
Reservoir Computing with Complex

Cellular Automata

Neil Babson
Christof Teuscher

Department of Electrical and Computer Engineering
Portland State University
PO Box 751
Portland, OR 97207-0751, USA

Reservoir computing (RC) is a computational framework in which a
dynamical system, known as the reservoir, casts a temporal input signal
to a high-dimensional space, and a trainable readout layer creates the
output signal by extracting salient features from the reservoir. Several
researchers have experimented with using the dynamical behavior of
elementary cellular automaton (CA) rules as reservoirs. CA reservoirs
have the potential to reduce the size, weight and power (SWaP)
required to perform complex computation by orders of magnitude com-
pared with traditional RC implementations. The research described in
this paper expands this approach to CA rules with larger neighbor-
hoods and/or more states, which are termed complex, as opposed to the
elementary rules. Results show that some of these non-elementary cellu-
lar automaton rules outperform the best elementary rules at the stan-
dard benchmark five-bit memory task, requiring half the reservoir size
to produce comparable results. This research is relevant to the design of
simple, small, and low-power systems capable of performing complex
computation.

Keywords: reservoir computing (RC); cellular automata (CAs); cellular
automata based reservoirs (ReCAs)

Introduction1.

The foundations of reservoir computing (RC) are the independently
proposed echo-state networks (ESNs) and liquid-state machines
(LSMs), both of which use a randomly connected artificial recurrent
neural network as the reservoir. Since the inception of the field,
researchers have looked for ways to optimize the selection of reservoir
construction parameters. Hierarchical reservoirs reimpose a degree of
topological structure on reservoir connectivity by breaking the mono-
lithic reservoir into loosely connected subreservoirs. The realization
that dynamical systems other than neural networks could act as reser-
voirs has caused increasing interest in alternative reservoir substrates
using biological, chemical and physical dynamical systems.

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

The field of cellular automaton–based reservoir computing (ReCA)
uses cellular automaton (CA) rules as the dynamical reservoir. ReCA
has focused so far on the 256 elementary one-dimensional CA rules
that have two states and a neighborhood of size three. This paper
expands ReCA to include one-dimensional CA rules with larger
neighborhoods and more states. These CA rules, which are not part
of the set of one-dimensional elementary rules, will be referred to as
complex.

CA rule performance was tested on the five-bit memory task that is
standard in ReCA research. More expressive rules were found that
outperform any of the elementary rules, requiring a smaller CA reser-
voir. This reduces the amount of computation required to train the
output layer and to operate the reservoir.

Our results were found to be task dependent. Complex CA rules
were not found that could solve the temporal density and temporal
parity benchmark tasks with greater accuracy than the most success-
ful elementary rules.

Reservoir Computing 1.1

RC is a relatively new approach to machine learning in which the
inner dynamics of a recurrently connected system, the reservoir, are
harnessed to cast temporal inputs into a high-dimensional space,
enhancing their separability. A readout layer generates the output
from a linear combination of the states of reservoir nodes. Figure 1
shows the components of a reservoir computing system. The idea of
reservoirs as a new type of architecture for recurrent neural networks
(RNNs) was proposed independently in 2001, under the name echo-
state networks (ESNs) [1], and in 2002 as liquid-state machines
(LSMs) [2]. The recurrent connections of an RNN cycle information
back to the internal nodes, allowing them to possess state, or
memory, which makes them suitable for sequential tasks such as
speech recognition. Unlike traditional neural networks, the internal
weights between the nodes of the reservoir used in RC are not
trained. Only the weights to the output, or readout, layer are trained,
providing a substantial reduction in the amount of computation
required for learning.

A reservoir capable of representing the inputs in its internal dynam-
ics can perform multiple computation tasks, even simultaneous tasks,
by training different readout layers to extract the output. In both the
original ESN and LSM reservoir design, nodes are connected at ran-
dom, but as reservoirs found a growing number of successful applica-
tions, researchers examined alternate construction techniques [3] and
showed that many types of systems besides RNNs produce effective
reservoirs [4].

434 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

In order for a reservoir system to perform useful computation, it
must possess the echo-state property, characterized by the term fading
memory. The system has the ability to remember (or echo) inputs, but
also forgets them over time. The echo-state property guarantees that
the input driving the ESN will “wash out” the influence of the ran-
dom initial condition of the reservoir, causing it to react predictably
to inputs [1]. Dynamical systems operating at the “edge of chaos”
between ordered and disordered behavior are believed to possess the
highest computational power [5, 6].

Figure 1. Components of a reservoir computing system. The input layer is
connected to a subset of the reservoir nodes. The output layer is usually fully

connected to the reservoir. Only the output weights wi for i ∈ 1, … , n are

trained.

Cellular Automata 1.2

Cellular automata (CAs) are dynamical systems composed of discrete
cells arranged in a grid of arbitrary dimension (usually one-, two- or
three-dimensional), where each cell is in one of a finite number of
states. At each generation, the cells are synchronously updated to a
new state according to the CA transition rule, which is a function of
the cell’s previous state and that of its neighboring cells.

The CAs used in this paper are one dimensional, which means that
a cell’s neighborhood is a row of an odd number of contiguous cells,
centered on itself and including the immediate neighbors to the left
and right. Successive time steps are iterated downward to form a two-
dimensional representation of the CA’s evolution through time. The
rule space of a CA depends on the size of the neighborhood N and the
number of states S. The cell states are numbered from 0 to S - 1.

The number of possible neighborhood states is SN and each of these
may be mapped by the transition rule to one of the S states, giving a

total rule space of SS
N
. A CA rule is used as a lookup table to apply

the transition from each possible neighborhood state. Figure 2 illus-
trates how a CA rule is applied.

Wolfram systematically investigated the 256 one-dimensional rules
with S  2 and N  3, which he named elementary cellular automata
[7]. An elementary rule’s number is found by reading the rule as a

Reservoir Computing with Complex Cellular Automata 435

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

Figure 2. Elementary rule 90.

binary number and converting it to base 10. By convention, hexadeci-
mal numbering is used for complex rules [8].

Wolfram also proposed a classification system based on the com-
plexity of the emergent behavior of a CA rule. Class I CAs rapidly
evolve to a homogeneous state from most initial configurations.
Class�II CAs evolve to a stable or simple periodic pattern. Class III
rules lead to chaotic behavior without stable structures. In Class IV
rules “edge of chaos” behavior can develop, where localized struc-
tures can last for long periods, interacting with each other in interest-
ing and difficult-to-predict ways. An instance of a class IV rule,
rule�110, has been proven to be Turing complete [9]. Figure 3 shows
examples of the four classes.

(a) (b)

(c) (d)

Figure 3. Wolfram’s four classes of CAs represented by the elementary rules.
(a) Class I: rule 251, (b) Class II: rule 1, (c) Class III: rule 105 and
(d) Class IV: rule 193.

436 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

Previous Work 1.3

The use of elementary CA rules for RC was first proposed by Yilmaz
in 2014 [10], showing that the framework was capable of solving
memory tasks using orders of magnitude less computation than an
ESN. The name ReCA was introduced in 2016 by Margem and Yil-
maz [11]. Bye [12] investigated the performance of an ReCA system

on the 30th-order nonlinear autoregressive-moving-average
(NARMA) benchmark, the temporal bit parity and temporal bit den-
sity tasks, as well as classification of vowel sound clips. Nonuniform
elementary CA reservoirs were used to solve the five-bit memory task
by Nichele and Gunderson in 2017 [13]. Also in 2017, Nichele and
Molund [14] proposed a deep ReCA system using a two-layered reser-
voir. Kleyko et al. [15] demonstrated an ReCA system able to classify
medical images with accuracy on par with traditional methods.
McDonald [16] used pairs of elementary rules to implement an ReCA
framework in which the reservoir requirements of hyperdimensional
projection and short-term memory are explicitly separated into alter-
nating modes of reservoir evolution. Morán et al. [17] demonstrated a
hardware implementation of an ReCA system that performed pattern
recognition on the handwritten numbers of the MNIST dataset.

Method 2.

The ReCA system described in this section was implemented by
the author in a C++ framework, which can be found at
github.com/nbabson/CAreservoir. The architecture of the framework
is similar to that used in [14] and [12].

Cellular Automata–Based Reservoirs System Design 2.1

The CA reservoir is made up of R subreservoirs, which receive identi-
cal temporal input signals. This technique of duplicating the reservoir
has been used since the original ReCA paper and is found to be nec-
essary for accurate results [10]. The leftmost cell of the first sub-
reservoir is set to be the neighbor of the rightmost cell of the last
subreservoir, creating a single circular CA. Within each subreservoir,
a random mapping is generated between the elements of the input, of
length Ln, and cells of the reservoir. The subreservoir size is known as

the diffusion length Ld where Ln < Ld. The random mapping diffuses

the inputs into the larger subreservoirs.
The reservoir is initialized with all the cells in the same state, either

0 for a two-state CA, or the highest numbered state if S > 2. The ini-
tial input overwrites select cell states, according to the mapping. For

Reservoir Computing with Complex Cellular Automata 437

https://doi.org/10.25088/ComplexSystems.28.4.433

https://github.com/nbabson/CAreservoir
https://doi.org/10.25088/ComplexSystems.28.4.433

applications with binary input, such as the five-bit memory bench-
mark and the temporal density and temporal parity benchmarks, this
is done by replacing the initial state of the R ·Ln input cells with 0 or

1. The reservoir processes the input by the application of the CA rule

for I iterations, creating a CA reservoir of R ·Ld · I + 1 cells. The ini-

tial R ·Ld · I cells are vectorized to provide the input to the readout

layer, while the last R ·Ld cells form the initial CA state for the next

time step, which is again selectively overwritten according to the
input mapping. The rule is applied again, and the process repeats for
each time step of the input data.

Figure 4 illustrates how the input is encoded into the reservoir and
expanded by the CA rule to create the output vector. An alternative
scheme for combining the inputs with the reservoir, similar to that
adopted by Yilmaz in [18], adds the input value to the current cell

state according to equation (1), where st+1 is the state of the input cell
st at the next time step after combining with the input bit i. Adding 1
to the resultant cell state ensures that every binary input affects the
reservoir when S > 2. This approach was found to produce inferior
results and is not used in this paper:

st+1  st + i + 1 mod S. (1)

Figure 4. Mapping the input to the reservoir and generating the output.
Ln  4, Ld  8, R  2, I  4, rule 90. Initially all the cells of the reservoir

are in the same state. At each time step, the input is randomly mapped onto
each of the R subreservoirs, overwriting the cell state. The CA rule is then
applied I times. The last generation of the CA forms the initial state for the
next time step, which is again overwritten according to the input mapping.
The rest of the CA is vectorized and sent to the output nodes.

Readout Layer 2.2

The number of readout nodes the ReCA system requires is determined
by the task being performed. Both of the benchmark tasks used in this

438 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

paper require the network to predict binary outputs at each time step.
One readout node is needed for each output bit.

The weights from identical locations of the CA created at each time
step are treated equally and used to predict output by reflecting the
system’s response to inputs. The output weights from the R ·Ln · I

ReCA cells to the readout nodes are set using a linear regression
model. The outputs from all time steps, as well as the target values,
are sent to the linear regression model all at once for fitting.

After the weights are set, the task is run again and the system pre-
dicts the outputs. The real-valued output of the linear regression at
the output nodes is binarized, with output smaller than 0.5 rounded
to 0, and equal to or greater than 0.5 rounded to 1.

The ReCA system uses two different linear regression implemen-
tations, the linreg package from the C++ AlgLib library and the linear_
model.LinearRegression class from the Python scikit-learn library.
The two implementations produced equivalent results but the sci-kit
functions ran faster, so sci-kit was used for the experiments in this
paper. The system also allows the option of using support vector
machines (SVM) from the C++ Torch machine learning library as the
classifier. Nichele and Gunderson used SVM in their 2017 ReCA
paper on nonuniform reservoirs [13].

Benchmark Tests 3.

Five-Bit Memory Task 3.1

The five-bit memory task benchmark tests a network’s long short-
term memory capability and has been shown to be difficult for
RNNs, including ESN [19, 20]. All of the literature on ReCA uses the
five-bit task benchmark, so it is an appropriate first test of the capabil-
ities of complex versus elementary CA reservoirs. The task has four
temporal binary input signals, i1, i2, i3 and i4, and three binary out-

puts, o1, o2 and o3. During the first five time steps of one run of the

input sequence, the i1 input is one of the 32 possible five-digit binary

numbers, while i2 is always i1 + 1mod 2 (1 when i1  0 and vice

versa). This is the message that the system is supposed to remember.
While the message is being input, i3  i4  0.

This is followed by a distractor period of Td time steps. Following

convention in ReCA research, all tests in this paper were done with
Td  200. On all time steps of the distractor period except the last,

i1  i2  0, i3  1 and i4  0. On the last step of the distractor

period, i4  1, giving the cue signal that it is time for the system to

reproduce the pattern. Up until this point, the expected output is

Reservoir Computing with Complex Cellular Automata 439

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

o1  o2  0 and 03  1. For the remaining five time steps of the run,

the output bits should be the same as the message, matching the first
three input bits during the first five time steps. While the message is
repeated, the inputs are the same as during the distractor period,
o1  o2  o4  0 and o3  1. Table 1 illustrates one run of the five-

bit task.
This series of Td + 10 time steps is a single run of the test and is

repeated for each of the 32 possible message inputs. To pass the five-
bit task, the trained system must correctly predict the output bits for
all steps of the task. With Td  200, that is 210 · 32 · 3  20160 accu-

rate predictions.

Time Step Input Output

1 1 0 0 0 0 0 1 input message

2 0 1 0 0 0 0 1

3 0 1 0 0 0 0 1

4 0 1 0 0 0 0 1

5 1 0 0 0 0 0 1

6 0 0 1 0 0 0 1 distractor period

... 0 0 1 0 0 0 1

204 0 0 1 0 0 0 1

205 0 0 0 1 0 0 1 cue signal

206 0 0 1 0 1 0 0 repeat message

207 0 0 1 0 0 1 0

208 0 0 1 0 0 1 0

209 0 0 1 0 0 1 0

210 0 0 1 0 1 0 0

Table 1. Run 17 of 32 of the five-bit memory task.

Temporal Density and Temporal Parity 3.2

For both the temporal density and the temporal parity classification
tasks, the reservoir receives a single input stream of bits. The reser-
voirs were tested on both tasks simultaneously, using the same input
stream. These two tasks were used by Snyder et al. to test the perfor-
mance of a random Boolean network (RBN) reservoir [21], and by
Bye to test the performance of a nonuniform ReCA system [12].

The reservoir continuously evaluates the incoming bits over a win-
dow of the last n time steps, where n is an odd number. The temporal
density output node is trained to return 1 if the input window con-
tains more ones than zeros and return 0 otherwise. The temporal par-
ity output node is trained to return whether the number of ones in the
input window is odd or even. For the temporal density task, a delay
of τ time steps was included between the input and the expected
response.

440 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

The single input was mapped to Lin cells in each subreservoir. In

agreement with previous work, optimal performance was found when

the ratio Lin Ld  1  2 [12], which is used for the experiments in

this paper. The system was trained and tested on randomly generated
sets of length Lt time steps. In order to pass either task, the reservoir

must make Lt - n - τ accurate predictions, as the reservoir output is

ignored for the first n + τ time steps of the test set. Table 2 shows the
system parameters used for all the temporal density and temporal par-
ity results in this paper.

I CA iterations 4

R number of subreservoirs 12

Ld diffusion length 40

Lin input length 20

Lt training set length 400

τ delay length 2

n window size 3

Table 2. System parameters used for the temporal density and temporal parity
benchmark tasks.

Experiments 4.

Five-Bit Memory Task 4.1

In order to establish a baseline for the performance of the complex
CA rules on the five-bit memory task, the ReCA framework was
tested on a selection of elementary CA rules that were found to be the
most successful at the task in previous work [10, 12]. With I  4 and
R  8, only four elementary rules were able to achieve zero error on
the five-bit task. These four rules are equivalent, being either mirror
images of each other and/or having their states reversed.

Increasing the reservoir size by adding subreservoirs or applying
the rule more times improved accuracy, but came at a cost of
increased processing time required to perform the linear regression.
Table 3 shows the results for the most promising elementary rules at
different combinations of I and R. Table 4 gives average CPU times to
train and test elementary CA reservoirs of different sizes, measured
using the C standard library clock() function. The CPU time can be
seen to scale linearly with the size of the reservoir. The results
obtained here were somewhat worse for the smaller reservoir of

(I, R)  4, 8 than in previous work using a similar system design

[10, 12, 13].
Finding more effective rules among complex CAs enables the task

to be reliably completed with a smaller reservoir than is required by

Reservoir Computing with Complex Cellular Automata 441

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

an elementary CA, thereby reducing the amount of computation
required. All of the experiments described in this section were per-

formed with (I, R)  4, 8 and Ld  40. Only rules that passed the

five-bit task on their first run were saved for further testing. Since
none of the elementary CA rules were able to pass the benchmark as
much as 10% of the time, this means that many rules that are capable
of outperforming any of the elementary rules were rejected.

Rule I, R  4, 8 (8, 8) (4, 12)

60 9 99 92

90 0 22 2

102 9 99 86

153 6 99 87

195 6 99 92

210 6 12 66

Table 3. Successful trials out of 100 runs of the five-bit task for elementary
CA rules.

I, R Time

(4, 8) 7.72 s

(4, 12) 11.53 s

(8, 8) 15.35 s

Table 4. CPU time in seconds to train and test a reservoir using elementary
rule 60 on the five-bit task for different values of I and R. Times are averages
of five test runs.

Three-State Cellular Automaton Reservoir 4.1.1

One-dimensional CAs with three states and a neighborhood of three
have a transition function specified by a lookup table 27 digits long.

The rule space is 327 ≈ 7.6 · 1012. A stochastic search of the space ran-
domly generated rules to test on the five-bit memory task. As the
most computationally intensive part of the search is performing the
linear regression on the reservoirs, class I and class II rules, whose
behavior is believed to be too simple to support computation, are
removed. The CAs are first evolved according to their rule without
any inputs beyond a random initial configuration. Rules for CAs that
settle into a uniform or oscillating state in the first 100 generations, as
well as those that merely shift to the left or right, are removed from
consideration.

The remaining rules are tested on the five-bit memory task. Those
that succeed without any inaccurate predictions are saved for further
testing. These are then scored on 100 runs of the five-bit task. Out of

442 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

1000 runs, rules that passed the benchmark were found 2.0% of the
time, and 17.6% of the randomly generated rules were discarded as
class I or II.

Neighborhood Five Cellular Automaton Reservoir 4.1.2

Two-state neighborhood five rules have a rule space of

232 ≈ 4.3 · 109. As with the three-state rules, this space was searched
stochastically, with class I and class II rules ignored. Rules for reser-
voirs that pass the five-bit memory task were saved and tested on 100
further runs of the benchmark. Of 1000 runs, 2.2% of randomly gen-
erated rules passed the benchmark, and 16.2% of the rules were
rejected before testing for being class I or class II.

Population Density Rules 4.1.3

Population density transition rules are a function of a cell’s state and
the count of how many cells are in each state s ∈ S among its neigh-

bors. For S, N  2, 5, these are a left-right symmetrical subset of

the two-state neighborhood five rules. The transition function lookup
table is 10 digits long, and each of the 1024 rules was investigated.
Those exhibiting class I or class II behavior were rejected, while the
rest were tested on the five-bit memory task. Nine rules passed the
benchmark. Those that passed were saved and tested on the bench-
mark 100 times.

Evolving Complex Cellular Automaton Rules 4.1.4

Complex CAs with more than three states have a vast rule space. For

S, N  3, 4 and S, N  3, 5 the number of possible CA rules is

≈ 3.4 · 1038 and ≈ 2.4 · 1087, respectively. These spaces are not
amenable to a stochastic search for rules able to perform the five-bit
memory task. Hundreds of randomly generated rules failed to pro-
duce any that were successful. Almost all of these reservoirs mapped
every input to the most frequently occurring expected output for each
output layer node. This is because the vast majority of these rules are
class III, too chaotic to allow stable structures to persist and therefore
unable to support computation.

In order to reduce the chaoticity, a genetic algorithm (GA) [22]
was used to evolve rules more likely to have class III behavior. The
very chaotic rules found by randomly generating a CA with S > 3
tend to have small contiguous regions in their two-dimensional
spacetime representation, resembling television static. The GA fitness
function selects for rules more likely to have class IV behavior by
maximizing the size of these contiguous regions, which allows for the
possibility of developing stable localized structures.

Reservoir Computing with Complex Cellular Automata 443

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

The GA algorithm starts with a randomly generated population of
32 rules. At each epoch, the rule is applied for 200 iterations to an ini-
tial random configuration of 400 cells. The fitness of each individual
is evaluated using a “smallest-largest” rule. The largest contiguous
region of cells belonging to the same state, adjacent horizontally or
vertically, is identified for each state s ∈ S. The fitness assigned to the
rule is equal to the size of the smallest of these largest connected
areas. Using the area for the state whose contiguous region is smallest
ensures that all the states contribute to the dynamic behavior of the
CA rule and prevents the tendency for the GA to evolve toward a uni-
form class I behavior.

The least-fit half of the population is discarded and replaced by the
next generation of offspring. The fit half of the population forms
eight pairs that each produce two new rules by separating at a ran-
domly chosen location and recombining, as seen in Figure 5. Each off-
spring receives a single random mutation changing one digit of its
rule. Evolution continues for 200 generations or until the fitness of
the best individual equals or exceeds 200, which rarely takes more
than 150 generations.

Figure 5. Two rules produce a pair of children by splitting at a randomly cho-
sen point and recombining. Each child receives a single random mutation.

Both the mating and the mutation portion of the algorithm were
found to be necessary; with either one removed, evolution happens
much more slowly, if at all. The fitness goal of at least 200, for both
four-state and five-state rules, was chosen empirically as the point
where the evolved rules were making the fewest incorrect predictions
when given the five-bit task.

The evolved four-state rules passed the benchmark 2.5% of the
time and the five-state rules passed 1.1%. Many more missed fewer
than 10 predictions, which was not observed to happen with
unevolved rules.

444 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

Temporal Density and Temporal Parity4.2

The elementary rules found to be most successful at the parity task by
Bye were tested 100 times on the joint benchmark task to serve as a
baseline of comparison for the complex rule’s performance. As with
the five-bit task, three-state and neighborhood five CA rules were
found by a stochastic search of the rule space. Rules that achieved
100% correct prediction on either the temporal density or the tempo-
ral parity task were saved for further testing. This occurred on 2.3%
of the runs for three-state rules and 1.8% for neighborhood five rules.

Unlike with the previous benchmark, class I and class II rules were
not removed from consideration before testing. This is because it was
empirically observed that rules that perform well on the temporal
density/parity tasks tend to exhibit a very low degree of chaoticity.
Because of the high percentage of CA cells that were mapped as input
for this benchmark, a rule that is class I or II when evolved without
interference can exhibit complex dynamics when used as a reservoir.
Figure 6 demonstrates this using elementary rule 48, the most success-
ful at the combined benchmark.

(a) (b)

Figure 6. Elementary rule 48. (a) Evolved with only initial input, the rule pro-
duces a system lacking interacting structures. (b) Used as a reservoir for the
temporal density and temporal parity benchmarks, the rule produces interact-
ing structures and predicts the output without error.

Among the two-state neighborhood five population density rules,
only one was found that got zero error on either of the tasks, so this
class of rules was not investigated further for this benchmark.

To find four- and five-state CA rules, a GA was again used to
reduce the chaoticity of contestant rules. Evolution continued until
the smallest-largest fitness score reached 400. This is twice the fitness
target for the five-bit task, again due to the lower chaoticity of rules
that perform well on the temporal tasks.

Reservoir Computing with Complex Cellular Automata 445

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

Nonuniform Reservoir 4.3

A nonuniform CA is one in which the cells do not all implement the
same rule. The ReCA framework used here implements a parallel
nonuniform CA in which the reservoir is split in half into two sub-
reservoirs using different rules. The cells at the boundaries between
the two subreservoirs consider their neighbors in the other subreser-
voir to be the same as those in their own subreservoir in the applica-
tion of the rule. This allows information to flow between the two
regions. Previous work has shown that certain combinations of ele-
mentary rules in a parallel ReCA perform better than either of the
rules individually at the five-bit memory task, while other combina-
tions impede performance [13]. For the combined temporal density/
parity task, Bye [12] found that only nonuniform automata could cor-
rectly predict 100% of the outputs.

In this paper, combinations of complex rules were tested together
to see whether complementary rule combinations could be found for
the different types of complex CA rules investigated.

Results 5.

From each category of rules that were investigated, the six most suc-
cessful rules at performing the five-bit benchmark task using reser-

voirs with parameters (I, R, Ld)  4, 8, 40 were selected for testing

with smaller reservoirs. Due to the length of the complex rules, these
were given labels. The best-performing rules and their labels are
shown in Table 5.

Three-State Rules S, N  3, 3

S31 212aa02ad02

S32 5ec2484e083

S33 34be5823dc1

S34 3d337739e3f

S35 3db9f53398b

S36 58db54c1a35

Neighborhood Five Rules S, N  2, 5

N51 9b8dc760

N52 00cddf40

N53 725fb240

N54 fd3a6d12

N55 4f716154

N56 71ee3aaf

Table 5. (continues)

446 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

Density Rules S, N  2, 5

D1 13b

D2 254

D3 2d0

D4 3ca

D5 275

D6 28d

Four-State Rules S, N  4, 3

S41 b9aa502ddbabb5e8c5b715087a01da08

S42 e2604a35fca689cefc93a671b4689640

S43 1f31e800e11c86ba09bafbe00073d533

S44 bcbb4b3f7b915b47fd154586fa2d15a1

S45 53bf9dcb97e96e0247c9a980a1291d7e

S46 73838653ccc875124f5b4658516662c3

Five-State Rules S, N  5, 3

S51 1871abdbbb1f751c5649ce2208abe0525e5e9

8543e527293d8fe32c1cbec8f9493da900dc

S52 159b7bf409f219a835b7bbe69791bfa94432d

737117268fff0b99044ac2ccbb513ca91456

S53 1b4cca207dfd49a79d60a0f0a36fda79a911d

b434135e22cd79e6e04c69f086c7aab1712a

S54 1ca6bafcb8cc14e379373cb798461269c4d81

258cc28720c74f12dd39b8e48d5863e176a9

S55 3ac662317b4445a8e63b425645228e27bfc4a

0a388497b03a0adede89e87685b12977008f

S56 053b86edcbce84369a1eeb58079725743b506

f228e9459e488139f0763489461f3847c82a

Table 5. The six best-performing rules on the five-bit memory task from each
of the categories of complex CA rules investigated.

The selected rules were then further tested with a range of the reser-
voir parameters I, R and Ld. The results are shown in Table 6.

Rule (4, 8, 40) (4, 8, 30) (4, 6, 40) (4, 4, 40) (3, 8, 40) (4, 8, 20)

Elementary Rules S, N  2, 3

60 9 0 0 0 0 0

90 0 0 0 0 0 0

102 9 0 0 0 0 0

153 6 0 0 0 0 0

195 6 0 0 0 0 0

210 6 0 0 0 0 0

Table 6. (continues)

Reservoir Computing with Complex Cellular Automata 447

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

Rule (4, 8, 40) (4, 8, 30) (4, 6, 40) (4, 4, 40) (3, 8, 40) (4, 8, 20)

Three-State Rules S, N  3, 3

S31 100 100 100 0 25 10

S32 99 63 44 0 16 0

S33 100 92 89 2 0 6

S34 100 53 42 0 0 0

S35 100 85 93 2 2 0

S36 99 97 79 6 5 0

Neighborhood Five Rules S, N  2, 5

N51 97 83 61 0 0 0

N52 99 92 60 0 0 2

N53 99 98 69 0 88 2

N54 95 75 59 0 0 0

N55 95 87 26 0 0 0

N56 93 49 46 35 38 0

Density Rules S, N  2, 5

D1 68 47 23 0 1 0

D2 70 0 6 0 0 0

D3 94 62 63 0 0 20

D4 96 87 57 0 0 0

D5 99 17 35 0 25 0

D6 64 58 27 0 1 0

Four-State Rules S, N  4, 3

S41 90 75 58 0 12 1

S42 90 84 56 0 9 0

S43 93 12 9 0 42 0

S44 95 35 21 0 0 0

S45 100 85 66 0 11 1

S46 87 20 2 0 0 0

Five-State Rules S, N  5, 3

S51 95 50 42 8 15 0

S52 95 76 70 0 7 0

S53 99 74 51 0 24 0

S54 80 1 9 0 2 0

S55 84 17 7 0 2 0

S56 77 13 6 0 5 0

Table 6. Successful runs out of 100 on five-bit task for elementary CAs and
five types of complex CA rules. Column headings give the values for the

parameters I, R, L.

448 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

For the temporal density and temporal parity tasks, all of the rules
were tested using the system parameters seen in Table 2. The labels
for the most successful rules in each category are in Table 7, and the
results are found in Table 8.

Three-State Rules S, N  3, 3

S31 43eaeb0ea68

S32 688e5c88a95

S33 41d9be81e58

S34 41f81666893

S35 32d7be7347b

S36 58db54c1a35

Neighborhood Five Rules S, N  2, 5

N51 000c040f

N52 ff19e808

N53 1d5d1f7d

N54 0073ebbf

N55 fdfc1734

N56 5d17350f

Four-State Rules S, N  4, 3

S41 be2614f5ae52e0bceb0564a44a818504

S42 dd8a5ec44a19cf885d83514504883000

S43 5c9e5700e4a3423d37456595f56282c0

S44 ccb14db2d37a6039165a6d45151f4010

S45 17a2163c27560aaece871545a3208890

S46 754f9cb2174a865262d53515310f1120

Five-State Rules S, N  5, 3

S51 094edc5925c6beb872f42363fd4499effd7a0

6330439d82cd00064a42299880a06a6300f7

S52 2e9ffae0f04c5a7902a36adca32e1aad8a22e

5486eb074b92abcb17ef0e97f22ef3812276

S53 4a09ab57fa452402cda01dd88d4aa08f24b83

f51a5c6a638ba703cbfc0e6d485e7cb98b3f

S54 04572ec6156d9dab4f6db2cda2bb51a94877d

d8d554d71deb9e25698ec08cc0a95ca9ef65

S55 2c2b5702c45a01eccf1b8f8e29f2c4199f2ea

0fa00c9c4e67e2579d1c7f20a770182cca6c

S56 3e5309a22ea94f23fd18365607c9c64e7201f

a39ea33e4b7543332f59c6d43ed51317bbd5

Table 7. The six best-performing rules on the combined temporal density/
parity task from each CA rule category investigated.

Reservoir Computing with Complex Cellular Automata 449

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

Rule Combined TD TP

Elementary Rules S, N  2, 3

27 50 98 51

38 57 72 72

39 45 94 48

48 67 83 76

83 51 94 56

174 57 98 58

Three-State Rules S, N  3, 3

S31 50 58 82

S32 48 78 61

S33 46 61 73

S34 45 66 67

S35 43 81 53

S36 42 77 55

Neighborhood Five Rules S, N  2, 5

N51 50 96 52

N52 52 77 69

N53 43 88 52

N54 42 72 57

N55 34 44 66

N56 30 40 75

Four-State Rules S, N  4, 3

S41 34 65 55

S42 33 63 54

S43 29 56 56

S44 24 40 57

S45 24 39 60

S46 23 57 46

Five-State Rules S, N  5, 3

S51 29 56 45

S52 19 34 55

S53 16 36 52

S54 16 38 38

S55 11 16 70

S56 9 15 48

Nonuniform Rule

S31 +N51 54 78 69

Table 8. Successful runs out of 100 on the temporal density and temporal
parity benchmarks, as well as performing both tasks in tandem.

450 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

Discussion 6.

The qualities that cause a CA rule to produce a good reservoir were
not the same for the two benchmarks investigated, and none of the
rules that worked well for one benchmark showed particular success
at the other. The increased information that can be held by a complex
rule proved helpful for the five-bit memory task. As can be seen in
Figure 7, the most successful reservoir for this task falls into one of a
number of possible periodic attractors after each message is input.
The particular basin of attraction encodes the message, which is out-
put when the cue signal is given. In contrast, complex rules were not
found to outperform the best elementary rules at the temporal density
and temporal parity tasks.

Figure 7. A segment of the history of a reservoir using rule S31 on the five-bit

task with I  4, R  6 and DL  30. Each four horizontal lines is one reser-

voir time step. At the top of the image is the end of the distractor period after
the input message 00000. The reservoir has fallen into a stable repeating pat-
tern with a period of eight generations. After the cue signal is received, the
reservoir “remembers” the message that was encoded in the repeating pattern.
After the next message 00001 is input, the reservoir quickly falls into another
stable pattern that encodes the new message.

Five-Bit Memory Task 6.1

While the best-performing elementary rules required a reservoir of
size I ·R ·Ld  8 · 8 · 40  2560 cells in order to achieve 99% success

on the five-bit memory task, each of the five categories of complex

Reservoir Computing with Complex Cellular Automata 451

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

CA rules investigated here produced a rule capable of achieving 99%
or 100% success on a reservoir of half that size,
I ·R ·Ld  4 · 8 · 40  1280 cells. The best-performing rules that were

discovered were three-state neighborhood three. One of these was
able to produce 100% correct results using a reservoir of size
I ·R ·Ld  4 · 6 · 40  960 cells. Only the neighborhood five popula-

tion density rules were investigated exhaustively. For the other rule
categories, continued searching would yield a virtually infinite num-
ber of similarly successful rules.

Rule performance correlates broadly with reservoir size, but the
ability of the ReCA system to pass the benchmark falls at different
rates, depending on which of the reservoir parameters I, R or Ld is

lowered. The 30 complex rules average 91.7% correct test runs on

the 1280-cell reservoir. Reducing the reservoir size by 1  4 by lower-

ing the diffusion length to 30 caused the least performance degrada-
tion, with the average success rate at 56.6%. Reducing the reservoir
size by cutting the number of subreservoirs from eight to six had a
slightly larger effect on the average reservoir performance, which fell
to 45.9%. Finally, when the reservoir size was reduced to 960 cells by
lowering the number of iterations I from four to three, the average
success rate was only 11.0%, with 11 rules achieving zero correct
runs, while a couple of rules were relatively resilient to the reduced
iterations. When the reservoir size was halved from 1280 to 640 cells,
the majority of the complex rules were unable to complete any suc-
cessful runs of the task, and the average success rate was only 1.9%.

Figure 8 plots the average performance by reservoir category for
different sizes of reservoir. At 1280 cells, the worst-performing cate-
gory of complex rule passed the task on 88.2% of trials compared to
6.0% for the elementary rules. For reservoirs smaller than 1280 cells,
elementary rules achieved 0.0% success.

An attempt was made to find pairs of rules that would complement
each other in a nonuniform reservoir, performing better than either
rule would alone, as has been shown to sometimes occur with pairs of
elementary rules [13]. The six rules of each complex rule type can
form 75 combinations of same-type rules, each of which can be used
as a nonuniform reservoir for any setting of the reservoir size parame-
ters. Of these possibilities, 20 combinations were tested with 100 runs
of the benchmark. Pairs of rules were selected that performed well
individually with the same reservoir parameters. None of these pairs
performed better than the more successful of the two in a uniform
reservoir, 11 of the pairings performing significantly worse than
either rule tested alone. While it seems very likely that complex CA
nonuniform pairings exist that do work well together, it remains an
open question how common or rare they are.

452 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

Figure 8. Five-bit memory task. Averaged performance of the six most suc-
cessful rules in each category versus size of the reservoir in number of cells.

Temporal Density and Temporal Parity 6.2

For the combined temporal density and temporal parity task, the
introduction of complex rules did not improve reservoir performance
over the most successful elementary rules, demonstrating that the
potential for time and power savings with complex rules depends on
the requirements of the particular task. One nonuniform rule was
found that combined two different categories of complex rules in a sin-
gle reservoir that outperformed either of the constituent rules alone.

Conclusion 7.

A reservoir computing with the cellular automata (ReCA) framework
has been implemented, which expands the field of ReCA research
from the 256 elementary cellular automaton (CA) rules to investigate
rules with larger neighborhoods and more states, here called complex
CA rules. A genetic algorithm (GA) was used to reduce the chaoticity
of the four-state and five-state rule space, in order to find edge
of chaos rules capable of computing the five-bit memory task
benchmark.

The six best rules from each of five categories of complex rules
were tested and shown to require half of the reservoir size as the most
successful elementary rules to produce comparable results. This reduc-
tion in reservoir size equals a saving in power and time when operat-
ing the reservoirs. These results suggest that complex CA rules hold
promise for the development of low-power simple systems capable of
performing other complex computational tasks.

Reservoir Computing with Complex Cellular Automata 453

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.28.4.433

Acknowledgment

This work was supported in part by C-BRIC, one of six centers in
JUMP, a Semiconductor Research Corporation (SRC) program spon-
sored by DARPA.

References

[1] H. Jaeger, The “Echo State” Approach to Analysing and Training
Recurrent Neural Networks—with an Erratum Note, German National
Research Center for Information Technology GMD Technical Report
148, Bonn, Germany, 2001.
pdfs.semanticscholar.org/8430/
c0b9afa478ae660398704b11dca1221ccf22.pdf.

[2] W. Maass, T. Natschläger and H. Markram, “Real-Time Computing
without Stable States: A New Framework for Neural Computation
Based on Perturbations,” Neural Computation, 14(11), 2002
pp. 2531–2560. doi:10.1162/089976602760407955.

[3] M. Lukoševicius and H. Jaeger, Overview of Reservoir Recipes, Techni-
cal Report 11, School of Engineering Science, Jacobs University,
Bremen, Germany, 2007.
nbn-resolving.org/urn:nbn:de:gbv:579-opus-1006674.

[4] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano and A. Hirose, “Recent Advances in
Physical Reservoir Computing: A Review,” Neural Networks, 115,
2019 pp. 100–123. doi:10.1016/j.neunet.2019.03.005.

[5] C. G. Langton, “Computation at the Edge of Chaos: Phase Transitions
and Emergent Computation,” Physica D: Nonlinear Phenomena,
42(1–3), 1990 pp. 12–37. doi:10.1016/0167-2789(90)90064-V.

[6] R. Legenstein and W. Maass, “Edge of Chaos and Prediction of Compu-
tational Performance for Neural Circuit Models,” Neural Networks,
20(3), 2007 pp. 323–334. doi:10.1016/j.neunet.2007.04.017.

[7] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[8] A. Wuensche, “Classifying Cellular Automata Automatically: Finding
Gliders, Filtering, and Relating Space-Time Patterns, Attractor Basins,
and the Z Parameter,” Complexity, 4(3), 1999 pp. 47–66.

[9] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1–40. complex-systems.com/pdf/15-1-1.pdf.

[10] O. Yilmaz, “Reservoir Computing Using Cellular Automata,”
arxiv.org/abs/1410.0162.

[11] M. Margem and O. Yilmaz, An Experimental Study on Cellular
Automata for Reservoir Computing, Technical Report, 2017.

454 N. Babson and C. Teuscher

Complex Systems, 28 © 2019

https://pdfs.semanticscholar.org/8430/c0b9afa478ae660398704b11dca1221ccf22.pdf
https://pdfs.semanticscholar.org/8430/c0b9afa478ae660398704b11dca1221ccf22.pdf
https://doi.org/10.1162/089976602760407955
http://nbn-resolving.org/urn:nbn:de:gbv:579-opus-1006674
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/j.neunet.2007.04.017
http://complex-systems.com/pdf/15-1-1.pdf
https://arxiv.org/abs/1410.0162

[12] E. T. Bye, “Investigation of Elementary Cellular Automata for Reservoir
Computing,” Master’s thesis, Department of Computer and Information
Science, Norwegian University of Science and Technology, 2016.

[13] S. Nichele and M. S. Gunderson, “Reservoir Computing Using Nonuni-
form Binary Cellular Automata,” Complex Systems, 26(3), 2017
pp. 225–245. doi.org/10.25088/ComplexSystems.26.3.225.

[14] S. Nichele and A. Molund, “Deep Learning with Cellular Automaton-
Based Reservoir Computing,” Complex Systems, 26(4), 2017
pp. 319–339. doi:10.25088/ComplexSystems.26.4.319.

[15] D. Kleyko, S. Khan, E. Osipov and S.-P. Yong, “Modality Classification
of Medical Images with Distributed Representations Based on Cellular
Automata Reservoir Computing,” in 14th IEEE International Sympo-
sium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 2017,
Piscataway, NJ: IEEE, 2017 pp. 1053–1056.
doi:10.1109/ISBI.2017.7950697.

[16] N. McDonald, “Reservoir Computing & Extreme Learning Machines
Using Pairs of Cellular Automata Rules,” in 2017 International Joint
Conference on Neural Networks (IJCNN), Anchorage, AK, 2017, Piscat-
away, NJ: IEEE, 2017 pp. 2429–2436.
doi:10.1109/IJCNN.2017.7966151.

[17] A. Morán, C. F. Frasser and J. L. Rosselló, “Reservoir Computing Hard-
ware with Cellular Automata.” arxiv.org/abs/1806.04932.

[18] O. Yilmaz, “Connectionist-Symbolic Machine Intelligence Using Cel-
lular Automata Based Reservoir-Hyperdimensional Computing.”
arxiv.org/abs/1503.00851.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, 9(8), 1997 pp. 1735–1780.
doi:10.1162/neco.1997.9.8.1735.

[20] H. Jaeger, Long Short-Term Memory in Echo State Networks: Details
of a Simulation Study, Technical Report No. 27, School of Engineering
Science, Jacobs University, Bremen Germany, 2012.

[21] D. Snyder, A. Goudarzi and C. Teuscher, “Computational Capabilities
of Random Automata Networks for Reservoir Computing,” Physical
Review E, 87(4), 2013 042808. doi:10.1103/PhysRevE.87.042808.

[22] M. Mitchell, J. P. Crutchfield and R. Das, “Evolving Cellular Automata
with Genetic Algorithms: A Review of Recent Work,” in Proceedings
of the First International Conference on Evolutionary Computation and
Its Applications (EcVA ’96), Moscow, Russia: Russian Academy of
Sciences, 1996.

Reservoir Computing with Complex Cellular Automata 455

https://doi.org/10.25088/ComplexSystems.28.4.433

https://doi.org/10.25088/ComplexSystems.26.3.225
https://doi.org/10.25088/ComplexSystems.26.4.319
https://doi.org/10.1109/ISBI.2017.7950697
https://doi.org/10.1109/IJCNN.2017.7966151
https://arxiv.org/abs/1806.04932
https://arxiv.org/abs/1503.00851
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1103/PhysRevE.87.042808
https://doi.org/10.25088/ComplexSystems.28.4.433

