  Px.

Thus, the mean ergodic theorem can be interpreted as stating that
the sequences of averages of any unitary operator U:

1

N

n0

N-1
Un,

will always converge to the projection P, with respect to the strong
operator topology. Consequently, the convergence of an arbitrary
QCA state to an equilibrium state in the limit of a large number of
applications of a global unitary evolution operator corresponds
directly to this convergence of averages to the projection operator,
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where here the projection corresponds to the linear operator that
maps any arbitrary state to the equilibrium state.

This allows us to make an explicit connection between the equili-
bration phenomenon investigated within this paper and the ergodicity
of k-local quantum systems, as analyzed in the context of black hole
thermodynamics. As noted by Brown and Susskind, one might expect
the phase space motion induced by a time-independent k-local Hamil-

tonian to be ergodic on SU2k, but this conjecture can immediately

be shown to be false by expressing the time-evolution operator in the
energy basis:

U  e-iHt  
n

e-iEn
t n〉 〈n .

For any given Hamiltonian, U must therefore move on a phase space

torus in 2k dimensions (since there are 2k energy eigenvalues), but the

dimensionality of SU2k is 4k. However, motion on the 2k-torus is

generally ergodic, since ergodicity is equivalent to the statement that
the energy eigenvalues of the Hamiltonian are incommensurate,
which will be true for almost any choice of weights.

Concluding Remarks5.

This paper has succeeded in its stated aim of introducing a novel
mathematical formalism for quantum cellular automata (QCAs) and
using it to analyze and validate a variety of conjectures relating quan-
tum computational complexity, classical thermodynamics and black
hole physics. Nevertheless, there clearly exist many possible directions
for future research in the same vein.

One obvious direction is to improve the methods of complexity
analysis. In particular, there is much scope for improvement of the
coarse-grained approximations that we have used for analyzing the
circuit complexity of the time reversal operator; indeed, the newly
released UniversalQCompiler package [22] allows one to decompose
arbitrary quantum operators directly into compositions of single-
qubit rotations and CNOT gates and could potentially be used to
obtain dramatically better results than those presented here (though it
would also require modifying our requirements for the time-reversal
operator, by effectively enforcing unitarity rather than hermiticity).

A second obvious extension of this general research direction
would be to repeat the same basic analyses (of both complexity-
theoretic and thermodynamic QCA behavior) for a much larger class
of QCA formalisms. For instance, one intermediate formulation that
we investigated during the course of conducting this research was a
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QCA model based upon a quantum teleportation protocol, in which
each qubit is updated by teleporting the neighboring qubit and using
the combined state of the teleported qubit and its entangled partner to
determine which operator to apply to the original qubit. An example
run of this QCA model is shown in Figure 11.

Figure 11. An example run of a QCA based on the quantum teleportation
protocol. The operator that gets applied to each qubit is a Hadamard gate, a
PauliX gate, a PauliY gate or a PauliZ gate, depending upon whether the com-

bined state of the teleported qubit and its entangled partner is 00, 01, 10
or 11, respectively.

Ultimately, the qualitative behavior of these teleportation-based
QCAs was deemed to be too similar to that of classical probabilistic
cellular automata (CAs) to be worthy of publication, though there
doubtless exist many other QCA models for which the same con-
jectures explored within this paper (connecting classical entropy and
quantum circuit complexity) can be analyzed and potentially
validated.

Finally, there is a more conceptual direction to this project that
may well be worthy of further exploration. The “EREPR” (Einstein–
Rosen  Einstein–Podolsky–Rosen) conjecture in quantum gravity
hypothesizes that all entangled particles may be connected by
Einstein–Rosen bridges (wormhole solutions to the Einstein field equa-
tions) [23], which implies more generally that spacetime may be
“made of entanglement” in some fairly precise sense [24]. More
specifically, in the context of EREPR, it may become possible to
link large-scale geometrical features of bulk spacetime to microscopic
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complexity-theoretic properties of the individual constituent quantum
entanglements.

For instance, it is well-known that the neck of a classical Einstein–
Rosen bridge grows with time (indeed, this may be a necessary condi-
tion for the consistency of general relativity, since it makes the
wormhole effectively non-traversable), and it is also conjectured that
the quantum computational complexity of a pair of entangled black
holes will grow with time, by analogy with the second law of thermo-
dynamics. In more precise terms, for a Schwarzschild black hole con-
necting two space-like surfaces in D-dimensional anti-de Sitter space,
with a metric of the form:

ds2  - f(r)dτ2 + f(r)-1dr2 + r2dΩD-22 ,

where:

f(r)  r2 + 1 - μ
rD-3 ,

and:

μ  16πGN

MD - 2ωD-2 ,
for D > 2, where ωD-2 is the volume of a D - 2-sphere, the spatial

volume of the Einstein–Rosen bridge is known to scale according to:

dV

dτ  ωD-2rD-2 f(r) .
Qualitatively, it seems reasonable that an Einstein–Rosen bridge will
behave in a similar fashion to a pair of entangled black holes, and the
more quantitative conjecture of Stanford and Susskind is that the
quantum computational complexity of an entangled black hole state,
denoted , will scale proportionally with the spatial volume of the
associated Einstein–Rosen bridge:

  V

GNlAdS
,

where lAdS denotes the anti-de Sitter radius. We have already demon-

strated that the QCA-based methods developed within this paper
allow one to analyze quantitatively various complexity-theoretic con-
jectures regarding k-local systems (of exactly the kind used to model
black holes), at least in toy cases. Therefore, there may well be the
possibility for fruitful application of these techniques to special cases
of the EREPR conjecture.

We fully intend to pursue these avenues of investigation, as well as
many others, in future work.
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