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Reservoir  computing  (RC)  is  a  computational  framework  in  which  a
dynamical system, known as the reservoir, casts a temporal input signal
to  a  high-dimensional  space,  and  a  trainable  readout  layer  creates  the
output  signal  by  extracting  salient  features  from  the  reservoir.  Several
researchers  have  experimented  with  using  the  dynamical  behavior  of
elementary  cellular  automaton  (CA)  rules  as  reservoirs.  CA  reservoirs
have  the  potential  to  reduce  the  size,  weight  and  power  (SWaP)
required to perform complex computation by orders of magnitude com-
pared  with  traditional  RC  implementations.  The  research  described  in
this  paper  expands  this  approach  to  CA  rules  with  larger  neighbor-
hoods and/or more states, which are termed complex, as opposed to the
elementary rules. Results show that some of these non-elementary cellu-
lar  automaton  rules  outperform  the  best  elementary  rules  at  the  stan-
dard  benchmark  five-bit  memory  task,  requiring  half  the  reservoir  size
to produce comparable results. This research is relevant to the design of
simple,  small,  and  low-power  systems  capable  of  performing  complex
computation.

Keywords: reservoir computing (RC); cellular automata (CAs); cellular 
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Introduction1.

The  foundations  of  reservoir  computing  (RC)  are  the  independently
proposed  echo-state  networks  (ESNs)  and  liquid-state  machines
(LSMs),  both  of  which  use  a  randomly  connected  artificial  recurrent
neural  network  as  the  reservoir.  Since  the  inception  of  the  field,
researchers have looked for ways to optimize the selection of reservoir
construction  parameters.  Hierarchical  reservoirs  reimpose  a  degree  of
topological structure on reservoir connectivity by breaking the mono-
lithic  reservoir  into  loosely  connected  subreservoirs.  The  realization
that dynamical systems other than neural networks could act as reser-
voirs  has  caused  increasing  interest  in  alternative  reservoir  substrates
using biological, chemical and physical dynamical systems.  
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The field of cellular automaton–based reservoir computing (ReCA)
uses  cellular  automaton  (CA)  rules  as  the  dynamical  reservoir.  ReCA
has  focused  so  far  on  the  256  elementary  one-dimensional  CA  rules
that  have  two  states  and  a  neighborhood  of  size  three.  This  paper
expands  ReCA  to  include  one-dimensional  CA  rules  with  larger
neighborhoods  and  more  states.  These  CA  rules,  which  are  not  part
of  the  set  of  one-dimensional  elementary  rules,  will  be  referred  to  as
complex. 

CA rule performance was tested on the five-bit memory task that is
standard  in  ReCA  research.  More  expressive  rules  were  found  that
outperform any of the elementary rules, requiring a smaller CA reser-
voir.  This  reduces  the  amount  of  computation  required  to  train  the
output layer and to operate the reservoir. 

Our  results  were  found  to  be  task  dependent.  Complex  CA  rules
were  not  found  that  could  solve  the  temporal  density  and  temporal
parity  benchmark  tasks  with  greater  accuracy  than  the  most  success-
ful elementary rules. 

Reservoir Computing  1.1

RC  is  a  relatively  new  approach  to  machine  learning  in  which  the
inner  dynamics  of  a  recurrently  connected  system,  the  reservoir,  are
harnessed  to  cast  temporal  inputs  into  a  high-dimensional  space,
enhancing  their  separability.  A  readout  layer  generates  the  output
from  a  linear  combination  of  the  states  of  reservoir  nodes.  Figure  1
shows  the  components  of  a  reservoir  computing  system.  The  idea  of
reservoirs as a new type of architecture for recurrent neural networks
(RNNs)  was  proposed  independently  in  2001,  under  the  name  echo-
state  networks  (ESNs)  [1],  and  in  2002  as  liquid-state  machines
(LSMs)  [2].  The  recurrent  connections  of  an  RNN  cycle  information
back  to  the  internal  nodes,  allowing  them  to  possess  state,  or
memory,  which  makes  them  suitable  for  sequential  tasks  such  as
speech  recognition.  Unlike  traditional  neural  networks,  the  internal
weights  between  the  nodes  of  the  reservoir  used  in  RC  are  not
trained. Only the weights to the output, or readout, layer are trained,
providing  a  substantial  reduction  in  the  amount  of  computation
required for learning.  

A reservoir capable of representing the inputs in its internal dynam-
ics  can  perform  multiple  computation  tasks,  even  simultaneous  tasks,
by  training  different  readout  layers  to  extract  the  output.  In  both  the
original  ESN  and  LSM  reservoir  design,  nodes  are  connected  at  ran-
dom, but as reservoirs found a growing number of successful applica-
tions,  researchers  examined  alternate  construction  techniques  [3]  and
showed  that  many  types  of  systems  besides  RNNs  produce  effective
reservoirs [4]. 
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In  order  for  a  reservoir  system  to  perform  useful  computation,  it
must possess the echo-state property, characterized by the term fading
memory. The system has the ability to remember (or echo) inputs, but
also  forgets  them  over  time.  The  echo-state  property  guarantees  that
the  input  driving  the  ESN  will  “wash  out”  the  influence  of  the  ran-
dom  initial  condition  of  the  reservoir,  causing  it  to  react  predictably
to  inputs  [1].  Dynamical  systems  operating  at  the  “edge  of  chaos”
between  ordered  and  disordered  behavior  are  believed  to  possess  the
highest computational power [5, 6]. 

Figure 1. Components  of  a  reservoir  computing  system.  The  input  layer  is
connected to a subset of the reservoir nodes. The output layer is usually fully

connected  to  the  reservoir.  Only  the  output  weights  wi  for  i ∈ 1, … , n  are

trained.  

Cellular Automata  1.2

Cellular  automata  (CAs)  are  dynamical  systems  composed  of  discrete
cells  arranged  in  a  grid  of  arbitrary  dimension  (usually  one-,  two-  or
three-dimensional),  where  each  cell  is  in  one  of  a  finite  number  of
states.  At  each  generation,  the  cells  are  synchronously  updated  to  a
new  state  according  to  the  CA  transition  rule,  which  is  a  function  of
the cell’s previous state and that of its neighboring cells.  

The CAs used in this paper are one dimensional, which means that
a  cell’s  neighborhood  is  a  row  of  an  odd  number  of  contiguous  cells,
centered  on  itself  and  including  the  immediate  neighbors  to  the  left
and right. Successive time steps are iterated downward to form a two-
dimensional  representation  of  the  CA’s  evolution  through  time.  The
rule space of a CA depends on the size of the neighborhood N and the
number  of  states  S.  The  cell  states  are  numbered  from  0  to  S - 1.

The  number  of  possible  neighborhood  states  is  SN  and  each  of  these
may  be  mapped  by  the  transition  rule  to  one  of  the  S  states,  giving  a

total  rule  space  of  SS
N
.  A  CA  rule  is  used  as  a  lookup  table  to  apply

the  transition  from  each  possible  neighborhood  state.  Figure  2  illus-
trates how a CA rule is applied. 

Wolfram  systematically  investigated  the  256  one-dimensional  rules
with S  2 and N  3, which he named elementary cellular automata
[7].  An  elementary  rule’s  number  is  found  by  reading  the  rule  as  a
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Figure 2. Elementary rule 90.  

binary number and converting it to base 10. By convention, hexadeci-
mal numbering is used for complex rules [8]. 

Wolfram  also  proposed  a  classification  system  based  on  the  com-
plexity  of  the  emergent  behavior  of  a  CA  rule.  Class  I  CAs  rapidly
evolve  to  a  homogeneous  state  from  most  initial  configurations.
Class�II  CAs  evolve  to  a  stable  or  simple  periodic  pattern.  Class  III
rules  lead  to  chaotic  behavior  without  stable  structures.  In  Class  IV
rules  “edge  of  chaos”  behavior  can  develop,  where  localized  struc-
tures can last for long periods, interacting with each other in interest-
ing  and  difficult-to-predict  ways.  An  instance  of  a  class  IV  rule,
rule�110,  has  been  proven  to  be  Turing  complete  [9].  Figure  3  shows
examples of the four classes. 

(a) (b)

(c) (d)

Figure 3. Wolfram’s  four  classes  of  CAs  represented  by  the  elementary  rules.
(a)  Class  I:  rule  251,  (b)  Class  II:  rule  1,  (c)  Class  III:  rule  105  and
(d) Class IV: rule 193.  
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Previous Work  1.3

The use of elementary CA rules for RC was first proposed by Yilmaz
in  2014  [10],  showing  that  the  framework  was  capable  of  solving
memory  tasks  using  orders  of  magnitude  less  computation  than  an
ESN.  The  name  ReCA  was  introduced  in  2016  by  Margem  and  Yil-
maz  [11].  Bye  [12]  investigated  the  performance  of  an  ReCA  system

on  the  30th-order  nonlinear  autoregressive-moving-average
(NARMA)  benchmark,  the  temporal  bit  parity  and  temporal  bit  den-
sity  tasks,  as  well  as  classification  of  vowel  sound  clips.  Nonuniform
elementary CA reservoirs were used to solve the five-bit memory task
by  Nichele  and  Gunderson  in  2017  [13].  Also  in  2017,  Nichele  and
Molund [14] proposed a deep ReCA system using a two-layered reser-
voir. Kleyko et al. [15] demonstrated an ReCA system able to classify
medical  images  with  accuracy  on  par  with  traditional  methods.
McDonald [16] used pairs of elementary rules to implement an ReCA
framework  in  which  the  reservoir  requirements  of  hyperdimensional
projection  and  short-term  memory  are  explicitly  separated  into  alter-
nating modes of reservoir evolution. Morán et al. [17] demonstrated a
hardware  implementation  of  an  ReCA  system  that  performed  pattern
recognition on the handwritten numbers of the MNIST dataset. 

Method   2.

The  ReCA  system  described  in  this  section  was  implemented  by
the  author  in  a  C++  framework,  which  can  be  found  at
github.com/nbabson/CAreservoir.  The  architecture  of  the  framework
is similar to that used in [14] and [12].  

Cellular Automata–Based Reservoirs System Design  2.1

The CA reservoir is made up of R subreservoirs, which receive identi-
cal temporal input signals. This technique of duplicating the reservoir
has  been  used  since  the  original  ReCA  paper  and  is  found  to  be  nec-
essary  for  accurate  results  [10].  The  leftmost  cell  of  the  first  sub-
reservoir  is  set  to  be  the  neighbor  of  the  rightmost  cell  of  the  last
subreservoir,  creating  a  single  circular  CA.  Within  each  subreservoir,
a random mapping is generated between the elements of the input, of
length Ln, and cells of the reservoir. The subreservoir size is known as

the diffusion length Ld  where Ln < Ld. The random mapping diffuses

the inputs into the larger subreservoirs.  
The reservoir is initialized with all the cells in the same state, either

0 for a two-state CA, or the highest numbered state if S > 2. The ini-
tial  input  overwrites  select  cell  states,  according  to  the  mapping.  For
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applications  with  binary  input,  such  as  the  five-bit  memory  bench-
mark  and  the  temporal  density  and  temporal  parity  benchmarks,  this
is done by replacing the initial state of the R ·Ln  input cells with 0 or

1. The reservoir processes the input by the application of the CA rule

for I iterations, creating a CA reservoir of R ·Ld · I + 1 cells. The ini-

tial  R ·Ld · I  cells  are  vectorized  to  provide  the  input  to  the  readout

layer,  while  the  last  R ·Ld  cells  form  the  initial  CA  state  for  the  next

time  step,  which  is  again  selectively  overwritten  according  to  the
input  mapping.  The  rule  is  applied  again,  and  the  process  repeats  for
each time step of the input data. 

Figure 4 illustrates how the input is encoded into the reservoir and
expanded  by  the  CA  rule  to  create  the  output  vector.  An  alternative
scheme  for  combining  the  inputs  with  the  reservoir,  similar  to  that
adopted  by  Yilmaz  in  [18],  adds  the  input  value  to  the  current  cell

state according to equation (1), where st+1  is the state of the input cell
st  at the next time step after combining with the input bit i. Adding 1
to  the  resultant  cell  state  ensures  that  every  binary  input  affects  the
reservoir  when  S > 2.  This  approach  was  found  to  produce  inferior
results and is not used in this paper:

st+1  st + i + 1 mod S. (1)

Figure 4. Mapping  the  input  to  the  reservoir  and  generating  the  output.
Ln  4,  Ld  8,  R  2,  I  4,  rule  90.  Initially  all  the  cells  of  the  reservoir

are  in  the  same  state.  At  each  time  step,  the  input  is  randomly  mapped  onto
each  of  the  R  subreservoirs,  overwriting  the  cell  state.  The  CA  rule  is  then
applied  I  times.  The  last  generation  of  the  CA  forms  the  initial  state  for  the
next  time  step,  which  is  again  overwritten  according  to  the  input  mapping.
The rest of the CA is vectorized and sent to the output nodes.  

Readout Layer  2.2

The number of readout nodes the ReCA system requires is determined
by the task being performed. Both of the benchmark tasks used in this
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paper require the network to predict binary outputs at each time step.
One readout node is needed for each output bit.  

The weights from identical locations of the CA created at each time
step  are  treated  equally  and  used  to  predict  output  by  reflecting  the
system’s  response  to  inputs.  The  output  weights  from  the  R ·Ln · I

ReCA  cells  to  the  readout  nodes  are  set  using  a  linear  regression
model.  The  outputs  from  all  time  steps,  as  well  as  the  target  values,
are sent to the linear regression model all at once for fitting.  

After the weights are set, the task is run again and the system pre-
dicts  the  outputs.  The  real-valued  output  of  the  linear  regression  at
the  output  nodes  is  binarized,  with  output  smaller  than  0.5  rounded
to 0, and equal to or greater than 0.5 rounded to 1. 

The  ReCA  system  uses  two  different  linear  regression  implemen-
tations, the linreg package from the C++ AlgLib library and the linear_
model.LinearRegression  class  from  the  Python  scikit-learn  library.
The  two  implementations  produced  equivalent  results  but  the  sci-kit
functions  ran  faster,  so  sci-kit  was  used  for  the  experiments  in  this
paper.  The  system  also  allows  the  option  of  using  support  vector
machines (SVM) from the C++ Torch machine learning library as the
classifier.  Nichele  and  Gunderson  used  SVM  in  their  2017  ReCA
paper on nonuniform reservoirs [13]. 

Benchmark Tests   3.

Five-Bit Memory Task   3.1

The  five-bit  memory  task  benchmark  tests  a  network’s  long  short-
term  memory  capability  and  has  been  shown  to  be  difficult  for
RNNs, including ESN [19, 20]. All of the literature on ReCA uses the
five-bit task benchmark, so it is an appropriate first test of the capabil-
ities  of  complex  versus  elementary  CA  reservoirs.  The  task  has  four
temporal  binary  input  signals,  i1,  i2,  i3  and  i4,  and  three  binary  out-

puts, o1, o2  and o3. During the  first five time steps  of one run of the

input sequence, the i1  input is one of the 32 possible five-digit binary

numbers,  while  i2  is  always  i1 + 1mod 2  (1  when  i1  0  and  vice

versa).  This  is  the  message  that  the  system  is  supposed  to  remember.
While the message is being input, i3  i4  0. 

This is followed by a distractor period of Td  time steps. Following

convention  in  ReCA  research,  all  tests  in  this  paper  were  done  with
Td  200.  On  all  time  steps  of  the  distractor  period  except  the  last,

i1  i2  0,  i3  1  and  i4  0.  On  the  last  step  of  the  distractor

period,  i4  1,  giving  the  cue  signal  that  it  is  time  for  the  system  to

reproduce  the  pattern.  Up  until  this  point,  the  expected  output  is
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o1  o2  0 and 03  1. For the remaining five time steps of the run,

the  output  bits  should  be  the  same  as  the  message,  matching  the  first
three  input  bits  during  the  first  five  time  steps.  While  the  message  is
repeated,  the  inputs  are  the  same  as  during  the  distractor  period,
o1  o2  o4  0  and  o3  1.  Table  1  illustrates  one  run  of  the  five-

bit task. 
This  series  of  Td + 10  time  steps  is  a  single  run  of  the  test  and  is

repeated for each of the 32 possible message inputs. To pass the five-
bit  task,  the  trained  system  must  correctly  predict  the  output  bits  for
all steps of the task. With Td  200, that is 210 · 32 · 3  20160 accu-

rate predictions. 

Time Step Input Output

1 1 0 0 0 0 0 1 input message

2 0 1 0 0 0 0 1

3 0 1 0 0 0 0 1

4 0 1 0 0 0 0 1

5 1 0 0 0 0 0 1

6 0 0 1 0 0 0 1 distractor period

... 0 0 1 0 0 0 1

204 0 0 1 0 0 0 1

205 0 0 0 1 0 0 1 cue signal

206 0 0 1 0 1 0 0 repeat message

207 0 0 1 0 0 1 0

208 0 0 1 0 0 1 0

209 0 0 1 0 0 1 0

210 0 0 1 0 1 0 0

Table 1. Run 17 of 32 of the five-bit memory task.  

Temporal Density and Temporal Parity  3.2

For  both  the  temporal  density  and  the  temporal  parity  classification
tasks,  the  reservoir  receives  a  single  input  stream  of  bits.  The  reser-
voirs  were  tested  on  both  tasks  simultaneously,  using  the  same  input
stream. These two tasks were used by Snyder et al. to test the perfor-
mance  of  a  random  Boolean  network  (RBN)  reservoir  [21],  and  by
Bye to test the performance of a nonuniform ReCA system [12].  

The reservoir continuously evaluates the incoming bits over a win-
dow of the last n time steps, where n is an odd number. The temporal
density  output  node  is  trained  to  return  1  if  the  input  window  con-
tains more ones than zeros and return 0 otherwise. The temporal par-
ity output node is trained to return whether the number of ones in the
input  window  is  odd  or  even.  For  the  temporal  density  task,  a  delay
of  τ  time  steps  was  included  between  the  input  and  the  expected
response. 
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The  single  input  was  mapped  to  Lin  cells  in  each  subreservoir.  In

agreement with previous work, optimal performance was found when

the  ratio  Lin Ld  1  2  [12],  which  is  used  for  the  experiments  in

this paper. The system was trained and tested on randomly generated
sets of length Lt  time steps. In order to pass either task, the reservoir

must  make  Lt - n - τ  accurate  predictions,  as  the  reservoir  output  is

ignored for the first n + τ time steps of the test set. Table 2 shows the
system parameters used for all the temporal density and temporal par-
ity results in this paper. 

I CA iterations 4 

R number of subreservoirs 12 

Ld diffusion length 40 

Lin input length 20 

Lt training set length 400 

τ delay length 2 

n window size 3 

Table 2. System parameters used for the temporal density and temporal parity
benchmark tasks.  

Experiments   4.

Five-Bit Memory Task  4.1

In  order  to  establish  a  baseline  for  the  performance  of  the  complex
CA  rules  on  the  five-bit  memory  task,  the  ReCA  framework  was
tested on a selection of elementary CA rules that were found to be the
most successful at the task in previous work [10, 12]. With I  4 and
R  8,  only  four  elementary  rules  were  able  to  achieve  zero  error  on
the  five-bit  task.  These  four  rules  are  equivalent,  being  either  mirror
images of each other and/or having their states reversed. 

Increasing  the  reservoir  size  by  adding  subreservoirs  or  applying
the  rule  more  times  improved  accuracy,  but  came  at  a  cost  of
increased  processing  time  required  to  perform  the  linear  regression.
Table  3  shows  the  results  for  the  most  promising  elementary  rules  at
different combinations of I and R. Table 4 gives average CPU times to
train  and  test  elementary  CA  reservoirs  of  different  sizes,  measured
using  the  C  standard  library  clock()  function.  The  CPU  time  can  be
seen  to  scale  linearly  with  the  size  of  the  reservoir.  The  results
obtained  here  were  somewhat  worse  for  the  smaller  reservoir  of

(I, R)  4, 8  than  in  previous  work  using  a  similar  system  design

[10, 12, 13]. 
Finding  more  effective  rules  among  complex  CAs  enables  the  task

to  be  reliably  completed  with  a  smaller  reservoir  than  is  required  by
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an  elementary  CA,  thereby  reducing  the  amount  of  computation
required.  All  of  the  experiments  described  in  this  section  were  per-

formed  with (I, R)  4, 8  and Ld  40.  Only  rules  that  passed  the

five-bit  task  on  their  first  run  were  saved  for  further  testing.  Since
none  of  the  elementary  CA  rules  were  able  to  pass  the  benchmark  as
much as 10% of the time, this means that many rules that are capable
of outperforming any of the elementary rules were rejected. 

Rule I, R  4, 8 (8, 8) (4, 12) 

60 9 99 92

90 0 22 2

102 9 99 86

153 6 99 87

195 6 99 92

210 6 12 66

Table 3. Successful  trials  out  of  100  runs  of  the  five-bit  task  for  elementary
CA rules.  

I, R Time

(4, 8) 7.72 s

(4, 12) 11.53 s

(8, 8) 15.35 s

Table 4. CPU  time  in  seconds  to  train  and  test  a  reservoir  using  elementary
rule 60 on the five-bit task for different values of I and R. Times are averages
of five test runs.  

Three-State Cellular Automaton Reservoir  4.1.1

One-dimensional  CAs  with  three  states  and  a  neighborhood  of  three
have  a  transition  function  specified  by  a  lookup  table  27  digits  long.

The rule space is 327 ≈ 7.6 · 1012. A stochastic search of the space ran-
domly  generated  rules  to  test  on  the  five-bit  memory  task.  As  the
most  computationally  intensive  part  of  the  search  is  performing  the
linear  regression  on  the  reservoirs,  class  I  and  class  II  rules,  whose
behavior  is  believed  to  be  too  simple  to  support  computation,  are
removed.  The  CAs  are  first  evolved  according  to  their  rule  without
any inputs beyond a random initial configuration. Rules for CAs that
settle into a uniform or oscillating state in the first 100 generations, as
well  as  those  that  merely  shift  to  the  left  or  right,  are  removed  from
consideration.  

The  remaining  rules  are  tested  on  the  five-bit  memory  task.  Those
that  succeed  without  any  inaccurate  predictions  are  saved  for  further
testing. These are then scored on 100 runs of the five-bit task. Out of

442 N. Babson and C. Teuscher

Complex Systems, 28 © 2019



1000  runs,  rules  that  passed  the  benchmark  were  found  2.0%  of  the
time,  and  17.6%  of  the  randomly  generated  rules  were  discarded  as
class I or II. 

Neighborhood Five Cellular Automaton Reservoir  4.1.2

Two-state  neighborhood  five  rules  have  a  rule  space  of

232 ≈ 4.3 · 109.  As  with  the  three-state  rules,  this  space  was  searched
stochastically,  with  class  I  and  class  II  rules  ignored.  Rules  for  reser-
voirs that pass the five-bit memory task were saved and tested on 100
further runs of the benchmark. Of 1000 runs, 2.2% of randomly gen-
erated  rules  passed  the  benchmark,  and  16.2%  of  the  rules  were
rejected before testing for being class I or class II.  

Population Density Rules  4.1.3

Population  density  transition  rules  are  a  function  of  a  cell’s  state  and
the  count  of  how  many  cells  are  in  each  state  s ∈ S  among  its  neigh-

bors.  For  S, N  2, 5,  these  are  a  left-right  symmetrical  subset  of

the two-state neighborhood five rules. The transition function lookup
table  is  10  digits  long,  and  each  of  the  1024  rules  was  investigated.
Those  exhibiting  class  I  or  class  II  behavior  were  rejected,  while  the
rest  were  tested  on  the  five-bit  memory  task.  Nine  rules  passed  the
benchmark.  Those  that  passed  were  saved  and  tested  on  the  bench-
mark 100 times.  

Evolving Complex Cellular Automaton Rules  4.1.4

Complex CAs with more than three states have a vast rule space. For

S, N  3, 4  and  S, N  3, 5  the  number  of  possible  CA  rules  is

≈ 3.4 · 1038  and  ≈ 2.4 · 1087,  respectively.  These  spaces  are  not
amenable  to  a  stochastic  search  for  rules  able  to  perform  the  five-bit
memory  task.  Hundreds  of  randomly  generated  rules  failed  to  pro-
duce  any  that  were  successful.  Almost  all  of  these  reservoirs  mapped
every input to the most frequently occurring expected output for each
output layer node. This is because the vast majority of these rules are
class III, too chaotic to allow stable structures to persist and therefore
unable to support computation. 

In  order  to  reduce  the  chaoticity,  a  genetic  algorithm  (GA)  [22]
was  used  to  evolve  rules  more  likely  to  have  class  III  behavior.  The
very  chaotic  rules  found  by  randomly  generating  a  CA  with  S > 3
tend  to  have  small  contiguous  regions  in  their  two-dimensional
spacetime  representation,  resembling  television  static.  The  GA  fitness
function  selects  for  rules  more  likely  to  have  class  IV  behavior  by
maximizing the size of these contiguous regions, which allows for the
possibility of developing stable localized structures.
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The  GA  algorithm  starts  with  a  randomly  generated  population  of
32 rules. At each epoch, the rule is applied for 200 iterations to an ini-
tial  random  configuration  of  400  cells.  The  fitness  of  each  individual
is  evaluated  using  a  “smallest-largest”  rule.  The  largest  contiguous
region  of  cells  belonging  to  the  same  state,  adjacent  horizontally  or
vertically, is identified for each state s ∈ S. The fitness assigned to the
rule  is  equal  to  the  size  of  the  smallest  of  these  largest  connected
areas. Using the area for the state whose contiguous region is smallest
ensures  that  all  the  states  contribute  to  the  dynamic  behavior  of  the
CA rule and prevents the tendency for the GA to evolve toward a uni-
form class I behavior. 

The least-fit half of the population is discarded and replaced by the
next  generation  of  offspring.  The  fit  half  of  the  population  forms
eight  pairs  that  each  produce  two  new  rules  by  separating  at  a  ran-
domly chosen location and recombining, as seen in Figure 5. Each off-
spring  receives  a  single  random  mutation  changing  one  digit  of  its
rule.  Evolution  continues  for  200  generations  or  until  the  fitness  of
the  best  individual  equals  or  exceeds  200,  which  rarely  takes  more
than 150 generations. 

Figure 5. Two rules produce a pair of children by splitting at a randomly cho-
sen point and recombining. Each child receives a single random mutation.  

Both  the  mating  and  the  mutation  portion  of  the  algorithm  were
found  to  be  necessary;  with  either  one  removed,  evolution  happens
much more slowly, if at all. The fitness goal of at least 200, for both
four-state  and  five-state  rules,  was  chosen  empirically  as  the  point
where  the  evolved  rules  were  making  the  fewest  incorrect  predictions
when given the five-bit task. 

The  evolved  four-state  rules  passed  the  benchmark  2.5%  of  the
time  and  the  five-state  rules  passed  1.1%.  Many  more  missed  fewer
than  10  predictions,  which  was  not  observed  to  happen  with
unevolved rules. 
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Temporal Density and Temporal Parity4.2

The elementary rules found to be most successful at the parity task by
Bye  were  tested  100  times  on  the  joint  benchmark  task  to  serve  as  a
baseline  of  comparison  for  the  complex  rule’s  performance.  As  with
the  five-bit  task,  three-state  and  neighborhood  five  CA  rules  were
found  by  a  stochastic  search  of  the  rule  space.  Rules  that  achieved
100% correct prediction on either the temporal density or the tempo-
ral  parity  task  were  saved  for  further  testing.  This  occurred  on  2.3%
of the runs for three-state rules and 1.8% for neighborhood five rules. 

Unlike with the previous benchmark, class I and class II rules were
not removed from consideration before testing. This is because it was
empirically  observed  that  rules  that  perform  well  on  the  temporal
density/parity  tasks  tend  to  exhibit  a  very  low  degree  of  chaoticity.
Because of the high percentage of CA cells that were mapped as input
for  this  benchmark,  a  rule  that  is  class  I  or  II  when  evolved  without
interference  can  exhibit  complex  dynamics  when  used  as  a  reservoir.
Figure 6 demonstrates this using elementary rule 48, the most success-
ful at the combined benchmark. 

(a) (b)

Figure 6. Elementary rule 48. (a) Evolved with only initial input, the rule pro-
duces  a  system  lacking  interacting  structures.  (b)  Used  as  a  reservoir  for  the
temporal density and temporal parity benchmarks, the rule produces interact-
ing structures and predicts the output without error.  

Among  the  two-state  neighborhood  five  population  density  rules,
only  one  was  found  that  got  zero  error  on  either  of  the  tasks,  so  this
class of rules was not investigated further for this benchmark. 

To  find  four-  and  five-state  CA  rules,  a  GA  was  again  used  to
reduce  the  chaoticity  of  contestant  rules.  Evolution  continued  until
the smallest-largest fitness score reached 400. This is twice the fitness
target  for  the  five-bit  task,  again  due  to  the  lower  chaoticity  of  rules
that perform well on the temporal tasks. 
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Nonuniform Reservoir  4.3

A  nonuniform  CA  is  one  in  which  the  cells  do  not  all  implement  the
same  rule.  The  ReCA  framework  used  here  implements  a  parallel
nonuniform  CA  in  which  the  reservoir  is  split  in  half  into  two  sub-
reservoirs  using  different  rules.  The  cells  at  the  boundaries  between
the  two  subreservoirs  consider  their  neighbors  in  the  other  subreser-
voir  to  be  the  same  as  those  in  their  own  subreservoir  in  the  applica-
tion  of  the  rule.  This  allows  information  to  flow  between  the  two
regions.  Previous  work  has  shown  that  certain  combinations  of  ele-
mentary  rules  in  a  parallel  ReCA  perform  better  than  either  of  the
rules  individually  at  the  five-bit  memory  task,  while  other  combina-
tions  impede  performance  [13].  For  the  combined  temporal  density/
parity task, Bye [12] found that only nonuniform automata could cor-
rectly predict 100% of the outputs. 

In  this  paper,  combinations  of  complex  rules  were  tested  together
to  see  whether  complementary  rule  combinations  could  be  found  for
the different types of complex CA rules investigated. 

Results   5.

From  each  category  of  rules  that  were  investigated,  the  six  most  suc-
cessful  rules  at  performing  the  five-bit  benchmark  task  using  reser-

voirs  with  parameters  (I, R, Ld)  4, 8, 40  were  selected  for  testing

with  smaller  reservoirs.  Due  to  the  length  of  the  complex  rules,  these
were  given  labels.  The  best-performing  rules  and  their  labels  are
shown in Table 5.

Three-State Rules S, N  3, 3

S31 212aa02ad02 

S32 5ec2484e083 

S33 34be5823dc1 

S34 3d337739e3f 

S35 3db9f53398b 

S36 58db54c1a35 

Neighborhood Five Rules S, N  2, 5  

N51 9b8dc760 

N52 00cddf40 

N53 725fb240 

N54 fd3a6d12 

N55 4f716154 

N56 71ee3aaf 

Table 5. (continues)
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Density Rules S, N  2, 5  

D1 13b 

D2 254 

D3 2d0 

D4 3ca 

D5 275 

D6 28d 

Four-State Rules S, N  4, 3  

S41 b9aa502ddbabb5e8c5b715087a01da08

S42 e2604a35fca689cefc93a671b4689640

S43 1f31e800e11c86ba09bafbe00073d533

S44 bcbb4b3f7b915b47fd154586fa2d15a1

S45 53bf9dcb97e96e0247c9a980a1291d7e

S46 73838653ccc875124f5b4658516662c3

Five-State Rules S, N  5, 3  

S51 1871abdbbb1f751c5649ce2208abe0525e5e9

8543e527293d8fe32c1cbec8f9493da900dc

S52 159b7bf409f219a835b7bbe69791bfa94432d

737117268fff0b99044ac2ccbb513ca91456

S53 1b4cca207dfd49a79d60a0f0a36fda79a911d

b434135e22cd79e6e04c69f086c7aab1712a 

S54 1ca6bafcb8cc14e379373cb798461269c4d81

258cc28720c74f12dd39b8e48d5863e176a9

S55 3ac662317b4445a8e63b425645228e27bfc4a

0a388497b03a0adede89e87685b12977008f 

S56 053b86edcbce84369a1eeb58079725743b506

f228e9459e488139f0763489461f3847c82a

Table 5. The six best-performing rules on the five-bit memory task from each
of the categories of complex CA rules investigated.  

The selected rules were then further tested with a range of the reser-
voir parameters I, R and Ld. The results are shown in Table 6. 

Rule (4, 8, 40) (4, 8, 30) (4, 6, 40) (4, 4, 40) (3, 8, 40) (4, 8, 20) 

Elementary Rules S, N  2, 3

60 9 0 0 0 0 0 

90 0 0 0 0 0 0 

102 9 0 0 0 0 0 

153 6 0 0 0 0 0 

195 6 0 0 0 0 0 

210 6 0 0 0 0 0 

Table 6. (continues)
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Rule (4, 8, 40) (4, 8, 30) (4, 6, 40) (4, 4, 40) (3, 8, 40) (4, 8, 20) 

Three-State Rules S, N  3, 3

S31 100 100 100 0 25 10 

S32 99 63 44 0 16 0 

S33 100 92 89 2 0 6 

S34 100 53 42 0 0 0 

S35 100 85 93 2 2 0 

S36 99 97 79 6 5 0 

Neighborhood Five Rules S, N  2, 5

N51 97 83 61 0 0 0 

N52 99 92 60 0 0 2 

N53 99 98 69 0 88 2 

N54 95 75 59 0 0 0 

N55 95 87 26 0 0 0 

N56 93 49 46 35 38 0 

Density Rules S, N  2, 5

D1 68 47 23 0 1 0 

D2 70 0 6 0 0 0 

D3 94 62 63 0 0 20 

D4 96 87 57 0 0 0 

D5 99 17 35 0 25 0 

D6 64 58 27 0 1 0 

Four-State Rules S, N  4, 3

S41 90 75 58 0 12 1 

S42 90 84 56 0 9 0 

S43 93 12 9 0 42 0 

S44 95 35 21 0 0 0 

S45 100 85 66 0 11 1 

S46 87 20 2 0 0 0 

Five-State Rules S, N  5, 3

S51 95 50 42 8 15 0 

S52 95 76 70 0 7 0 

S53 99 74 51 0 24 0 

S54 80 1 9 0 2 0 

S55 84 17 7 0 2 0 

S56 77 13 6 0 5 0 

Table 6. Successful  runs  out  of  100  on  five-bit  task  for  elementary  CAs  and
five  types  of  complex  CA  rules.  Column  headings  give  the  values  for  the

parameters I, R, L.  
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For the temporal density and temporal parity tasks, all of the rules
were  tested  using  the  system  parameters  seen  in  Table  2.  The  labels
for  the  most  successful  rules  in  each  category  are  in  Table  7,  and  the
results are found in Table 8. 

Three-State Rules S, N  3, 3

S31 43eaeb0ea68

S32 688e5c88a95

S33 41d9be81e58

S34 41f81666893

S35 32d7be7347b

S36 58db54c1a35

Neighborhood Five Rules S, N  2, 5

N51 000c040f 

N52 ff19e808 

N53 1d5d1f7d 

N54 0073ebbf 

N55 fdfc1734 

N56 5d17350f 

Four-State Rules S, N  4, 3

S41 be2614f5ae52e0bceb0564a44a818504

S42 dd8a5ec44a19cf885d83514504883000

S43 5c9e5700e4a3423d37456595f56282c0

S44 ccb14db2d37a6039165a6d45151f4010

S45 17a2163c27560aaece871545a3208890

S46 754f9cb2174a865262d53515310f1120

Five-State Rules S, N  5, 3

S51 094edc5925c6beb872f42363fd4499effd7a0

6330439d82cd00064a42299880a06a6300f7

S52 2e9ffae0f04c5a7902a36adca32e1aad8a22e

5486eb074b92abcb17ef0e97f22ef3812276 

S53 4a09ab57fa452402cda01dd88d4aa08f24b83

f51a5c6a638ba703cbfc0e6d485e7cb98b3f 

S54 04572ec6156d9dab4f6db2cda2bb51a94877d

d8d554d71deb9e25698ec08cc0a95ca9ef65

S55 2c2b5702c45a01eccf1b8f8e29f2c4199f2ea

0fa00c9c4e67e2579d1c7f20a770182cca6c

S56 3e5309a22ea94f23fd18365607c9c64e7201f

a39ea33e4b7543332f59c6d43ed51317bbd5 

Table 7. The  six  best-performing  rules  on  the  combined  temporal  density/
parity task from each CA rule category investigated.  
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Rule Combined TD TP 

Elementary Rules S, N  2, 3

27 50 98 51 

38 57 72 72 

39 45 94 48 

48 67 83 76 

83 51 94 56 

174 57 98 58 

Three-State Rules S, N  3, 3

S31 50 58 82 

S32 48 78 61 

S33 46 61 73 

S34 45 66 67 

S35 43 81 53 

S36 42 77 55 

Neighborhood Five Rules S, N  2, 5

N51 50 96 52 

N52 52 77 69 

N53 43 88 52 

N54 42 72 57 

N55 34 44 66 

N56 30 40 75 

Four-State Rules S, N  4, 3

S41 34 65 55 

S42 33 63 54 

S43 29 56 56 

S44 24 40 57 

S45 24 39 60 

S46 23 57 46 

Five-State Rules S, N  5, 3

S51 29 56 45 

S52 19 34 55 

S53 16 36 52 

S54 16 38 38 

S55 11 16 70 

S56 9 15 48 

Nonuniform Rule

S31 +N51 54 78 69 

Table 8. Successful  runs  out  of  100  on  the  temporal  density  and  temporal
parity benchmarks, as well as performing both tasks in tandem.  
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Discussion   6.

The  qualities  that  cause  a  CA  rule  to  produce  a  good  reservoir  were
not  the  same  for  the  two  benchmarks  investigated,  and  none  of  the
rules  that  worked  well  for  one  benchmark  showed  particular  success
at the other. The increased information that can be held by a complex
rule  proved  helpful  for  the  five-bit  memory  task.  As  can  be  seen  in
Figure 7, the most successful reservoir for this task falls into one of a
number  of  possible  periodic  attractors  after  each  message  is  input.
The  particular  basin  of  attraction  encodes  the  message,  which  is  out-
put  when  the  cue  signal  is  given.  In  contrast,  complex  rules  were  not
found to outperform the best elementary rules at the temporal density
and temporal parity tasks.  

Figure 7. A segment of the history of a reservoir using rule S31  on the five-bit

task  with  I  4,  R  6  and  DL  30.  Each  four  horizontal  lines  is  one  reser-

voir time step. At the top of the image is the end of the distractor period after
the input message 00000. The reservoir has fallen into a stable repeating pat-
tern  with  a  period  of  eight  generations.  After  the  cue  signal  is  received,  the
reservoir “remembers” the message that was encoded in the repeating pattern.
After the next message 00001 is input, the reservoir quickly falls into another
stable pattern that encodes the new message.  

Five-Bit Memory Task  6.1

While  the  best-performing  elementary  rules  required  a  reservoir  of
size I ·R ·Ld  8 · 8 · 40  2560 cells in order to achieve 99% success

on  the  five-bit  memory  task,  each  of  the  five  categories  of  complex
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CA rules investigated here produced a rule capable of achieving 99%
or  100%  success  on  a  reservoir  of  half  that  size,
I ·R ·Ld  4 · 8 · 40  1280 cells. The best-performing rules that were

discovered  were  three-state  neighborhood  three.  One  of  these  was
able  to  produce  100%  correct  results  using  a  reservoir  of  size
I ·R ·Ld  4 · 6 · 40  960  cells.  Only  the  neighborhood  five  popula-

tion  density  rules  were  investigated  exhaustively.  For  the  other  rule
categories,  continued  searching  would  yield  a  virtually  infinite  num-
ber of similarly successful rules.  

Rule  performance  correlates  broadly  with  reservoir  size,  but  the
ability  of  the  ReCA  system  to  pass  the  benchmark  falls  at  different
rates,  depending  on  which  of  the  reservoir  parameters  I,  R  or  Ld  is

lowered.  The  30  complex  rules  average  91.7%  correct  test  runs  on

the  1280-cell  reservoir.  Reducing  the  reservoir  size  by  1  4  by  lower-

ing  the  diffusion  length  to  30  caused  the  least  performance  degrada-
tion,  with  the  average  success  rate  at  56.6%.  Reducing  the  reservoir
size  by  cutting  the  number  of  subreservoirs  from  eight  to  six  had  a
slightly  larger  effect  on  the  average  reservoir  performance,  which  fell
to 45.9%. Finally, when the reservoir size was reduced to 960 cells by
lowering  the  number  of  iterations  I  from  four  to  three,  the  average
success  rate  was  only  11.0%,  with  11  rules  achieving  zero  correct
runs,  while  a  couple  of  rules  were  relatively  resilient  to  the  reduced
iterations. When the reservoir size was halved from 1280 to 640 cells,
the  majority  of  the  complex  rules  were  unable  to  complete  any suc-
cessful runs of the task, and the average success rate was only 1.9%. 

Figure  8  plots  the  average  performance  by  reservoir  category  for
different  sizes  of  reservoir.  At  1280  cells,  the  worst-performing  cate-
gory of complex rule passed the task on 88.2% of trials compared to
6.0% for the elementary rules. For reservoirs smaller than 1280 cells,
elementary rules achieved 0.0% success. 

An attempt was made to find pairs of rules that would complement
each  other  in  a  nonuniform  reservoir,  performing  better  than  either
rule would alone, as has been shown to sometimes occur with pairs of
elementary  rules  [13].  The  six  rules  of  each  complex  rule  type  can
form  75  combinations  of  same-type  rules,  each  of  which  can  be  used
as a nonuniform reservoir for any setting of the reservoir size parame-
ters. Of these possibilities, 20 combinations were tested with 100 runs
of  the  benchmark.  Pairs  of  rules  were  selected  that  performed  well
individually  with  the  same  reservoir  parameters.  None  of  these  pairs
performed  better  than  the  more  successful  of  the  two  in  a  uniform
reservoir,  11  of  the  pairings  performing  significantly  worse  than
either  rule  tested  alone.  While  it  seems  very  likely  that  complex  CA
nonuniform  pairings  exist  that  do  work  well  together,  it  remains  an
open question how common or rare they are. 
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Figure 8. Five-bit  memory  task.  Averaged  performance  of  the  six  most  suc-
cessful rules in each category versus size of the reservoir in number of cells.  

Temporal Density and Temporal Parity  6.2

For  the  combined  temporal  density  and  temporal  parity  task,  the
introduction  of  complex  rules  did  not  improve  reservoir  performance
over  the  most  successful  elementary  rules,  demonstrating  that  the
potential  for  time  and  power  savings  with  complex  rules  depends  on
the  requirements  of  the  particular  task.  One  nonuniform  rule  was
found that combined two different categories of complex rules in a sin-
gle reservoir that outperformed either of the constituent rules alone. 

Conclusion   7.

A reservoir computing with the cellular automata (ReCA) framework
has  been  implemented,  which  expands  the  field  of  ReCA  research
from  the  256  elementary  cellular  automaton  (CA)  rules  to  investigate
rules with larger neighborhoods and more states, here called complex
CA rules. A genetic algorithm (GA) was used to reduce the chaoticity
of  the  four-state  and  five-state  rule  space,  in  order  to  find  edge
of  chaos  rules  capable  of  computing  the  five-bit  memory  task
benchmark.  

The  six  best  rules  from  each  of  five  categories  of  complex  rules
were tested and shown to require half of the reservoir size as the most
successful elementary rules to produce comparable results. This reduc-
tion in reservoir size equals a saving in power and time when operat-
ing  the  reservoirs.  These  results  suggest  that  complex  CA  rules  hold
promise  for  the  development  of  low-power  simple  systems  capable  of
performing other complex computational tasks. 
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