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This  paper  is  an  extension  of  work  originally  presented  at  the  World
Conference  on  Complex  Systems.  In  this  paper,  methodological
approaches  and  numerical  procedures  are  elaborated  for  nonlinear
stochastic  differential  equations  with  uncertain  parameters.  The  associ-
ated  Fokker–Planck  equation  is  used  to  get  the  distribution  function.
Mathematical  developments  based  on  the  meshfree  method  with  radial
basis functions and on exponential closure combined with Monte Carlo
and conditional expectation methods are elaborated for numerical solu-
tions. The obtained approximate solutions compare well with available
solutions  and  the  effectiveness  and  accuracy  of  the  proposed  methods
are demonstrated. 

Keywords: exponential closure method; meshfree method; radial basis 
function; Fokker–Planck equation; stochastic differential equation; 
uncertain parameters; probability density function; Monte Carlo; 
conditional expectation  

Introduction1.

The  Fokker–Planck  equation  was  first  used  by  Adriaan  Fokker  and
Max  Planck  to  describe  the  probability  density  function  (PDF)  [1].
This  equation  is  used  in  various  fields  such  as  aerospace,  physics,
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chemistry,  biology  and  finance.  From  the  stochastic  differential  equa-
tion  (SDE),  the  Fokker–Planck  equation  is  obtained  through  the
Kramers–Moyal expansion [2].  

The  exact  solution  of  nonlinear  stochastic  differential  systems  is
difficult in general cases, and the Fokker–Planck equation is an impor-
tant tool. Many authors analyze linear and nonlinear SDEs using ana-
lytic and numerical approaches. For nonlinear systems, the equivalent
linearization procedure is mostly used [3]: it is equivalent to exponen-
tial  closure  procedures  in  the  case  of  Gaussian  white  noise  excitation
[4].  In  the  case  of  non-Gaussian  white  noise,  another  approach  to
approximate  the  partial  differential  equation  of  systems  is  the  non-
Gaussian  closure  method  [5].  There  are  many  numerical  methods  to
solve the Fokker–Planck equation. Hesam et. al [6] elaborated an ana-
lytical solution based on the differential transform method. He’s varia-
tional  iteration  method  was  implemented  to  solve  the  Fokker–Planck
equation  in  [7].  The  authors  of  [8]  applied  the  combined  Hermite
spectral  and  upwinding  difference  methods  and  showed  that  the
Hermite-based  spectral  methods  were  convergent  with  spectral  accu-
racy in a weighted Sobolev space. Ben Said et. al [9] investigated ran-
dom  differential  equations  with  uncertain  parameters  based  on  the
polynomial  chaos.  In  [10],  the  finite  element  and  finite  difference
methods  were  used  to  solve  the  transient  Fokker–Planck  equation.
The  stationary  Fokker–Planck  equation  was  solved  in  [11]  using  the
finite  element  method;  the  method  was  also  compared  with  the
Galerkin method. In [12], finite difference and element finite methods
are  applied  to  Van  der  Pol  and  Duffing  oscillators  for  higher-dimen-
sional  systems.  Global  weighted  residual  and  extended  orthogonal
functions  methods  are  presented  in  [13,  14]  to  solve  the  Fokker–
Planck equation associated to nonlinear stochastic systems. 

This  paper  is  an  extension  of  the  work  originally  presented  at  the
World  Conference  on  Complex  Systems  [15]  and  is  focused  on  the
elaboration  of  numerical  procedures  for  nonlinear  SDEs  with  uncer-
tain  parameters.  Methodological  approaches  based  on  exponential
closure  combined  with  Monte  Carlo  and  conditional  expectation
methods,  as  well  as  the  meshfree  method  with  radial  basis  functions
combined  with  Monte  Carlo  and  conditional  expectation  methods,
are elaborated.

Problem Formulation  2.

Define the stochastic differential system by:  

dXi

dt
 gi(X, ω) + hij(X, ω)Wj, 1 ≤ i, j ≤ n, (1)
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where  Xi  is  the  ith  component  of  the  response  vector  X,  Wj(t)  is  a

stochastic excitation, and the functions gi, hij  are polynomial functions

on X with random coefficients depending on the random vector ω.  
This  random  vector  has  a  distribution  function  with  respect  to  the

Lebesgue  measure  denoted  by  f.  This  vector  is  explicitly  given  by
ω  (ξ1, … , ξn), where ξi  for i  1 to n are random variables defined

from  the  probabilistic  field  (Ωi, i, i)  to  .  The  excitation  Wj(t)  is

assumed  to  be  a  Gaussian  white-noise  process  with  the  following
properties: 

EWj(t)  0 (2)

EWj(t)Wk(t + τ)  σjkδ(τ), (3)

where  δ(τ)  is  the  Dirac  function  and  σjk  is  the  frequential  density  of

the  process  Wj,  Wk.  The  system  response  X  for  each  given  observa-

tion ω is a Markov process. Its conditional distribution function rela-
tive to an observation is defined by the following FPK equation:  

∂P

∂ t
+

∂

∂xi
(UiP) -

1

2

∂2

∂xi∂xj
VijP  0 (4)

P(x, t / x0, t0, w)  
j1

n

δxj - x0j, (5)

where P  P(x, t / x0, t0, ω), xj  are the state variables of the first sys-

tem,  the  functions  Ui, Vij  are  given  respectively  from  the  stochastic

system equation (1) by Ui(x, w)  gi(x, w) and

Vij(x)  2σlshil(x, w)hjs(x, w).

x  (x1, … , xn) is the state vector associated to the stochastic system

equation (1). In the stationary case, the conditional distribution func-
tion P is time independent and the reduced FPK equation, in this case,
is given by:  

∂

∂xi
(UiP) -

1

2

∂2

∂xi∂xj
VijP  0, (6)

with the following boundary condition:  

lim
x→+∞

P(x / x0, t0, ω)  0 (7)


n
P(x / x0, t0, ω) dx  1. (8)

The aim of this paper is the elaboration of efficient numerical method-
ological approaches to solve this last problem.  
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Methodological Approaches  3.

Exponential Closure Combined with Monte Carlo Method   3.1

Let a sample of the random vector ω be constituted by an observation

denoted ωn, for n  1 toN.  For  each  observation,  let  the  function

Q(x, ωn)  be  defined  by  Q(x, ωn)  lnP(x, ωn);  these  functions
Q(x, ωn) and P(x, ωn) are defined by Qn

 and Pn. 
These  functions  satisfy  the  following  deterministic  function

deduced from the FPK equation (6) by: 

∂

∂xj
Uj +Uj

∂

∂xj
Qn -

1

2

∂2

∂xi∂xj
Vij +

∂

∂xi
Vij

∂

∂xj
Qn +

∂

∂xj
Vij

∂

∂xi
Qn +

Vij

∂2

∂xi∂xj
Qn +Vij

∂

∂xi
Qn

∂

∂xj
Qn  0.

(9)

The  solution  of  this  equation  gives  the  logarithm  of  the  conditional
distribution  function  Pn.  Unfortunately,  the  solution  of  this  equation
is  in  general  not  explicit.  For  this  reason,  approximations  of  Qn

 are
elaborated  by  many  authors  for  SDEs  with  deterministic  coefficients.
This approximation can be given by a polynomial function on X. The
coefficient of this polynomial function can be described by condensed

vector  a  where  an ∈ ,  and  the  approximated  solution  P
 n

 of  this
equation is given by:  

P

n1

n
(X; an)  CeQ


n1

n
(X; an)

(X; an) ∈ D⨯ M

P

n1

n
(X; an)  0 otherwise,

(10)

where C is a normalization constant and D is a bounded domain. The

polynomial function Qn

n1
(X; an) is given by:  

Q

n1

n
(X; an)  

i1+⋯+iq0

n1

ai1… , iq
n x1

i1… xq
iq . (11)

It has to be noted that this polynomial function is a polynomial rep-
resentation on xj. Various polynomial orders can be considered, lead-

ing  to  different  approximation  orders.  This  expression  is  inserted  in
equation (9), and the residual error of this approximation is given by: 
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rn1
n (x; an) 

∂

∂xj
Vj +Vj

∂

∂xj
(Q


n1

n
) -

1

2

∂2

∂xi∂xj
Uij +

∂

∂xi
Uij

∂

∂xj
(Q


n1

n
) +

∂

∂xj
Uij

∂

∂xi
(Qn1

n


) +

∂2

∂xi∂xj
(Qn1

n


) +Uij

∂

∂xi
(Qn1

n


)
∂

∂xj
(Qn1

n


) .

(12)

To  determine  the  vector  parameters,  a  variational  procedure  is  used.
The residual error rn1

n
 is then projected on the Hilbert space generated

by the given function:  

ψj1… , jq  x1
j1…xq

jqφ(x1, … , xq), (13)

where  1 ≤ j1 + ⋯ + jq ≤ n1  and  φx1, … , xq  is  a  Gaussian  distribu-

tion  that  will  be  given  later.  The  resulting  expression  is  integrated
with  respect  to  x1, … , xq,  and  the  following  functional  F  results  for

1 ≤ k ≤ N: 

Fn1
n (an)  

q
rn1
n (X; an)x1

j1… xq
jqφx1, … , xqdx1… dxq. (14)

The vector parameters an  are obtained numerically by solving the fol-
lowing nonlinear algebraic system:  

Fn1
n (an)  0 for 1 ≤ n1 ≤ N. (15)

Exponential Closure Combined with Conditional Expectation 

Method   

3.2

This method is used by Azrar et. al [16] for random differential equa-
tions  with  uncertain  parameters,  and  consists  of  the  determination  of
the  expectation  of  the  distribution  function  associated  to  the  state  of
the random SDE defined in equation (1). 

Let  P(x / ω)  be  the  distribution  function  solution  of  the  stationary
Fokker–Planck equation defined in equation (6); this distribution func-
tion depends on the random vector ω. The expectation of the distribu-
tion function with respect to the random variable ω is given by 

P(x)  
n
P(x / ω)f(ω)dω. (16)

Assume that ω ∈ Ω, where Ω is a bounded domain in q. The result-
ing  reduced  integral  is  approximated  using  the  Gauss–Legendre
quadrature method with the following Gauss points and weights:

ωi, 0 ≤ i ≤ L and pi, 0 ≤ i ≤ L. (17)
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The integral equation (16) is thus approximated by   

P(x) ≃ 
i0

L

P(x / ωi)f(ωi)pi. (18)

To  get  the  values  of  P(x / ωi),  the  exponential  closure  is  used.  This

function is denoted by Pi  and its logarithm is introduced and denoted

by Qi.  
The  same  procedure  developed  in  the  last  paragraph  is  adopted

herein,  and  the  function  Qi
 is  the  solution  of  the  partial  differential

equation  deduced  from  the  Fokker–Planck  equation  associated  to  Pi,
where the random vector ω is replaced by the observation ωi. 

The solution Qi
 is then approximated by a polynomial function of

the  state  x.  The  coefficient  of  this  approximation  is  determined  using
the  same  projection  on  a  Hilbert  space  used  in  the  last  subsection.
The resulting algebraic equation is solved using the Newton–Raphson
method, and the solution is thus approximated. 

Exponential Closure Method   3.3

The  exponential  closure  method  is  based  on  the  hypothesis  that  the
PDF of the responses of a nonlinear stochastic equation is assumed to
be  an  exponential  function  of  the  polynomial  in  state  variables.  This
method  is  used  by  many  authors,  when  the  diffusion  and  drift  coeffi-
cients of the SDE equation (1) are deterministic [4]. In this paper, the
exponential  closure  method  is  based  on  the  random  diffusion  and
drift of SDE. More details about this method are presented in [15].  

Meshfree Method: Radial Basis Functions   3.4

RBFs based on collocation methods were first used by Kansa in 1991
[17]; it is considered a meshfree method [18] and used to solve partial
differential  equations.  There  are  many  RBFs  defined  by  a  shape
parameter;  this  shape  parameter  is  important  for  convergence  of  the
RBF  method.  This  shape  parameter  is  chosen  arbitrarily,  but  many
authors used optimization approaches to optimize it [19, 20]. 

Let  N  be  arbitrary  points  X1, X2, … , XN  in  an  open  set  Ω  of  d.

We  consider  n  points  inside  Ω  and  m  N - n  on  boundary  ∂ Ω  Γ

xj(1≤j≤n) ⊂ Ω and xj(n+1≤j≤m) ⊂ Γ. 

To  illustrate  this  method,  we  consider  the  stationary  Fokker–
Planck  equation  (6)  and  the  boundary  conditions  (7)  and  (8).  For
more details on this method, see [15]. 
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Radial Basis Function Combined with Monte Carlo Method  3.5

Let a sample of the random vector ω be constituted by an observation

denoted  by ωn, for n  toN1.  For  each  observation,  let  the  func-

tion P(x, ωn) be denoted by Pn. 
To  approximate  this  function,  an  RBF  method  is  used.  For  this

aim, let us consider N arbitrary points X1, X2, … , XN  in an open set

Ω  of  d.  We  consider  n  points  inside  Ω  and  m  N - n  on  boundary

∂ Ω  Γ xj(1≤j≤n) ⊂ Ω and xj(n+1≤j≤m) ⊂ Γ. 

Pn  verifies  the  following  stationary  Fokker–Planck  equation  and
the boundary conditions:

∂

∂xi
(UiP

n) -
1

2

∂2

∂xi∂xj
VijP

n  0

lim
x→+∞

Pn(x / x0)  0


n
Pn(x / x0)dx  1.

These equations are rewritten in the following usual form:  

LPn(x)  f(x) x ∈ Ω ⊂ d (19)

BPn(x)  T(x), x ∈ Γ, (20)

where L, B are linear operators; in this case the B specifies a Dirichlet
boundary condition.  

Let P
 n

 be an approximate solution of Pn in the following form: 

P
 n
(x)  

j1

N

αjϕj(x), (21)

where ϕj(x)  ϕ || x - xj ||2, ϕ is an RBF and αj are unknowns.  

In  this  paper,  the  multiquadric  RBF  ϕj(r)  r2 + c2  where  c ≥ 0

is the shape parameter used. 
Substituting equation (21) into equations (19) and (20) leads to: 

LP
 n

 
j1

N

αjLϕj(xi)  f(xi) 1 ≤ i ≤ n,

BP
 n

 
j1

N

αjBϕj(xi)  T(xi) n + 1 ≤ i ≤ N.
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Then, we get a linear system of unknowns αj1
n+m

 (n +m  N) to solve:

L1, 1P
n … L1,NP

n

…

…

…

…

BN, 1P
n … Bn+m,NP

n

α1

.

.

.

.

αN



f1

.

.

.

.

TN

.

Based  on  the  solution  of  this  system,  the  approximate  solution  P
 n

 is
calculated  by  equation  (21)  and  the  mean  of  the  solution  is  given  by
the following equation:  

Pn 
1

N

i1

N

Pn(Xi). (22)

Radial Basis Function Combined with Conditional Expectation 

Method   

3.6

In this subsection, we consider the Gauss and weight points defined in
equation  (17),  and  for  each  Gauss  point  ωi,  the  conditional  distribu-

tion function associated to this observation P(x / ωi) is denoted by Pi.

This  function  is  a  solution  of  the  deterministic  Fokker–Planck  equa-
tion  associated  to  the  original  SDE  equation  (1)  for  a  given  observa-
tion ωi. The RBF method developed previously is used herein, and an

approximate solution is then obtained. To give the expectation of the
associated  distribution  function  with  respect  to  the  random  variable
ω,  a  Gauss–Legendre  quadrature  method  is  used,  and  the  same  equa-
tion defined by equation (18) is obtained.  

Numerical Results and Discussion  4.

In  order  to  highlight  the  effectiveness  of  the  methodological
approaches  presented,  some  nonlinear  random  differential  equations
with random parameters are investigated.  

Application 1  4.1

Let us consider the nonlinear diffusion process X(t) defined by the fol-
lowing SDE: 

X



1

2
X -X3 - εX5 +W(t), (23)
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where  W(t)  is  a  Gaussian  white  noise  with  the  autocorrelation
function  given  by  E(W(t)W(t + τ))  2σ0δ(τ),  and  σ0  is  the  spectral

density  of  W(t).  ε  is  a  random  variable  with  mean  ε0  and  standard

deviation  ε1  for  σ0  1.  The  exact  conditional  distribution  function,

given an observation of the random variable ε, is given by:  

P
x

ε
 C exp

x21 - x2  2 - εx4  2

4
, (24)

where C is a normalized constant.  

Let  us  define  the  centered  and  normalized  random  variable  ε  by
ξ  (ε - ε0) / ε1.  In  this  case,  the  stationary  Fokker–Planck  equation

associated to equation (23) is the following: 

∂

∂x
(gP) -

1

2

∂2

∂x2
hP  0,

where  g(x)  1  2x - x3 - εx5  and  h(x)  σ2  2  with  σ  2 ,  and

the shape parameter of the RBF method is c  0.1.  
The  presented  methods  are  applied  to  the  stationary  Fokker–Plank

equation and the following results are obtained.
Figure  1  shows  the  logarithmic  conditional  distribution  function

for  degree  4  of  exponential  closure  combined  with  the  conditional
expectation  method  in  the  stationary  case.  It  is  observed  that  the
approximate  logarithmic  distribution  coincides  perfectly  with  the
exact solution. 

Figure 1. Logarithmic conditional distribution function of the state variable x
in  the  stationary  case  obtained  by  exponential  closure  degree  4  combined
with the conditional expectation method.  
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Figure  2  shows  the  logarithmic  conditional  distribution  function
for  degree  4  of  exponential  closure  combined  with  Monte  Carlo
method (1000) random numbers in the stationary case. Small discrep-
ancies are observed with the exact solution and, particularly, far from
the center. 

Figure  3  shows  the  logarithmic  conditional  distribution  function
obtained  by  the  meshfree  method  with  the  multiquadric  RBF  com-
bined  with  the  conditional  expectation  method.  The  shape  parameter
used  in  this  case  is  c  0.1.  It  is  observed  that  the  approximate  loga-
rithmic distribution coincides perfectly with the exact solution. 

Figure  4  gives  the  logarithmic  conditional  distribution  function
obtained  by  the  meshfree  method  with  the  multiquadric  RBF  com-
bined  with  Monte  Carlo  method  (1000)  random  numbers  in  the  sta-
tionary  case.  The  shape  parameter  used  is  c  0.1.  It  is  clearly
observed  that  the  approximate  logarithmic  distribution  coincides  per-
fectly with the exact solution. 

Figure  5 gives  the  logarithmic conditional  distribution function  for
all methods used, where the shape parameter is c  0.1 for RBF. It is
noticed  that  these  approximate  solutions  are  in  good  agreement  with
each other and with the exact solution. 

Figure  6  gives  the  distribution  function  by  all  presented  methods
where  the  shape  parameter  is  c  0.1  for  the  RBF.  It  is  noticed  that
these  distribution  functions  coincide  between  them  and  coincide  per-
fectly with the exact solution. 

Figure 2. Logarithmic conditional distribution function of the state variable x
in  the  stationary  case  obtained  by  exponential  closure  degree  4  combined
with the Monte Carlo (1000) method.  
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Figure 3. Logarithmic conditional distribution function of the state variable x
in  the  stationary  case  obtained  by  the  RBF  combined  with  the  conditional
method.  

Figure 4. Logarithmic conditional distribution function of the state variable x
in  the  stationary  case  obtained  by  the  RBF  combined  with  the  Monte  Carlo
(1000) method.  
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Figure 5. Logarithmic conditional distribution function of the state variable x
in the stationary case of the proposed methods.  

Figure 6. Distribution function of the state variable x in the stationary case of
the proposed methods.  
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Application 2  4.2

Let us consider the nonlinear dynamic behavior of an Euler–Bernoulli
beam studied by G. K. Er in [21] governed by the following nonlinear
partial differential equation:  

ρAY
¨
(X, t) +CY


(X, t) +EI

∂4Y(X, t)

∂X4
-

EA

2I

∂2Y(X, t)

∂X2 0

L ∂YX
′
, t

∂X
′

2

dX
′

 qw(t)

(25)

with the following boundary condition:  

Y0, t  Y(L, t) 
∂2Y0, t

∂X2


∂2Y(L, t)

∂X2
 0, (26)

where ρ, A, E and I are random variables and W(t) is a Gaussian pro-
cess with zero mean, with the correlation function defined by:  

E(W(t)W(t + τ))  2σδ(τ). (27)

Using the Galerkin projection method, the solution Y(X, t) is approxi-
mated by:  

Y(X, t)  
i1,3

2m-1

Zi(t) sin
(iπX)

L
. (28)

For  the  sake  of  simplicity,  the  first  one  mode,  m  1,  is  considered.
The modal analysis leading to a coupled nonlinear differential system
can also be investigated with one mode. The following stochastic non-
linear differential equation with nonlinear random parameters results:

Z
¨
1 +

C

ρA
Z


1 +

EIπ4

ρAL4
Z1 +

Eπ4

4ρL4
Z1
3 

4q

πρA
W(t). (29)

To describe the FPK equation associated to this equation for the con-
ditional distribution with respect to the random variables ρ, A, E and
I, equation (29) is reformulated as:  

 Z1


 Z2

 Z2


 -

C

ρA
Z2 -

EIπ4

ρAL4
Z1 -

Eπ4

4ρL4
Z1
3 +

4q

πρA
W(t) otherwise.

 

(30)
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The functions h and g related to the system (1) are in this case defined
by:  

g(Z1, Z2, w)  Z2, -
C

ρA
Z2 -

EIπ4

ρAL4
Z1 -

Eπ4

4ρL4
Z1
3 (31)

and

h(Z1, Z2, w) 

 0  0 

 0  

4q

πρA
 

. (32)

The functions U and V are given by:  

U1(Z1, Z2, ω)  Z2 (33)

U2(Z1, Z2, ω)  -
C

ρA
Z2 -

EIπ4

ρAL4
Z1 -

Eπ4

4ρL4
Z1
3 (34)

V22(Z1, Z2, ω)  2σ
4q

πρA

2

. (35)

The  other  components  of  V  are  null.  The  FPK  equation  associated  to
this system in the stationary case is given by:  

Z2

∂

∂Z1

(P) -
C

ρA
Z2 +

EIπ4

ρAL4
Z1 +

Eπ4

4ρL4
Z1
3

∂

∂Z2

(P) -

C

ρA
P - σ

4q

πρA

2 ∂2

∂Z2
2
(P)  0.

(36)

The  solution  of  this  equation  gives  the  conditional  distribution  P  in
the  stationary  case  for  equation  (29),  and  the  exact  distribution  solu-
tion is given by:  

P Z1,
Z2

ρ
, A, E, I 

C exp -
Cπ2ρA

2σ4q
2
Z2
2 +

EIπ4

ρAL4
Z1
2 +

Eπ4

8ρL4
Z1
4 .

(37)

The joint distribution function of the state vector (Z1, Z2) is given by  

P(Z1, Z2) 

ΩC exp -
Cπ2ρA

2σ4q
2
Z2
2 +

EIπ4

ρAL4
Z1
2 +

Eπ4

8ρL4
Z1
4

fρ, A, E, Idw,

(38)

where the parameters ρ, C, L, E and I are random variables.
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We  apply  the  proposed  methods  for  the  stationary  equation  (36),
and  the  obtained  numerical  results  compare  well  with  the  exact
solution.

Figure 7 indicates the logarithmic conditional distribution function
of  the  beam  of  exponential  closure  for  degree  4  combined  with  the
conditional method compared with the exact solution. 

Figure  8  gives  the  logarithmic  conditional  distribution  function  of
the  beam  of  exponential  closure  for  degree  4  combined  with  the
Monte Carlo (N  1000) method compared with the exact solution. 

Figure 9 shows the logarithmic conditional distribution function of
the  beam  of  the  meshfree  method  with  multiquadric  RBF  combined
with the conditional method compared with the exact solution. 

Figure 10 gives the logarithmic conditional distribution function of
the  beam  of  multiquadric  RBF  combined  with  the  Monte  Carlo
method for 1000 random variables compared with the exact solution. 

Figure 11 indicates the comparison between the proposed methods
of the beam; it is noticed that the distribution functions coincide per-
fectly with the exact solution. 

Figure 12 indicates the comparison between the proposed methods
of the beam; it is noticed that the logarithmic conditional distribution
functions coincide perfectly with the exact solution. 

Figure 7. Logarithmic conditional distribution function of the state variable x
in  the  stationary  case  obtained  by  exponential  closure  degree  4  combined
with the conditional method.  

Methodological Approaches for the Fokker–Planck Equation 425

https://doi.org/10.25088/ComplexSystems.28.4.411

https://doi.org/10.25088/ComplexSystems.28.4.411


Figure 8. Logarithmic conditional distribution function of the state variable x
in  the  stationary  case  obtained  by  exponential  closure  degree  4  combined
with the Monte Carlo 1000 method.  

Figure 9. Logarithmic conditional distribution function of the state variable x
in  the  stationary  case  obtained  by  the  RBF  combined  with  the  conditional
method.  
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Figure 10. Logarithmic  conditional  distribution  function  of  the  state  variable
x in the stationary case obtained by the RBF combined with the Monte Carlo
1000 method.  

Figure 11. Distribution  function  of  the  state  variable  x  in  the  stationary  case
of the proposed methods.  
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Figure 12. Logarithmic  conditional  distribution  function  of  the  state  variable
x in the stationary case of the proposed methods.  

Conclusion  5.

This  work  is  based  on  numerical  approaches:  the  meshfree  method
with  a  multiquadric  radial  basis  function  (RBF)  combined  with  the
expectation  conditional  method  and  with  the  Monte  Carlo  approach
on  one  hand,  and  exponential  closure  combined  with  the  conditional
method and the Monte Carlo method on the other hand, are analyzed
for  a  nonlinear  stochastic  differential  equation  (SDE)  with  random
parameters.  The  stationary  Fokker–Planck  equation  for  nonlinear
SDE and the Euler–Bernoulli beam with hinged end supports are calcu-
lated when the uniformly distributed lateral force is a Gaussian white
noise.  The  numerical  solutions  given  by  the  proposed  methods  coin-
cide  perfectly  with  the  exact  solution.  The  results  showed  that  these
proposed  approaches  are  efficient  and  can  be  extended  to  more  gen-
eral SDEs with random parameters. 

This  work  elaborated  coupling  methodological  approaches  for
nonlinear  stochastic  differential  equations  with  uncertain  parameters.
These  methods  are  on  one  hand  the  meshfree  method  with  a  multi-
quadric radial basis function (RBF) combined with expectation condi-
tional  method  and  with  the  Monte  Carlo  approach,  and  exponential
closure  combined  with  the  conditional  method  and  the  Monte  Carlo
approach  on  the  other  hand.  The  stationary  Fokker–Planck  equation
for  a  nonlinear  stochastic  differential  equation  (SDE)  and  for  the
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Euler–Bernoulli beam with hinged end supports and uncertain param-
eters  are  numerically  analyzed  when  the  uniformly  distributed  lateral
force is a Gaussian white noise. The numerical solutions given by the
proposed coupling methods coincide perfectly with the exact solution.
The  obtained  results  showed  that  these  proposed  approaches  are
efficient  and  can  be  extended  to  more  general  SDEs  with  random
parameters. 
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